JP2015002300A - Bonding structure and semiconductor production apparatus using the same - Google Patents

Bonding structure and semiconductor production apparatus using the same Download PDF

Info

Publication number
JP2015002300A
JP2015002300A JP2013127026A JP2013127026A JP2015002300A JP 2015002300 A JP2015002300 A JP 2015002300A JP 2013127026 A JP2013127026 A JP 2013127026A JP 2013127026 A JP2013127026 A JP 2013127026A JP 2015002300 A JP2015002300 A JP 2015002300A
Authority
JP
Japan
Prior art keywords
metal member
power supply
supply terminal
welding
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013127026A
Other languages
Japanese (ja)
Other versions
JP6234076B2 (en
Inventor
鈴木 裕
Yutaka Suzuki
裕 鈴木
和久 豊福
Kazuhisa Toyofuku
和久 豊福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruwa Co Ltd
Original Assignee
Maruwa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruwa Co Ltd filed Critical Maruwa Co Ltd
Priority to JP2013127026A priority Critical patent/JP6234076B2/en
Publication of JP2015002300A publication Critical patent/JP2015002300A/en
Application granted granted Critical
Publication of JP6234076B2 publication Critical patent/JP6234076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a ceramic member having high bonding strength and ensuring high bonding reliability of a power supply terminal even if it is exposed to heat-cycle.SOLUTION: In a bonding structure consisting of a planar ceramic base material, an electrode and a metallic member buried in the bottom thereof sequentially in contact therewith, a terminal hole reaching the metallic member from the upper surface of the ceramic base material, and a power supply terminal being abutted against the metallic member from above the ceramic base material through the terminal hole, a bonding structure of the edge at an enlarged diameter part formed at the lower end of the power supply terminal and the metallic member is employed, and the bonding strength can be increased by increasing the surface area of a bonding part.

Description

本発明は接合構造及びこれを用いた半導体製造装置、さらに詳しくは、セラミックス基体に埋設された埋設電極に電力を供給する給電端子を接合する接合構造体及びこの接合構造体を静電チャックまたはヒーターとして使用する半導体製造装置に関するものである。   The present invention relates to a bonding structure and a semiconductor manufacturing apparatus using the bonding structure, and more particularly, a bonding structure for bonding a power supply terminal for supplying power to an embedded electrode embedded in a ceramic substrate, and the bonding structure to an electrostatic chuck or a heater. The present invention relates to a semiconductor manufacturing apparatus to be used.

近年、CVD、スパッタ、エッチング用の半導体製造装置に使用されるヒーター付サセプタ、プラズマ電極付サセプタ、静電チャックなどには耐プラズマ性を有する材料が求められ、特に酸化アルミニウムや窒化アルミニウムなどのセラミックスが用いられている。 In recent years, materials having plasma resistance are required for susceptors with heaters, susceptors with plasma electrodes, electrostatic chucks and the like used in semiconductor manufacturing apparatuses for CVD, sputtering, and etching, and in particular, ceramics such as aluminum oxide and aluminum nitride. Is used.

前記半導体製造装置の静電チャックまたはヒーターとして使用されている接合構造体の内部にはチャック用の電極や発熱体(抵抗体)と、これらに電気的に接続される金属部材が埋設されており、セラミックスと一体焼結される。さらに、前記電極や発熱体(抵抗体)に給電するため、金属部材に対して給電用の端子の接合が施されている。   A bonding electrode used as an electrostatic chuck or heater of the semiconductor manufacturing apparatus has a chuck electrode and a heating element (resistor), and a metal member electrically connected thereto embedded therein. Sintered with ceramics. Further, in order to supply power to the electrodes and the heating element (resistor), a power supply terminal is joined to the metal member.

従来、この接合は、埋設されている金属部材を穴加工等により露出させ、その露出部に対して、給電端子をろう付けすることにより行われることが多い。 Conventionally, this joining is often performed by exposing an embedded metal member by drilling or the like and brazing a power supply terminal to the exposed portion.

例えば、特許文献1では、給電端子と金属部材とを同じ熱膨張係数の金属にし、ろう付けすることによって、熱による応力差をなくして、セラミックス部材への応力を緩和する技術が開示されている。 For example, Patent Document 1 discloses a technique for reducing stress on a ceramic member by eliminating a stress difference due to heat by using a metal having the same thermal expansion coefficient as a power supply terminal and a metal member and brazing. .

しかしながら、ろう付けによる接合方法には、接合温度から室温まで冷却する過程で金属部材と給電端子の熱膨張係数差による残留応力が原因でセラミックスやその接合部分にクラックが発生する可能性があった。これは金属部材と給電端子を同一材料にしたとしても、その界面にはろう材が存在するため、熱膨張係数差を完全にはなくすことはできていなかった。 However, in the joining method by brazing, there is a possibility that cracks may occur in the ceramics and their joints due to residual stress due to the difference in thermal expansion coefficient between the metal member and the power supply terminal in the process of cooling from the joining temperature to room temperature. . Even if the metal member and the power supply terminal are made of the same material, the thermal expansion coefficient difference cannot be completely eliminated because of the presence of the brazing material at the interface.

また、ろう付け以外の接合方法として、接合時の残留応力を減らす目的でビーム溶接を用いる発明が公知である(特許文献2)。前記発明では板状の金属塊と円柱状の給電端子を用いており、その金属塊の深さ方向の溶け込みと給電端子の外周部の溶け込み深さのバランスをとるため、ビームの入射角を所定範囲にするようにしている。さらにセラミックスへの端子孔もビームが接触しないようにテーパー角度を設けて加工している。 As a joining method other than brazing, an invention using beam welding for the purpose of reducing residual stress during joining is known (Patent Document 2). In the above invention, a plate-shaped metal lump and a cylindrical power supply terminal are used. In order to balance the penetration of the metal lump in the depth direction and the penetration depth of the outer periphery of the power supply terminal, the incident angle of the beam is set to a predetermined value. I try to make it a range. Further, the terminal hole to the ceramic is also processed with a taper angle so that the beam does not contact.

しかしながら、前記発明のように端子孔をテーパー状に加工することは、ストレートに加工することに比較して手間がかかり、加工の際により一層セラミックにクラックや破損が生じる恐れがあった。 However, processing the terminal hole into a tapered shape as in the above-described invention takes time and effort compared to processing the straight, and there is a risk that the ceramic may be further cracked or damaged during processing.

さらに、ヒーターとしての用途を考えた場合、この部材は室温から400℃以上の高温に加熱され、その後再び室温まで冷却されるような条件で使用されるため、接合部に熱膨張係数が大きく異なる材質が使用されていると、熱膨張差による疲労が蓄積され、接合部分の信頼性に欠けるという問題があった。 Furthermore, when considering the use as a heater, this member is used under such a condition that it is heated from room temperature to a high temperature of 400 ° C. or higher and then cooled to room temperature again. When the material is used, there is a problem that fatigue due to a difference in thermal expansion is accumulated and the reliability of the joint portion is lacking.

特開2009−188394号公報JP 2009-188394 A 特開2012−49185号公報JP 2012-49185 A

したがって、本発明の課題は、接合強度が高く、熱サイクルに曝される場合でも給電端子の接合信頼性が高いセラミックス部材を提供することにある。 Accordingly, an object of the present invention is to provide a ceramic member that has high bonding strength and high reliability in connection of power supply terminals even when exposed to a thermal cycle.

本発明は、前記課題を解決するために、
板状のセラミック基材と、その底部に順次接触しながら埋設されている電極及び金属部材と、
前記セラミック基材の上面から金属部材に到達する端子穴と、
前記セラミック基材の上方から前記端子穴を通して前記金属部材に突き合わせる給電端子と
からなる接合構造体において、
前記給電端子の下端に形成した拡径部のエッジ部と前記金属部材とを接合した接合構造体を採用し、接合部分の表面積を大きくすることによって、接合強度を大きくすることができる。
In order to solve the above problems, the present invention provides:
A plate-like ceramic substrate, and electrodes and metal members embedded while sequentially contacting the bottom,
A terminal hole reaching the metal member from the upper surface of the ceramic substrate;
In a joined structure comprising a power supply terminal that abuts against the metal member through the terminal hole from above the ceramic base material,
By adopting a joint structure in which the edge portion of the enlarged diameter portion formed at the lower end of the power supply terminal and the metal member are joined and increasing the surface area of the joint portion, the joint strength can be increased.

さらに、熱サイクル下におけるクラック発生を低減するため、前記給電端子と前記金属部材とを熱膨張係数が同程度の金属を採用し、好ましくはその金属をMoとする接合構造体を採用する。給電端子はコバール(FeNiCo系合金)としても良い。 Furthermore, in order to reduce the occurrence of cracks under a thermal cycle, a metal having a similar thermal expansion coefficient is used for the power supply terminal and the metal member, and preferably a bonded structure in which the metal is Mo is used. The power supply terminal may be made of Kovar (FeNiCo alloy).

また、前記給電端子を前記金属部材に凹設された給電端子嵌合用凹部に嵌合させた接合構造体とすることによって、給電端子の位置決めをしやすくする。 Further, the power feeding terminal can be easily positioned by fitting the power feeding terminal into a power feeding terminal fitting recess recessed in the metal member.

前記した接合構造体において、前記給電端子と前記金属部材とを接合するとき、電子ビーム溶接、レーザー溶接、アーク溶接、ガス溶接、プラズマフレーム溶接から選択される1つの溶接方法によって溶接することによって、接合面にろう材などの異種材料が存在しないため、熱膨張係数差によるクラックをより一層発生しにくくすることができる。 In the joining structure described above, when joining the power supply terminal and the metal member, by welding by one welding method selected from electron beam welding, laser welding, arc welding, gas welding, plasma flame welding, Since there is no dissimilar material such as a brazing material on the joint surface, it is possible to further prevent cracks due to the difference in thermal expansion coefficient.

また、一般的にビーム溶接(電子ビーム溶接、レーザー溶接)は、エネルギー密度が高いため、局所溶接が容易であり、少ない入熱量で接合が可能であるため、溶接熱の発生が少なく脆性劣化などが発生しにくいという利点がある。 In general, beam welding (electron beam welding, laser welding) has high energy density, so local welding is easy and joining is possible with a small amount of heat input. There is an advantage that is difficult to occur.

本発明は、熱サイクル下において、熱膨張係数差によるクラックが発生しにくい接合構造体を創出することができるという優れた効果を発揮する。   The present invention exhibits an excellent effect that it is possible to create a bonded structure in which cracks due to a difference in thermal expansion coefficient hardly occur under a thermal cycle.

本発明に係る接合構造体をホットプレス機で製造するときの断面図である。It is sectional drawing when manufacturing the joining structure concerning this invention with a hot press machine. 本発明に係る接合構造体前駆体である。It is a junction structure precursor according to the present invention. 本発明に係る接合構造体をホットプレス機で製造するときの別の断面図である。It is another sectional drawing when manufacturing the junction structure concerning the present invention with a hot press machine. セラミック基材に端子穴を形成した断面図である。It is sectional drawing which formed the terminal hole in the ceramic base material. セラミック基材に端子穴を形成した別の断面図である。It is another sectional view in which a terminal hole was formed in a ceramic substrate. 給電端子を給電端子用凹部に嵌合するときの断面図である。It is sectional drawing when fitting a power feeding terminal in the recessed part for power feeding terminals. 本発明に係る第1実施形態の給電端子接合方法を示した断面図である。It is sectional drawing which showed the electric power feeding terminal joining method of 1st Embodiment which concerns on this invention. 図7のA部分の拡大図である。It is an enlarged view of A part of FIG. 給電端子の斜視図である。It is a perspective view of a feed terminal. 給電端子の端部を拡径しないで金属部材に突き合わせて電子ビーム溶接したときの部分断面図である。It is a fragmentary sectional view when butting the end part of an electric power feeding terminal to a metal member without expanding and carrying out electron beam welding. 給電端子の端部を拡径して金属部材に嵌合して電子ビーム溶接したときの部分断面図である。It is a fragmentary sectional view when expanding the diameter of the end portion of the power supply terminal, fitting it to a metal member, and performing electron beam welding. 本発明に係る第2実施形態の給電端子接合方法を示した断面図である。It is sectional drawing which showed the electric power feeding terminal joining method of 2nd Embodiment which concerns on this invention. 図12のB部分の拡大図である。It is an enlarged view of B part of FIG.

以下、本発明の接合構造体の一実施形態について図面を参照しつつ説明する。なお、以下の説明において参照する各図の形状は、好適な形状寸法を説明する上での概念図又は概略図であり、寸法比率等は実際の寸法比率とは必ずしも一致しない。つまり、本発明は、図面における寸法比率に限定されるものではない。   Hereinafter, an embodiment of a bonded structure according to the present invention will be described with reference to the drawings. In addition, the shape of each figure referred in the following description is a conceptual diagram or a schematic diagram for explaining a suitable shape dimension, and a dimension ratio etc. do not necessarily correspond with an actual dimension ratio. That is, the present invention is not limited to the dimensional ratio in the drawings.

(第1実施形態)
本発明の好ましい実施形態である接合構造体の製造方法として、まず、セラミック基材に電極及び金属部材を埋設する工程について説明する(第1工程)。電極2及び金属部材3の製造方法は特に限定されないが、ここでは、電極2及び金属部材3を別々に作成する方法で説明する。
(First embodiment)
As a method for manufacturing a bonded structure according to a preferred embodiment of the present invention, a process of embedding an electrode and a metal member in a ceramic substrate will be described first (first process). Although the manufacturing method of the electrode 2 and the metal member 3 is not specifically limited, Here, it demonstrates by the method of producing the electrode 2 and the metal member 3 separately.

セラミック基材の材質として、窒化アルミニウム、酸化アルミニウム、酸化イットリウム、炭化ケイ素、窒化ケイ素、好ましくは、窒化アルミニウムが使用される。なお、焼結性や機能特性向上のため、適宜添加物を加えてもよい。 As the material of the ceramic substrate, aluminum nitride, aluminum oxide, yttrium oxide, silicon carbide, silicon nitride, preferably aluminum nitride is used. In addition, you may add an additive suitably for a sinterability or a functional characteristic improvement.

図1に示すように、まず電極2が片面に印刷されたセラミック基板1aを用意し、それをホットプレス加工機の下型P2上に電極2を上向きにして載置する。電極2には、セラミック基材上に印刷されたものの他に、パンチングメタル、金属メッシュ、金属コイルなどを利用することができ、その材質には、セラミックと一体焼成されることを考慮して、融点が1800℃以上の高融点金属を採用する。具体的にはW、Mo、Nbなどから1つ以上選択される金属、合金、炭化物又は珪化物を採用する。セラミック基材が窒化アルミニウムの場合は、熱膨張係数が近いため、W又はMoが好ましい。 As shown in FIG. 1, first, a ceramic substrate 1a on which an electrode 2 is printed on one side is prepared and placed on a lower mold P2 of a hot press machine with the electrode 2 facing upward. In addition to what is printed on the ceramic substrate, the electrode 2 can be punched metal, metal mesh, metal coil, etc., and considering that the material is integrally fired with ceramic, A refractory metal having a melting point of 1800 ° C. or higher is employed. Specifically, a metal, alloy, carbide or silicide selected from one or more of W, Mo, Nb and the like is employed. When the ceramic substrate is aluminum nitride, W or Mo is preferable because the thermal expansion coefficient is close.

次に、電極2の上から、融点が1800℃以上の高融点金属の金属部材3、好ましくは、Moを原料とした板状の金属部材3を電極2と接触するように載置する。金属部材3の幅t4は、任意に設定できる。電極2及び金属部材3に高融点金属を採用するのは、第一に、後述する加圧焼結工程で、電極2及び金属部材3が溶融せずに形状を維持できるようにするためと、第二に、高融点金属とセラミックスはともに熱膨張係数が小さく、熱膨張係数差は、3.2×10−6以下で小さいため、熱サイクル下においても熱膨張係数差によってセラミック基材1にクラックが生じにくいためである。 Next, a refractory metal member 3 having a melting point of 1800 ° C. or higher, preferably a plate-like metal member 3 made of Mo as a raw material, is placed on the electrode 2 so as to be in contact with the electrode 2. The width t4 of the metal member 3 can be arbitrarily set. The reason for adopting the high melting point metal for the electrode 2 and the metal member 3 is to first maintain the shape without melting the electrode 2 and the metal member 3 in the pressure sintering step described later. Second, both the refractory metal and the ceramic have a small coefficient of thermal expansion, and the difference in coefficient of thermal expansion is as small as 3.2 × 10 −6 or less. This is because cracks are unlikely to occur.

ここで、熱膨張係数差によってセラミック基材1にクラックが発生しやすくなるメカニズムについて説明する。セラミックスは、金属のように塑性変形しにくいため、熱応力で変形することなく、クラックが発生して破壊されやすい。つまり、熱膨張係数が極端に異なるもの同士を接合させると、その熱膨張の差によって、セラミックスにクラックが発生しやすくなる。したがって、セラミックスと同程度の熱膨張係数を有する高融点金属を電極2及び金属部材3に使用すると、熱膨張係数差が小さくなり、クラックは発生しにくい。   Here, the mechanism by which cracks are likely to occur in the ceramic substrate 1 due to the difference in thermal expansion coefficient will be described. Since ceramics are unlikely to be plastically deformed like metals, cracks are easily generated and broken without being deformed by thermal stress. That is, when materials having extremely different thermal expansion coefficients are joined, cracks are likely to occur in the ceramic due to the difference in thermal expansion. Therefore, when a refractory metal having a thermal expansion coefficient comparable to that of ceramics is used for the electrode 2 and the metal member 3, the difference in thermal expansion coefficient becomes small and cracks are hardly generated.

ここで、表1にMo,W,コバール(FeNiCo系合金)、Ti,Niの熱膨張係数と窒化アルミニウムの熱膨張係数との熱膨張係数差を示す。熱膨張係数は、室温から設定温度(700℃)までの伸びを測定して計算したものである。設定温度は、窒化アルミニウムが半導体製造プロセスで用いられるフッ素系ガスに対する耐食性が限界になる温度であり、窒化アルミニウムは、700℃以下の使用が適している。熱膨張係数差(Δα)は、絶対値で窒化アルミニウムの熱膨張係数に対してどれだけあるかを示している。熱膨張係数差が小さいほどクラックは発生しにくい。   Here, Table 1 shows the difference in thermal expansion coefficient between the thermal expansion coefficients of Mo, W, Kovar (FeNiCo-based alloy), Ti, Ni, and aluminum nitride. The thermal expansion coefficient is calculated by measuring the elongation from room temperature to a set temperature (700 ° C.). The set temperature is a temperature at which aluminum nitride has a limit to the corrosion resistance to fluorine-based gas used in the semiconductor manufacturing process, and the use of aluminum nitride at 700 ° C. or lower is suitable. The difference in thermal expansion coefficient (Δα) indicates how much the absolute value is relative to the thermal expansion coefficient of aluminum nitride. As the difference in thermal expansion coefficient is smaller, cracks are less likely to occur.

Figure 2015002300
Figure 2015002300

さらにその上面にセラミック粉末1bをホットプレス加工機の中に入れる。添加物がある場合にはあらかじめ混合しておいてもよいし、スプレードライ法により顆粒粉末にすると流動性が向上するため好ましい。 Furthermore, the ceramic powder 1b is put in the hot press processing machine on the upper surface. When there is an additive, it may be mixed in advance, and it is preferable to use granulated powder by spray drying because the fluidity is improved.

そして、ホットプレス加工機上型P1と下型P2とで前記したセラミック基板1a、セラミック粉末1b、電極2及び金属部材3を、予備プレスし、1800℃、100kg/cm2でホットプレス焼成し、図2に示すように、電極2及び金属部材3がセラミック基材1の中に埋め込まれて一体化した接合構造体前駆体1cを形成する。 The ceramic substrate 1a, the ceramic powder 1b, the electrode 2 and the metal member 3 are preliminarily pressed by the upper mold P1 and the lower mold P2 of the hot press processing machine, and hot-press fired at 1800 ° C. and 100 kg / cm 2. As shown in FIG. 2, the electrode 2 and the metal member 3 are embedded in the ceramic base material 1 to form an integrated bonded structure precursor 1 c.

第1工程において、セラミック基材1は、セラミック粉末1bのみから形成することもできる。つまり、図3に示すように、まずプレス加工機P2上にセラミック粉末1bを載置し、次に、電極2を載置する。そして、その電極2の上から、融点が1800℃以上の高融点金属、好ましくはMoを原料とした金属部材3を電極に接触するように載置し、さらにその上面に、前記したセラミック粉末(混合粉末)をホットプレス加工機の中に入れ、1800℃、100kg/cm2でホットプレスしてもよい。 In the first step, the ceramic substrate 1 can be formed only from the ceramic powder 1b. That is, as shown in FIG. 3, the ceramic powder 1b is first placed on the press machine P2, and then the electrode 2 is placed. Then, a high melting point metal having a melting point of 1800 ° C. or higher, preferably a metal member 3 made of Mo as a raw material, is placed on the electrode 2 so as to be in contact with the electrode, and the ceramic powder ( The mixed powder) may be placed in a hot press machine and hot pressed at 1800 ° C. and 100 kg / cm 2.

さらに、先にも述べたように、電極2及び金属部材3の製造方法は、特に限定されず、電極2及び金属部材3を始めから一体的に形成した後に、セラミック粉末1bに埋め込んでホットプレス焼成もよい。また、電極2及び金属部材3を別々に形成した後に、それらを溶接、かしめ等で一体化してセラミック粉末に埋め込んでホットプレス焼成してもよい。   Furthermore, as described above, the manufacturing method of the electrode 2 and the metal member 3 is not particularly limited, and after the electrode 2 and the metal member 3 are integrally formed from the beginning, they are embedded in the ceramic powder 1b and hot pressed. Firing is also possible. Moreover, after forming the electrode 2 and the metal member 3 separately, they may be integrated by welding, caulking, etc., and embedded in the ceramic powder, followed by hot press firing.

次に、図4に示すように、金属部材3が露出するまで、底面に対して垂直方向にセラミック基材1をダイヤモンド工具によって切削して端子穴4を形成する(第2工程)。金属部材3が露出するまで接合構造体前駆体1cを幅t1(3〜10mm)の範囲で切削し、端子穴4を形成する。   Next, as shown in FIG. 4, the ceramic substrate 1 is cut with a diamond tool in a direction perpendicular to the bottom surface until the metal member 3 is exposed to form the terminal holes 4 (second step). The joint structure precursor 1c is cut in the range of the width t1 (3 to 10 mm) until the metal member 3 is exposed, and the terminal hole 4 is formed.

ここで、端子穴4の幅t1は、金属部材の幅t4より小さくても、大きくても、さらには等しくてもよい。端子穴4の幅t1を金属部材3の幅t4より小さくすることによって、金属部材3に大きな応力がかかっても、端子穴4が小さいため、セラミック基材1に金属部材3が挟まれて端子穴4から抜け落ちなくなる。一方、図5に示すように端子穴4の幅t1を金属部材3の幅t4より大きくする又は等しくすることによって、金属部材3及びセラミック基材1の間に生じる熱膨張係数差によるクラックは生じにくくなる。   Here, the width t1 of the terminal hole 4 may be smaller, larger, or even equal to the width t4 of the metal member. By making the width t1 of the terminal hole 4 smaller than the width t4 of the metal member 3, even if a large stress is applied to the metal member 3, since the terminal hole 4 is small, the metal member 3 is sandwiched between the ceramic substrate 1 and the terminal. It will not fall out of the hole 4. On the other hand, as shown in FIG. 5, by making the width t1 of the terminal hole 4 larger or equal to the width t4 of the metal member 3, a crack due to the difference in thermal expansion coefficient generated between the metal member 3 and the ceramic substrate 1 occurs. It becomes difficult.

そして、図6に示すように、後述する給電端子5が嵌合する給電端子嵌合用凹部4aを端子穴4の幅t1より小さい幅t2(3〜10mm)になるよう切削する(第3工程)。この給電端子嵌合用凹部4aを形成することによって、後述する給電端子5を位置決めすることができるとともに、t1より小さい幅のt2で給電端子嵌合用凹部4aを切削し、t2よりさらに小さい幅の給電端子5を嵌合することによって、セラミック基材1をテーパーに切削しなくても、金属部材3と給電端子5との間に十分な隙間t3(1〜3mm)を形成できるため、後述する工程において、セラミック基材1と給電端子5とを容易に溶着することができる。 Then, as shown in FIG. 6, a power supply terminal fitting recess 4a into which a power supply terminal 5 described later is fitted is cut to have a width t2 (3 to 10 mm) smaller than the width t1 of the terminal hole 4 (third step). . By forming the power supply terminal fitting recess 4a, the power supply terminal 5 described later can be positioned, and the power supply terminal fitting recess 4a is cut at t2 having a width smaller than t1, and the power supply having a width smaller than t2 is supplied. By fitting the terminal 5, a sufficient gap t3 (1 to 3 mm) can be formed between the metal member 3 and the power supply terminal 5 without cutting the ceramic substrate 1 into a taper. The ceramic substrate 1 and the power supply terminal 5 can be easily welded.

次に、図7、図8に示すように、給電端子用嵌合凹部4aに給電端子5を嵌合し、電子ビーム溶接、レーザー溶接、アーク溶接、ガス溶接、プラズマフレーム溶接から選択される1つの溶接方法又はろう付けによる接合によって、金属部材3と給電端子5のエッジ部6aとを溶着する(第4工程)。なお、以後電子ビーム溶接で溶着した場合で説明する。   Next, as shown in FIGS. 7 and 8, the feeding terminal 5 is fitted into the feeding terminal fitting recess 4a and selected from electron beam welding, laser welding, arc welding, gas welding, and plasma flame welding 1 The metal member 3 and the edge portion 6a of the power supply terminal 5 are welded by one welding method or joining by brazing (fourth step). In the following description, the case of welding by electron beam welding will be described.

給電端子5は、図9に示すように、下端がもう一方の端部より拡径した拡径部6を有する。給電端子5の下端を拡径することによって、端子穴4と給電端子5との間隔をt3(1〜3mm)に大きくすることができ、従来のように溶接する角度等を考慮しなくても、拡径部6のエッジ部6a及び金属部材3に真上(矢印Z方向)から容易に電子ビームを当てて給電端子5を溶着できるようになる。金属部材3と接合されない側の端部は、外部給電導体とねじ止め、溶接等などにより結合される。外部給電導体は金属部材3と給電端子5とを溶接した後に接合しても良いし、これらの接合前に予め接合しておいてもよい。 As shown in FIG. 9, the power supply terminal 5 has an enlarged diameter portion 6 having a lower end whose diameter is larger than that of the other end portion. By expanding the diameter of the lower end of the power supply terminal 5, the distance between the terminal hole 4 and the power supply terminal 5 can be increased to t3 (1 to 3 mm), and it is not necessary to consider the welding angle or the like as in the prior art. The power supply terminal 5 can be welded by easily applying an electron beam to the edge portion 6a of the enlarged diameter portion 6 and the metal member 3 from directly above (in the direction of arrow Z). The end on the side not joined to the metal member 3 is coupled to the external power supply conductor by screwing, welding, or the like. The external power supply conductor may be joined after the metal member 3 and the power supply terminal 5 are welded, or may be joined in advance before joining them.

次に、給電端子5を給電端子嵌合用凹部4aに嵌合して、端子穴4内で給電端子5を立たせて位置決めをする。このように、給電端子5に拡径部を設けることによって、拡径部6自体が給電端子5の土台になり、給電端子5を端子穴4内で垂直に安定して立たせて溶接できるため、溶接しやすい。なお、図示した給電端子5は、例として円柱形状としたが、円柱形状に限らず、四角柱、三角柱などの多角柱形状でもよい。   Next, the power supply terminal 5 is fitted into the power supply terminal fitting recess 4 a, and the power supply terminal 5 is erected in the terminal hole 4 for positioning. Thus, by providing the enlarged diameter portion in the power supply terminal 5, the enlarged diameter portion 6 itself becomes a base of the power supply terminal 5, and the power supply terminal 5 can be stably stood vertically in the terminal hole 4 and welded. Easy to weld. The illustrated power supply terminal 5 has a cylindrical shape as an example, but is not limited to a cylindrical shape, and may be a polygonal prism shape such as a quadrangular prism or a triangular prism.

ここで、従来の電子ビーム溶接と、本発明による電子ビーム溶接とでは、溶着面積にどれだけ違いがあるか、図面で比較する。図10に示すように、従来の電子ビーム溶接では、給電端子5及び金属部材3の接触部分に向かって斜め方向(矢印X1方向)に電子ビームを当てるだけなので、溶接面Y1が給電端子5の側面と金属部材3の上面の2面だけである。 Here, how much the welding area differs between the conventional electron beam welding and the electron beam welding according to the present invention will be compared in the drawings. As shown in FIG. 10, in the conventional electron beam welding, the electron beam is only applied in an oblique direction (arrow X <b> 1 direction) toward the contact portion between the power supply terminal 5 and the metal member 3. There are only two surfaces, the side surface and the upper surface of the metal member 3.

これに対し、図11に示すように、本発明による電子ビーム溶接では、給電端子5のエッジ部6a及び給電端子嵌合用凹部4aの角部4b付近に、垂直方向(矢印X2方向)に電子ビームを当てるので、溶接面Y2が4面存在する(金属部材3の上面、給電端子嵌合用凹部4aの側面、拡径部6の上面及びエッジ部6aの側面)。したがって、当然に従来の電子ビーム溶接より金属溶融量が大きくなるため、接合強度を大きくすることができる。また、垂直であると斜め方向からの場合に比べて、狙いがつけやすいため溶接不良の発生を防ぎ再現性良く溶接することができる。 On the other hand, as shown in FIG. 11, in the electron beam welding according to the present invention, the electron beam is vertically (in the direction of the arrow X2) in the vicinity of the edge portion 6a of the feeding terminal 5 and the corner portion 4b of the feeding terminal fitting recess 4a. Therefore, there are four welding surfaces Y2 (the upper surface of the metal member 3, the side surface of the power supply terminal fitting recess 4a, the upper surface of the enlarged diameter portion 6, and the side surface of the edge portion 6a). Therefore, naturally the amount of metal melting is larger than that of conventional electron beam welding, so that the bonding strength can be increased. Moreover, since it is easy to aim when it is perpendicular | vertical compared with the case from the diagonal direction, generation | occurrence | production of poor welding can be prevented and it can weld with sufficient reproducibility.

さらに、金属部材3と給電端子5とを熱膨張係数が同程度の金属で形成すれば、熱サイクル下においても熱膨張係数差で生ずる金属疲労が起こりにくく、溶着部分のクラックが発生しにくい。また、好ましくは、金属部材3と給電端子5にMoを採用すると、セラミックとMoの熱膨張係数が同程度であり、金属部材3又は給電端子5と、セラミック基材1とに熱膨張係数差が生じにくく、セラミック基材1にクラックが発生しにくいため、給電端子5の接合強度をさらに大きくすることができる。   Furthermore, if the metal member 3 and the power supply terminal 5 are made of a metal having the same thermal expansion coefficient, metal fatigue caused by the difference in thermal expansion coefficient does not easily occur even under a thermal cycle, and cracks in the welded portion hardly occur. Preferably, when Mo is used for the metal member 3 and the power supply terminal 5, the thermal expansion coefficients of ceramic and Mo are approximately the same, and the difference in thermal expansion coefficient between the metal member 3 or the power supply terminal 5 and the ceramic substrate 1. Since it is difficult to generate cracks in the ceramic substrate 1, the bonding strength of the power supply terminal 5 can be further increased.

熱膨張係数差による接合構造体のクラック発生防止のために、他の溶着方法として、金属部材3と給電端子5とをろう付けしてもよい。端部が拡径した給電端子5を用いることによって、金属部材3及び給電端子5をろう付けしたとき、給電端子5の拡径部にろうを塗布することができるため、拡径していない給電端子を用いるよりも接合強度を大きくすることができ、クラック発生防止に効果的である。 As another welding method, the metal member 3 and the power supply terminal 5 may be brazed to prevent the occurrence of cracks in the bonded structure due to the difference in thermal expansion coefficient. When the metal member 3 and the power supply terminal 5 are brazed by using the power supply terminal 5 having an enlarged diameter at the end, it is possible to apply brazing to the diameter-enlarged portion of the power supply terminal 5, so that the power supply is not expanded. The bonding strength can be increased as compared with the case where a terminal is used, and this is effective in preventing the occurrence of cracks.

(第2実施形態)
次に、本発明の別の実施形態である接合構造体の製造方法について説明する。第2実施形態では、前記した第1実施形態の給電端子嵌合用凹部4aを形成する第3工程を必要としない。つまり、給電端子5を端子穴4の中央付近に挿入し、金属部材3上に載置させて、図12に示すように給電端子5のエッジ部6aの上面から溶接する。
(Second Embodiment)
Next, the manufacturing method of the junction structure which is another embodiment of the present invention is explained. In 2nd Embodiment, the 3rd process of forming the recessed part 4a for electric power feeding terminal fitting of above-described 1st Embodiment is not required. That is, the power supply terminal 5 is inserted near the center of the terminal hole 4, placed on the metal member 3, and welded from the upper surface of the edge portion 6 a of the power supply terminal 5 as shown in FIG. 12.

このように、エッジ部6aの上面から溶接したとしても、拡径部6の厚みt5は、0.3〜0.5mmで薄く形成されているため、溶接方法によらず、十分に金属部材3まで溶融させることができ、図13に示すように、給電端子5を溶着させることができる。この場合も、従来の溶接方法よりも金属溶融量が大きくなるため、金属部材3に給電端子5を強度よく溶着させることができる。   Thus, even if it welds from the upper surface of the edge part 6a, since the thickness t5 of the enlarged diameter part 6 is thinly formed with 0.3-0.5 mm, it is fully metal member 3 irrespective of the welding method. The power supply terminal 5 can be welded as shown in FIG. Also in this case, since the amount of metal melting is larger than that of the conventional welding method, the power supply terminal 5 can be welded to the metal member 3 with high strength.

(第3実施形態)
第1、第2実施形態では、給電端子5の下端を拡径することによって、本発明の課題を解決してきたが、給電端子5及び金属部材3を、融点が1800℃以上の同種の高融点金属、好ましくはMoを用いて溶接接合すれば、給電端子5の下端を拡径することなく、給電端子5の端部外周を溶接するだけで、課題を解決できる。この場合の溶接とは、電子ビーム溶接、レーザー溶接、アーク溶接、ガス溶接、プラズマフレーム溶接から選択されるいずれか一つの溶接方法を意味する。
(Third embodiment)
In the first and second embodiments, the problem of the present invention has been solved by expanding the diameter of the lower end of the power supply terminal 5. However, the power supply terminal 5 and the metal member 3 have the same melting point of 1800 ° C. or higher. If welding is performed using metal, preferably Mo, the problem can be solved by simply welding the outer periphery of the end of the power supply terminal 5 without increasing the diameter of the lower end of the power supply terminal 5. The welding in this case means any one welding method selected from electron beam welding, laser welding, arc welding, gas welding, and plasma flame welding.

このように、給電端子5及び金属部材3に、接合構造体と同程度の熱膨張係数である高融点金属、つまりセラミックとの熱膨張係数差が3.2×10−6以下の高融点金属で、好ましくはMoを用いることによって、接合構造体成形時又は使用時に、セラミック基材1と給電端子5又は金属部材3との熱膨張係数差によって生じる接合構造体のクラックを防ぐことができる。 Thus, the high melting point metal having a thermal expansion coefficient comparable to that of the bonded structure, that is, the high melting point metal having a difference in thermal expansion coefficient of 3.2 × 10 −6 or less to the power supply terminal 5 and the metal member 3. Thus, preferably by using Mo, it is possible to prevent cracks in the joined structure caused by a difference in thermal expansion coefficient between the ceramic substrate 1 and the power supply terminal 5 or the metal member 3 when the joined structure is formed or used.

また、給電端子5及び金属部材3を同種の高融点金属で溶接接合すると、給電端子5と金属部材3の接合界面に異種材料が含まれないため、熱サイクル下においても給電端子5と金属部材3との熱膨張係数差がなく、接合部分のクラック発生を防止できる。ただし、給電端子5の下端を拡径していないので、第1、第2実施形態より接合強度は小さくなる。 In addition, when the power supply terminal 5 and the metal member 3 are welded and joined with the same kind of high melting point metal, since the dissimilar material is not included in the joint interface between the power supply terminal 5 and the metal member 3, the power supply terminal 5 and the metal member are also subjected to heat cycle. There is no difference in thermal expansion coefficient from 3, and the occurrence of cracks at the joint portion can be prevented. However, since the diameter of the lower end of the power supply terminal 5 is not enlarged, the bonding strength is smaller than that in the first and second embodiments.

本発明は、半導体製造装置用静電チャック、ヒーターなどに使用される接合構造体に広く利用できる。   INDUSTRIAL APPLICABILITY The present invention can be widely used for bonding structures used for electrostatic chucks, heaters, etc. for semiconductor manufacturing apparatuses.

1:セラミック基材、1a:セラミック基板、1b:セラミック粉末、2:電極、3:金属部材、4:端子穴、4a:給電端子嵌合用凹部、4b:角部、5:給電端子、6:拡径部、6a:エッジ部。 1: Ceramic base material, 1a: Ceramic substrate, 1b: Ceramic powder, 2: Electrode, 3: Metal member, 4: Terminal hole, 4a: Recess for fitting power supply terminal, 4b: Corner part, 5: Power supply terminal, 6: Expanded diameter part, 6a: edge part.

Claims (12)

板状のセラミック基材(1)と
その底部に順次接触させながら積層又は埋設させた電極(2)及び金属部材(3)と
前記セラミック基材の上面から前記金属部材に到達する端子穴(4)と
前記セラミック基材の上方から前記端子穴(4)を通して前記金属部材(3)に突き合わせる給電端子(5)と
からなる接合構造体において、
前記給電端子の下端に形成した拡径部のエッジ部と前記金属部材とを接合したことを特徴とする接合構造体。
The plate-shaped ceramic substrate (1) and the electrode (2) and metal member (3) stacked or embedded while sequentially contacting the bottom thereof, and the terminal hole (4) reaching the metal member from the upper surface of the ceramic substrate ) And a feeding terminal (5) that abuts against the metal member (3) through the terminal hole (4) from above the ceramic base material,
The joining structure characterized by joining the edge part of the enlarged diameter part formed in the lower end of the said electric power feeding terminal, and the said metal member.
前記セラミック基材と前記給電端子及び前記セラミック基材と前記金属部材との熱膨張係数差Δαがそれぞれ3.2(10−6/K)以下であることを特徴とする請求項1記載の接合構造体。 2. The bonding according to claim 1, wherein each of the ceramic base material, the power supply terminal, and the ceramic base material and the metal member has a difference in thermal expansion ΔΔ of 3.2 (10 −6 / K) or less. Structure. 前記金属部材は、融点が1800℃以上の高融点金属である請求項2記載の接合構造体。 The bonded structure according to claim 2, wherein the metal member is a refractory metal having a melting point of 1800 ° C. or higher. 前記給電端子が、前記金属部材に凹設された給電端子嵌合用凹部に嵌合している請求項1乃至請求項3のいずれか1項に記載の接合構造体。 The joint structure according to any one of claims 1 to 3, wherein the power supply terminal is fitted in a power supply terminal fitting recess provided in the metal member. 前記給電端子と前記金属部材とが溶着により接合されている請求項1乃至4のいずれか1項に記載の接合構造体。 The joint structure according to claim 1, wherein the power supply terminal and the metal member are joined by welding. 前記溶着は、電子ビーム溶接、レーザー溶接、アーク溶接、ガス溶接、プラズマフレーム溶接から選択される1つの溶接方法によって接合することである請求項5記載の接合構造体。 The joining structure according to claim 5, wherein the welding is joining by one welding method selected from electron beam welding, laser welding, arc welding, gas welding, and plasma flame welding. 前記溶着は、ろう付けにより接合することである請求項5記載の接合構造体。 The joining structure according to claim 5, wherein the welding is joining by brazing. 前記セラミック基材が窒化アルミニウム、酸化アルミニウム、酸化イットリウム、炭化ケイ素、窒化ケイ素から選ばれる請求項1に記載の接合構造体。   The joining structure according to claim 1, wherein the ceramic substrate is selected from aluminum nitride, aluminum oxide, yttrium oxide, silicon carbide, and silicon nitride. 板状のセラミック基材(1)と
その底部に順次接触させながら積層又は埋設させた電極(2)及び金属部材(3)と
前記セラミック基材の上面から前記金属部材に到達する端子穴(4)と
前記セラミック基材の上方から前記端子穴(4)を通して前記金属部材(3)に溶接されている給電端子(5)と
からなる接合構造体において、
前記セラミック基材と前記給電端子及び前記セラミック基材と前記金属部材の熱膨張係数差Δαがそれぞれ3.2(10−6/K)以下であることを特徴とする接合構造体。
The plate-shaped ceramic substrate (1) and the electrode (2) and metal member (3) stacked or embedded while sequentially contacting the bottom thereof, and the terminal hole (4) reaching the metal member from the upper surface of the ceramic substrate And a feeding terminal (5) welded to the metal member (3) through the terminal hole (4) from above the ceramic base material,
The junction structure, wherein the ceramic base material and the power supply terminal, and the ceramic base material and the metal member each have a difference in thermal expansion ΔΔ of 3.2 (10 −6 / K) or less.
前記セラミック基材が窒化アルミニウム、酸化アルミニウム、酸化イットリウム、炭化ケイ素、窒化ケイ素から選ばれる請求項9に記載の接合構造体。   The bonded structure according to claim 9, wherein the ceramic substrate is selected from aluminum nitride, aluminum oxide, yttrium oxide, silicon carbide, and silicon nitride. 前記給電端子が、Mo、W又はこれらを主成分とする合金又はコバールからなることを特徴とする請求項9記載の接合構造体。 10. The joint structure according to claim 9, wherein the power supply terminal is made of Mo, W, an alloy mainly containing these, or Kovar. 静電チャックが請求項1〜10のいずれか1項に記載の接合構造体から構成されている半導体製造装置。 The semiconductor manufacturing apparatus comprised from the joining structure of any one of Claims 1-10 by an electrostatic chuck.
JP2013127026A 2013-06-17 2013-06-17 Junction structure and semiconductor manufacturing apparatus using the same Active JP6234076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127026A JP6234076B2 (en) 2013-06-17 2013-06-17 Junction structure and semiconductor manufacturing apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127026A JP6234076B2 (en) 2013-06-17 2013-06-17 Junction structure and semiconductor manufacturing apparatus using the same

Publications (2)

Publication Number Publication Date
JP2015002300A true JP2015002300A (en) 2015-01-05
JP6234076B2 JP6234076B2 (en) 2017-11-22

Family

ID=52296629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127026A Active JP6234076B2 (en) 2013-06-17 2013-06-17 Junction structure and semiconductor manufacturing apparatus using the same

Country Status (1)

Country Link
JP (1) JP6234076B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075240A1 (en) * 2019-10-18 2021-04-22 京セラ株式会社 Structure and heating device
JP2022500865A (en) * 2018-09-20 2022-01-04 ラム リサーチ コーポレーションLam Research Corporation Long-life high-output terminals for substrate supports with embedded heating elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059628A (en) * 2001-08-17 2003-02-28 Ibiden Co Ltd Ceramic heater for semiconductor manufacturing and test device
JP2003168724A (en) * 2001-09-20 2003-06-13 Ibiden Co Ltd Ceramic board used for semiconductor manufacturing/ checking device and its manufacturing method
JP2007123601A (en) * 2005-10-28 2007-05-17 Ngk Insulators Ltd Ceramic substrate and bonding structure of electrical connector for power supplies
JP2012216786A (en) * 2011-03-31 2012-11-08 Ngk Insulators Ltd Member for semiconductor manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059628A (en) * 2001-08-17 2003-02-28 Ibiden Co Ltd Ceramic heater for semiconductor manufacturing and test device
JP2003168724A (en) * 2001-09-20 2003-06-13 Ibiden Co Ltd Ceramic board used for semiconductor manufacturing/ checking device and its manufacturing method
JP2007123601A (en) * 2005-10-28 2007-05-17 Ngk Insulators Ltd Ceramic substrate and bonding structure of electrical connector for power supplies
JP2012216786A (en) * 2011-03-31 2012-11-08 Ngk Insulators Ltd Member for semiconductor manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500865A (en) * 2018-09-20 2022-01-04 ラム リサーチ コーポレーションLam Research Corporation Long-life high-output terminals for substrate supports with embedded heating elements
JP7269327B2 (en) 2018-09-20 2023-05-08 ラム リサーチ コーポレーション Long life high power terminals for substrate supports with embedded heating elements
WO2021075240A1 (en) * 2019-10-18 2021-04-22 京セラ株式会社 Structure and heating device
JPWO2021075240A1 (en) * 2019-10-18 2021-04-22

Also Published As

Publication number Publication date
JP6234076B2 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
JP2012049185A (en) Ceramic member and method for producing the same
JP2002293655A (en) Jointing structure of metal terminal and ceramic member, jointing structure of metal member and ceramic member and jointing material for jointing metal terminal and ceramic member
TWI689038B (en) Brazed joint and semiconductor processing chamber component having the same
US20180076067A1 (en) Holding apparatus
TW201616915A (en) Joining structure
KR102209156B1 (en) Manufacturing method of parts for semiconductor manufacturing equipment and parts for semiconductor manufacturing equipment
JP6490296B2 (en) Parts for semiconductor manufacturing equipment
JP6234076B2 (en) Junction structure and semiconductor manufacturing apparatus using the same
JP6475054B2 (en) Components for semiconductor manufacturing equipment
JP4124040B2 (en) Semiconductor device
US20130216842A1 (en) Method of bonding ceramic and metal and bonded structure of ceramic and metal
JP2023023670A (en) ceramic heater
JP7321285B2 (en) Systems for ceramic structures and wafers
JP2006114250A (en) Power supply terminal installation structure of metal member embedding ceramic substrate
US10879211B2 (en) Method of joining a surface-mount component to a substrate with solder that has been temporarily secured
JP6704821B2 (en) Holding device
JP6242328B2 (en) Semiconductor device
JP4656126B2 (en) Semiconductor device
JP7285751B2 (en) Heater and thermocompression bonding device equipped with the same
JP2009051684A (en) Silicon carbide structure, and method for producing silicon carbide structure
JP4476129B2 (en) Airtight terminal
JP2008047500A (en) Heater unit and its manufacturing method
JP2016103345A (en) Connection structure and heater comprising the same
WO2020110850A1 (en) Ceramic structure and method of manufacturing ceramic structure
JP6577362B2 (en) heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171024

R150 Certificate of patent or registration of utility model

Ref document number: 6234076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250