JP2015005716A - Multilayer printed circuit board - Google Patents

Multilayer printed circuit board Download PDF

Info

Publication number
JP2015005716A
JP2015005716A JP2013242730A JP2013242730A JP2015005716A JP 2015005716 A JP2015005716 A JP 2015005716A JP 2013242730 A JP2013242730 A JP 2013242730A JP 2013242730 A JP2013242730 A JP 2013242730A JP 2015005716 A JP2015005716 A JP 2015005716A
Authority
JP
Japan
Prior art keywords
wiring layer
pattern
power supply
layer
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013242730A
Other languages
Japanese (ja)
Other versions
JP2015005716A5 (en
Inventor
孝英 野崎
Takahide Nozaki
孝英 野崎
中西 秀行
Hideyuki Nakanishi
秀行 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2013242730A priority Critical patent/JP2015005716A/en
Publication of JP2015005716A publication Critical patent/JP2015005716A/en
Publication of JP2015005716A5 publication Critical patent/JP2015005716A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that a method of forming a capacitor layer by effectively utilizing a power source wiring layer and a ground wiring layer is extremely effective for noise suppression but unavailable if the power source wiring layer and the ground wiring layer are not adjacent, and it is difficult to provide in a versatile manner a method of forming the capacitor layer by adding the ground wiring layer and the power source wiring layer since cost may be increased by increasing the number of layers.SOLUTION: A capacitor layer is formed while effectively utilizing a free space of signal wiring layers within a multilayer printed circuit board without increasing the number of layers, a power source pattern is disposed in a signal wiring layer neighboring to a ground wiring layer, and a ground pattern is disposed in a signal wiring layer neighboring to a power source wiring layer, thereby suppressing radiation noise.

Description

本発明は、コンデンサを内蔵した多層のプリント基板およびその設計方法に関する。   The present invention relates to a multilayer printed board including a capacitor and a design method thereof.

近年、電子機器の高速化、多機能化によりプリント基板は半導体集積回路(LSI)の動作に伴う電源電圧変動、信号伝送の高速化、信号の立ち上がり、立ち下がりの急峻化など多くのノイズ要因を抱えており、放射ノイズ対策が重要とされている。   In recent years, with the increase in speed and functionality of electronic devices, printed circuit boards are subject to many noise factors, such as power supply voltage fluctuations associated with semiconductor integrated circuit (LSI) operations, signal transmission speeds, and signal rise and fall. Therefore, it is important to take measures against radiation noise.

LSI動作により発生する電源ノイズの対策は、LSIの電源ピン近傍にバイパスコンデンサを搭載することが一般的であるが、部品の小型化・狭ピッチ化、さらに、基板の小型化・高密度化により、電源ピン近傍に十分なバイパスコンデンサを配置できないことがある。また、コンデンサを配置しても、ビアと配線を介して接続されるため、インダクタンス成分が増加し、ノイズ源または電源端子からの直列共振周波数は低周波へシフトしてしまう。そのため、ノイズ抑制効果が低減する問題がある。   Generally, a bypass capacitor is mounted near the power supply pin of an LSI as a countermeasure against power supply noise generated by LSI operation. However, by reducing the size and pitch of parts, and further reducing the size and density of the board. In some cases, a sufficient bypass capacitor cannot be arranged near the power supply pin. Even if the capacitor is arranged, since it is connected to the via via the wiring, the inductance component increases, and the series resonance frequency from the noise source or the power supply terminal is shifted to a low frequency. Therefore, there is a problem that the noise suppression effect is reduced.

これらの問題を解決するため、プリント基板内にコンデンサを形成する取り組みが行われている。   In order to solve these problems, efforts are being made to form capacitors in printed circuit boards.

特許文献1には、導電材料からなる2枚のシートと誘電性材料からなる中間シートを含むコンデンサ積層体が印刷配線基板内部に包含された積層構造が提案され、LSI動作による電源ノイズを低減している。また、特許文献2には、複数の絶縁層が積層されて成る絶縁基板内に電源配線層と接地配線層とが対向配置されて形成された内蔵キャパシタの間の絶縁層内にチップキャパシタを内蔵し、その端子電極を直接電源配線層および接地配線層に接続した多層配線基板であって、電源配線層の端部を接地配線層の端部よりも内側に位置させている多層配線基板が提案され、それらの端部での電磁気的な結合によって生じる高周波電流の集中を少なくし、それらの端部から発生する放射ノイズを大幅に低減させている。   Patent Document 1 proposes a multilayer structure in which a capacitor multilayer body including two sheets made of a conductive material and an intermediate sheet made of a dielectric material is included in a printed wiring board to reduce power supply noise due to LSI operation. ing. Further, in Patent Document 2, a chip capacitor is built in an insulating layer between built-in capacitors formed by disposing a power wiring layer and a ground wiring layer in an insulating substrate formed by laminating a plurality of insulating layers. A multilayer wiring board in which the terminal electrodes are directly connected to the power wiring layer and the ground wiring layer, and the end of the power wiring layer is located inside the end of the ground wiring layer is proposed. Therefore, the concentration of the high-frequency current generated by the electromagnetic coupling at these ends is reduced, and the radiation noise generated from these ends is greatly reduced.

このように、LSIの電源ピンを最短でコンデンサと接続することで、放射ノイズの効果的な低減が期待されている。   Thus, effective reduction of radiation noise is expected by connecting the power supply pin of the LSI to the capacitor in the shortest time.

特表平5−500136号公報Japanese translation of PCT publication No. 5-500136 特開2003−204163号公報JP 2003-204163 A

上記のように電源配線層とグラウンド配線層を活用してコンデンサ層を形成する方法は、非常に効果的であるが、電源配線層とグラウンド配線層が隣接していないと使用できない。多層プリント基板の層構成において、信号配線の伝送特性を考慮すると、層数によっては電源配線層とグラウンド配線層を対向して配置することが困難な場合がある。その場合は、元から配置されている電源配線層およびグラウンド配線層に対して、それぞれに対向するようにグラウンド配線層および電源配線層を追加し、コンデンサ層を形成しなければならない。これは、元の層構成に電源配線層およびグラウンド配線層を追加することとなり、層数の増加によるコストアップとなるため、汎用的に提供することは難しい。   The method of forming the capacitor layer using the power wiring layer and the ground wiring layer as described above is very effective, but cannot be used unless the power wiring layer and the ground wiring layer are adjacent to each other. In the layer configuration of the multilayer printed board, considering the transmission characteristics of the signal wiring, depending on the number of layers, it may be difficult to dispose the power wiring layer and the ground wiring layer facing each other. In that case, it is necessary to add a ground wiring layer and a power supply wiring layer so as to face the power supply wiring layer and the ground wiring layer that are originally arranged, thereby forming a capacitor layer. This adds a power supply wiring layer and a ground wiring layer to the original layer structure, and increases the cost due to an increase in the number of layers, so that it is difficult to provide for general use.

本発明は、層数を増加することなく、信号配線層の空きスペースを活用してコンデンサ層を形成し、グラウンド配線層と隣接している信号配線層には電源パターンを配置、電源配線層と隣接している信号配線層にはグラウンドパターンを配置することにより、放射ノイズを抑制できる多層プリント基板およびその設計方法を提供するものである。   In the present invention, the capacitor layer is formed by utilizing the empty space of the signal wiring layer without increasing the number of layers, and a power supply pattern is disposed in the signal wiring layer adjacent to the ground wiring layer. A multilayer printed circuit board capable of suppressing radiation noise by arranging a ground pattern on an adjacent signal wiring layer and a design method thereof are provided.

前記課題を解決するために、本発明の多層プリント基板は、内部にコンデンサ層が形成された多層構造体であって、基板内部の信号配線層の空きスペースを活用して電源パターンとグラウンドパターンによる内蔵コンデンサを形成する。すなわち、グラウンド層をリファレンスとする内層信号配線層の空きスペースには、電源パターンを配置し、電源配線層をリファレンスとする内層信号配線層の空きスペースには、グラウンドパターンを配置し、プレーン容量によるコンデンサを提供するものである。   In order to solve the above-mentioned problems, a multilayer printed board according to the present invention is a multilayer structure in which a capacitor layer is formed, and uses a free space in a signal wiring layer inside the board to make use of a power pattern and a ground pattern. Form a built-in capacitor. That is, a power pattern is arranged in an empty space in the inner signal wiring layer with the ground layer as a reference, and a ground pattern is arranged in an empty space in the inner signal wiring layer with the power wiring layer as a reference. A capacitor is provided.

本発明の多層プリント基板は、信号配線層の空きスペースを活用してコンデンサ層が形成されるため、電源配線層とグラウンド配線層を対向させるための層数増加によるコストアップがなく放射ノイズを低減することが可能となる。   In the multilayer printed circuit board of the present invention, since the capacitor layer is formed by utilizing the empty space of the signal wiring layer, there is no increase in cost due to the increase in the number of layers for making the power wiring layer and the ground wiring layer face each other, and radiation noise is reduced. It becomes possible to do.

本発明の多層プリント基板を示す断面図である。It is sectional drawing which shows the multilayer printed circuit board of this invention. 絶縁層間距離の違いによる放射ノイズ測定結果を示す。The radiation noise measurement result by the difference in the distance between insulating layers is shown. 遠方界解析による基板周囲に配置する電源パターン幅と放射ノイズの関係を示すものである。The relationship between the power supply pattern width arrange | positioned around a board | substrate by far-field analysis and radiation noise is shown. 基板周囲に配置する電源パターン幅と放射ノイズの関係を遠方界解析するためのパターン図である。FIG. 5 is a pattern diagram for far field analysis of the relationship between the power supply pattern width arranged around the substrate and radiation noise. 本発明の実施の形態(基板a)における信号配線層に配置したベタパターン図である。It is a solid pattern figure arrange | positioned at the signal wiring layer in embodiment (board | substrate a) of this invention. 本発明の他の実施の形態(基板b)における信号配線層に配置したベタパターン図である。It is a solid pattern figure arrange | positioned at the signal wiring layer in other embodiment (board | substrate b) of this invention. 基板aの放射ノイズ測定結果を示す。The radiation noise measurement result of the board | substrate a is shown. 基板bの放射ノイズ測定結果を示す。The radiation noise measurement result of the board | substrate b is shown. LSI近傍に配置するパターンの距離と放射ノイズの関係を遠方界解析するためのパターン図である。FIG. 10 is a pattern diagram for far field analysis of the relationship between the distance between patterns arranged in the vicinity of an LSI and radiation noise. 特定周波数におけるLSIからのパターンの距離と放射ノイズ強度の関係を示す。The relationship between the pattern distance from the LSI at a specific frequency and the radiation noise intensity is shown. 本発明の他の実施の形態(基板d)における信号配線層に配置したベタパターン図である。It is a solid pattern figure arrange | positioned at the signal wiring layer in other embodiment (board | substrate d) of this invention. 基板dの放射ノイズ測定結果を示す。The radiation noise measurement result of the board | substrate d is shown. 本発明の他の実施の形態(基板e)における信号配線層に配置したベタパターン図である。It is a solid pattern figure arrange | positioned at the signal wiring layer in other embodiment (board | substrate e) of this invention. 基板eの放射ノイズ測定結果を示す。The radiation noise measurement result of the board | substrate e is shown.

以下、本発明の多層プリント基板について図を用いて説明する。   Hereinafter, the multilayer printed board of the present invention will be described with reference to the drawings.

図1において上から2層目にグラウンド配線層3、5層目に電源配線層4が形成されており、3層目にはグラウンド配線層3をリファレンスプレーンとした第1信号配線層5と、4層目に電源配線層4をリファレンスプレーンとした第2信号配線層6とを一般的な多層プリント基板製造方法を用いて配置する。ここで、図1は6層基板であるが、電源配線層とグラウンド配線層、内層信号配線層が存在する基板であれば層数は任意である。   In FIG. 1, a ground wiring layer 3 is formed in the second layer from the top, and a power wiring layer 4 is formed in the fifth layer. A first signal wiring layer 5 having the ground wiring layer 3 as a reference plane is formed in the third layer; A fourth signal wiring layer 6 having the power wiring layer 4 as a reference plane is arranged as a fourth layer by using a general multilayer printed circuit board manufacturing method. Here, FIG. 1 shows a six-layer substrate, but the number of layers is arbitrary as long as the substrate has a power wiring layer, a ground wiring layer, and an inner signal wiring layer.

また、第1信号配線層5の空きスペースにはグラウンド配線層3に対向した電源パターン40を配置し、第2信号配線層6の空きスペースには、電源配線層に対向したグラウンドパターン30を配置することで、コンデンサ層8が形成される。   A power pattern 40 facing the ground wiring layer 3 is disposed in the empty space of the first signal wiring layer 5, and a ground pattern 30 facing the power wiring layer is disposed in the empty space of the second signal wiring layer 6. As a result, the capacitor layer 8 is formed.

以上のような形態をとることで、電源配線層とグラウンド配線層を対向させなくてもコンデンサ層8をグラウンド配線層3と第1信号配線層5および電源配線層4と第2信号配線層6の間で形成することができる。   By taking the form as described above, the capacitor layer 8 is replaced with the ground wiring layer 3, the first signal wiring layer 5, the power supply wiring layer 4, and the second signal wiring layer 6 without the power wiring layer and the ground wiring layer being opposed to each other. Can be formed between.

一般的に、対向する電源パターンとグラウンドパターンの層間の距離は、基板内に形成される容量に影響を与える。図1にグラウンド配線層3と第1信号配線層5および電源配線層4と第2信号配線層6の絶縁層間距離10を示す。コンデンサ層8の容量は式(1)で定義されており、面積が同じ場合、絶縁層間距離10が小さいほど容量は大きくなり、放射ノイズ抑制効果も大きくなる。絶縁層間距離10を0.06mmから1.2mmとしたときの放射ノイズ抑制効果を検証した結果を図2に示す。絶縁層間距離10が0.1mm、0.06mmの場合、放射ノイズが大きく抑制できる。

In general, the distance between the opposing power supply pattern and ground pattern layers affects the capacitance formed in the substrate. FIG. 1 shows an insulating interlayer distance 10 between the ground wiring layer 3 and the first signal wiring layer 5 and between the power supply wiring layer 4 and the second signal wiring layer 6. The capacitance of the capacitor layer 8 is defined by the formula (1). When the area is the same, the smaller the insulating interlayer distance 10, the larger the capacitance, and the greater the radiation noise suppression effect. FIG. 2 shows the result of verifying the radiation noise suppression effect when the insulating interlayer distance 10 is 0.06 mm to 1.2 mm. When the insulating interlayer distance 10 is 0.1 mm and 0.06 mm, radiation noise can be greatly suppressed.

次に、信号層の空きスペースへの電源、グラウンドパターン配置について説明する。   Next, power supply and ground pattern arrangement in the empty space of the signal layer will be described.

2.5次元電磁界シミュレータ Ansys SI wave(アンシス・ジャパン株式会社製)を用いて、基板周囲に配置するパターンの幅と放射ノイズの関係を遠方界解析した結果を図3に示す。ここではノイズ源を基板中央に配置し、第3層の第1信号配線層を図4のような電源パターンとした。電源パターン条件は、電源パターンなし、周囲電源パターン幅を2mm、5mm、10mm、全面ベタの5種類とした。電源パターン幅が太くなるほど、放射ノイズが低減する傾向を示し、基板外周に幅5mm以上のパターンを設けることにより、電源パターンなしと比較すると、70%の放射ノイズ低減を示すことから、実機においても十分な放射ノイズ低減効果が期待できる。   FIG. 3 shows the result of far-field analysis of the relationship between the width of the pattern arranged around the substrate and the radiation noise using a 2.5-dimensional electromagnetic field simulator Ansys SI wave (manufactured by Ansys Japan Co., Ltd.). Here, the noise source is arranged in the center of the substrate, and the first signal wiring layer of the third layer has a power supply pattern as shown in FIG. The power supply pattern conditions were five types: no power supply pattern, surrounding power supply pattern widths of 2 mm, 5 mm, 10 mm, and a solid surface. As the power supply pattern width increases, radiation noise tends to decrease. By providing a pattern with a width of 5 mm or more on the outer periphery of the substrate, the radiation noise is reduced by 70% compared to the case without a power supply pattern. A sufficient radiation noise reduction effect can be expected.

図5に、本実施の形態の基板aの信号配線層に配置した電源パターンおよびグラウンドパターンと電源配線層、グラウンド配線層のパターン図を示す。ここでは、シミュレーションの結果より、基板周囲を取り囲むように電源パターン、グラウンドパターンを配置した。基板周囲を取り囲む電源パターン、グラウンドパターンの幅(301、40A、40B、40C)は約10mmである。電源パターンの40A、40B、40Cは、異なる電源を示すものである。   FIG. 5 shows a pattern diagram of the power supply pattern, the ground pattern, the power supply wiring layer, and the ground wiring layer arranged in the signal wiring layer of the substrate a of the present embodiment. Here, the power supply pattern and the ground pattern are arranged so as to surround the periphery of the substrate from the result of the simulation. The width (301, 40A, 40B, 40C) of the power supply pattern and the ground pattern surrounding the periphery of the substrate is about 10 mm. The power supply patterns 40A, 40B, and 40C indicate different power supplies.

図6に、本実施の他の形態の基板bの信号配線層に配置した電源パターンおよびグラウンドパターンと電源配線層、グラウンド配線層のパターン図を示す。基板aとは異なり電源パターンとグラウンドパターンを空きスペース全体や基板周囲を埋めないような部分的な配置にしている。電源パターンの40A、40B、40Cは、異なる電源を示すものである。   FIG. 6 shows a pattern diagram of the power supply pattern, the ground pattern, the power supply wiring layer, and the ground wiring layer arranged in the signal wiring layer of the substrate b according to another embodiment of the present invention. Unlike the substrate a, the power supply pattern and the ground pattern are partially arranged so as not to fill the entire empty space or the periphery of the substrate. The power supply patterns 40A, 40B, and 40C indicate different power supplies.

これらの基板a、bと信号配線層に電源パターンおよびグラウンドパターンを配置していない基板cとのノイズ測定結果を図7、図8に示す。   The noise measurement results of these substrates a and b and the substrate c in which the power supply pattern and the ground pattern are not arranged on the signal wiring layer are shown in FIGS.

どちらのケースにおいても基板cと比較すると、放射ノイズ強度は低減しており、信号配線層の空きスペースに信号配線のリファレンスとは別の属性のパターンを配置して、コンデンサ層を形成することで、効果的な放射ノイズ対策を施した基板となる。   In both cases, compared to the substrate c, the radiation noise intensity is reduced, and a capacitor layer is formed by arranging a pattern having an attribute different from the signal wiring reference in the empty space of the signal wiring layer. This is a substrate with effective countermeasures against radiation noise.

次に、図9に示すグラウンド配線層のパターン図において、LSI近傍に配置する電源パターンの距離と放射ノイズの関係を遠方界解析し、特定周波数(パターンサイズにより放射ノイズが低減する周波数帯)におけるLSIからの電源パターンの距離と放射ノイズ強度の関係を図10に示す。基板中央にノイズ源を配置し、第3層の第1信号配線層に電源パターンを作成する。電源パターン条件は、サイズ15mm×12mmの電源パターンをLSIから2mm、15mm、30mm、45mm、60mm、70mmの距離に配置した6種類とした。電源パターンがLSIから遠ざかると、放射ノイズ低減効果が弱くなっていく傾向を示している。LSIから15mm以内に電源パターンを配置することで、電源パターンなしと比較すると、50%以上の放射ノイズ低減効果を示すことから、実機においても十分な放射ノイズ低減効果が期待できる。   Next, in the pattern diagram of the ground wiring layer shown in FIG. 9, a far field analysis is performed on the relationship between the distance of the power supply pattern arranged near the LSI and the radiation noise, and at a specific frequency (frequency band in which the radiation noise is reduced by the pattern size). The relationship between the distance of the power supply pattern from the LSI and the radiation noise intensity is shown in FIG. A noise source is arranged in the center of the substrate, and a power supply pattern is created in the first signal wiring layer of the third layer. The power supply pattern conditions were six types in which a power supply pattern having a size of 15 mm × 12 mm was arranged at a distance of 2 mm, 15 mm, 30 mm, 45 mm, 60 mm, and 70 mm from the LSI. As the power supply pattern is moved away from the LSI, the radiation noise reduction effect tends to be weakened. Arranging the power supply pattern within 15 mm from the LSI shows a radiation noise reduction effect of 50% or more as compared with the case without the power supply pattern, and therefore a sufficient radiation noise reduction effect can be expected even in an actual machine.

図11に、本実施の他の形態の基板dの信号配線に配置した電源パターンおよびグラウンドパターンと電源配線層、グラウンド配線層のパターン図を示す。基板aを基にノイズ源となる半導体近傍の信号配線層に電源パターン40Aを追加した。ここでは、LSI端から2mm離れた位置に15mm×12mmのパターンを配置した。電源パターンの40A、40B、40Cは、異なる電源を示すものである。   FIG. 11 is a pattern diagram of a power supply pattern and a ground pattern, a power supply wiring layer, and a ground wiring layer arranged on the signal wiring of the substrate d according to another embodiment of the present invention. A power supply pattern 40A is added to the signal wiring layer in the vicinity of the semiconductor that becomes a noise source based on the substrate a. Here, a pattern of 15 mm × 12 mm is arranged at a position 2 mm away from the LSI edge. The power supply patterns 40A, 40B, and 40C indicate different power supplies.

図12に示すように、基板aと比較すると、高周波領域の放射ノイズが改善されている。信号配線層の信号密度が少なくなる基板周囲およびノイズ源となる半導体近傍に電源パターン、グラウンドパターンを設けることで、1000MHzまでの領域全体の放射ノイズをより効果的に低減することができる。   As shown in FIG. 12, the radiation noise in the high frequency region is improved as compared with the substrate a. By providing the power supply pattern and the ground pattern around the substrate where the signal density of the signal wiring layer is reduced and in the vicinity of the semiconductor as a noise source, the radiation noise of the entire region up to 1000 MHz can be more effectively reduced.

図13に、本実施の他の形態の基板eの信号配線に配置した電源パターンおよびグラウンドパターンと電源配線層、グラウンド配線層のパターン図を示す。これは、ベタの中央部を長方形に穴をあけるようにパターンを配置するのではなく、信号配線や部品形状に沿って電源パターンを抜いている形態とし、より実機に近似した電源パターン、グラウンドパターンを配置したものである。電源パターンの40A、40B、40Cは、異なる電源を示すものである。   FIG. 13 shows a pattern diagram of the power supply pattern and the ground pattern, the power supply wiring layer, and the ground wiring layer arranged on the signal wiring of the substrate e according to another embodiment of the present invention. This is a pattern in which the power supply pattern is pulled out along the signal wiring and component shape instead of arranging the pattern so that the center of the solid is rectangular, and the power supply pattern and ground pattern are more similar to the actual machine Is arranged. The power supply patterns 40A, 40B, and 40C indicate different power supplies.

図14に示すように基板cと比較すると、放射ノイズ強度は著しく低減しており、複雑な形状となっても、信号配線の空きスペースに信号配線のリファレンスとは別の属性の電源パターンを配置して、コンデンサ層8を形成することで、効果的な放射ノイズ対策を施した基板になる。また、それぞれの層、パターンは常法によって形成されるとともに、別のコンデンサを配置することがないため、コストアップすることがない。   As shown in FIG. 14, compared with the substrate c, the radiation noise intensity is remarkably reduced, and even if the shape is complicated, a power supply pattern having an attribute different from the reference of the signal wiring is arranged in the empty space of the signal wiring. Thus, by forming the capacitor layer 8, a substrate with effective radiation noise countermeasures is obtained. In addition, each layer and pattern is formed by a conventional method, and another capacitor is not disposed, so that the cost is not increased.

1:多層プリント基板
2:LSI
3:グラウンド配線層、
30、31、301:グラウンドパターン
4:電源配線層、
40、4A、4B、4C、40A、40B、40C:電源パターン
5:第1信号配線層
6:第2信号配線層
7:信号配線
8:コンデンサ層
9:絶縁層
10:絶縁層間距離
1: Multilayer printed circuit board 2: LSI
3: Ground wiring layer,
30, 31, 301: Ground pattern 4: Power supply wiring layer,
40, 4A, 4B, 4C, 40A, 40B, 40C: power supply pattern 5: first signal wiring layer 6: second signal wiring layer 7: signal wiring 8: capacitor layer 9: insulating layer 10: insulating interlayer distance

Claims (2)

内部にコンデンサ層が形成された多層構造体であって、基板内部の信号配線層の空きスペースを活用して電源パターンとグラウンドパターンによる内蔵コンデンサが形成されていることを特徴とする多層プリント基板。   A multilayer printed board having a capacitor layer formed therein, wherein a built-in capacitor is formed by a power supply pattern and a ground pattern by utilizing an empty space of a signal wiring layer inside the board. 前記電源パターンは、グラウンド層をリファレンスとする内層信号配線層の空きスペースに、前記グラウンドパターンが、電源配線層をリファレンスとする内層信号配線層の空きスペースに配置されていることを特徴とする請求項1記載の多層プリント基板。   The power supply pattern is arranged in an empty space in an inner signal wiring layer with a ground layer as a reference, and the ground pattern is arranged in an empty space in an inner signal wiring layer with a power supply wiring layer as a reference. Item 8. A multilayer printed circuit board according to item 1.
JP2013242730A 2013-05-24 2013-11-25 Multilayer printed circuit board Pending JP2015005716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013242730A JP2015005716A (en) 2013-05-24 2013-11-25 Multilayer printed circuit board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013109572 2013-05-24
JP2013109572 2013-05-24
JP2013242730A JP2015005716A (en) 2013-05-24 2013-11-25 Multilayer printed circuit board

Publications (2)

Publication Number Publication Date
JP2015005716A true JP2015005716A (en) 2015-01-08
JP2015005716A5 JP2015005716A5 (en) 2017-03-02

Family

ID=52301350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242730A Pending JP2015005716A (en) 2013-05-24 2013-11-25 Multilayer printed circuit board

Country Status (1)

Country Link
JP (1) JP2015005716A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273273A (en) * 2002-03-15 2003-09-26 Hitachi Ltd Semiconductor device
JP2007115772A (en) * 2005-10-18 2007-05-10 Nec Corp Printed wiring board and method of suppressing its power source noise
JP2008235293A (en) * 2007-02-22 2008-10-02 Buffalo Inc Multilayer printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273273A (en) * 2002-03-15 2003-09-26 Hitachi Ltd Semiconductor device
JP2007115772A (en) * 2005-10-18 2007-05-10 Nec Corp Printed wiring board and method of suppressing its power source noise
JP2008235293A (en) * 2007-02-22 2008-10-02 Buffalo Inc Multilayer printed wiring board

Similar Documents

Publication Publication Date Title
US9326370B2 (en) Printed circuit board
JP5164965B2 (en) EMI noise reduction printed circuit board
JP4808755B2 (en) Electromagnetic band gap structure and printed circuit board
JP6187606B2 (en) Printed board
KR20090060117A (en) Electromagnetic bandgap structure and printed circuit board
JP2013232613A (en) Wiring board and electronic apparatus
JP2008028218A (en) Multilayer printed board
KR101021548B1 (en) Printed circuit board having electromagnetic bandgap structure
JP2007250928A (en) Multilayer printed wiring board
US20160270214A1 (en) Printed circuit board and electronic device
KR101092590B1 (en) printed circuit board having electromagnetic bandgap structure
JP2020043172A (en) Electronic equipment
JP6176242B2 (en) Waveguide structure having EBG characteristics
JP2013012528A (en) Printed board
JP6425632B2 (en) Printed board
JPWO2008010445A1 (en) Multilayer printed circuit board
JP5307664B2 (en) Multilayer substrate and electronic equipment
JP2015005716A (en) Multilayer printed circuit board
KR101021552B1 (en) Electromagnetic interference noise reduction board using electromagnetic bandgap structure
JP6202112B2 (en) Electronic components for noise reduction
JP2007150212A (en) Circuit board
JP2006261479A (en) Multilayer printed circuit board and electronic equipment
JP2007158243A (en) Multilayer printed circuit board
US20080072204A1 (en) Layout design of multilayer printed circuit board
JP2006261470A (en) Multilayer printed-circuit board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180320