JP2015006104A - Charging method - Google Patents

Charging method Download PDF

Info

Publication number
JP2015006104A
JP2015006104A JP2013131167A JP2013131167A JP2015006104A JP 2015006104 A JP2015006104 A JP 2015006104A JP 2013131167 A JP2013131167 A JP 2013131167A JP 2013131167 A JP2013131167 A JP 2013131167A JP 2015006104 A JP2015006104 A JP 2015006104A
Authority
JP
Japan
Prior art keywords
voltage
battery
current
value
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013131167A
Other languages
Japanese (ja)
Inventor
拓也 今井
Takuya Imai
拓也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2013131167A priority Critical patent/JP2015006104A/en
Publication of JP2015006104A publication Critical patent/JP2015006104A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for appropriately charging a battery when a battery voltage becomes less than an overdischarge voltage value inhibiting discharge.SOLUTION: A battery in which a battery voltage Vb becomes less than a first discharge voltage value (about 1.6 V/cell) is charged with a constant current and a constant voltage at a first current value and a first output voltage value Vs (about 1.9 V/cell). When the battery voltage becomes equal to or higher than the first discharge voltage value, the battery is charged by the constant current at the first current value. When the battery voltage becomes equal to or higher than a second discharge voltage value (about 2.9 V/cell) larger than the first discharge voltage value, the battery is charged by the constant current and the constant voltage regulated to a maximum current value and a maximum output voltage value (about 4.2 V/cell).

Description

本発明は、充電方法に関する。   The present invention relates to a charging method.

以下の特許文献には、リチウムイオン電池を充電する充電器(充電用電源、充電回路部を備える充電器)の開示がある。この公報の図4、図5に開示されるように、交流を直流に変換する整流回路8、整流回路8の直流を高周波のパルス波に変換するスイッチング部9、パルス波を所定の電圧に変換する変換トランス11と、スイッチング部9を制御して直流出力を制御するPWM制御回路13と、PWM制御回路13に、制御信号を入力するフォトカプラ17とを備えている。     The following patent documents disclose a charger for charging a lithium ion battery (a charger having a charging power source and a charging circuit unit). As disclosed in FIGS. 4 and 5 of this publication, a rectifier circuit 8 that converts alternating current into direct current, a switching unit 9 that converts direct current of the rectifier circuit 8 into a high-frequency pulse wave, and converts the pulse wave into a predetermined voltage Conversion transformer 11, PWM control circuit 13 that controls switching unit 9 to control a DC output, and photocoupler 17 that inputs a control signal to PWM control circuit 13.

そして、定電流充電回路6を利用して、充電電流が所定値を超えると、フォトカプラ17を非導通状態とし、これを制御信号として、PWM制御回路13はトランジスター10を制御して出力を低く制御して、電池の充電電流を少なくする。したがって、定電流充電回路6は、電池の充電電流が設定値I1よりも大きくなるのを防止して、定電流充電する。     Then, when the constant current charging circuit 6 is used and the charging current exceeds a predetermined value, the photocoupler 17 is turned off, and this is used as a control signal, and the PWM control circuit 13 controls the transistor 10 to reduce the output. Control to reduce battery charging current. Therefore, the constant current charging circuit 6 prevents the battery charging current from becoming larger than the set value I1, and performs constant current charging.

また、定電圧充電回路5を利用して、充電電圧が所定値を超えると、フォトカプラ17を非導通状態とし、これを制御信号として、PWM制御回路13はトランジスター10を制御して出力を低く制御して、電池の充電電圧を少なくする。   When the constant voltage charging circuit 5 is used and the charging voltage exceeds a predetermined value, the photocoupler 17 is turned off, and this is used as a control signal, and the PWM control circuit 13 controls the transistor 10 to reduce the output. Control to reduce battery charging voltage.

特開平8−205418号公報     JP-A-8-205418

また、リチウムイオン電池の電池電圧が、放電を禁止する過放電電圧値未満となったとき、このような電池を充電するには、小電流にて充電(トリクル充電)することが必要であった。     In addition, when the battery voltage of the lithium ion battery becomes less than the overdischarge voltage value that prohibits discharge, it is necessary to charge such a battery with a small current (trickle charge). .

本発明は、電池電圧が、放電を禁止する過放電電圧値未満となったとき、適切に充電する方法を提供することを目的とする。   An object of this invention is to provide the method of charging appropriately, when a battery voltage becomes less than the overdischarge voltage value which prohibits discharge.

本発明の充電方法においては、電池電圧Vbが第1過放電電圧値(約1.6V/セル)未満となった電池を、第1の電流値、第1の出力電圧値Vs(約1.9V/セル)にて、定電流定電圧にて充電し、前記電池電圧が、前記第1過放電電圧値以上となったとき、前記第1の電流値にて定電流し、前記電池電圧が、前記第1過放電電圧値より大きい第2過放電電圧値(約2.9V/セル)以上となったとき、最大の電流値、最大の出力電圧値(約4.2V/セル)に規制した定電流定電圧にて充電する。   In the charging method of the present invention, a battery whose battery voltage Vb is less than the first overdischarge voltage value (about 1.6 V / cell) is used as the first current value and the first output voltage value Vs (about 1.. 9V / cell) at a constant current and a constant voltage. When the battery voltage becomes equal to or higher than the first overdischarge voltage value, the battery voltage is constant at the first current value. When the second overdischarge voltage value (approximately 2.9 V / cell) is greater than the first overdischarge voltage value, the maximum current value and the maximum output voltage value (approximately 4.2 V / cell) are regulated. Charge at the constant current and constant voltage.

本発明の充電方法において、第2過放電電圧値(2直列セルであれば、約5.8V(約2.9V/セル)で、例えば、電子機器への放電を禁止する電池電圧)未満である過放電モード(Overdischarge mode)において、電池電圧Vbと、第1の出力電圧値VS(2直列セルを充電するのであれば、約3.8V(約1.9V/セル)の電源回路1からの出力電圧
)との差が小さく、発熱量(損失電力)を抑えることができる。
In the charging method of the present invention, less than the second overdischarge voltage value (in the case of two series cells, about 5.8 V (about 2.9 V / cell), for example, a battery voltage prohibiting discharge to an electronic device). In a certain overdischarge mode, the battery voltage Vb and the first output voltage value VS (when charging two series cells, from the power supply circuit 1 of about 3.8V (about 1.9V / cell) Output voltage) is small, and the amount of heat generation (loss power) can be suppressed.

本発明の一実施例にかかわる回路ブロック図である。1 is a circuit block diagram according to an embodiment of the present invention. 本発明の一実施例にかかわる電圧、電流グラフである。It is a voltage and current graph concerning one Example of this invention. 比較例の電圧、電流グラフである。It is a voltage and electric current graph of a comparative example.

本発明の実施例において利用できる回路ブロック図を、図1に示す。充電する出力電圧Vcc、充電する出力電流を出力する電源回路1より、充電制御回路20を介して、電池3を充電する。電池3は、リチウムイオン電池からなり、2つの素電池を直列接続している。   A circuit block diagram which can be used in the embodiment of the present invention is shown in FIG. The battery 3 is charged via the charge control circuit 20 from the power supply circuit 1 that outputs the output voltage Vcc to be charged and the output current to be charged. The battery 3 is composed of a lithium ion battery, and two unit cells are connected in series.

電池1がリチウムイオン電池の場合は、最大の電流値、最大の電圧値を規制した定電流(MAX電流0.5〜1C程度)・(出力)定電圧(MAX4.2V/セル程度)充電(Charge mode)を利用する。   When the battery 1 is a lithium ion battery, the maximum current value and the maximum voltage value are regulated by a constant current (MAX current 0.5 to 1C) and (output) constant voltage (MAX4.2V / cell) charge (Charge mode) ).

充電制御回路20は、電池電圧Vsを取り込むことで、電池電圧検出(1)を行い、制御する充電制御部21と、充電制御部21からの定電流値切替信号(3)により、電流が所定の電流値で一定になるように、後述する電源回路1の制御信号入力部に、定電流定電圧制御フィードバック信号(5)を送る定電流制御回路26と、充電制御部21からの定電圧値切替信号(4)により、出力電圧Vccが所定の電圧値で一定になるように、後述する電源回路1の制御信号入力部に、定電流定電圧制御フィードバック信号(5)を送る定電圧制御回路25と、電池電圧Vsの値に基づく充電制御部21からの充電スイッチング素子ON/OFF切替信号(2)によりオン、オフされるスイッチング素子22とを備えている。   The charge control circuit 20 detects the battery voltage (1) by taking in the battery voltage Vs, and the current is determined by the charge control unit 21 to be controlled and the constant current value switching signal (3) from the charge control unit 21. A constant current control circuit 26 for sending a constant current constant voltage control feedback signal (5) to a control signal input section of the power supply circuit 1 to be described later, and a constant voltage value from the charge control section 21 so that the current value becomes constant. A constant voltage control circuit that sends a constant current / constant voltage control feedback signal (5) to a control signal input section of the power supply circuit 1 to be described later so that the output voltage Vcc becomes constant at a predetermined voltage value by the switching signal (4). 25, and a switching element 22 that is turned on and off by a charge switching element ON / OFF switching signal (2) from the charge control unit 21 based on the value of the battery voltage Vs.

充電制御回路20は、ICとして利用することもできる。また、スイッチング素子22と直列に接続された電流検出部27にて充電電流を検出し、電流値に対応した信号を充電制御部21に送り、この充電制御部21にて充電電流を制御し、定電流制御回路26に伝達(フィードバック)する。また、スイッチング素子22は、過充電、充電完了後、過電流検出時もオフする。   The charge control circuit 20 can also be used as an IC. Further, the current detection unit 27 connected in series with the switching element 22 detects the charging current, sends a signal corresponding to the current value to the charging control unit 21, and the charging control unit 21 controls the charging current, This is transmitted (feedback) to the constant current control circuit 26. The switching element 22 is also turned off when overcurrent is detected after completion of overcharging and charging.

電源回路1は、上述の背景技術に開示されるような回路が利用できる。例えば、以下の構成の電源回路(図示なし)が利用できる。交流を直流に変換する整流回路、整流回路の直流を高周波のパルス波に変換するスイッチング部、パルス波を所定の電圧に変換する変換トランスと、スイッチング部を制御して直流出力を制御するPWM制御回路と、PWM制御回路13に、制御信号を入力する制御信号入力部とを備えている。そして、充電電流が所定値を超えると、定電流制御回路26を利用して、定電流定電圧制御フィードバック信号(5)を出力し、制御信号入力部を介して、PWM制御回路はトランジスターを制御して出力を低く制御して、電池の充電電流を少なくする。したがって、定電流制御回路26は、電池の充電電流が所定値よりも大きくなるのを防止して、定電流充電する。   As the power supply circuit 1, a circuit as disclosed in the background art described above can be used. For example, a power supply circuit (not shown) having the following configuration can be used. Rectifier circuit that converts alternating current into direct current, switching unit that converts direct current of the rectifier circuit into high-frequency pulse wave, conversion transformer that converts pulse wave into predetermined voltage, and PWM control that controls the direct current output by controlling the switching unit The circuit includes a control signal input unit that inputs a control signal to the PWM control circuit 13. When the charging current exceeds a predetermined value, the constant current control circuit 26 is used to output a constant current / constant voltage control feedback signal (5), and the PWM control circuit controls the transistor via the control signal input unit. Then, the output is controlled to be low and the charging current of the battery is reduced. Therefore, the constant current control circuit 26 prevents the charging current of the battery from becoming larger than a predetermined value and performs constant current charging.

また、充電電圧が所定値を超えると、定電圧制御回路25を利用して、定電流定電圧制御フィードバック信号(5)を出力し、制御信号入力部を介して、PWM制御回路はトランジスターを制御して出力を低く制御して、電池の充電電圧を少なくする。したがって、定電圧制御回路25は、電池の充電電圧が所定値よりも大きくなるのを防止して、定電圧充電する。   When the charging voltage exceeds a predetermined value, the constant voltage control circuit 25 is used to output a constant current constant voltage control feedback signal (5), and the PWM control circuit controls the transistor via the control signal input unit. The output is controlled to be low, and the charging voltage of the battery is reduced. Therefore, the constant voltage control circuit 25 prevents the charging voltage of the battery from becoming higher than a predetermined value and performs constant voltage charging.

本実施例は、上述の回路を、利用して、図2の電圧、電流グラフのように、充電される。   In this embodiment, the above-described circuit is used to charge the battery as shown in the voltage / current graph of FIG.

電池電圧Vbが第1過放電電圧値(2直列セルであれば、約3.2V(約1.6V/セル))未満となった電池を、第1の電流値(Trickle charging current)、第1の出力電圧値(2直列セルを充電するのであれば、約3.8V(約1.9V/セル)の電源回路1からの出力電圧)にて、定電流定電圧にて充電し、
前記電池電圧が、前記第1過放電電圧値以上となったとき、前記第1の電流値(Trickle charging current)にて定電流し、このとき、電源回路1の出力電圧Vccと、電池電圧Vbは、充電が進むにつれて、上昇する。
A battery whose battery voltage Vb is less than the first overdischarge voltage value (about 3.2 V (about 1.6 V / cell if two series cells)) is used as the first current value (Trickle charging current), Charged at a constant current and a constant voltage at an output voltage value of 1 (output voltage from the power supply circuit 1 of about 3.8 V (about 1.9 V / cell) if 2 series cells are charged)
When the battery voltage becomes equal to or higher than the first overdischarge voltage value, a constant current is generated at the first current value (Trickle charging current). At this time, the output voltage Vcc of the power supply circuit 1 and the battery voltage Vb Rises as charging progresses.

前記電池電圧が、前記第1過放電電圧値より大きい第2過放電電圧値(2直列セルであれば、約5.8V(約2.9V/セル)電子機器への放電を禁止する電池電圧2直列セル以上となったとき、最大の電流値(Charging current)、最大の出力電圧値(2直列セルを充電するのであれば、約8.4V(約4.2V/セル)の電源回路1からの出力電圧)に規制した定電流定電圧(Charge mode)にて充電する。このとき、電源回路1の出力電圧Vccと、電池電圧Vbは、充電が進むにつれて、上昇し、出力電圧Vccが先に最大の出力電圧値に到達し、最大の電流値(Charging current)から充電電流値が低下すると共に、電池電圧Vbが、最大の出力電圧値に漸近する。   A second overdischarge voltage value that is greater than the first overdischarge voltage value (about 5.8 V (about 2.9 V / cell if two series cells), a battery voltage that inhibits discharge to an electronic device; Power supply circuit 1 having a maximum current value (Charging current) and a maximum output voltage value (about 8.4 V (about 4.2 V / cell) if charging two series cells) In this case, the output voltage Vcc and the battery voltage Vb of the power supply circuit 1 rise as charging progresses, and the output voltage Vcc is increased. The maximum output voltage value is reached first, the charging current value decreases from the maximum current value (Charging current), and the battery voltage Vb gradually approaches the maximum output voltage value.

更に、充電が進み、充電電流値が所定値以下になると、満充電として、充電が停止される。   Furthermore, when charging progresses and the charging current value becomes a predetermined value or less, charging is stopped as full charging.

ここで、充電制御回路20おけるスイッチング素子22及び充電経路等においては、(VS(出力電圧値)−Vb(電池電圧))×Ichg(充電電流)による発熱量に耐えられる必要がある。   Here, in the switching element 22 and the charging path in the charging control circuit 20, it is necessary to withstand the heat generation amount by (VS (output voltage value) −Vb (battery voltage)) × Ichg (charging current).

以上の実施例においては、第2過放電電圧値(2直列セルであれば、約6.9V(約3.45V/セル)で、例えば、電子機器への放電を禁止する電池電圧)未満である過放電モード(Overdischarge mode)において、電池電圧Vbが第1過放電電圧値(2直列セルであれば、約3.2V(約1.6V/セル))までは、第1の電流値(Trickle charging current)、第1の出力電圧値(2直列セルを充電するのであれば、約3.8V(約1.9V/セル)の電源回路1からの出力電圧)にて充電するので、電池電圧Vbと、第1の出力電圧値VS(2直列セルを充電するのであれば、約3.8V(約1.9V/セル)の電源回路1からの出力電圧)との差が小さく、発熱量(損失電力)を抑えることができる。   In the above embodiment, the second overdischarge voltage value is less than about the second overdischarge voltage value (about 6.9 V (about 3.45 V / cell in the case of two series cells), for example, a battery voltage prohibiting discharge to an electronic device). In a certain overdischarge mode, when the battery voltage Vb is up to the first overdischarge voltage value (about 3.2 V (about 1.6 V / cell in the case of two series cells)), the first current value ( Trickle charging current), the first output voltage value (if charging two series cells, it will be charged at about 3.8V (about 1.9V / cell) from the power supply circuit 1). The difference between the voltage Vb and the first output voltage value VS (the output voltage from the power supply circuit 1 of about 3.8 V (about 1.9 V / cell) if two series cells are charged) is small, and heat is generated. The amount (power loss) can be reduced.

また、上記の実施例との比較例を、図3の電圧、電流グラフを用いて説明する。図においては、電池電圧Vbが第2過放電電圧値(2直列セルであれば、約5.8V(約2.9V/セル)電子機器への放電を禁止する電池電圧)未満となった電池を、この第2過放電電圧値まで、この電圧値より大きい出力電圧(2直列セルを充電するのであれば、約6.9V(約3.45V/セル)の電源回路1からの出力電圧)で、図2と同じ第1の電流値(Trickle charging current)にて、充電している。このとき、電池電圧Vbと、出力電圧との差が大きく、発熱量が大きくなる。このような発熱量に、充電制御回路20が耐えるためには、以下の対策が考えられが、各々、以下に記載される問題がある。
対策(1)第1の電流値(Trickle charging current)を下げる。充電時間が長くなる問題がある。
対策(2)充電制御回路20を、発熱量に耐えられるような回路にする。回路(ICパッケージ)が大きくなり、製品が小型化できない問題がある。
Further, a comparative example with the above-described embodiment will be described using the voltage and current graph of FIG. In the figure, the battery voltage Vb is less than the second overdischarge voltage value (in the case of two series cells, the battery voltage prohibiting discharge to an electronic device of about 5.8 V (about 2.9 V / cell)). Output voltage larger than this voltage value until the second overdischarge voltage value (if the two series cells are charged, the output voltage from the power supply circuit 1 of about 6.9 V (about 3.45 V / cell)) Thus, charging is performed at the same first current value (Trickle charging current) as in FIG. At this time, the difference between the battery voltage Vb and the output voltage is large, and the heat generation amount is large. In order for the charge control circuit 20 to withstand such a calorific value, the following measures can be considered, but each has the following problems.
Countermeasure (1) Lower the first current value (Trickle charging current). There is a problem that the charging time becomes long.
Countermeasure (2) The charge control circuit 20 is configured to withstand the heat generation amount. There is a problem that the circuit (IC package) becomes large and the product cannot be downsized.

一方、上記の実施例においては、電池電圧Vbと、第1の出力電圧値VSとの差が小さく、発熱量を抑えることができる。   On the other hand, in the above embodiment, the difference between the battery voltage Vb and the first output voltage value VS is small, and the heat generation amount can be suppressed.

例えば、過放電状態の電池の電池電圧が0Vの場合、充電電流として第1の電流値(Trickle charging current)を、0.1Aとして、発熱量(損失電力)を計算すると以下のようになる。   For example, when the battery voltage of a battery in an overdischarged state is 0 V, the amount of heat generation (loss power) is calculated as follows with the first current value (Trickle charging current) as 0.1 A as the charging current.

本実施例 (3.8V−0V)×0.1A=0.38W
比較例 (6.9V−0V)×0.1A=0.69W
0.38W÷0.69W=0.55であり、比較例に対して、本実施例は、発熱量を55%に抑えることができる。
Example (3.8V-0V) × 0.1A = 0.38W
Comparative Example (6.9V-0V) × 0.1A = 0.69W
0.38W ÷ 0.69W = 0.55, and compared with the comparative example, this embodiment can suppress the heat generation amount to 55%.

1 電源回路
20 充電制御回路
3 電池
1 Power supply circuit 20 Charge control circuit 3 Battery

Claims (2)

電池電圧が第1過放電電圧値未満となった電池を、第1の電流値、第1の出力電圧値にて、定電流定電圧にて充電し、
前記電池電圧が、前記第1過放電電圧値以上となったとき、前記第1の電流値にて定電流し、
前記電池電圧が、前記第1過放電電圧値より大きい第2過放電電圧値以上となったとき、最大の電流値、最大の出力電圧値に規制した定電流定電圧にて充電する充電方法。
A battery whose battery voltage is less than the first overdischarge voltage value is charged with a constant current and a constant voltage at a first current value and a first output voltage value,
When the battery voltage is equal to or higher than the first overdischarge voltage value, a constant current is applied at the first current value,
A charging method for charging with a constant current and a constant voltage regulated to a maximum current value and a maximum output voltage value when the battery voltage is equal to or greater than a second overdischarge voltage value greater than the first overdischarge voltage value.
前記電池は、リチウムイオン電池である請求項1の充電方法。




The charging method according to claim 1, wherein the battery is a lithium ion battery.




JP2013131167A 2013-06-21 2013-06-21 Charging method Pending JP2015006104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013131167A JP2015006104A (en) 2013-06-21 2013-06-21 Charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131167A JP2015006104A (en) 2013-06-21 2013-06-21 Charging method

Publications (1)

Publication Number Publication Date
JP2015006104A true JP2015006104A (en) 2015-01-08

Family

ID=52301575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013131167A Pending JP2015006104A (en) 2013-06-21 2013-06-21 Charging method

Country Status (1)

Country Link
JP (1) JP2015006104A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308733A (en) * 1992-04-30 1993-11-19 Toyo Commun Equip Co Ltd Charging circuit system and charger
US20130043829A1 (en) * 2011-08-17 2013-02-21 National Semiconductor Corporation Battery charger with segmented power path switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308733A (en) * 1992-04-30 1993-11-19 Toyo Commun Equip Co Ltd Charging circuit system and charger
US20130043829A1 (en) * 2011-08-17 2013-02-21 National Semiconductor Corporation Battery charger with segmented power path switch

Similar Documents

Publication Publication Date Title
TWI594540B (en) Power storage system and power source system
JP5185328B2 (en) DCDC converter
US20200052510A1 (en) Charger
US10355490B2 (en) Hybrid solar power generation system
US9979227B2 (en) Line interactive UPS
US8004236B2 (en) Contactless charging device and contactless charging method
JP2011120447A (en) Energy storage system
JP5567040B2 (en) Secondary battery control device
JPWO2013042517A1 (en) Switch device and breaker control method
KR101871020B1 (en) system for charging battery of energy storage system using PCS
JP2013042627A (en) Dc power supply control device and dc power supply control method
JP2013070442A (en) Rechargeable electric apparatuses
TWI533556B (en) Battery charger having battery voltage detector and controlling method thereof
JP5450685B2 (en) Power converter
JP6268786B2 (en) Power conditioner, power conditioner system, and control method of power conditioner
US9559538B1 (en) Switch mode battery charger with improved battery charging time
US8493023B2 (en) Charge apparatus and method using the same
US10886744B2 (en) Power conversion system, power supply system and power conversion device
US20200220370A1 (en) Power storage apparatus
EP4297232A1 (en) Energy system, and charging and discharging control method
JP2015006104A (en) Charging method
US9917473B2 (en) Power system, power management method, and program
JP6707309B2 (en) Power supply system
JP5816814B2 (en) Charger
JP6351200B2 (en) Power supply system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170718