JP2015000994A - Vacuum treatment apparatus - Google Patents

Vacuum treatment apparatus Download PDF

Info

Publication number
JP2015000994A
JP2015000994A JP2013124815A JP2013124815A JP2015000994A JP 2015000994 A JP2015000994 A JP 2015000994A JP 2013124815 A JP2013124815 A JP 2013124815A JP 2013124815 A JP2013124815 A JP 2013124815A JP 2015000994 A JP2015000994 A JP 2015000994A
Authority
JP
Japan
Prior art keywords
vacuum chamber
heat
vacuum
sputtering
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013124815A
Other languages
Japanese (ja)
Other versions
JP6140539B2 (en
Inventor
藤井 佳詞
Yoshiji Fujii
佳詞 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2013124815A priority Critical patent/JP6140539B2/en
Publication of JP2015000994A publication Critical patent/JP2015000994A/en
Application granted granted Critical
Publication of JP6140539B2 publication Critical patent/JP6140539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum treatment apparatus having a simple constitution capable of preventing a heating component such as a deposition preventive plate from having a high temperature during the treatment.SOLUTION: A sputtering device SM including an aluminum vacuum chamber 1, and having a deposition preventive plate 5 arranged inside, for emitting heat by receiving heat from a treatment executed in the vacuum chamber, is provided with a heat absorbing layer 7 having a higher thermal emissivity than a thermal emissivity of the deposition preventive plate on an inner wall part of the vacuum chamber irradiated with a heat ray radiated from the deposition preventive plate.

Description

本発明は、真空チャンバ内で実施される処理により受熱して発熱する発熱部品が配置される真空処理装置に関する。   The present invention relates to a vacuum processing apparatus in which a heat generating component that receives heat and generates heat by processing performed in a vacuum chamber is arranged.

この種の真空処理装置の1つに、例えば半導体デバイスの製造工程にて、シリコンウエハやガラス基板等の基板の表面に導電膜や絶縁膜を成膜するスパッタリング(以下「スパッタ」という)装置がある。スパッタ装置では、真空チャンバ内にターゲットと基板とを対向配置し、真空チャンバ内にプラズマ雰囲気を形成して希ガスイオンをターゲットに衝突させ、これにより生じたスパッタ粒子を基板に付着、堆積させて成膜する。真空チャンバ内には、ターゲット及び基板を囲繞してスパッタ空間を画成すると共に、スパッタ粒子が真空チャンバ内壁に付着することを防止する防着板を配置することが一般である。   As one example of this type of vacuum processing apparatus, there is a sputtering (hereinafter referred to as “sputtering”) apparatus that forms a conductive film or an insulating film on the surface of a substrate such as a silicon wafer or a glass substrate in a semiconductor device manufacturing process, for example. is there. In a sputtering apparatus, a target and a substrate are placed opposite to each other in a vacuum chamber, a plasma atmosphere is formed in the vacuum chamber, and noble gas ions collide with the target, and sputtered particles generated thereby adhere to and deposit on the substrate. Form a film. In the vacuum chamber, it is common to dispose a deposition space that surrounds the target and the substrate to define a sputter space and prevent sputter particles from adhering to the inner wall of the vacuum chamber.

スパッタによる成膜中、プラズマの輻射熱やプラズマ中の電子が防着板に流れることで生じるジュール熱により、真空チャンバ内に配置された防着板の温度が上昇する。ここで、防着板の温度が高くなって熱膨張し、熱膨張に起因した防着板の変形が大きくなると、異常放電を誘発したり、防着板から放射される熱線により基板が加熱されたりして、成膜プロセスに悪影響を及ぼす。このため、成膜時間が長い場合等、防着板が高温になる場合には、防着板を冷却する必要がある。   During film formation by sputtering, the temperature of the deposition plate disposed in the vacuum chamber rises due to the radiant heat of plasma and Joule heat generated by electrons in the plasma flowing to the deposition plate. Here, when the temperature of the deposition preventing plate increases and thermally expands, and the deformation of the deposition preventing plate due to thermal expansion increases, abnormal discharge is induced or the substrate is heated by the heat rays radiated from the deposition preventing plate. Adversely affect the film formation process. For this reason, when the deposition preventing plate becomes hot, such as when the film formation time is long, it is necessary to cool the deposition preventing plate.

従来、防着板を強制的に冷却するように構成したスパッタ装置が、例えば、特許文献1で知られている。このものでは、真空チャンバの壁面を貫通させて防着板に達する水冷パイプを配設し、この水冷パイプに冷媒を循環させるようにしている。しかし、これでは、冷媒が漏れないように構成する必要があるため、装置構成が複雑になって、設備コストが高くなるという問題がある。   Conventionally, for example, Patent Document 1 discloses a sputtering apparatus configured to forcibly cool an adhesion preventing plate. In this case, a water-cooled pipe that reaches the deposition preventing plate through the wall surface of the vacuum chamber is disposed, and the coolant is circulated through the water-cooled pipe. However, in this case, since it is necessary to configure so that the refrigerant does not leak, there is a problem that the apparatus configuration becomes complicated and the equipment cost increases.

特開2004−128210号公報JP 2004-128210 A

本発明は、以上の点に鑑み、処理中に防着板等の発熱部品が高温になることを防止できる簡単な構成の真空処理装置を提供することをその課題とする。   In view of the above, it is an object of the present invention to provide a vacuum processing apparatus having a simple configuration that can prevent a heat-generating component such as a deposition plate from becoming high temperature during processing.

上記課題を解決するために、アルミニウム製の真空チャンバを備え、その内部に、真空チャンバ内で実施される処理により受熱して発熱する発熱部品が配置される本発明の真空処理装置は、発熱部品から放射される熱線が照射される真空チャンバの内壁部分に、真空チャンバの内表面の熱放射率よりも高い熱放射率を有する吸熱層を設けたことを特徴とする。尚、本発明において、真空チャンバ内表面とは、真空チャンバの内壁のうち吸熱層が設けられていない部分の表面をいうものとする。   In order to solve the above-described problems, the vacuum processing apparatus of the present invention is provided with an aluminum vacuum chamber, in which a heat generating component that receives heat and generates heat by processing performed in the vacuum chamber is disposed. An endothermic layer having a thermal emissivity higher than the thermal emissivity of the inner surface of the vacuum chamber is provided on the inner wall portion of the vacuum chamber to which the heat rays radiated from are irradiated. In the present invention, the inner surface of the vacuum chamber refers to the surface of the inner wall of the vacuum chamber where no endothermic layer is provided.

本発明によれば、真空チャンバをスパッタ装置にて成膜室を画成するもの、発熱部品を成膜室内部に配置される防着板とした場合を例に説明すると、スパッタによる成膜中、プラズマの輻射熱やジュール熱を受熱して防着板の温度が高くなる。ここで、真空チャンバの内壁部分には、防着板の熱放射率よりも高い熱放射率を有する吸熱層が設けられているため、防着板が発熱したとき、防着板からの熱線が吸熱層へと吸収されて真空チャンバに伝わる。真空チャンバは大気側に水冷または空冷の冷却機構を備えるのが一般であり、冷却機構により強制冷却された真空チャンバを介して、吸熱層から真空チャンバに伝わった熱が外部に放熱される。このように、防着板の熱が吸熱層を介して真空チャンバに除熱されるため、成膜中、防着板が高温になることを防止できる。従って、長時間の成膜が可能となる。また、ターゲットに投入可能な最大電力値を高くでき、これにより成膜レートを上昇させてスループットの向上が図れる。しかも、真空チャンバ内壁に吸熱層を設けるだけでよいため、従来例の如く構成が複雑化することがない。   According to the present invention, an example in which a vacuum chamber is used to define a film forming chamber by a sputtering apparatus and a heat-generating component is a deposition plate disposed in the film forming chamber will be described. The temperature of the deposition preventing plate is increased by receiving radiant heat of plasma or Joule heat. Here, the inner wall portion of the vacuum chamber is provided with an endothermic layer having a heat emissivity higher than the heat emissivity of the deposition preventive plate. It is absorbed by the endothermic layer and transmitted to the vacuum chamber. The vacuum chamber is generally provided with a water-cooled or air-cooled cooling mechanism on the atmosphere side, and heat transmitted from the heat absorption layer to the vacuum chamber is radiated to the outside through the vacuum chamber that is forcibly cooled by the cooling mechanism. Thus, since the heat of the deposition preventing plate is removed to the vacuum chamber through the heat absorption layer, it is possible to prevent the deposition preventing plate from becoming high temperature during film formation. Therefore, it is possible to form a film for a long time. In addition, the maximum power value that can be input to the target can be increased, thereby increasing the deposition rate and improving the throughput. In addition, since it is only necessary to provide an endothermic layer on the inner wall of the vacuum chamber, the configuration is not complicated as in the conventional example.

本発明において、前記発熱部品の真空チャンバの対向面に、前記発熱部品の熱放射率よりも高い熱放射率を有する放射層を設けることが好ましい。これによれば、発熱部品から効率よく熱線が放射されるため、発熱部品の冷却効率を高めることができる。   In the present invention, it is preferable that a radiation layer having a thermal emissivity higher than that of the heat generating component is provided on a surface of the heat generating component facing the vacuum chamber. According to this, since the heat rays are efficiently radiated from the heat generating component, the cooling efficiency of the heat generating component can be increased.

本発明において、前記吸熱層と前記放射層は、溶射もしくは陽極酸化処理により形成されるアルミナ膜、Ti膜、及び、Tiを含む合金膜の中から選択されたものであることが好ましい。これによれば、吸熱層及び放射層の耐熱性を高めることができ、真空チャンバ内の処理に悪影響を及ぼす放出ガスの放出を防止できる。   In the present invention, the endothermic layer and the radiation layer are preferably selected from an alumina film, a Ti film, and an alloy film containing Ti formed by thermal spraying or anodizing treatment. According to this, the heat resistance of the heat absorption layer and the radiation layer can be improved, and the release of the released gas that adversely affects the processing in the vacuum chamber can be prevented.

本発明の実施形態の真空処理装置を示す概略断面図。The schematic sectional drawing which shows the vacuum processing apparatus of embodiment of this invention. 本発明の実験結果を示すグラフ。The graph which shows the experimental result of this invention.

以下、図面を参照して、真空チャンバをスパッタ装置にて成膜室を画成するもの、発熱部品を成膜室内部に配置される防着板とした場合を例に、本発明の真空処理装置の実施形態について説明する。   Hereinafter, with reference to the drawings, the vacuum processing of the present invention will be described by taking as an example the case where a vacuum chamber is used to define a film forming chamber by a sputtering apparatus, and the heat generating component is a deposition plate disposed inside the film forming chamber. An embodiment of the apparatus will be described.

図1を参照して、SMは、本実施形態のスパッタ装置である。スパッタ装置SMは、所定容積を有するアルミニウム製の真空チャンバ1を備える。真空チャンバ1の天井部にカソードユニットCが取付けられている。真空チャンバ1の大気側(外側)には、水冷または空冷の冷却機構(例えば、冷却水を循環させるジャケット)が設けられ、真空チャンバ1を強制冷却できるようにしている。冷却機構としては、上記ジャケット等の公知のものを用いることができるため、ここでは図示及び詳細な説明を省略する。尚、真空チャンバ1を自然冷却してもよい。以下においては、図1中、真空チャンバ1の天井部側を向く方向を「上」とし、その底部側を向く方向を「下」として説明する。   With reference to FIG. 1, SM is the sputtering apparatus of this embodiment. The sputtering apparatus SM includes an aluminum vacuum chamber 1 having a predetermined volume. A cathode unit C is attached to the ceiling of the vacuum chamber 1. A water-cooling or air-cooling cooling mechanism (for example, a jacket for circulating cooling water) is provided on the atmosphere side (outside) of the vacuum chamber 1 so that the vacuum chamber 1 can be forcibly cooled. As a cooling mechanism, since well-known things, such as the said jacket, can be used, illustration and detailed description are abbreviate | omitted here. The vacuum chamber 1 may be naturally cooled. In the following description, in FIG. 1, the direction facing the ceiling portion side of the vacuum chamber 1 is referred to as “up” and the direction facing the bottom portion side is described as “down”.

カソードユニットCは、ターゲット2と、このターゲット2の上方に配置された磁石ユニット3とから構成されている。ターゲット2としてアルミニウム製のものを例に説明するが、これに限定されるものではなく、銅やチタン等の他の金属、酸化物や窒化物等、基板W表面に成膜しようとする膜の組成に応じて適宜選択された材料製で構成され、基板Wの輪郭に対応して形成される。そして、ターゲット2の上面(スパッタ面22と背向する面)には、スパッタによる成膜中、ターゲット2を冷却する銅製のバッキングプレート21がインジウムやスズなどの熱伝導率が高い材料からなる図示省略のボンディング材を介して接合され、そのスパッタ面22を下側にして絶縁体Iを介して真空チャンバ1天井部に取り付けられている。 The cathode unit C includes a target 2 and a magnet unit 3 disposed above the target 2. The target 2 will be described by way of an example made of aluminum, but is not limited thereto, and other metals such as copper and titanium, oxides and nitrides, etc. It is made of a material appropriately selected according to the composition, and is formed corresponding to the contour of the substrate W. On the upper surface of the target 2 (the surface opposite to the sputtering surface 22), a copper backing plate 21 for cooling the target 2 during film formation by sputtering is made of a material having high thermal conductivity such as indium or tin. They are bonded via an omitted bonding material, and are attached to the ceiling portion of the vacuum chamber 1 via an insulator I 1 with the sputtering surface 22 facing down.

ターゲット2には、スパッタ電源としての公知の構造のDC電源Eからの出力が接続され、スパッタリング時、負の電位を持った直流電力(例えば、30kW)が投入されるようにしている。なお、スパッタ電源Eは、ターゲット2の材質に応じて適宜選択され、例えば、アルミナ製のターゲット2の場合には、アースとの間で所定周波数(例えば、13.56MHz)の高周波電力を投入する高周波電源を選択できる。ターゲット2の上方に配置される磁石ユニット3は、ターゲット2のスパッタ面22の下方空間に磁場を発生させ、スパッタ時にスパッタ面22の下方で電離した電子等を捕捉してターゲット2から飛散したスパッタ粒子を効率よくイオン化する公知の閉鎖磁場若しくはカスプ磁場構造を有するものであり、ここでは詳細な説明を省略する。   An output from a DC power source E having a known structure as a sputtering power source is connected to the target 2, and DC power having a negative potential (for example, 30 kW) is input during sputtering. The sputtering power source E is appropriately selected according to the material of the target 2. For example, in the case of the alumina target 2, high-frequency power having a predetermined frequency (for example, 13.56 MHz) is supplied to the ground. A high frequency power supply can be selected. The magnet unit 3 disposed above the target 2 generates a magnetic field in the space below the sputtering surface 22 of the target 2, captures electrons etc. ionized below the sputtering surface 22 during sputtering, and sputters from the target 2. It has a known closed magnetic field or cusp magnetic field structure for efficiently ionizing particles, and detailed description thereof is omitted here.

真空チャンバ1の底部中央には、ターゲット2に対向させてステージ4が配置されている。ステージ4は、例えば基板Wの輪郭に対応した上面形状を持つ金属製の基台41と、この基台41上面に接着されるチャックプレート42とで構成されている。基台41は、真空チャンバ1の底面に設けた開口に気密に装着された絶縁体Iで支持されている。基台41には、図示省略する冷媒循環用の通路やヒータが内蔵され、スパッタリングによる成膜中、基板Wを所定温度に制御できるようになっている。他方、チャックプレート42は、基台41の上面より一回り小さい外径を有し、特に図示して説明しないが、チャック電源から電圧が印加される静電チャック用の電極が埋設されて静電チャックを構成している。静電チャックの構造については、単極型や双極型等の公知のものが広く利用できるため、ここでは詳細な説明を省略する。 A stage 4 is disposed in the center of the bottom of the vacuum chamber 1 so as to face the target 2. The stage 4 includes a metal base 41 having an upper surface shape corresponding to the contour of the substrate W, for example, and a chuck plate 42 bonded to the upper surface of the base 41. Base 41 is supported by the insulator I 2 mounted airtightly to an opening provided on the bottom surface of the vacuum chamber 1. The base 41 incorporates a refrigerant circulation passage and a heater (not shown) so that the substrate W can be controlled to a predetermined temperature during film formation by sputtering. On the other hand, the chuck plate 42 has an outer diameter that is slightly smaller than the upper surface of the base 41, and although not specifically illustrated and described, an electrostatic chuck electrode to which a voltage is applied from a chuck power source is embedded to electrostatically. It constitutes the chuck. As the structure of the electrostatic chuck, known ones such as a monopolar type and a bipolar type can be widely used, and thus detailed description thereof is omitted here.

また、真空チャンバ1内には、ターゲット2と基板Wとを囲繞して真空チャンバ1内に当該真空チャンバ1の容積より小さい隔絶されたスパッタ空間Spを画成すると共に、真空チャンバ1の内壁面へのスパッタ粒子の付着を防止する防着板5が設けられている。防着板5は、ターゲット2の周囲を囲うように真空チャンバ1上部に吊設した環状の第1の防着板51と、基台41の周縁部に立設した第3の防着板53と、これら第1及び第3の防着板51,53と水平方向に所定間隔の隙間を夫々存して、かつ、上下方向に所定長さだけ夫々オーバーラップするように配置された第2の防着板52とで構成されている。尚、第2の防着板52は、基板Wを搬送する際に上昇できるように構成されている。これら第1〜第3の防着板51,52,53は、例えば、SUS製である。   In the vacuum chamber 1, the target 2 and the substrate W are surrounded so as to define an isolated sputter space Sp smaller than the volume of the vacuum chamber 1 in the vacuum chamber 1, and the inner wall surface of the vacuum chamber 1. An adhesion-preventing plate 5 is provided for preventing adhesion of sputtered particles. The protection plate 5 includes an annular first protection plate 51 suspended from the upper portion of the vacuum chamber 1 so as to surround the target 2 and a third protection plate 53 erected on the peripheral edge of the base 41. And the first and third adhesion-preventing plates 51 and 53, a second gap disposed in the horizontal direction so as to overlap with each other by a predetermined distance and to overlap each other by a predetermined length in the vertical direction. It is comprised with the adhesion prevention board 52. FIG. In addition, the 2nd adhesion prevention board 52 is comprised so that it can raise when conveying the board | substrate W. As shown in FIG. These first to third adhesion-preventing plates 51, 52, 53 are made of, for example, SUS.

真空チャンバ1の側壁上部には、アルゴン等の希ガスたるスパッタガス(場合によっては、希ガスと酸素や窒素ガスとの反応ガス)を導入するガス導入管6が貫通してその先端が第1の防着板51まで達し、スパッタガスを直接スパッタ空間Spに導入できるようにしている。ガス導入管6には、真空チャンバ1外側でマスフローコントローラ61が介設され、図示省略のガス源に連通している。また、真空チャンバ1の側壁下部には透孔11が開設され、透孔11にはターボ分子ポンプ等の真空排気手段Pに通じる排気管12が接続され、スパッタ空間Spを真空引きできるようになっている。   A gas introduction tube 6 for introducing a sputtering gas (a reaction gas of a rare gas with oxygen or nitrogen gas in some cases) passes through the upper portion of the side wall of the vacuum chamber 1 and the tip of the gas introduction tube 6 is first. Thus, the sputter gas can be directly introduced into the sputter space Sp. The gas introduction pipe 6 is provided with a mass flow controller 61 outside the vacuum chamber 1 and communicates with a gas source (not shown). Further, a through hole 11 is formed in the lower portion of the side wall of the vacuum chamber 1, and an exhaust pipe 12 communicating with a vacuum exhaust means P such as a turbo molecular pump is connected to the through hole 11 so that the sputtering space Sp can be evacuated. ing.

ところで、スパッタによる成膜中、プラズマの輻射熱やプラズマ中の電子が防着板5に流れることで生じるジュール熱により、防着板5の温度が上昇する。防着板5の温度が高くなって熱膨張し、熱膨張に起因した防着板5の変形が大きくなると、第1〜第3の防着板51〜53の相互間の隙間が変化して異常放電を誘発したり、防着板5から放射される熱線により基板Wが加熱されたりして、成膜プロセスに悪影響を及ぼす。   By the way, during the film formation by sputtering, the temperature of the deposition preventing plate 5 rises due to the Joule heat generated by the radiation heat of plasma and the electrons in the plasma flowing to the deposition preventing plate 5. When the temperature of the deposition preventing plate 5 is increased and thermally expands, and the deformation of the deposition preventing plate 5 due to thermal expansion increases, the gap between the first to third deposition preventing plates 51 to 53 changes. Abnormal discharge is induced, or the substrate W is heated by the heat rays radiated from the deposition preventive plate 5, which adversely affects the film forming process.

そこで、本実施形態では、真空チャンバ1の内壁部分に、真空チャンバ1の内表面の熱放射率よりも高い熱放射率を有する吸熱層7を設け、防着板5が発熱したとき、防着板5からの熱線が吸熱層7へと吸収されるようにしている。さらに、防着板5の真空チャンバ1の内壁と対向する面(外周面)に、防着板5の熱放射率よりも高い熱放射率を有する放射層8を設け、防着板5から真空チャンバ1の内壁に向けて熱線を効率よく放射できるようになっている。これらの吸熱層7及び放射層8は、耐熱性が高く、成膜プロセスに悪影響を及ぼす放出ガスを放出しない、例えば、溶射もしくは陽極酸化処理により形成されるアルミナ膜であることが好ましい。なお、上記スパッタリング装置SMは、マイクロコンピュータやシーケンサ等を備えた公知の制御手段を有し、スパッタ電源Eの稼働、マスフローコントローラ61の稼働、真空排気手段Pの稼働等を統括制御するようにしている。以下、上記スパッタリング装置SMを用い、スパッタによる成膜中、防着板5の除熱について説明する。   Therefore, in the present embodiment, the heat absorption layer 7 having a heat emissivity higher than the heat emissivity of the inner surface of the vacuum chamber 1 is provided on the inner wall portion of the vacuum chamber 1, and when the adhesion preventing plate 5 generates heat, Heat rays from the plate 5 are absorbed by the endothermic layer 7. Further, a radiation layer 8 having a thermal emissivity higher than that of the deposition preventive plate 5 is provided on the surface (outer peripheral surface) of the deposition preventive plate 5 facing the inner wall of the vacuum chamber 1. Heat rays can be efficiently radiated toward the inner wall of the chamber 1. These endothermic layers 7 and radiation layers 8 are preferably heat-resistant and alumina films formed by thermal spraying or anodizing, for example, which do not emit released gases that adversely affect the film forming process. The sputtering apparatus SM has known control means including a microcomputer, a sequencer, etc., and controls the operation of the sputtering power source E, the operation of the mass flow controller 61, the operation of the vacuum evacuation means P, etc. Yes. Hereinafter, heat removal of the deposition preventing plate 5 will be described during film formation by sputtering using the sputtering apparatus SM.

先ず、真空チャンバ1内(スパッタ空間Sp)を所定の真空度まで真空引きし、図外の搬送ロボットにより真空チャンバ1内に基板Wを搬送し、基板ステージ4に基板Wを受け渡す。このとき、基板Wの搬送前に第2の防着板52を上昇させておき、搬送後に下降させる。次いで、チャックプレート42の電極にチャック電圧を印加して基板Wを静電吸着させる。成膜中、基板ステージ4内に冷媒を循環させ、基板Wを所定温度に制御してもよい。次いで、スパッタガスたるアルゴンガスを所定流量(例えば、12sccm)で導入して(このときの圧力は0.1Pa)、DC電源Eからターゲット2に例えば、30kWの直流電力を投入することにより、スパッタ空間Sp内にプラズマ雰囲気を形成する。これにより、ターゲット2がスパッタされ、これにより生じたスパッタ粒子が飛散して基板W表面に付着、堆積してアルミニウム膜が成膜される。   First, the inside of the vacuum chamber 1 (sputter space Sp) is evacuated to a predetermined degree of vacuum, the substrate W is transferred into the vacuum chamber 1 by a transfer robot (not shown), and the substrate W is delivered to the substrate stage 4. At this time, the second adhesion-preventing plate 52 is raised before transporting the substrate W and lowered after transport. Next, a chuck voltage is applied to the electrodes of the chuck plate 42 to electrostatically attract the substrate W. During film formation, a coolant may be circulated in the substrate stage 4 to control the substrate W to a predetermined temperature. Next, argon gas, which is a sputtering gas, is introduced at a predetermined flow rate (for example, 12 sccm) (at this time, the pressure is 0.1 Pa), and, for example, DC power of 30 kW is supplied from the DC power source E to the target 2, thereby sputtering. A plasma atmosphere is formed in the space Sp. As a result, the target 2 is sputtered, and the sputtered particles generated thereby scatter and adhere to and deposit on the surface of the substrate W to form an aluminum film.

スパッタによる成膜中、防着板5が発熱したとき、防着板5から放射層8を介して放射された熱線が吸着層7へと吸収されて真空チャンバ1に伝わる。真空チャンバ1は、大気側に設けた冷却機構により冷却されているため、冷却された真空チャンバ1を介して、吸熱層7から真空チャンバ1に伝わった熱が外部に放熱される。このように、防着板5の熱が吸熱層7を介して除熱されるため、成膜中、防着板5が高温になることを防止できる。従って、長時間の成膜が可能となる。尚、この長時間の成膜には、1枚の基板Wに対する成膜時間が長い場合だけでなく、複数枚の基板Wを順次連続処理したときの成膜時間の積算値が長い場合を含むものとする。また、ターゲット2に投入可能な最大電力値を高くでき、これにより成膜レートを上昇させてスループットの向上が図れる。しかも、真空チャンバ1の内壁に吸熱層7を設けるだけでよいため、従来例の如く真空チャンバ内に水冷パイプを設けたりする必要がなく、構成が複雑化しない。   When the deposition plate 5 generates heat during film formation by sputtering, the heat rays radiated from the deposition plate 5 through the radiation layer 8 are absorbed by the adsorption layer 7 and transmitted to the vacuum chamber 1. Since the vacuum chamber 1 is cooled by a cooling mechanism provided on the atmosphere side, the heat transferred from the heat absorption layer 7 to the vacuum chamber 1 is radiated to the outside through the cooled vacuum chamber 1. Thus, since the heat of the deposition preventing plate 5 is removed through the endothermic layer 7, the deposition preventing plate 5 can be prevented from becoming high temperature during film formation. Therefore, it is possible to form a film for a long time. This long-time film formation includes not only the case where the film formation time for one substrate W is long, but also the case where the integrated value of the film formation time when a plurality of substrates W are successively processed is long. Shall be. In addition, the maximum power value that can be input to the target 2 can be increased, thereby increasing the deposition rate and improving the throughput. Moreover, since it is only necessary to provide the heat absorbing layer 7 on the inner wall of the vacuum chamber 1, it is not necessary to provide a water cooling pipe in the vacuum chamber as in the conventional example, and the configuration is not complicated.

また、防着板5の真空チャンバ1の内壁との対向面に、防着板5の熱放射率よりも高い熱放射率を有する放射層8を設けることにより、防着板5から効率よく熱線が放射されるため、防着板5の冷却効率を高めることができる。この場合、吸熱層7と放射層8は溶射もしくは陽極酸化処理により形成されるアルミナ膜とすれば、両層の耐熱性を高めることができると共に、真空チャンバ1内での成膜処理に悪影響を及ぼす放出ガスの放出を防止できる。   Further, by providing the radiation layer 8 having a thermal emissivity higher than the thermal emissivity of the deposition preventive plate 5 on the surface of the deposition preventive plate 5 facing the inner wall of the vacuum chamber 1, it is possible to efficiently apply heat rays from the deposition preventive plate 5. Is emitted, the cooling efficiency of the deposition preventing plate 5 can be increased. In this case, if the endothermic layer 7 and the radiation layer 8 are made of an alumina film formed by thermal spraying or anodizing, the heat resistance of both layers can be improved, and the film forming process in the vacuum chamber 1 is adversely affected. It is possible to prevent the release of the released gas.

次に、上記スパッタリング装置SMを用い、本発明の効果を確認するために実験を行った。先ず、実験1として、この高周波スパッタリング装置SMにおいて、スパッタ空間Spにアルゴンガスを12sccm導入し(このときの圧力は0.1Pa)、ターゲット2に対しDC電源Eから30kWの直流電力を投入してプラズマ雰囲気を形成し、ターゲット2をスパッタして基板W表面にアルミニウム膜を成膜した。成膜中の防着板5の温度変化を測定し、その測定結果を図2に示す。図2には、比較例として、吸熱層7を設けない場合の温度変化を併せて示している。これによれば、吸熱層7を設けない比較例では、成膜開始から10分経過後には防着板5の温度が400℃以上にまで上昇するが、吸熱層7を設けた本発明では、320℃程度にまで低くできることが判った。   Next, an experiment was conducted to confirm the effect of the present invention using the sputtering apparatus SM. First, as Experiment 1, in this high-frequency sputtering device SM, 12 sccm of argon gas was introduced into the sputtering space Sp (at this time the pressure was 0.1 Pa), and 30 kW of DC power was applied to the target 2 from the DC power source E. A plasma atmosphere was formed, and the target 2 was sputtered to form an aluminum film on the surface of the substrate W. The temperature change of the deposition preventing plate 5 during film formation was measured, and the measurement result is shown in FIG. FIG. 2 also shows a temperature change when the endothermic layer 7 is not provided as a comparative example. According to this, in the comparative example in which the endothermic layer 7 is not provided, the temperature of the deposition preventing plate 5 rises to 400 ° C. or more after 10 minutes from the start of film formation, but in the present invention in which the endothermic layer 7 is provided, It was found that the temperature can be lowered to about 320 ° C.

以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、真空処理装置としてスパッタリング装置を例に説明したが、エッチング装置や、プラズマ雰囲気を形成しない熱処理装置のような他の真空処理装置に対しても適用可能である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said thing. In the above embodiment, the sputtering apparatus has been described as an example of the vacuum processing apparatus. However, the present invention can also be applied to other vacuum processing apparatuses such as an etching apparatus and a heat treatment apparatus that does not form a plasma atmosphere.

また、上記実施形態では、真空チャンバ1の内壁の全面に吸熱層7を設けているが、防着板5と対向する部分に吸熱層7を局所的に設ければよく、防着板51,52,53のうちの特に温度上昇が大きい防着板52と対向する部分にのみ吸熱層7を設けてもよい。   In the above embodiment, the endothermic layer 7 is provided on the entire inner wall of the vacuum chamber 1. However, the endothermic layer 7 may be locally provided in a portion facing the deposition preventing plate 5. The endothermic layer 7 may be provided only in a portion of the 52, 53 facing the deposition preventing plate 52 where the temperature rise is particularly large.

また、上記実施形態では、真空チャンバ1の内壁に直接吸熱層7を設けているが、アルミニウム板の表面に吸熱層を形成したものを、吸熱層が露出するように真空チャンバの内壁にビス等を用いて固定してもよい。   In the above embodiment, the endothermic layer 7 is provided directly on the inner wall of the vacuum chamber 1, but the endothermic layer formed on the surface of the aluminum plate is replaced with screws or the like on the inner wall of the vacuum chamber so that the endothermic layer is exposed. You may fix using.

上記実施形態では、吸熱層7と放射層8がアルミナ膜である場合について説明したが、アルミニウムよりも高い熱放射率を有するTi膜やTiを含む合金膜とすることもできる。Ti合金膜としては、例えば、TiAlN膜が熱放射率の観点から好ましい。また、吸熱層7及び放射層8は、アルミニウムよりも高い熱放射率を有する、工業的に安価なめっき法により形成できるNi膜とすることもできる。これらの場合も、両層の耐熱性を高めることができると共に、成膜に悪影響を及ぼす放出ガスの放出を防止できる。   In the above embodiment, the case where the endothermic layer 7 and the radiation layer 8 are alumina films has been described. However, a Ti film having a higher heat emissivity than aluminum or an alloy film containing Ti can be used. As the Ti alloy film, for example, a TiAlN film is preferable from the viewpoint of thermal emissivity. Further, the endothermic layer 7 and the radiation layer 8 may be Ni films that have a higher heat emissivity than aluminum and can be formed by an industrially inexpensive plating method. In these cases as well, the heat resistance of both layers can be improved, and the release of released gas that adversely affects film formation can be prevented.

SM…スパッタリング装置(真空処理装置)、1…真空チャンバ、5,51,52,53…防着板(発熱部品)、7…吸熱層、8…放射層。   SM: Sputtering device (vacuum processing device), 1 ... Vacuum chamber, 5, 51, 52, 53 ... Anti-adhesion plate (heat-generating component), 7 ... Endothermic layer, 8 ... Radiation layer.

Claims (3)

アルミニウム製の真空チャンバを備え、その内部に、真空チャンバ内で実施される処理により受熱して発熱する発熱部品が配置される真空処理装置において、
発熱部品から放射される熱線が照射される真空チャンバの内壁部分に、真空チャンバの内表面の熱放射率よりも高い熱放射率を有する吸熱層を設けたことを特徴とする真空処理装置。
In a vacuum processing apparatus provided with a vacuum chamber made of aluminum, and in which a heat generating component that receives heat and generates heat by processing performed in the vacuum chamber is arranged,
A vacuum processing apparatus, wherein an endothermic layer having a thermal emissivity higher than that of an inner surface of a vacuum chamber is provided on an inner wall portion of the vacuum chamber irradiated with heat rays radiated from a heat generating component.
前記発熱部品の真空チャンバ内壁との対向面に、発熱部品の熱放射率よりも高い熱放射率を有する放射層を設けたことを特徴とする請求項1記載の真空処理装置。   The vacuum processing apparatus according to claim 1, wherein a radiation layer having a thermal emissivity higher than that of the heat generating component is provided on a surface of the heat generating component facing the inner wall of the vacuum chamber. 前記吸熱層と前記放射層は、溶射もしくは陽極酸化処理により形成されるアルミナ膜、Ti膜、及び、Tiを含む合金膜の中から選択されたものであることを特徴とする請求項1又は請求項2記載の真空処理装置。

2. The heat-absorbing layer and the radiation layer are selected from an alumina film, a Ti film, and an alloy film containing Ti formed by thermal spraying or anodizing treatment. Item 3. A vacuum processing apparatus according to Item 2.

JP2013124815A 2013-06-13 2013-06-13 Vacuum processing equipment Active JP6140539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124815A JP6140539B2 (en) 2013-06-13 2013-06-13 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013124815A JP6140539B2 (en) 2013-06-13 2013-06-13 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2015000994A true JP2015000994A (en) 2015-01-05
JP6140539B2 JP6140539B2 (en) 2017-05-31

Family

ID=52295700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124815A Active JP6140539B2 (en) 2013-06-13 2013-06-13 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP6140539B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406974A (en) * 2015-01-19 2017-11-28 欧瑞康表面解决方案股份公司普费菲孔 For the coating chamber for the coating process for performing vacuum aided, thermal insulation board and coating process
WO2020090164A1 (en) * 2018-10-30 2020-05-07 株式会社アルバック Vacuum treatment device
WO2020136964A1 (en) * 2018-12-27 2020-07-02 株式会社アルバック Vacuum processing apparatus
KR20200132964A (en) 2018-03-16 2020-11-25 가부시키가이샤 알박 Tabernacle Method
KR20210060172A (en) 2019-11-18 2021-05-26 캐논 톡키 가부시키가이샤 Cooling jacket, film forming apparatus, film forming method and electronic device manufacturing method using the same
CN113056572A (en) * 2018-11-16 2021-06-29 株式会社爱发科 Vacuum processing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193825A (en) * 1984-07-16 1986-05-12 ユナイテツド キングドム アトミツク エナ↓−ヂイ オ↓−ソリテイ Temperature controller
JPS61106766A (en) * 1984-10-30 1986-05-24 Matsushita Electric Ind Co Ltd Spatter device
JPH0314144U (en) * 1989-06-26 1991-02-13
JP2001526825A (en) * 1997-05-23 2001-12-18 アプライド マテリアルズ インコーポレイテッド Aluminum deposition shield

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193825A (en) * 1984-07-16 1986-05-12 ユナイテツド キングドム アトミツク エナ↓−ヂイ オ↓−ソリテイ Temperature controller
JPS61106766A (en) * 1984-10-30 1986-05-24 Matsushita Electric Ind Co Ltd Spatter device
JPH0314144U (en) * 1989-06-26 1991-02-13
JP2001526825A (en) * 1997-05-23 2001-12-18 アプライド マテリアルズ インコーポレイテッド Aluminum deposition shield

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107406973A (en) * 2015-01-19 2017-11-28 欧瑞康表面解决方案股份公司,普费菲孔 Specially designed vacuum chamber is carried for improve thermal output
US20180016675A1 (en) * 2015-01-19 2018-01-18 Oerlikon Surface Solutions Ag, Pfaeffikon Vacuum chamber having a special design for increasing the removal of heat
JP2018503749A (en) * 2015-01-19 2018-02-08 エリコン サーフェス ソリューションズ エージー、プフェッフィコン Coating chamber, heat shield, and coating process for vacuum assisted coating processes
US20180265968A1 (en) * 2015-01-19 2018-09-20 Oerlikon Surface Solutions Ag, Pfaeffikon Coating chamber for implementing of a vacuum-assisted coating process, heat shield, and coating process
JP6998214B2 (en) 2015-01-19 2022-01-18 エリコン サーフェス ソリューションズ エージー、プフェッフィコン Coating chamber, heat shield, and coating process for performing vacuum assist coating process
CN107406974A (en) * 2015-01-19 2017-11-28 欧瑞康表面解决方案股份公司普费菲孔 For the coating chamber for the coating process for performing vacuum aided, thermal insulation board and coating process
KR20200132964A (en) 2018-03-16 2020-11-25 가부시키가이샤 알박 Tabernacle Method
CN112789366A (en) * 2018-10-30 2021-05-11 株式会社爱发科 Vacuum processing apparatus
WO2020090164A1 (en) * 2018-10-30 2020-05-07 株式会社アルバック Vacuum treatment device
CN112789366B (en) * 2018-10-30 2023-03-14 株式会社爱发科 Vacuum processing apparatus
JP7078745B2 (en) 2018-10-30 2022-05-31 株式会社アルバック Vacuum processing equipment
JPWO2020090164A1 (en) * 2018-10-30 2021-09-02 株式会社アルバック Vacuum processing equipment
US11239063B2 (en) 2018-10-30 2022-02-01 Ulvac, Inc. Vacuum processing apparatus
TWI739138B (en) * 2018-10-30 2021-09-11 日商愛發科股份有限公司 Vacuum processing device
CN113056572B (en) * 2018-11-16 2023-09-05 株式会社爱发科 Vacuum processing apparatus
CN113056572A (en) * 2018-11-16 2021-06-29 株式会社爱发科 Vacuum processing apparatus
WO2020136964A1 (en) * 2018-12-27 2020-07-02 株式会社アルバック Vacuum processing apparatus
TWI740184B (en) * 2018-12-27 2021-09-21 日商愛發科股份有限公司 Vacuum processing device
JPWO2020136964A1 (en) * 2018-12-27 2021-09-09 株式会社アルバック Vacuum processing equipment
US11319627B2 (en) 2018-12-27 2022-05-03 Ulvac, Inc. Vacuum processing apparatus
KR20210107814A (en) * 2018-12-27 2021-09-01 가부시키가이샤 알박 vacuum processing unit
JP7078752B2 (en) 2018-12-27 2022-05-31 株式会社アルバック Vacuum processing equipment
CN113227445A (en) * 2018-12-27 2021-08-06 株式会社爱发科 Vacuum processing apparatus
KR102597416B1 (en) * 2018-12-27 2023-11-03 가부시키가이샤 알박 vacuum processing device
KR20210060172A (en) 2019-11-18 2021-05-26 캐논 톡키 가부시키가이샤 Cooling jacket, film forming apparatus, film forming method and electronic device manufacturing method using the same

Also Published As

Publication number Publication date
JP6140539B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP6140539B2 (en) Vacuum processing equipment
KR101187544B1 (en) Mounting table structure and plasma film forming apparatus
JP5320171B2 (en) Substrate processing equipment
KR101438129B1 (en) Sputtering apparatus
JP2012238629A (en) Heat treatment apparatus
TW201445612A (en) Faraday shield device capable of rapidly dissipating heat and plasma processing device
KR102597416B1 (en) vacuum processing device
JP4108354B2 (en) Sputtering equipment
JPWO2020090164A1 (en) Vacuum processing equipment
JP5730521B2 (en) Heat treatment equipment
CN111386599B (en) Vacuum processing apparatus
JP7057442B2 (en) Vacuum processing equipment
JP5953012B2 (en) Substrate holding device
TW201532112A (en) Plasma processing apparatus, electrostatic chuck, and method of manufacturing electrostatic chuck
JP6636796B2 (en) Sputtering apparatus and sputtering method
JP7290413B2 (en) Vacuum processing equipment
JP2015106595A (en) Heat treatment equipment
JP5978417B1 (en) Method and method for forming aluminum oxide film and sputtering apparatus
JP2014204107A (en) Thermal treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6140539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250