JP2015001482A - Quantitative analysis method using x-ray fluorescence analyzer - Google Patents

Quantitative analysis method using x-ray fluorescence analyzer Download PDF

Info

Publication number
JP2015001482A
JP2015001482A JP2013127020A JP2013127020A JP2015001482A JP 2015001482 A JP2015001482 A JP 2015001482A JP 2013127020 A JP2013127020 A JP 2013127020A JP 2013127020 A JP2013127020 A JP 2013127020A JP 2015001482 A JP2015001482 A JP 2015001482A
Authority
JP
Japan
Prior art keywords
solution
measured
component
concentration
internal standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013127020A
Other languages
Japanese (ja)
Other versions
JP6007866B2 (en
Inventor
敦 加岳井
Atsushi Kagakui
敦 加岳井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013127020A priority Critical patent/JP6007866B2/en
Publication of JP2015001482A publication Critical patent/JP2015001482A/en
Application granted granted Critical
Publication of JP6007866B2 publication Critical patent/JP6007866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for highly accurately and correctly measuring the content of a desired component contained in a solution to be measured with reduced variations at low costs.SOLUTION: A quantitative analysis method using an X-ray fluorescence analyzer, which quantitatively analyzes the concentration of a predetermined component contained in a solution to be measured using the X-ray fluorescence analyzer, comprises the steps of: measuring the density of the solution to be measured; weighing the solution to be measured; adding a component not contained in the solution to be measured as an internal reference component to the weighed solution to be measured to prepare a mixed solution, and weighing the added amount of the internal reference component; using the mixed solution as it is or diluting it at a desired rate and then loading it to the X-ray fluorescence analyzer; using the X-ray fluorescence analyzer to obtain a ratio of intensity between the predetermined component and the internal reference component and to obtain a ratio of concentration between the predetermined component and the internal reference component using a previously-prepared calibration curve of the ratio of intensity between the predetermined component and the internal reference component and a ratio of concentration between the predetermined component and the internal reference component; and obtaining the concentration (volume fraction) of the predetermined component contained in the solution to be measured from the ratio of concentration between the predetermined component and the internal reference component and the density of the solution to be measured.

Description

本発明は、蛍光X線分析装置(本発明において「XRF」と記載する場合がある。)を用いた、被測定溶液中の含有成分の濃度を定量的に分析する方法に関するものである。さらに詳しくは、被測定溶液中の含有成分の濃度を、小さなばらつきをもって且つ高精度に分析する方法に関する。   The present invention relates to a method for quantitatively analyzing the concentration of a component in a solution to be measured using an X-ray fluorescence analyzer (may be described as “XRF” in the present invention). More specifically, the present invention relates to a method for analyzing the concentration of a contained component in a solution to be measured with small variations and with high accuracy.

含有成分およびその濃度が未知である被測定溶液において、その溶液中のある特定成分の濃度を正確に測定しようとする場合、まずは、当該被測定溶液中の含有成分を特定し、おおよその濃度を測定する分析操作(本発明において「定性分析」と記載する場合がある。)を行う。
当該定性分析の手段として、ICP発光分光分析装置(本発明において「ICP/OES」と記載する場合がある。)やXRFによる定性分析が一般的に行われる。そして、両装置を用いた定性分析操作自体は、一試料当り数分間から数10分間程度で実施することができる。
To accurately measure the concentration of a specific component in a solution to be measured whose content and concentration are unknown, first identify the content component in the solution to be measured, and determine the approximate concentration. An analysis operation for measurement (may be described as “qualitative analysis” in the present invention) is performed.
As means for the qualitative analysis, qualitative analysis using an ICP emission spectroscopic analyzer (may be described as “ICP / OES” in the present invention) or XRF is generally performed. And the qualitative analysis operation itself using both apparatuses can be carried out for several minutes to several tens of minutes per sample.

しかし、定性分析を行う被測定溶液の前処理においては、例えばICP/OES用試料調製であれば、被測定溶液の試料を全量ピペットを使用して全量フラスコに移し入れ、適当な酸を添加して純水で一定量に定容する操作(本発明において「希釈操作」と記載する場合がある。)が必要である。当該希釈操作は、30分間から1時間程度の時間を要する手間のかかる操作である。
一方、XRFは、前述のような希釈操作を必要とせず、プラスチック薄膜を張ったプラスチック容器に被測定溶液の試料を入れるだけで前処理が終了する。その為、当該前処理に要する時間は数分間から数10分間程度であって、非常に簡便である(非文献特許1参照)。
However, in the pretreatment of the solution to be measured for qualitative analysis, for example, when preparing a sample for ICP / OES, the sample of the solution to be measured is transferred to a full volume flask using a full pipette, and an appropriate acid is added. Therefore, an operation of making a constant volume with pure water (may be referred to as “dilution operation” in the present invention) is necessary. The dilution operation is a time-consuming operation that takes about 30 minutes to 1 hour.
On the other hand, XRF does not require the dilution operation as described above, and the pretreatment is completed simply by placing the sample of the solution to be measured in a plastic container with a plastic thin film. Therefore, the time required for the pretreatment is from several minutes to several tens of minutes, which is very simple (see Non-Patent Document 1).

以上、説明した定性分析が完了して、被測定溶液中の含有成分、および、当該含有成分のおおよその濃度が判明したら、次に、当該被測定溶液中における所望の特定成分の濃度を正確に測定する操作(本発明において「定量分析」と記載する場合がある。)を行う。
当該定量分析の手段としても、ICP/OESやXRFを用いた定量分析が一般的に行われる。そして両装置共に、多元素の定量分析を、一測定試料当り数分間程度の短時間で実施できる。
When the qualitative analysis described above is completed and the contained components in the solution to be measured and the approximate concentrations of the contained components are determined, the concentration of the desired specific component in the solution to be measured is then accurately determined. An operation for measurement (may be described as “quantitative analysis” in the present invention) is performed.
As the means for quantitative analysis, quantitative analysis using ICP / OES or XRF is generally performed. Both devices can perform multi-element quantitative analysis in a short time of about several minutes per measurement sample.

しかし、定量分析を行う被測定溶液の前処理においては、例えばICP/OES用試料調製であれば、前述した定性分析の場合と同様に複雑な希釈操作が必要である。この為、当該希釈操作に、やはり30分間から1時間程度の時間を要する。
一方、XRFで定量分析を実施しようとする場合、被測定溶液中における所望成分の濃度が低いと、前述のようなプラスチック薄膜を張ったプラスチック容器に被測定溶液を入れて測定しようとしても、XRFの測定感度が低いために正確な定量分析が行えない可能性がある。
このような事態に対応する為、被測定溶液中における所望の含有成分を濃縮することが可能な媒体に、被測定溶液を滴下して測定する前処理操作手法がある。そして、当該前処理操作に要する時間は、数分間から数10分間程度なので非常に簡便である(非文献特許1参照)。
However, in the pretreatment of the solution to be measured for quantitative analysis, for example, in the case of preparing a sample for ICP / OES, a complicated dilution operation is required as in the case of the qualitative analysis described above. For this reason, the dilution operation still requires about 30 minutes to 1 hour.
On the other hand, when trying to perform quantitative analysis with XRF, if the concentration of the desired component in the solution to be measured is low, the solution to be measured may be measured by putting the solution to be measured in a plastic container with a plastic thin film as described above. Due to the low measurement sensitivity, accurate quantitative analysis may not be possible.
In order to cope with such a situation, there is a pretreatment operation method in which a measurement solution is dropped and measured on a medium capable of concentrating desired components in the measurement solution. Since the time required for the pretreatment operation is about several minutes to several tens of minutes, it is very simple (see Non-Patent Document 1).

中井泉編集、「蛍光X線分析の実際」、朝倉書店発行、初版第7刷、2011年1月30日、p.72−74Edited by Izumi Nakai, “Actual Fluorescence X-ray Analysis”, published by Asakura Shoten, first edition, 7th edition, January 30, 2011, p. 72-74

前述した、被測定溶液中における所望の含有成分を濃縮することが可能な媒体に、被測定溶液を滴下して測定する前処理操作手法について、本発明者は詳細な検討を行った。
その結果、媒体に被測定溶液を滴下する量は、数十μL程度の少量しか滴下することができないので、一般的にプッシュボタン式液体用微量体積計(本発明において「マイクロピペット」と記載する場合がある。)を使用して被測定溶液の一定容量を分取することとなる。しかし、作業者のマイクロピペットの操作習熟度が未熟な場合には、分取誤差が大きくなり、結果として正確な測定が行えない可能性があることを知見した。
そして例えば、被測定溶液がそのまま最終製品であるような、厳密な濃度管理が必要となる場合は、前述のような分取誤差が原因となって正確な測定が行えず、厳密な品質管理が行えない可能性があることを知見したものである。
The present inventor has made a detailed study on the pretreatment operation technique in which the measurement solution is dropped onto the medium capable of concentrating desired components in the measurement solution, as described above.
As a result, the amount of the solution to be measured that is dropped on the medium can be dropped only by a small amount of about several tens of μL. Therefore, it is generally described as a pushbutton liquid microvolume meter (referred to as “micropipette” in the present invention). A certain volume of the solution to be measured is dispensed. However, it has been found that if the operator's skill level of micropipette is immature, the sorting error increases, and as a result, accurate measurement may not be performed.
And, for example, when strict concentration control is required, such as the solution to be measured is the final product as it is, accurate measurement cannot be performed due to the sorting error as described above, and strict quality control is required. It has been found that there is a possibility that it can not be done.

一方、近年のエレクトロニクス技術等の進歩により、これらの業界において素材や原料として用いられる各種溶液への品質要求は高度化、厳密化している。その一方で、生産のグローバル化に伴い、当該各種溶液への生産コストダウンの要求も厳しいものがある。
当該状況の下で、被測定溶液中の所望の含有成分の含有量を、ばらつきが小さく高精度かつ、正確に、低コストで測定する方法の開発の必要がある。
本発明はこのような状況を解決するためになされたものであり、被測定溶液中の所望の含有成分の含有量を、ばらつきを小さく高精度かつ、正確に、低コストで測定する方法の提供を課題とするものである。
On the other hand, due to recent advances in electronics technology and the like, quality requirements for various solutions used as raw materials and raw materials in these industries are becoming more sophisticated and stricter. On the other hand, with the globalization of production, there are strict requirements for reducing the production cost of the various solutions.
Under such circumstances, it is necessary to develop a method for measuring the content of a desired component in a solution to be measured with high accuracy, accuracy, and low cost with little variation.
The present invention has been made to solve such a situation, and provides a method for measuring the content of a desired component in a solution to be measured with high accuracy, accuracy, and low cost with little variation. Is an issue.

上述の課題を解決する為、本発明者は鋭意研究を行った。
そして、XRFによる被測定溶液中の含有成分の測定方法と、被測定溶液中に含有されない成分であってその添加量が正確に測定されている成分(本発明において「内部標準成分」と記載する場合がある。)を当該被測定溶液中に添加して混合溶液とし、XRFにより当該混合溶液中における含有成分および内部標準成分の濃度を測定する方法とを、組み合わせる構成に想到し本発明を完成した。
In order to solve the above-mentioned problems, the present inventor has conducted intensive research.
And the measuring method of the contained component in the solution to be measured by XRF and the component which is not contained in the solution to be measured and whose addition amount is accurately measured (in the present invention, described as “internal standard component”) And the method of measuring the concentration of the contained component and the internal standard component in the mixed solution by XRF is completed, and the present invention is completed. did.

即ち、上述の課題を解決するための第1の発明は、
被測定対象の溶液中に含有される所定成分の濃度を、蛍光X線分析装置を用いて定量分析する方法であって、
前記被測定対象の溶液の密度を測定する操作と、
前記被測定対象の溶液を秤量する操作と、
前記秤量された被測定対象の溶液へ、前記被測定対象の溶液中に含有されない成分を内部標準成分として添加して混合溶液とし、当該内部標準成分の添加量を秤量する操作と、
前記混合溶液をそのまま、または、所望の割合で希釈した後、蛍光X線分析装置へ装填する操作と、
前記蛍光X線分析装置を用いて、前記所定成分と、前記内部標準成分との強度比を求め、予め作成した、前記所定成分と前記内部標準成分との強度比と、前記所定成分と前記内部標準成分との濃度比との検量線を用いて、前記所定成分と、前記内部標準成分との濃度比を求める操作と、
前記所定成分と前記内部標準成分との濃度比と、前記被測定対象の溶液の密度とから、前記被測定対象の溶液中に含有される所定成分の濃度を求めることを特徴とする蛍光X線分析装置を用いた定量分析方法である。
第2の発明は、
前記所定成分がNi、Co、Mnから選択される1種以上の成分であることを特徴とする第1の発明に記載の蛍光X線分析装置を用いた定量分析方法である。
第3の発明は、
前記内部標準成分がCuであることを特徴とする第2の発明に記載の蛍光X線分析装置を用いた定量分析方法である。
第4の発明は、
前記混合溶液をそのまま、または、所望の割合で希釈した後、蛍光X線分析装置へ装填する際、
当該混合溶液の定量を媒体中にて乾燥した後、当該媒体と伴に蛍光X線分析装置へ装填することを特徴とする第1から第3の発明のいずれかに記載の蛍光X線分析装置を用いた定量分析方法である。
第5の発明は、
前記混合溶液の定量を乾燥させる媒体として、ろ紙を用いることを特徴とする第4の発明に記載の蛍光X線分析装置を用いた定量分析方法である。
That is, the first invention for solving the above-described problem is
A method for quantitatively analyzing the concentration of a predetermined component contained in a solution to be measured using a fluorescent X-ray analyzer,
An operation for measuring the density of the solution to be measured;
An operation of weighing the solution to be measured;
An operation of adding a component not contained in the solution to be measured to the measured solution to be measured as an internal standard component to obtain a mixed solution, and weighing the addition amount of the internal standard component;
An operation of loading the mixed solution as it is or after diluting it at a desired ratio into a fluorescent X-ray analyzer;
Using the X-ray fluorescence analyzer, the intensity ratio between the predetermined component and the internal standard component is obtained, and the intensity ratio between the predetermined component and the internal standard component, the predetermined component and the internal standard component, which are prepared in advance, are determined. An operation for obtaining a concentration ratio between the predetermined component and the internal standard component using a calibration curve with a concentration ratio with a standard component;
X-ray fluorescence characterized in that the concentration of the predetermined component contained in the solution to be measured is obtained from the concentration ratio between the predetermined component and the internal standard component and the density of the solution to be measured. This is a quantitative analysis method using an analyzer.
The second invention is
The quantitative analysis method using the fluorescent X-ray analyzer according to the first invention, wherein the predetermined component is one or more components selected from Ni, Co, and Mn.
The third invention is
2. The quantitative analysis method using a fluorescent X-ray analyzer according to the second invention, wherein the internal standard component is Cu.
The fourth invention is:
When loading the mixed solution as it is or after diluting it at a desired ratio into a fluorescent X-ray analyzer,
After the fixed amount of the mixed solution is dried in a medium, the fluorescent X-ray analyzer according to any one of the first to third aspects is loaded with the medium together with the medium. Is a quantitative analysis method using
The fifth invention is:
The quantitative analysis method using the fluorescent X-ray analyzer according to the fourth aspect of the invention, wherein filter paper is used as a medium for drying the quantitative determination of the mixed solution.

本発明によれば、被測定溶液中の所定の含有成分の含有量を、ばらつきが小さく高精度かつ、正確に、低コストで測定することができる。   According to the present invention, the content of a predetermined component in a solution to be measured can be measured with high accuracy, accuracy, and low cost with little variation.

実施例1に係る検量線の一例である。2 is an example of a calibration curve according to Example 1. 比較例1に係る検量線の一例である。2 is an example of a calibration curve according to Comparative Example 1.

本発明は、被測定対象の溶液中に含有される所定成分の濃度を、XRFを用いて定量分析する方法である。
具体的には、被測定対象の溶液へ、前記被測定対象の溶液中に含有されない成分を内部標準成分として添加して混合溶液とし、前記混合溶液をXRFへ装填する。そして、当該XRFを用いて、前記所定成分と、前記内部標準成分との強度比を求め、予め作成した、前記所定成分と前記内部標準成分との強度比と、前記所定成分と前記内部標準成分との濃度比との検量線を用いて、前記所定成分と、前記内部標準成分との濃度比を求める。そして、当該濃度比と、前記被測定対象の溶液の密度とから、前記被測定対象の溶液中に含有される所定成分の濃度(体積分率)を求める定量分析方法である。
以下、(1)被測定対象の溶液中に含有される所定成分、(2)内部標準成分、(3)混合溶液の調製、(4)混合溶液のXRFへの装填、(5)検量線とその作成、(6)所定成分の濃度測定、(7)本発明の効果確認試験の順に説明する。
The present invention is a method for quantitatively analyzing the concentration of a predetermined component contained in a solution to be measured using XRF.
Specifically, a component not contained in the solution to be measured is added as an internal standard component to the solution to be measured to form a mixed solution, and the mixed solution is loaded into the XRF. Then, using the XRF, an intensity ratio between the predetermined component and the internal standard component is obtained, and an intensity ratio between the predetermined component and the internal standard component, the predetermined component and the internal standard component, which are created in advance, are obtained. The concentration ratio between the predetermined component and the internal standard component is obtained using a calibration curve with the concentration ratio. And it is the quantitative analysis method which calculates | requires the density | concentration (volume fraction) of the predetermined component contained in the said solution to be measured from the said density | concentration ratio and the density of the solution to be measured.
Hereinafter, (1) predetermined components contained in the solution to be measured, (2) internal standard components, (3) preparation of mixed solution, (4) loading of mixed solution into XRF, (5) calibration curve and The creation, (6) concentration measurement of a predetermined component, and (7) the effect confirmation test of the present invention will be described in this order.

(1)被測定対象の溶液中に含有される所定成分
被測定対象の溶液中に含有される所定成分としては、実用的にはNa(Z=11)以上の原子番号を持つ元素であれば良い。
勿論、本発明は、被測定溶液中に含有される所定成分が、それぞれのXRFによる測定強度が同じような挙動でばらつき、かつ、十分な測定感度が得られるものであれば、Ni,Co,Mn以外の成分へ適用可能である。
(1) Predetermined component contained in the solution to be measured The predetermined component contained in the solution to be measured is practically an element having an atomic number of Na (Z = 11) or more. good.
Of course, according to the present invention, if the predetermined component contained in the solution to be measured varies in the measurement intensity by each XRF with the same behavior and sufficient measurement sensitivity is obtained, Ni, Co, Applicable to components other than Mn.

(2)内部標準成分
内部標準成分としては、前記被測定対象の溶液中に含有されない成分を選択する。例えば所定成分として、Ni、Co、Mn含有する被測定溶液に対する内部標準成分であれば、例えばCuを選択することができる。勿論、Cu以外の成分を内部標準成分として測定することも可能である。
(2) Internal standard component As the internal standard component, a component not contained in the solution to be measured is selected. For example, Cu can be selected as the predetermined component as long as it is an internal standard component for the solution to be measured containing Ni, Co, and Mn. Of course, components other than Cu can also be measured as internal standard components.

(3)混合溶液の調製
そして、秤量された前記被測定対象の溶液へ、前記被測定対象の溶液中に含有されない成分を内部標準成分として添加して混合溶液を得る。ここで、本発明においては、当該混合溶液を得るまでの操作において、液体容量の測定操作を行わず、液体重量、粉体重量を秤量操作で行うものである。
これは、上述したように、被測定溶液の一定容量を分取するような操作において、作業者のマイクロピペットの操作習熟度が未熟な場合には、分取誤差が大きくなり、結果として正確な測定が行えない可能性があるからである。これに対し、液体重量、粉体重量を秤量する操作であれば、誤差が小さく厳密な管理が、容易に可能になることを知見したことによる。
(3) Preparation of mixed solution Then, a component not contained in the measured solution is added as an internal standard component to the weighed measured solution to obtain a mixed solution. Here, in the present invention, in the operation until obtaining the mixed solution, the liquid volume and the powder weight are measured by the weighing operation without performing the liquid volume measurement operation.
This is because, as described above, in the operation of dispensing a certain volume of the solution to be measured, if the operator's skill level of the micropipette is immature, the sorting error becomes large, resulting in accurate This is because there is a possibility that measurement cannot be performed. On the other hand, it is because it was found that the operation of weighing the liquid weight and the powder weight makes it possible to easily perform strict management with small errors.

さらに、本発明においては、上記混合溶液の段階において、被測定対象の溶液中に含有される所定成分と内部標準成分との比率が、厳密に決定出来ている。そこで、当該混合溶液を、液体容量の測定操作等の方法で取り扱ったとしても、所定成分と内部標準成分との比率自体は保持されるので、測定精度を低下させることなく、液体容量の測定操作等の方法をもって当該混合溶液を取り扱うことが出来る。   Furthermore, in the present invention, the ratio between the predetermined component and the internal standard component contained in the solution to be measured can be determined strictly at the stage of the mixed solution. Therefore, even if the mixed solution is handled by a method such as a liquid volume measurement operation, the ratio itself between the predetermined component and the internal standard component is maintained, so that the liquid volume measurement operation is performed without reducing the measurement accuracy. The mixed solution can be handled by such a method.

(4)混合溶液のXRFへの装填
そこで、当該混合溶液をXRFに装填する際、当該混合溶液の所定容量をそのまま、または、所望の割合で希釈した後、適宜な媒体中へ注ぎ、乾燥させて、当該媒体と伴にXRFへ装填することが出来る。当該XRFに装填された媒体中においても、前記所定成分と内部標準成分との比率自体は厳密に保たれているからである。尚、当該媒体としては、コストや操作性の観点から、ろ紙が好ましい。
前記希釈の比率は、混合溶液中に含有される所定成分と内部標準成分との濃度の値から、適宜、決定すれば良い。
前記XRFより、混合溶液中に含有される所定成分と内部標準成分とのX線の強度比が測定される。
(4) Loading of the mixed solution into the XRF Therefore, when loading the mixed solution into the XRF, a predetermined volume of the mixed solution is left as it is or diluted in a desired ratio, and then poured into an appropriate medium and dried. Thus, the XRF can be loaded together with the medium. This is because the ratio between the predetermined component and the internal standard component itself is strictly maintained even in the medium loaded in the XRF. The medium is preferably filter paper from the viewpoint of cost and operability.
The dilution ratio may be appropriately determined from the concentration values of the predetermined component and the internal standard component contained in the mixed solution.
From the XRF, an X-ray intensity ratio between a predetermined component and an internal standard component contained in the mixed solution is measured.

(5)検量線とその作成
一方、予め、混合溶液中に含有される所定成分と内部標準成分とにおける、濃度比とX線の強度比との検量線を作成しておく。
勿論、当該検量線を作成する為の標準試料調製操作においても、液体容量の測定操作を行わず、液体重量、粉体重量を秤量操作で行って、調製することが好ましい。
以上の操作により、精度の高い検量線を作成することが出来る。
(5) Calibration curve and preparation thereof On the other hand, a calibration curve of a concentration ratio and an X-ray intensity ratio between a predetermined component and an internal standard component contained in the mixed solution is prepared in advance.
Of course, in the standard sample preparation operation for preparing the calibration curve, it is preferable to prepare the liquid weight and the powder weight by the weighing operation without performing the liquid volume measurement operation.
A calibration curve with high accuracy can be created by the above operation.

(6)所定成分の濃度測定
前記XRFより測定された、混合溶液中に含有される所定成分と内部標準成分とのX線の強度比と、前記予め作成された検量線とから、所定成分と内部標準成分との濃度比を求める。
ここで、内部標準成分の濃度は既知量であることから、当該所定成分と前記内部標準成分との濃度比と、前記被測定対象の溶液の密度とから、前記被測定対象の溶液中に含有される所定成分の濃度(体積分率)を求めることが出来る。
(6) Concentration measurement of a predetermined component Based on the X-ray intensity ratio of the predetermined component contained in the mixed solution and the internal standard component measured by the XRF and the calibration curve prepared in advance, the predetermined component and Obtain the concentration ratio with the internal standard component.
Here, since the concentration of the internal standard component is a known amount, it is contained in the solution to be measured from the concentration ratio of the predetermined component and the internal standard component and the density of the solution to be measured. The concentration (volume fraction) of the predetermined component can be obtained.

(7)本発明の効果確認試験
Ni,Co,Mnを含有している被測定溶液の一定量を秤量することで、正確な重量で秤取った。次に、内部標準成分として、Cu溶液の一定量を秤量することで、正確な重量で秤取った。次に、純水の一定量容量を加え混合溶液を得た。
当該混合溶液を、5枚のろ紙にそれぞれ一定量滴下し、当該ろ紙を乾燥させた。当該5枚のろ紙をそれぞれXRFに装填し、Ni,Co,MnおよびCuの強度を測定した。
表1にNiとCu、表2にCoとCu、表3にMnとCuのXRFによる測定結果を示す。
(7) Effect confirmation test of the present invention A certain amount of the solution to be measured containing Ni, Co, and Mn was weighed and weighed with an accurate weight. Next, as an internal standard component, a certain amount of Cu solution was weighed and weighed with an accurate weight. Next, a fixed volume of pure water was added to obtain a mixed solution.
A certain amount of the mixed solution was dropped on each of five filter papers, and the filter papers were dried. The five filter papers were loaded into XRF, and the strengths of Ni, Co, Mn and Cu were measured.
Table 1 shows the measurement results by Ni and Cu, Table 2 by Co and Cu, and Table 3 by MRF and XRF by XRF.

Figure 2015001482
Figure 2015001482
Figure 2015001482
Figure 2015001482
Figure 2015001482
Figure 2015001482

表1〜3の結果より、Ni,Co,MnおよびCuの、それぞれの蛍光X線強度の相対標準偏差(以下、「RSD」と記載する場合がある。)は、2.2〜2.3%程度と大きなばらつきが見られた。しかし、前記4成分の蛍光X線強度は、同様の挙動をもって変動している。この結果、NiとCu、CoとCu、MnとCuにおける、それぞれの蛍光X線強度比のRSDは0.1〜0.5%程度と、ばらつきが大幅に小さくなった。   From the results of Tables 1 to 3, the relative standard deviations of the respective fluorescent X-ray intensities (hereinafter sometimes referred to as “RSD”) of Ni, Co, Mn, and Cu are 2.2 to 2.3. A large variation of about% was observed. However, the four component fluorescent X-ray intensities vary with the same behavior. As a result, the RSD of the fluorescent X-ray intensity ratio in Ni and Cu, Co and Cu, and Mn and Cu was about 0.1 to 0.5%, and the variation was greatly reduced.

以上の結果から、XRFによる被測定溶液中の含有成分の測定において、被測定溶液へ内部標準成分を添加して測定溶液を調製し、その被測定溶液中の含有成分および内部標準成分の強度を測定して強度比を計算することと、含有成分を測定する被測定溶液および内部標準成分を重量として正確にはかり取ることにより、被測定溶液中の含有成分の含有量を、ばらつきが小さく高精度かつ、正確に低コストで測定することが出来ることが判明し、本発明の効果を確認することが出来た。   From the above results, in measuring the components contained in the solution to be measured by XRF, an internal standard component is added to the solution to be measured to prepare a measurement solution, and the strengths of the components and internal standard components in the solution to be measured are determined. By measuring and calculating the intensity ratio, and accurately measuring the measured solution and internal standard components to be measured as the weight, the content of the contained components in the measured solution is small and highly accurate. And it became clear that it can measure accurately at low cost, and the effect of this invention was able to be confirmed.

つまり、本発明に係る構成によれば、
1)XRFで分析する、所望の含有成分を含む被測定溶液へ、その添加量が正確に測定されている内部標準成分を添加して混合溶液を調製し、当該混合溶液中における所望の含有成分と、内部標準成分との強度を測定、
2)所望の含有成分の測定強度と、内部標準成分の測定強度との比(本発明において「強度比」と記載する場合がある。)を計算、という手順をとる。
当該手順により、例え、XRFの測定環境等の変化に伴い、XRFの測定強度がばらついたとしても、含有成分と内部標準成分とは同様の挙動をもって、ばらつくことになる。従って、当該XRFの測定強度ばらつきに拘わらず、強度比は常に一定となる。この結果、ばらつきが小さく高精度かつ、正確な測定が可能となった。
That is, according to the configuration of the present invention,
1) A mixed solution is prepared by adding an internal standard component whose amount of addition is accurately measured to a solution to be measured that contains the desired component to be analyzed by XRF, and the desired component in the mixed solution is prepared. And measure the strength with internal standard components,
2) The procedure of calculating the ratio between the measured intensity of the desired component and the measured intensity of the internal standard component (may be referred to as “intensity ratio” in the present invention) is taken.
According to the procedure, even if the XRF measurement intensity varies with changes in the XRF measurement environment or the like, the contained component and the internal standard component vary with the same behavior. Therefore, the intensity ratio is always constant regardless of the measurement intensity variation of the XRF. As a result, highly accurate and accurate measurement is possible with little variation.

さらに、所定の含有成分を含む被測定溶液および内部標準成分を、容量ではなく、重量として秤量し、秤取ることにより、マイクロピペット等により被測定溶液を一定容量を分取する時に懸念される、作業者の操作習熟度が未熟であるために発生する可能性がある分取誤差の発生を防ぐことができた。
この結果、ばらつきが小さく高精度かつ、正確な測定が低コストで実施可能となった。
Furthermore, there is a concern when measuring a predetermined volume of the solution to be measured and the internal standard component including a predetermined component by weighing the weight of the solution to be measured instead of the volume, and weighing the solution to be measured by a micropipette or the like. It was possible to prevent the occurrence of sorting errors that could occur because the operator's operation proficiency was immature.
As a result, it is possible to carry out highly accurate and accurate measurement at low cost with little variation.

以下、実施例および比較例を参照しながら、本発明を実施するための形態について具体的に説明する。尚、使用したXRFはパナリティカル社製のアクシオス、密度計はアントンパール社製のDMA4500である。
但し、本発明は以下の実施例に限定されるものではない。
Hereinafter, embodiments for carrying out the present invention will be specifically described with reference to Examples and Comparative Examples. The XRF used was Axios manufactured by Panalical, and the density meter was DMA4500 manufactured by Anton Paar.
However, the present invention is not limited to the following examples.

[実施例1]
ポリスチレン製試験管へ、所定成分としてNi,Co,Mnを含有する被測定溶液0.5mLを精密天秤で0.1mgの桁まで正確に秤量して秤取った。
内部標準成分としてCuを選択し、前記ポリスチレン製試験管へ、Cu濃度が20g/Lの内部標準溶液1mLを精密天秤で0.1mgの桁まで正確に秤量して秤取った。
さらに、前記ポリスチレン製試験管へ、純水1mLをマイクロピペットで添加して密栓し攪拌し混合溶液を得た。
[Example 1]
In a polystyrene test tube, 0.5 mL of a solution to be measured containing Ni, Co, and Mn as predetermined components was accurately weighed to the order of 0.1 mg with a precision balance and weighed.
Cu was selected as an internal standard component, and 1 mL of an internal standard solution having a Cu concentration of 20 g / L was accurately weighed to the order of 0.1 mg with a precision balance and weighed into the polystyrene test tube.
Further, 1 mL of pure water was added to the polystyrene test tube with a micropipette, sealed and stirred to obtain a mixed solution.

前記ポリスチレン製試験管内の混合溶液を、マイクロピペットで分取し5枚のろ紙へ、それぞれ20μLずつ滴下し、当該ろ紙を乾燥させた。
前記乾燥させたろ紙をXRFに装填し、Ni,Co,MnおよびCuのX線強度を測定した。そして、NiとCu、CoとCu、MnとCu、のそれぞれのX線強度比を計算した。
The mixed solution in the polystyrene test tube was fractionated with a micropipette, and 20 μL each was dropped onto five filter papers, and the filter papers were dried.
The dried filter paper was loaded into XRF, and the X-ray intensities of Ni, Co, Mn and Cu were measured. The X-ray intensity ratios of Ni and Cu, Co and Cu, and Mn and Cu were calculated.

前記NiとCu、CoとCu、MnとCuのそれぞれのX線強度比と、予め作成しておいた、NiとCuとにおけるX線強度比と濃度比との検量線、CoとCuとにおけるX線強度比と濃度比との検量線、MnとCuとにおけるX線強度比と濃度比との検量線と、別途に密度計により測定したNi,Co,Mnを含有する被測定溶液の密度値より、前記被測定溶液におけるNi,Co,Mnの各濃度(容量分率)を求めた。当該結果を表4に示す。   Calibration curves of the X-ray intensity ratios of Ni and Cu, Co and Cu, Mn and Cu, and the X-ray intensity ratio and concentration ratio of Ni and Cu prepared in advance, Co and Cu Calibration curve of X-ray intensity ratio and concentration ratio, calibration curve of X-ray intensity ratio and concentration ratio of Mn and Cu, and density of solution to be measured containing Ni, Co, and Mn separately measured by a density meter From the value, each concentration (volume fraction) of Ni, Co, and Mn in the solution to be measured was obtained. The results are shown in Table 4.

上述した定量分析結果を検討する為、実施例1にて説明した被測定溶液に対し、従来の方法に係るICP/OESを用いて定量分析を行った。分析結果を表4に示す。   In order to examine the quantitative analysis results described above, quantitative analysis was performed on the solution to be measured described in Example 1 using ICP / OES according to the conventional method. The analysis results are shown in Table 4.

Figure 2015001482
Figure 2015001482

表4の結果より、本発明に係るXRFによる定量分析結果は、Ni,Co,Mn各濃度のRSDにおいて0.1%から0.5%程度とばらつきが小さく、且つ、従来の方法であるICP/OESによる分析値とよく一致した。
これは、被測定溶液中の含有成分であるNi,Co,Mnと、内部標準成分であるCuとの強度をXRFで測定する際、Ni,Co,MnおよびCuの各強度が、ばらつくことがあったとしても、前記4成分が同様の挙動をもってばらつくので、NiとCu、CoとCu、MnとCuとのそれぞれの強度比は、一定の値を保つからであると考えられる。
この結果、ばらつきが小さくかつ、従来の方法による分析値とよく一致する測定結果が得られた。
以上の結果より、本発明によれば、被測定溶液中の所定の含有成分の含有量を、ばらつきが小さく高精度かつ、正確に、低コストで測定出来ることが確認出来た。
From the results of Table 4, the results of quantitative analysis by XRF according to the present invention have a small variation of about 0.1% to 0.5% in the RSD of each concentration of Ni, Co, and Mn, and the conventional method ICP It was in good agreement with the analysis value by / OES.
This is because the Ni, Co, Mn and Cu intensities vary when the strength of Ni, Co, Mn, which is a component contained in the solution to be measured, and Cu, which is an internal standard component, are measured by XRF. Even if there is, the four components vary with the same behavior, and it is considered that the respective strength ratios of Ni and Cu, Co and Cu, and Mn and Cu maintain a constant value.
As a result, a measurement result with a small variation and a good agreement with the analysis value obtained by the conventional method was obtained.
From the above results, according to the present invention, it was confirmed that the content of the predetermined component in the solution to be measured can be measured with high accuracy, accuracy, and low cost with little variation.

ここで、XRFにて測定された強度比から、各成分濃度(g/L)を求める計算の手順について、表4に示したろ紙1枚目のNi濃度(50.48g/L)を例に挙げて、以下に説明する(表4においてを付した。)。
まず、実施例1に係る測定内容と結果、計算内容と結果、および、略記号を表5に示す。
Here, regarding the calculation procedure for obtaining the concentration of each component (g / L) from the intensity ratio measured by XRF, the Ni concentration (50.48 g / L) of the first filter paper shown in Table 4 is taken as an example. This will be described below ( * in Table 4).
First, Table 5 shows measurement contents and results, calculation contents and results, and abbreviations according to Example 1.

Figure 2015001482
Figure 2015001482

ここで、表5に示した濃度比CR1(Ni/Cu)=0.023863は、XRF測定用の検量線標準試料溶液を調製し、これをXRFにて測定して作成した検量線から求めたものである。
まず、濃度比CR1(Ni/Cu)の求め方を説明する。
予め、値付けされたXRF検量線用の標準溶液を、当該標準溶液中のNi濃度が段階的になるよう濃度を調整して、複数(本実施例においては、5点)のXRF測定用の検量線標準試料溶液を調製した。
XRFを用いて、当該XRF測定用の検量線標準試料溶液のNiおよびCuの強度を測定し、その強度比(Ni/Cu)を計算してその値をxとした。一方、予め、計算で求めたXRF測定用の検量線標準試料溶液中の濃度比(Ni/Cu)の値をyとした。
得られた複数のx、yの値をグラフにプロットして検量線を作成し、y=ax+bの関係式を得た。得られた検量線の一例を図1に示す。
Here, the concentration ratio CR1 (Ni / Cu) = 0.023863 shown in Table 5 was obtained from a calibration curve prepared by preparing a calibration curve standard sample solution for XRF measurement and measuring this with XRF. Is.
First, how to obtain the concentration ratio CR1 (Ni / Cu) will be described.
Adjust the concentration of the standard solution for the XRF calibration curve previously determined so that the Ni concentration in the standard solution becomes stepwise, and a plurality of (in this example, 5 points) XRF measurement A calibration standard solution was prepared.
The strength of Ni and Cu in the calibration curve standard sample solution for XRF measurement was measured using XRF, the strength ratio (Ni / Cu) was calculated, and the value was taken as x. On the other hand, the value of the concentration ratio (Ni / Cu) in the calibration curve standard sample solution for XRF measurement obtained in advance was defined as y.
A plurality of obtained x and y values were plotted on a graph to create a calibration curve, and a relational expression y = ax + b was obtained. An example of the obtained calibration curve is shown in FIG.

ここで、表5に示した強度比IR1(Ni/Cu)をxとして、上記関係式(y=ax+b)に代入すると、y=a×IR1+bとなる。yは、濃度比CR1(Ni/Cu)に相当するので、これより濃度比CR1(Ni/Cu)=0.023863を計算で求めることができる。   Here, when the intensity ratio IR1 (Ni / Cu) shown in Table 5 is set to x and substituted into the relational expression (y = ax + b), y = a × IR1 + b is obtained. Since y corresponds to the concentration ratio CR1 (Ni / Cu), the concentration ratio CR1 (Ni / Cu) = 0.023863 can be calculated from this.

そして、
Ni濃度=CR1×IS1×(D1×1000)/S1
であることから、各数値を代入すると、
0.023863×1.0474×(1.3711×1000)/0.6789=
50.48
を求めることが出来る。
以下、同様に、各成分の濃度を計算することが出来る。
And
Ni concentration = CR1 × IS1 × (D1 × 1000) / S1
Therefore, when each numerical value is substituted,
0.023863 × 1.0474 × (1.3711 × 1000) /0.6789=
50.48
Can be requested.
Hereinafter, similarly, the concentration of each component can be calculated.

尚、XRF測定用の検量線標準試料溶液の濃度比(Ni/Cu)は、以下の式より予め求めた。
(Ni/Cu)=(C2×S2)/(D2×1000)×(1/IS2)
但し、C2:標準試料溶液のNi濃度(g/L)
S2:標準試料溶液のはかり取り量(g)
IS2:内部標準溶液(Cu濃度:20g/L)のはかり取り量(g)
D2:標準試料溶液の密度(g/cm
The concentration ratio (Ni / Cu) of the standard curve standard sample solution for XRF measurement was obtained in advance from the following equation.
(Ni / Cu) = (C2 × S2) / (D2 × 1000) × (1 / IS2)
C2: Ni concentration of standard sample solution (g / L)
S2: Weighed amount of standard sample solution (g)
IS2: Weighing amount (g) of internal standard solution (Cu concentration: 20 g / L)
D2: density of standard sample solution (g / cm 3 )

[比較例1]
実施例1と同様の被測定溶液へ内部標準成分を加えることなく、マイクロピペットで分定量採取し、ろ紙へ20μL滴下し、当該ろ紙を乾燥させた。
前記乾燥させたろ紙をXRFに装填し、Ni,Co,MnのX線強度を測定した。
そして、当該X線強度の測定値と、予め作成した検量線、および、別途、密度計により測定した被測定溶液の密度値より、Ni,Co,Mnの各濃度(容量分率)の定量分析を行った。分析結果を表6に示す。
さらに、表6にも、実施例1にて説明した従来の方法に係るICP/OESを用いて定量分析結果を記載した。
[Comparative Example 1]
Without adding an internal standard component to the solution to be measured similar to that in Example 1, a quantitative amount was collected with a micropipette, 20 μL was dropped onto the filter paper, and the filter paper was dried.
The dried filter paper was loaded into XRF, and the X-ray intensities of Ni, Co, and Mn were measured.
Then, quantitative analysis of each concentration (volume fraction) of Ni, Co, and Mn from the measured value of the X-ray intensity, the calibration curve prepared in advance, and the density value of the solution to be measured separately measured by the density meter Went. The analysis results are shown in Table 6.
Furthermore, also in Table 6, the quantitative analysis results are described using ICP / OES according to the conventional method described in Example 1.

Figure 2015001482
Figure 2015001482

表6の結果より、Ni,Co,Mnそれぞれの濃度のRSDは2.8%から3.0%程度とばらつきが大きかった。また、従来の方法であるICP/OESによる分析値よりも低い測定値を示した。
これは、被測定溶液をマイクロピペットにより分取する際の、ばらつきや偏りによるものと考えられる。また、被測定溶液中に含有されるNi,Co,Mnの強度をXRFで測定した際における、強度のばらつきが、そのまま濃度のばらつきに反映された結果であると考えられる。
From the results shown in Table 6, the RSD of the concentrations of Ni, Co, and Mn varied widely from about 2.8% to about 3.0%. Moreover, the measured value lower than the analytical value by ICP / OES which is a conventional method was shown.
This is considered to be due to variations and biases when the solution to be measured is collected with a micropipette. Further, it is considered that the variation in strength when the strength of Ni, Co, and Mn contained in the solution to be measured is measured by XRF is directly reflected in the variation in concentration.

ここで、XRFにて測定された強度(kcps)から、各成分濃度(g/L)を求める計算の手順について、表6に示したろ紙1枚目のNi濃度(49.96g/L)を例に挙げて、以下に説明する(表6においてを付した。)。
まず、比較例1に係る測定内容と結果、計算内容と結果、および、略記号を表7に示す。
Here, regarding the calculation procedure for obtaining the concentration (g / L) of each component from the intensity (kcps) measured by XRF, the Ni concentration (49.96 g / L) of the first filter paper shown in Table 6 is used. An example will be described below (indicated by * in Table 6).
First, Table 7 shows the measurement contents and results, the calculation contents and results, and the abbreviations according to Comparative Example 1.

Figure 2015001482
Figure 2015001482

まず、予め、値付けされたXRF検量線用の標準溶液を、当該標準溶液中のNi濃度が段階的になるよう濃度を調整して、複数(本比較例においては、5点)のXRF測定用の検量線標準試料溶液を調製した。
XRFを用いて、当該XRF測定用の検量線標準試料溶液のNi強度を測定し、得られた強度をxとした。一方、予め、計算で求めたXRF測定用の検量線標準試料溶液中のNi濃度の値をyとした。
得られた複数のx、yの値をグラフにプロットして検量線を作成し、y=ax+bの関係式を得た。得られた検量線の一例を図2に示す。
First, a plurality of (in this comparative example, 5 points) XRF measurement is performed by adjusting the concentration of the standard solution for the XRF calibration curve that has been preliminarily adjusted so that the Ni concentration in the standard solution becomes stepwise. A standard curve standard solution was prepared.
Using XRF, the Ni intensity of the calibration curve standard sample solution for XRF measurement was measured, and the obtained intensity was defined as x. On the other hand, the value of Ni concentration in the calibration curve standard sample solution for XRF measurement obtained in advance was defined as y.
A plurality of obtained x and y values were plotted on a graph to create a calibration curve, and a relational expression y = ax + b was obtained. An example of the obtained calibration curve is shown in FIG.

ここで、表7に示したNiの測定強度I3をxとして前述の式(y=ax+b)に代入すると、y=a×I3+bとなる。一方、yはNiの濃度C3に相当するので、これよりNiの濃度C3=0.024737を計算で求めることができる。   Here, if the measured intensity I3 of Ni shown in Table 7 is substituted for x in the above formula (y = ax + b), y = a × I3 + b. On the other hand, since y corresponds to the Ni concentration C3, the Ni concentration C3 = 0.024737 can be obtained by calculation.

そして、
Ni濃度=C3×(D3×1000)/S3
であることから、各数値を代入すると、
0.024737×(1.3711×1000)/0.6789=49.96
を求めることが出来る。
以下、同様に、各成分の濃度を計算することが出来る。
And
Ni concentration = C3 × (D3 × 1000) / S3
Therefore, when each numerical value is substituted,
0.024737 × (1.3711 × 1000) /0.6789=49.96
Can be requested.
Hereinafter, similarly, the concentration of each component can be calculated.

尚、XRF測定用の検量線標準試料溶液のNi濃度は、以下の式より予め求めた。
Ni濃度(g)=(C4×S4)/(D4×1000)
但し、C4:標準試料溶液のNi濃度(g/L)
S4:標準試料溶液のはかり取り量(g)
D4:標準試料溶液の密度(g/cm
The Ni concentration in the standard curve standard sample solution for XRF measurement was obtained in advance from the following equation.
Ni concentration (g) = (C4 × S4) / (D4 × 1000)
C4: Ni concentration of standard sample solution (g / L)
S4: Weighed amount of standard sample solution (g)
D4: density of standard sample solution (g / cm 3 )

本発明は、被測定溶液の含有成分の濃度を、複雑な前処理をすることなく、迅速で、ばらつきが小さく高精度かつ、低コストで測定することができ、品質管理の向上に有益である。   The present invention can measure the concentration of components in a solution to be measured quickly, with little variation, high accuracy and low cost without complicated pretreatment, and is useful for improving quality control. .

Claims (5)

被測定対象の溶液中に含有される所定成分の濃度を、蛍光X線分析装置を用いて定量分析する方法であって、
前記被測定対象の溶液の密度を測定する操作と、
前記被測定対象の溶液を秤量する操作と、
前記秤量された被測定対象の溶液へ、前記被測定対象の溶液中に含有されない成分を内部標準成分として添加して混合溶液とし、当該内部標準成分の添加量を秤量する操作と、
前記混合溶液をそのまま、または、所望の割合で希釈した後、蛍光X線分析装置へ装填する操作と、
前記蛍光X線分析装置を用いて、前記所定成分と、前記内部標準成分との強度比を求め、予め作成した、前記所定成分と前記内部標準成分との強度比と、前記所定成分と前記内部標準成分との濃度比との検量線を用いて、前記所定成分と、前記内部標準成分との濃度比を求める操作と、
前記所定成分と前記内部標準成分との濃度比と、前記被測定対象の溶液の密度とから、前記被測定対象の溶液中に含有される所定成分の濃度を求めることを特徴とする蛍光X線分析装置を用いた定量分析方法。
A method for quantitatively analyzing the concentration of a predetermined component contained in a solution to be measured using a fluorescent X-ray analyzer,
An operation for measuring the density of the solution to be measured;
An operation of weighing the solution to be measured;
An operation of adding a component not contained in the solution to be measured to the measured solution to be measured as an internal standard component to obtain a mixed solution, and weighing the addition amount of the internal standard component;
An operation of loading the mixed solution as it is or after diluting it at a desired ratio into a fluorescent X-ray analyzer;
Using the X-ray fluorescence analyzer, the intensity ratio between the predetermined component and the internal standard component is obtained, and the intensity ratio between the predetermined component and the internal standard component, the predetermined component and the internal standard component, which are prepared in advance, are determined. An operation for obtaining a concentration ratio between the predetermined component and the internal standard component using a calibration curve with a concentration ratio with a standard component;
X-ray fluorescence characterized in that the concentration of the predetermined component contained in the solution to be measured is obtained from the concentration ratio between the predetermined component and the internal standard component and the density of the solution to be measured. Quantitative analysis method using an analyzer.
前記所定成分がNi、Co、Mnから選択される1種以上の成分であることを特徴とする請求項1に記載の蛍光X線分析装置を用いた定量分析方法。   The quantitative analysis method using a fluorescent X-ray analyzer according to claim 1, wherein the predetermined component is one or more components selected from Ni, Co, and Mn. 前記内部標準成分がCuであることを特徴とする請求項2に記載の蛍光X線分析装置を用いた定量分析方法。   The quantitative analysis method using a fluorescent X-ray analyzer according to claim 2, wherein the internal standard component is Cu. 前記混合溶液をそのまま、または、所望の割合で希釈した後、蛍光X線分析装置へ装填する際、
当該混合溶液の定量を媒体中にて乾燥した後、当該媒体と伴に蛍光X線分析装置へ装填することを特徴とする請求項1から3のいずれかに記載の蛍光X線分析装置を用いた定量分析方法。
When loading the mixed solution as it is or after diluting it at a desired ratio into a fluorescent X-ray analyzer,
The fluorescent X-ray analyzer according to any one of claims 1 to 3, wherein the fixed amount of the mixed solution is dried in a medium and then loaded into the fluorescent X-ray analyzer together with the medium. Quantitative analysis method.
前記混合溶液の定量を乾燥させる媒体として、ろ紙を用いることを特徴とする請求項4に記載の蛍光X線分析装置を用いた定量分析方法。




The quantitative analysis method using a fluorescent X-ray analyzer according to claim 4, wherein a filter paper is used as a medium for drying the quantitative determination of the mixed solution.




JP2013127020A 2013-06-17 2013-06-17 Quantitative analysis method using fluorescent X-ray analyzer Active JP6007866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127020A JP6007866B2 (en) 2013-06-17 2013-06-17 Quantitative analysis method using fluorescent X-ray analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127020A JP6007866B2 (en) 2013-06-17 2013-06-17 Quantitative analysis method using fluorescent X-ray analyzer

Publications (2)

Publication Number Publication Date
JP2015001482A true JP2015001482A (en) 2015-01-05
JP6007866B2 JP6007866B2 (en) 2016-10-12

Family

ID=52296081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127020A Active JP6007866B2 (en) 2013-06-17 2013-06-17 Quantitative analysis method using fluorescent X-ray analyzer

Country Status (1)

Country Link
JP (1) JP6007866B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044591A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Quantitative analysis method for sample solutions using x-ray fluorescence analyzer
WO2017073124A1 (en) * 2015-10-29 2017-05-04 株式会社堀場製作所 Liquid sample analysis device, liquid sample analysis method, recording medium, calibration device and calibration method
JP2019095417A (en) * 2017-01-30 2019-06-20 住友金属鉱山株式会社 Fluorescent x-ray spectroscopy of liquid sample
JP2020038209A (en) * 2018-09-03 2020-03-12 住友金属鉱山株式会社 Producing method for analytical sample and quantifying method for liquid sample
JPWO2019031125A1 (en) * 2017-08-07 2020-07-02 上村工業株式会社 Measuring method of fluorescent X-ray analysis and measuring apparatus of fluorescent X-ray analysis
JP2020159736A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Quantitative analysis method for liquid sample and method for producing analysis sample

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164989A (en) * 1974-12-02 1976-06-04 Kawasaki Steel Co KEIKOETSUKUSUSENNYORU SANEKINODOSOKUTEIHOHO
JPS57179732A (en) * 1981-04-30 1982-11-05 Sumitomo Metal Ind Ltd Apparatus for analysis of plating liquid
JPS59212743A (en) * 1983-05-18 1984-12-01 Mitsubishi Heavy Ind Ltd Filter paper for measuring x-ray fluorescence
JPS62138741A (en) * 1985-12-13 1987-06-22 Mitsubishi Heavy Ind Ltd Fluorescent x-ray analysis
JPH06235688A (en) * 1993-02-09 1994-08-23 Rigaku Denki Kogyo Kk Preparation of sample for fluorescent x-ray analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164989A (en) * 1974-12-02 1976-06-04 Kawasaki Steel Co KEIKOETSUKUSUSENNYORU SANEKINODOSOKUTEIHOHO
JPS57179732A (en) * 1981-04-30 1982-11-05 Sumitomo Metal Ind Ltd Apparatus for analysis of plating liquid
JPS59212743A (en) * 1983-05-18 1984-12-01 Mitsubishi Heavy Ind Ltd Filter paper for measuring x-ray fluorescence
JPS62138741A (en) * 1985-12-13 1987-06-22 Mitsubishi Heavy Ind Ltd Fluorescent x-ray analysis
JPH06235688A (en) * 1993-02-09 1994-08-23 Rigaku Denki Kogyo Kk Preparation of sample for fluorescent x-ray analysis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044591A (en) * 2015-08-27 2017-03-02 住友金属鉱山株式会社 Quantitative analysis method for sample solutions using x-ray fluorescence analyzer
WO2017073124A1 (en) * 2015-10-29 2017-05-04 株式会社堀場製作所 Liquid sample analysis device, liquid sample analysis method, recording medium, calibration device and calibration method
JP2019095417A (en) * 2017-01-30 2019-06-20 住友金属鉱山株式会社 Fluorescent x-ray spectroscopy of liquid sample
JPWO2019031125A1 (en) * 2017-08-07 2020-07-02 上村工業株式会社 Measuring method of fluorescent X-ray analysis and measuring apparatus of fluorescent X-ray analysis
JP2020038209A (en) * 2018-09-03 2020-03-12 住友金属鉱山株式会社 Producing method for analytical sample and quantifying method for liquid sample
JP2020159736A (en) * 2019-03-25 2020-10-01 住友金属鉱山株式会社 Quantitative analysis method for liquid sample and method for producing analysis sample

Also Published As

Publication number Publication date
JP6007866B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6007866B2 (en) Quantitative analysis method using fluorescent X-ray analyzer
US9151703B2 (en) Sample analyzer and a sample analyzing method
CN103076351B (en) Method for measuring Mo element in tungstenic ferro-molybdenum alloy through X-ray fluorescence spectrum analysis
CN107966430A (en) A kind of method for being used to quickly detect fertilizer nutrient content
De Bièvre et al. Measurement principles for traceability in chemical analysis
CN110132916A (en) A kind of accurate quantification analysis method of metallic element
CN103293175A (en) Method for measuring chemical components of liquid sodium silicate
CN105548115B (en) The assay method of Mercury In Soil
JP5835924B2 (en) Automatic analyzer verification method
Barreiros et al. Quality assurance of X-ray spectrometry for chemical analysis
CN112860577A (en) Uncertainty evaluation method of measurement result
CN104713834B (en) A kind of quantitative approach of atomic spectrograph
US11692954B1 (en) Trace detection method of heavy metals and application thereof
JP6421724B2 (en) Method for quantitative analysis of sample solution using fluorescent X-ray analyzer
CN110780002A (en) High-efficiency low-cost detection method for quantifying essential oil components
Cheong et al. Improved accuracy of determination of dissolved silicate in seawater using absorption spectrometry
Hansen et al. Elemental analysis in biological matrices using ICP-MS
CN109725083A (en) Based on gas-chromatography-isotopic dilution infrared spectroscopy compounds content mete-wand method
García-Alegría et al. Estimation of uncertainty in the determination of serum electrolytes (Na, K, Ca, Mg) by flame atomic absorption spectroscopy
CN109682793A (en) It is a kind of at the same measure lead in coupernick, cadmium content inductively coupled plasma emission spectrography rapid detection method
CN113748333B (en) Fluorescent X-ray analyzer
CN105954462B (en) Solid moisture standards material and preparation method thereof
CN108414556A (en) A kind of preparation method of XRF cobalts internal standard analysis coating flux piece
JP2003329551A (en) Price-putting method for standard sample
CN106226194A (en) Potato starch content automatic assay method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160829

R150 Certificate of patent or registration of utility model

Ref document number: 6007866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150