JP2014524265A - Ultrasonic sealing device and ultrasonic sealing method - Google Patents

Ultrasonic sealing device and ultrasonic sealing method Download PDF

Info

Publication number
JP2014524265A
JP2014524265A JP2014503333A JP2014503333A JP2014524265A JP 2014524265 A JP2014524265 A JP 2014524265A JP 2014503333 A JP2014503333 A JP 2014503333A JP 2014503333 A JP2014503333 A JP 2014503333A JP 2014524265 A JP2014524265 A JP 2014524265A
Authority
JP
Japan
Prior art keywords
ultrasonic
anvil
ultrasonic horn
continuous web
sealing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014503333A
Other languages
Japanese (ja)
Other versions
JP5990568B2 (en
Inventor
広喜 山本
拓巳 中野
一夫 請川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uni Charm Corp
Original Assignee
Uni Charm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uni Charm Corp filed Critical Uni Charm Corp
Priority to JP2014503333A priority Critical patent/JP5990568B2/en
Publication of JP2014524265A publication Critical patent/JP2014524265A/en
Application granted granted Critical
Publication of JP5990568B2 publication Critical patent/JP5990568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8351Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws
    • B29C66/83541Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws flying jaws, e.g. jaws mounted on crank mechanisms or following a hand over hand movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15577Apparatus or processes for manufacturing
    • A61F13/15707Mechanical treatment, e.g. notching, twisting, compressing, shaping
    • A61F13/15739Sealing, e.g. involving cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7888Means for handling of moving sheets or webs
    • B29C65/7894Means for handling of moving sheets or webs of continuously moving sheets or webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81433General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined being toothed, i.e. comprising several teeth or pins, or being patterned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81463General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint
    • B29C66/81465General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint one placed behind the other in a single row in the feed direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/822Transmission mechanisms
    • B29C66/8227Transmission mechanisms using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • B29C66/82421Pneumatic or hydraulic drives using an inflatable element positioned between the joining tool and a backing-up part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8351Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws
    • B29C66/83541Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws flying jaws, e.g. jaws mounted on crank mechanisms or following a hand over hand movement
    • B29C66/83543Jaws mounted on rollers, cylinders, drums, bands, belts or chains; Flying jaws flying jaws, e.g. jaws mounted on crank mechanisms or following a hand over hand movement cooperating flying jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/841Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions
    • B29C66/8412Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions of different length, width or height
    • B29C66/84121Machines or tools adaptable for making articles of different dimensions or shapes or for making joints of different dimensions of different length, width or height of different width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series
    • B29C66/8432Machines for making separate joints at the same time mounted in parallel or in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9261Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools
    • B29C66/92611Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools by controlling or regulating the gap between the joining tools
    • B29C66/92615Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the displacement of the joining tools by controlling or regulating the gap between the joining tools the gap being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • B29C66/9292Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges in explicit relation to another variable, e.g. pressure diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/934Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed
    • B29C66/93441Measuring or controlling the joining process by measuring or controlling the speed by controlling or regulating the speed the speed being non-constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/729Textile or other fibrous material made from plastics
    • B29C66/7294Non woven mats, e.g. felt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9131Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux
    • B29C66/91311Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux by measuring the heat generated by Joule heating or induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/924Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/9241Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force, the mechanical power or the displacement of the joining tools by controlling or regulating the pressure, the force or the mechanical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/961Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process involving a feedback loop mechanism, e.g. comparison with a desired value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/96Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process
    • B29C66/963Measuring or controlling the joining process characterised by the method for implementing the controlling of the joining process using stored or historical data sets, e.g. using expert systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4871Underwear
    • B29L2031/4878Diapers, napkins

Abstract

吸収性物品に係る連続ウエブが所定の直線軌道を搬送される間に、連続ウエブに超音波振動を付与することにより、連続ウエブの搬送方向に間隔をおいて複数の溶着部を形成する超音波シール装置である。超音波振動を発する超音波ホーンと、超音波ホーンが超音波振動を連続ウエブに向けて発する際に、超音波ホーンとで、連続ウエブをその厚み方向から挟持するアンビルと、超音波ホーン及びアンビルを、前記直線軌道と平行な往路及び復路に沿って移動させる往復直線移動機構と、を有する。往路には、超音波ホーン及びアンビルの両者が互いに前記厚み方向に対向しつつ連続ウエブの搬送速度値と同じ速度値で移動する等速域が設定されている。前記等速域を移動中に、超音波ホーンとアンビルとは、連続ウエブの挟持と、前記挟持の解除とを行う。連続ウエブの挟持中に、超音波ホーンが超音波振動を発する。  While forming a plurality of welds at intervals in the conveyance direction of the continuous web by applying ultrasonic vibration to the continuous web while the continuous web of the absorbent article is conveyed on a predetermined linear track It is a sealing device. An ultrasonic horn that emits ultrasonic vibration, an anvil that sandwiches the continuous web from its thickness direction when the ultrasonic horn emits ultrasonic vibration toward the continuous web, and the ultrasonic horn and anvil And a reciprocating linear movement mechanism for moving along a forward path and a return path parallel to the linear trajectory. In the forward path, a constant velocity region is set in which both the ultrasonic horn and the anvil move at the same speed value as the conveying speed value of the continuous web while facing each other in the thickness direction. While moving in the constant velocity region, the ultrasonic horn and the anvil perform sandwiching of the continuous web and release of the sandwiching. The ultrasonic horn emits ultrasonic vibration while the continuous web is sandwiched.

Description

本発明は、使い捨ておむつ等の吸収性物品に係る連続ウエブを溶着する超音波シール装置、及び超音波シール方法に関する。   The present invention relates to an ultrasonic sealing device and an ultrasonic sealing method for welding a continuous web relating to an absorbent article such as a disposable diaper.

従来、使い捨ておむつ(以下、おむつと言う)等の吸収性物品の製造ラインでは、不織布等の連続ウエブを複数枚重ねた状態で連続的に搬送しながら、その搬送方向に間隔をおいて複数の溶着部を形成することにより、これら複数枚の連続ウエブを接合することが行われている。そして、そのための装置として、特許文献1には、図1A乃至図1Fに概略側面図で示すような超音波シール装置120が開示されている。   Conventionally, in a manufacturing line for absorbent articles such as disposable diapers (hereinafter referred to as diapers), a plurality of continuous webs such as nonwoven fabrics are continuously transported in a state where a plurality of continuous webs are stacked, with a plurality of intervals in the transport direction. Joining these plural continuous webs by forming a welded portion is performed. As an apparatus for this purpose, Patent Document 1 discloses an ultrasonic sealing device 120 as shown in schematic side views in FIGS. 1A to 1F.

図1Aに示すように、この超音波シール装置120は、連続ウエブ1aの直線状搬送経路Tr1aの上方に超音波ホーン130を有し、下方には、溶着処理の際に上記超音波ホーン130とで連続ウエブ1aを挟持するためのアンビル160を有している。そして、平行四辺形リンク機構135により支持された同ホーン130は、同平行四辺形リンク機構135の長辺リンク部135Lに沿って配された同ホーン130の長軸方向を鉛直方向に維持しながら、同平行四辺形リンク機構135の短辺リンク部135Sの回転に応じて鉛直面内を円運動するように構成されており、これにより、同ホーン130の下端の挟持面130aが、円運動中、常に下方を向いた状態に維持される(図1A〜図1Fを参照)。また、アンビル160も、同様の平行四辺形リンク機構165によって支持されており、つまり、同平行四辺形リンク機構165の長辺リンク部165Lに沿って配されたアンビル160の長軸を鉛直方向に維持しながら、同平行四辺形リンク機構165の短辺リンク部165Sの回転に応じて鉛直面内を円運動するように構成されている。そして、これにより、アンビル160の上端の挟持面160aも、円運動中、常に上方を向いた状態に維持される(図1A〜図1Fを参照)。   As shown in FIG. 1A, this ultrasonic sealing device 120 has an ultrasonic horn 130 above the linear conveyance path Tr1a of the continuous web 1a, and below the ultrasonic horn 130 during the welding process. And an anvil 160 for holding the continuous web 1a. The horn 130 supported by the parallelogram link mechanism 135 maintains the long axis direction of the horn 130 arranged along the long side link portion 135L of the parallelogram link mechanism 135 in the vertical direction. The parallelogram link mechanism 135 is configured to circularly move in the vertical plane in accordance with the rotation of the short side link portion 135S, so that the holding surface 130a at the lower end of the horn 130 is in a circular motion. It is always maintained in a state of facing downward (see FIGS. 1A to 1F). Further, the anvil 160 is also supported by the same parallelogram link mechanism 165, that is, the long axis of the anvil 160 arranged along the long side link portion 165L of the parallelogram link mechanism 165 in the vertical direction. While maintaining, it is configured to circularly move in the vertical plane according to the rotation of the short side link portion 165S of the parallelogram link mechanism 165. As a result, the holding surface 160a at the upper end of the anvil 160 is also always kept facing upward during the circular motion (see FIGS. 1A to 1F).

図2に、かかる円運動中のホーン130側の挟持面130aの軌道Tr130a及びアンビル160側の挟持面160aの軌道Tr160aを示すが、基本的には、どちらの挟持面130a,160aもほぼ円運動をしている。但し、ホーン130側の挟持面130aの円運動とアンビル160側の挟持面160aの円運動とは、互いに回転方向が逆向きであり、また連続ウエブ1aの搬送経路Tr1a上において、これら円運動の軌道Tr130a,Tr160a同士は交差するようになっている。更に、アンビル160側の挟持面160aは、適宜な不図示の弾性部材を介して上記平行四辺形リンク機構160の長辺リンク部165Lに取り付けられており、これにより、挟持面160aは鉛直方向に弾性的に変位可能に支持されている。   FIG. 2 shows the track Tr130a of the holding surface 130a on the horn 130 side and the track Tr160a of the holding surface 160a on the anvil 160 during such circular movement. Basically, both the holding surfaces 130a and 160a are substantially circularly moved. I am doing. However, the circular movement of the holding surface 130a on the horn 130 side and the circular movement of the holding surface 160a on the anvil 160 side are opposite to each other in the rotation direction, and these circular movements occur on the transport path Tr1a of the continuous web 1a. The tracks Tr130a and Tr160a intersect each other. Further, the clamping surface 160a on the anvil 160 side is attached to the long side link portion 165L of the parallelogram link mechanism 160 via an appropriate elastic member (not shown), whereby the clamping surface 160a is arranged in the vertical direction. It is supported so as to be elastically displaceable.

よって、両者の軌道Tr130a,Tr160aが交差する交差軌道部分TrCにおいて、ホーン130側の挟持面130aとアンビル160側の挟持面160aとが連続ウエブ1a越しに対向する際には(図1E)、これら挟持面130a,160a同士で上下から連続ウエブ1aを挟み込みながら、ホーン130によってアンビル160側の挟持面160aが下方に押し込められ、これにより、連続ウエブ1aは、これらホーン130側の挟持面130aとアンビル160側の挟持面160aとで円滑に挟持される。そして、この挟持中には、ホーン130側の挟持面130aから超音波振動が連続ウエブ1aへ向けて発せられ、これにより、連続ウエブ1aのうちで挟持されている部分が溶融して溶着部14が形成される。   Therefore, when the horn 130 side clamping surface 130a and the anvil 160 side clamping surface 160a face each other over the continuous web 1a in the crossing orbit portion TrC where both the tracks Tr130a and Tr160a intersect (FIG. 1E), While sandwiching the continuous web 1a from above and below between the sandwiching surfaces 130a and 160a, the sandwiching surface 160a on the anvil 160 side is pushed downward by the horn 130, so that the continuous web 1a is sandwiched between the sandwiching surface 130a on the horn 130 side and the anvil. It is smoothly held between the holding surface 160a on the 160 side. During this clamping, ultrasonic vibration is emitted from the clamping surface 130a on the horn 130 side toward the continuous web 1a. As a result, the sandwiched portion of the continuous web 1a is melted. Is formed.

特開平7−204223号公報JP-A-7-204223

ところで、図2に示すように、これら挟持面130a,160aが上記交差軌道部分TrCを通過する際には、ホーン130側の挟持面130aがアンビル160側の挟持面160aを下方へ押し込む旨を前述したが、このとき、ホーン130側の挟持面130aの円運動の角速度とアンビル160側の挟持面160aの円運動の角速度とは互いに同値である。そのため、上記押し込みに伴うアンビル160側の挟持面160aの回転半径R160aの減少分だけ、アンビル130側の挟持面130aの周速は、ホーン130側の挟持面130aの周速よりも遅くなる。すると、これら挟持面130a,160aに挟持された連続ウエブ1aの部分は、少なくともどちらかの挟持面130a,160aに対して相対速度をもつことになり、その結果、擦れて微粉が発生したり、連続ウエブ1aに皺が生じる虞がある。
また、挟持面130aから連続ウエブ1aへの超音波振動の投入時に、連続ウエブ1aが、挟持面130a,160aに対して相対滑りをしていると、その溶着処理が不安定になる虞もある。
更に、図2に示すように、連続ウエブ1aの搬送経路Tr1aは直線軌道であるのに対して、交差軌道部分TrCでのホーン130側の挟持面130aの軌道及びアンビル160側の挟持面160aの軌道は、それぞれ下に凸の円弧状及び下に凹の円弧状であり、これら軌道形状の不一致も、連続ウエブ1aと挟持面130a,160aとの間の相対滑りの一因となって、上記の微粉や皺の発生、及び溶着処理の不安定化を助長する虞がある。
By the way, as shown in FIG. 2, when these clamping surfaces 130a and 160a pass through the crossed track portion TrC, it is described above that the clamping surface 130a on the horn 130 side pushes the clamping surface 160a on the anvil 160 side downward. However, at this time, the angular velocity of the circular motion of the clamping surface 130a on the horn 130 side and the angular velocity of the circular motion of the clamping surface 160a on the anvil 160 side are equal to each other. Therefore, the peripheral speed of the clamping surface 130a on the anvil 130 side becomes slower than the peripheral speed of the clamping surface 130a on the horn 130 side by the amount corresponding to the decrease in the rotation radius R160a of the clamping surface 160a on the anvil 160 side. Then, the portion of the continuous web 1a sandwiched between the sandwiching surfaces 130a and 160a has a relative speed with respect to at least one of the sandwiching surfaces 130a and 160a. There is a possibility that wrinkles may occur in the continuous web 1a.
Further, if the continuous web 1a slides relative to the clamping surfaces 130a and 160a when ultrasonic vibration is applied from the clamping surface 130a to the continuous web 1a, the welding process may become unstable. .
Further, as shown in FIG. 2, the transport path Tr1a of the continuous web 1a is a straight track, whereas the trajectory of the holding surface 130a on the horn 130 side and the holding surface 160a on the anvil 160 side at the crossing track portion TrC. Each of the tracks has a downwardly convex arc shape and a downwardly concave arc shape, and the mismatch of the track shapes also contributes to the relative slip between the continuous web 1a and the sandwiching surfaces 130a and 160a. There is a possibility of promoting the generation of fine powder and soot and destabilization of the welding process.

本発明は、上記のような従来の問題に鑑みてなされたものであって、その目的は、溶着処理時の超音波ホーンとアンビルと連続ウエブとの相対速度(相対滑り)を抑制して、微粉や皺の発生を抑えるとともに、溶着部を安定して形成することにある。   The present invention has been made in view of the conventional problems as described above, and its purpose is to suppress the relative speed (relative slip) between the ultrasonic horn, the anvil and the continuous web during the welding process, It is to suppress the generation of fine powder and wrinkles and to stably form the welded portion.

上記目的を達成するための主たる発明は、
吸収性物品に係る連続ウエブが所定の直線軌道を搬送される間に、前記連続ウエブに超音波振動を付与することにより、前記連続ウエブの搬送方向に間隔をおいて複数の溶着部を形成する超音波シール装置であって、
前記超音波振動を発する超音波ホーンと、
前記超音波ホーンが前記超音波振動を前記連続ウエブに向けて発する際に、前記超音波ホーンとで、前記連続ウエブをその厚み方向から挟持するアンビルと、
前記超音波ホーン及び前記アンビルを、前記直線軌道と平行な往路及び復路に沿って移動させる往復直線移動機構と、を有し、
前記往路には、前記超音波ホーン及び前記アンビルの両者が互いに前記厚み方向に対向しつつ前記連続ウエブの搬送速度値と同じ速度値で移動する等速域が設定されており、
前記等速域を移動中に、前記超音波ホーンと前記アンビルとは、前記連続ウエブの挟持と、前記挟持の解除とを行い、
前記連続ウエブの挟持中に、前記超音波ホーンが前記超音波振動を発することを特徴とする超音波シール装置である。
The main invention for achieving the above object is:
While the continuous web related to the absorbent article is transported along a predetermined linear track, a plurality of welds are formed at intervals in the transport direction of the continuous web by applying ultrasonic vibration to the continuous web. An ultrasonic sealing device,
An ultrasonic horn for emitting the ultrasonic vibration;
When the ultrasonic horn emits the ultrasonic vibration toward the continuous web, the anvil that sandwiches the continuous web from the thickness direction with the ultrasonic horn;
A reciprocating linear movement mechanism for moving the ultrasonic horn and the anvil along an outward path and a return path parallel to the linear trajectory;
In the forward path, a constant velocity region is set in which both the ultrasonic horn and the anvil move at the same speed value as the conveying speed value of the continuous web while facing each other in the thickness direction,
While moving in the constant velocity region, the ultrasonic horn and the anvil perform clamping of the continuous web and release of the clamping,
In the ultrasonic sealing device, the ultrasonic horn emits the ultrasonic vibration while the continuous web is sandwiched.

また、吸収性物品に係る連続ウエブが所定の直線軌道を搬送される間に、前記連続ウエブに超音波振動を付与することにより、前記連続ウエブの搬送方向に間隔を置いて複数の溶着部を形成する超音波シール方法であって、
前記超音波振動を発する超音波ホーンと、
前記超音波ホーンが前記超音波振動を前記連続ウエブに向けて発する際に、前記超音波ホーンとで、前記連続ウエブをその厚み方向から挟持するアンビルと、
前記超音波ホーン及び前記アンビルを、前記直線軌道と平行な往路及び復路に沿って移動させる往復直線移動機構と、を用い、
前記往路において、前記超音波ホーン及び前記アンビルの両者を互いに前記厚み方向に対向させつつ前記連続ウエブの搬送速度値と同じ速度値で移動することと、
前記同じ速度値で移動することにおいて、前記超音波ホーンと前記アンビルとが、前記連続ウエブの挟持を行うことと、
前記同じ速度値で移動することにおいて、前記挟持の解除をすることと、
前記挟持中に、前記超音波ホーンが前記超音波振動を発することと、を有することを特徴とする超音波シール方法である。
本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。
In addition, while the continuous web related to the absorbent article is transported along a predetermined linear track, by applying ultrasonic vibration to the continuous web, a plurality of welds are provided at intervals in the transport direction of the continuous web. An ultrasonic sealing method for forming,
An ultrasonic horn for emitting the ultrasonic vibration;
When the ultrasonic horn emits the ultrasonic vibration toward the continuous web, the anvil that sandwiches the continuous web from the thickness direction with the ultrasonic horn;
A reciprocating linear movement mechanism that moves the ultrasonic horn and the anvil along an outward path and a return path parallel to the linear trajectory,
In the forward path, both the ultrasonic horn and the anvil are moved at the same speed value as the conveyance speed value of the continuous web while facing each other in the thickness direction;
In moving at the same speed value, the ultrasonic horn and the anvil perform clamping of the continuous web;
Releasing the clamping in moving at the same speed value;
The ultrasonic sealing method characterized in that the ultrasonic horn emits the ultrasonic vibration during the clamping.
Other features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

本発明によれば、溶着処理時の超音波ホーンとアンビルと連続ウエブとの相対速度(相対滑り)を抑制し、これにより、微粉や皺の発生を抑えるとともに、溶着部を安定して形成可能となる。   According to the present invention, the relative speed (relative slip) between the ultrasonic horn, the anvil, and the continuous web during the welding process is suppressed, thereby suppressing the generation of fine powder and wrinkles and forming the welded portion stably. It becomes.

図1は、一連の(A)乃至(F)において、溶着処理が行われる様子を示す従来の超音波シール装置120の概略側面図である。FIG. 1 is a schematic side view of a conventional ultrasonic sealing device 120 showing how a welding process is performed in a series of (A) to (F). 従来の超音波シール装置120に係り、超音波ホーン130の挟持面130aとアンビル160の挟持面160aとで基材1aを挟持した際に、基材1a、超音波ホーン130およびアンビル160が相対速度を有してしまうことの説明図である。In the conventional ultrasonic sealing device 120, when the base material 1a is sandwiched between the sandwiching surface 130a of the ultrasonic horn 130 and the sandwiching surface 160a of the anvil 160, the base material 1a, the ultrasonic horn 130, and the anvil 160 are in relative speed. It is explanatory drawing of having. 図3Aは、第1実施形態の超音波シール装置20を備えるシール部に搬送されるおむつ1の基材1aの説明図であって、斜視図である。図3Bは、第1実施形態の超音波シール装置20を備えるシール部に搬送されるおむつ1の基材1aの説明図であって、斜視図である。FIG. 3A is an explanatory view of the base material 1a of the diaper 1 conveyed to a sealing portion including the ultrasonic sealing device 20 of the first embodiment, and is a perspective view. Drawing 3B is an explanatory view of substrate 1a of diaper 1 conveyed by a seal part provided with ultrasonic sealing device 20 of a 1st embodiment, and is a perspective view. 図4Aは、第1実施形態の超音波シール装置20の概略側面図であり、図4Bは、図4A中のB−B矢視図であり、図4Cは、図4A中のC−C矢視図である。4A is a schematic side view of the ultrasonic sealing device 20 according to the first embodiment, FIG. 4B is a view taken along the line BB in FIG. 4A, and FIG. 4C is a view along the line CC in FIG. 4A. FIG. 退避位置に位置するアンビル60を一部破断して示す拡大側面図である。It is an enlarged side view which shows the anvil 60 located in a retracted position partly broken. 挟持位置に位置するアンビル60を一部破断して示す拡大側面図である。It is an enlarged side view which shows the anvil 60 located in a clamping position partially broken. アンビル60の下面60dを斜め下方から見た概略斜視図である。It is the schematic perspective view which looked at the lower surface 60d of the anvil 60 from diagonally downward. 超音波ホーン30及びアンビル60の前後方向の往復移動動作の動作パターンのデータの説明図であり、上段には超音波ホーン30用のデータを示し、下段にはアンビル60用のデータを示している。It is explanatory drawing of the data of the operation pattern of the reciprocating movement operation | movement of the ultrasonic horn 30 and the anvil 60 in the front-back direction, The data for the ultrasonic horn 30 is shown in the upper stage, and the data for the anvil 60 are shown in the lower stage. . Sサイズ及びLサイズの動作パターンのデータの説明図であって、上段には超音波ホーン30用のデータを示し、下段にはアンビル60用のデータを示している。It is explanatory drawing of the data of the operation pattern of S size and L size, Comprising: The data for ultrasonic horns 30 are shown in the upper stage, and the data for the anvil 60 are shown in the lower stage. 第2実施形態の超音波シール装置20aの概略側面図である。It is a schematic side view of the ultrasonic sealing apparatus 20a of 2nd Embodiment. 後方のモジュール20M用の動作パターンのデータ、及び前方のモジュール20M用の動作パターンのデータの説明図である。It is explanatory drawing of the data of the operation pattern for the back module 20M, and the data of the operation pattern for the front module 20M. 図11A乃至図11Jは、第3実施形態の後方のモジュール20M及び前方のモジュール20Mの両者が、互いに逆動作をしながら基材1aに溶着部14を形成していく様子をコマ送りで示す模式図である。FIG. 11A to FIG. 11J are schematic diagrams showing how the rear module 20M and the front module 20M of the third embodiment form the welded portion 14 on the base material 1a while performing reverse operations with each other. FIG. 後方のモジュール20M用の動作パターンのデータ、及び前方のモジュール20M用の動作パターンのデータの説明図である。It is explanatory drawing of the data of the operation pattern for the back module 20M, and the data of the operation pattern for the front module 20M.

本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of the present specification and the accompanying drawings.

吸収性物品に係る連続ウエブが所定の直線軌道を搬送される間に、前記連続ウエブに超音波振動を付与することにより、前記連続ウエブの搬送方向に間隔をおいて複数の溶着部を形成する超音波シール装置であって、
前記超音波振動を発する超音波ホーンと、
前記超音波ホーンが前記超音波振動を前記連続ウエブに向けて発する際に、前記超音波ホーンとで、前記連続ウエブをその厚み方向から挟持するアンビルと、
前記超音波ホーン及び前記アンビルを、前記直線軌道と平行な往路及び復路に沿って移動させる往復直線移動機構と、を有し、
前記往路には、前記超音波ホーン及び前記アンビルの両者が互いに前記厚み方向に対向しつつ前記連続ウエブの搬送速度値と同じ速度値で移動する等速域が設定されており、
前記等速域を移動中に、前記超音波ホーンと前記アンビルとは、前記連続ウエブの挟持と、前記挟持の解除とを行い、
前記連続ウエブの挟持中に、前記超音波ホーンが前記超音波振動を発することを特徴とする超音波シール装置。
While the continuous web related to the absorbent article is transported along a predetermined linear track, a plurality of welds are formed at intervals in the transport direction of the continuous web by applying ultrasonic vibration to the continuous web. An ultrasonic sealing device,
An ultrasonic horn for emitting the ultrasonic vibration;
When the ultrasonic horn emits the ultrasonic vibration toward the continuous web, the anvil that sandwiches the continuous web from the thickness direction with the ultrasonic horn;
A reciprocating linear movement mechanism for moving the ultrasonic horn and the anvil along an outward path and a return path parallel to the linear trajectory;
In the forward path, a constant velocity region is set in which both the ultrasonic horn and the anvil move at the same speed value as the conveying speed value of the continuous web while facing each other in the thickness direction,
While moving in the constant velocity region, the ultrasonic horn and the anvil perform clamping of the continuous web and release of the clamping,
The ultrasonic sealing device, wherein the ultrasonic horn emits the ultrasonic vibration while the continuous web is sandwiched.

このような超音波シール装置によれば、設定された等速域においては、超音波ホーンとアンビルとの両者は、連続ウエブと同じ速度値で同連続ウエブの直線軌道に沿って移動しながら、同連続ウエブへの挟持及びその解除を行う。よって、連続ウエブと超音波ホーンとアンビルとの三者の速度値が揃った状態で、挟持して溶着処理を行うので、これら三者の間の相対速度(相対滑り)を抑制することができる。その結果、擦れや皺の発生を抑制可能になるとともに、溶着部を安定して形成可能となる。   According to such an ultrasonic sealing device, in the set constant velocity region, both the ultrasonic horn and the anvil move along the linear orbit of the continuous web at the same speed value as the continuous web, Clamping and releasing the web. Therefore, since the three web speed values of the continuous web, the ultrasonic horn, and the anvil are aligned, the sandwiching process is performed, so that the relative speed (relative slip) between the three webs can be suppressed. . As a result, the occurrence of rubbing and wrinkles can be suppressed, and the welded portion can be formed stably.

かかる超音波シール装置であって、
前記超音波ホーンと前記アンビルと前記往復直線移動機構とを有するモジュールが、前記直線軌道に沿って複数並んで配置されていても良い。
Such an ultrasonic sealing device,
A plurality of modules having the ultrasonic horn, the anvil, and the reciprocating linear movement mechanism may be arranged side by side along the linear trajectory.

かかる超音波シール装置であって、
前記複数のモジュールとして少なくとも第1モジュールと第2モジュールとを有し、
前記第1モジュールの往復直線移動機構が往路の移動動作を行う際に、前記第2モジュールの往復直線移動機構は復路の移動動作を行い、
前記第1モジュールの往復直線移動機構が復路の移動動作を行う際に、前記第2モジュールの往復直線移動機構は往路の移動動作を行うのが望ましい。
このような超音波シール装置によれば、第1モジュールと第2モジュールとは、超音波ホーン及びアンビルの往復移動に関して、互いに略逆動作を行う関係にある。よって、これら超音波ホーンやアンビルの往復移動に起因して、これら第1モジュールや第2モジュールを支持している鏡板の如き支持部材に作用し得る慣性力を互いに相殺させることができて、その結果、上記支持部材の如き、第1モジュールや第2モジュールの周囲に配される部材に生じ得る機械的振動を低減可能となる。
Such an ultrasonic sealing device,
And having at least a first module and a second module as the plurality of modules,
When the reciprocating linear movement mechanism of the first module performs the forward movement operation, the reciprocating linear movement mechanism of the second module performs the backward movement operation,
When the reciprocating linear movement mechanism of the first module performs a backward movement operation, the reciprocating linear movement mechanism of the second module preferably performs an outward movement operation.
According to such an ultrasonic sealing device, the first module and the second module are in a relationship of performing substantially opposite operations with respect to the reciprocating movement of the ultrasonic horn and the anvil. Therefore, due to the reciprocating movement of these ultrasonic horns and anvils, the inertial forces that can act on the support member such as the end plate supporting the first module and the second module can be offset each other. As a result, it is possible to reduce mechanical vibration that can occur in members disposed around the first module and the second module, such as the support member.

かかる超音波シール装置であって、
前記複数のモジュールとして少なくとも第1モジュールと第2モジュールとを有し、
前記第1モジュールの往復直線移動機構が往路の移動動作を行う際に、前記第2モジュールの往復直線移動機構は往路の移動動作を行い、
前記第1モジュールの往復直線移動機構が復路の移動動作を行う際に、前記第2モジュールの往復直線移動機構は復路の移動動作を行っても良い。
Such an ultrasonic sealing device,
And having at least a first module and a second module as the plurality of modules,
When the reciprocating linear movement mechanism of the first module performs an outward movement operation, the reciprocating linear movement mechanism of the second module performs an outward movement operation,
When the reciprocating linear movement mechanism of the first module performs the backward movement operation, the reciprocating linear movement mechanism of the second module may perform the backward movement operation.

かかる超音波シール装置であって、
前記挟持中に、前記超音波ホーンは前記超音波振動のエネルギーを一定量だけ前記連続ウエブに付与するのが望ましい。
このような超音波シール装置によれば、挟持中に超音波ホーンは超音波振動のエネルギーを一定量だけ連続ウエブに付与する。よって、連続ウエブの搬送速度の変動起因で溶着部毎に溶融レベルがばらつくことを有効に防ぐことができて、その結果、所定の溶着強度を有した溶着部を安定して形成可能となる。
Such an ultrasonic sealing device,
During the clamping, the ultrasonic horn preferably applies a certain amount of ultrasonic vibration energy to the continuous web.
According to such an ultrasonic sealing device, the ultrasonic horn applies a certain amount of ultrasonic vibration energy to the continuous web during clamping. Therefore, it is possible to effectively prevent the melt level from being varied for each welded part due to fluctuations in the conveying speed of the continuous web, and as a result, a welded part having a predetermined weld strength can be stably formed.

かかる超音波シール装置であって、
前記往復直線移動機構を制御するコントローラを有し、
前記コントローラの制御によって、前記往復直線移動機構は、前記超音波ホーンと前記アンビルとを、規定の動作パターンに基づいて前記往路及び前記復路に沿って繰り返し移動し、
前記コントローラは、互いに異なる前記動作パターンのデータを複数有し、
前記コントローラは、形成すべき前記溶着部の前記搬送方向の形成ピッチの大きさに対応する動作パターンのデータを前記複数の動作パターンのデータのなかから選択して、前記往復直線移動機構の制御に用いることが望ましい。
このような超音波シール装置によれば、コントローラは、形成すべき溶着部の形成ピッチの大きさに対応する動作パターンのデータを選択して、この選択された動作パターンのデータに基づいて往復直線移動機構を制御する。よって、溶着部の形成ピッチを容易に変更可能となる。
Such an ultrasonic sealing device,
A controller for controlling the reciprocating linear movement mechanism;
Under the control of the controller, the reciprocating linear movement mechanism repeatedly moves the ultrasonic horn and the anvil along the forward path and the backward path based on a predetermined operation pattern,
The controller has a plurality of data of the operation patterns different from each other,
The controller selects operation pattern data corresponding to the formation pitch of the welded portion to be formed from the plurality of operation pattern data to control the reciprocating linear movement mechanism. It is desirable to use it.
According to such an ultrasonic sealing device, the controller selects the operation pattern data corresponding to the size of the formation pitch of the welded portion to be formed, and the reciprocating straight line based on the selected operation pattern data. Control the moving mechanism. Therefore, the formation pitch of the welded portions can be easily changed.

かかる超音波シール装置であって、
超音波シール装置の上下方向は、前記直線軌道に対して直交しており、
前記アンビルは、前記上下方向において前記超音波ホーンの上方に位置するのが望ましい。
Such an ultrasonic sealing device,
The vertical direction of the ultrasonic sealing device is orthogonal to the linear trajectory,
The anvil is preferably located above the ultrasonic horn in the vertical direction.

このような超音波シール装置によれば、アンビルをメンテナンスし易くなる。   According to such an ultrasonic sealing device, it becomes easy to maintain the anvil.

かかる超音波シール装置であって、
前記アンビルは、前記上下方向に移動可能に構成され、前記超音波ホーンは前記上下方向に移動不能に構成されているのが望ましい。
Such an ultrasonic sealing device,
It is desirable that the anvil is configured to be movable in the vertical direction, and the ultrasonic horn is configured to be immovable in the vertical direction.

このような超音波シール装置によれば、超音波ホーンは上下方向に移動不能に構成されているので、挟持動作に係る可動部の数を少なくすることができる。   According to such an ultrasonic sealing device, since the ultrasonic horn is configured to be immovable in the vertical direction, the number of movable parts related to the clamping operation can be reduced.

かかる超音波シール装置であって、
前記アンビルは、前記上下方向に移動不能に構成され、前記超音波ホーンは前記上下方向に移動可能に構成されているのが望ましい。
Such an ultrasonic sealing device,
It is desirable that the anvil is configured to be immovable in the vertical direction, and the ultrasonic horn is configured to be movable in the vertical direction.

このような超音波シール装置によれば、アンビルは上下方向に移動不能に構成されているので、挟持動作に係る可動部の数を少なくすることができる。   According to such an ultrasonic sealing device, since the anvil is configured to be immovable in the vertical direction, the number of movable parts related to the clamping operation can be reduced.

かかる超音波シール装置であって、
前記アンビル及び前記超音波ホーンの両方が、前記上下方向に移動可能に構成されていても良い。
Such an ultrasonic sealing device,
Both the anvil and the ultrasonic horn may be configured to be movable in the vertical direction.

また、
吸収性物品に係る連続ウエブが所定の直線軌道を搬送される間に、前記連続ウエブに超音波振動を付与することにより、前記連続ウエブの搬送方向に間隔をおいて複数の溶着部を形成する超音波シール方法であって、
前記超音波振動を発する超音波ホーンと、
前記超音波ホーンが前記超音波振動を前記連続ウエブに向けて発する際に、前記超音波ホーンとで、前記連続ウエブをその厚み方向から挟持するアンビルと、
前記超音波ホーン及び前記アンビルを、前記直線軌道と平行な往路及び復路に沿って移動させる往復直線移動機構と、を用い、
前記往路において、前記超音波ホーン及び前記アンビルの両者を互いに前記厚み方向に対向させつつ前記連続ウエブの搬送速度値と同じ速度値で移動することと、
前記同じ速度値で移動することにおいて、前記超音波ホーンと前記アンビルとが、前記連続ウエブの挟持を行うことと、
前記同じ速度値で移動することにおいて、前記挟持の解除をすることと、
前記挟持中に、前記超音波ホーンが前記超音波振動を発することと、を有することを特徴とする超音波シール方法。
このような超音波シール方法によれば、連続ウエブの搬送速度値と同じ速度値で超音波ホーン及びアンビルの両者が移動することにおいては、これら両者は、同連続ウエブの直線軌道に沿って移動しながら、同連続ウエブへの挟持及びその解除を行う。よって、連続ウエブと超音波ホーンとアンビルとの三者の速度値が揃った状態で、挟持して溶着処理を行うので、これら三者の間の相対速度(相対滑り)を抑制することができる。その結果、擦れや皺の発生を抑制可能になるとともに、溶着部を安定して形成可能となる。
Also,
While the continuous web related to the absorbent article is transported along a predetermined linear track, a plurality of welds are formed at intervals in the transport direction of the continuous web by applying ultrasonic vibration to the continuous web. An ultrasonic sealing method,
An ultrasonic horn for emitting the ultrasonic vibration;
When the ultrasonic horn emits the ultrasonic vibration toward the continuous web, the anvil that sandwiches the continuous web from the thickness direction with the ultrasonic horn;
A reciprocating linear movement mechanism that moves the ultrasonic horn and the anvil along an outward path and a return path parallel to the linear trajectory,
In the forward path, both the ultrasonic horn and the anvil are moved at the same speed value as the conveyance speed value of the continuous web while facing each other in the thickness direction;
In moving at the same speed value, the ultrasonic horn and the anvil perform clamping of the continuous web;
Releasing the clamping in moving at the same speed value;
The ultrasonic sealing method, wherein the ultrasonic horn emits the ultrasonic vibration during the clamping.
According to such an ultrasonic sealing method, when both the ultrasonic horn and the anvil move at the same speed value as the conveying speed value of the continuous web, both of them move along the linear trajectory of the continuous web. Meanwhile, the web is clamped and released. Therefore, since the three web speed values of the continuous web, the ultrasonic horn, and the anvil are aligned, the sandwiching process is performed, so that the relative speed (relative slip) between the three webs can be suppressed. . As a result, the occurrence of rubbing and wrinkles can be suppressed, and the welded portion can be formed stably.

===第1実施形態===
本発明に係る超音波シール装置20は、連続生産ラインで搬送される連続ウエブ1aに対して、連続ウェブ1aの搬送方向に所定ピッチP1で間隔をおいて複数の溶着部14を形成する装置である。そして、この第1実施形態では、連続ウエブ1aとしてパンツ型おむつ1の基材1aを例示している。
図3A及び図3Bは、超音波シール装置20を備えるシール部に搬送されるおむつ1の基材1aの説明図であって、両図とも斜視図である。なお、図3Bには、シール部に搬送される直前の状態を示しており、図3Aには、図3Bの直前の状態を示している。
=== First Embodiment ===
The ultrasonic sealing device 20 according to the present invention is a device that forms a plurality of welds 14 at a predetermined pitch P1 in the conveyance direction of the continuous web 1a with respect to the continuous web 1a conveyed on the continuous production line. is there. And in this 1st Embodiment, the base material 1a of the underpants type diaper 1 is illustrated as the continuous web 1a.
3A and 3B are explanatory views of the base material 1a of the diaper 1 conveyed to the seal portion including the ultrasonic sealing device 20, and both are perspective views. 3B shows a state immediately before being transferred to the seal portion, and FIG. 3A shows a state immediately before FIG. 3B.

図3Aの時点では、おむつ1の基材1aは、着用者の肌側に位置すべき表面シート2となる連続ウエブ2aと、非肌側に位置すべき裏面シート3となる連続ウエブ3aと、これら連続ウエブ2a,3a同士の間に介装されつつ、搬送方向に製品ピッチP1で間隔をおいて配されたパルプ繊維等の吸収体4,4…と、を有する。そして、これら三つの構成要素2a,3a,4が、互いに隣接するもの同士で貼り合わされ、且つ展開された状態にある。なお、本発明は、これら3つの構成要素2a,3a,4の使用に限定されない。   At the time of FIG. 3A, the base material 1a of the diaper 1 includes a continuous web 2a that becomes the top sheet 2 that should be positioned on the skin side of the wearer, and a continuous web 3a that becomes the back sheet 3 that should be positioned on the non-skin side, .. Are disposed between the continuous webs 2a, 3a, and have absorbent bodies 4, 4... Such as pulp fibers disposed at intervals with a product pitch P1 in the conveying direction. And these three components 2a, 3a, 4 are in a state where they are pasted together and deployed together. The present invention is not limited to the use of these three components 2a, 3a, and 4.

また、この時点では、既に、搬送方向に互いに隣り合う吸収体4,4同士の間には、脚周り開口部8が形成されている。また、この脚周り開口部8及び股下部13に沿って、脚周り開口部8に伸縮性を付与する弾性部材6が貼着されている。更には、胴周りに相当する端部に沿っても、胴周りに伸縮性を付与する胴周り弾性部材5が貼着されている。なお、本発明は、これの構成要素5,6の使用に限定されない。   At this time, the leg-hole opening 8 is already formed between the absorbers 4 and 4 adjacent to each other in the transport direction. An elastic member 6 is attached along the leg opening 8 and the crotch 13 to impart stretchability to the leg opening 8. Furthermore, a waist elastic member 5 that imparts stretchability to the periphery of the waist is also adhered along the end corresponding to the periphery of the waist. The present invention is not limited to the use of these components 5 and 6.

そして、シール部の直前においては、この図3Aの展開状態の基材1aが、その幅方向の略中央部たる股下部13を折り位置として二つ折りにされることにより、同基材1aは、図3Bのような二つ折り状態でシール部に送り込まれる。つまり、おむつ1の前身頃10に相当する部位と、後身頃11に相当する部位とが、上下に重ね合わされた状態で、シール部へ送り込まれる。   Then, immediately before the seal portion, the base material 1a in the unfolded state of FIG. 3A is folded in half with the crotch part 13 being the substantially central portion in the width direction as the folding position, It is fed into the seal part in a folded state as shown in FIG. 3B. That is, the part corresponding to the front body 10 of the diaper 1 and the part corresponding to the back body 11 are sent to the seal part in a state where they are superposed vertically.

但し、この時点のおむつ1の基材1aにあっては、互いに重ね合わされた前身頃10に相当する部分と後身頃11に相当する部分とが、未だ未接合の状態にある。そのため、当該基材1aに対して、シール部の超音波シール装置20が、おむつ1の胴周りの側端部1eに相当する部位1eに溶着処理を施して溶着部14を形成することにより、基材1aの前身頃10と後身頃11とを互いに接合する。なお、本発明は、基材1aを溶着すること、又は、この位置で溶着することに限定されない。   However, in the base material 1a of the diaper 1 at this time, the portion corresponding to the front body 10 and the portion corresponding to the back body 11 that are overlapped with each other are still unjoined. Therefore, the ultrasonic sealing device 20 of the seal portion performs a welding process on the portion 1e corresponding to the side end portion 1e around the trunk of the diaper 1 to form the weld portion 14 on the base material 1a. The front body 10 and the back body 11 of the base material 1a are joined together. In addition, this invention is not limited to welding the base material 1a or welding in this position.

ここで、この溶着対象部位1e、つまりおむつ1の胴周りの側端部に相当する部位1eは、基材1a上において搬送方向に製品ピッチP1で吸収体4の両脇に現れる。よって、超音波シール装置20は、基材1aのうちで吸収体4の両脇の部位1eに、搬送方向に製品ピッチP1で溶着部14を形成する。なお、このとき、図3Bに示すように、かかる溶着部14にあっては、一箇所1eにつき、搬送方向の互いに隣り合う位置に少なくとも一対14,14が並んで形成される。そして、かかる溶着部14が形成された基材1aは下工程へと送られて、下工程では一対の溶着部14,14同士の間の位置1cで順次基材1aが分断されて、これにより、胴周りの開口部や一対の脚周り開口部8,8を有したおむつ1が生成される。   Here, the welding target portion 1e, that is, the portion 1e corresponding to the side end portion around the waist of the diaper 1 appears on both sides of the absorbent body 4 at the product pitch P1 in the transport direction on the base material 1a. Therefore, the ultrasonic sealing device 20 forms the welded portions 14 at the product pitch P1 in the transport direction in the parts 1e on both sides of the absorber 4 in the base material 1a. At this time, as shown in FIG. 3B, in the welded portion 14, at least a pair 14, 14 is formed side by side at positions adjacent to each other in the transport direction for each location 1 e. And the base material 1a in which this welding part 14 was formed is sent to a lower process, and in the lower process, the base material 1a is divided | segmented in order by the position 1c between a pair of welding parts 14 and 14, Thereby, A diaper 1 having an opening around the waist and a pair of leg openings 8, 8 is generated.

ちなみに、表面シート2の連続ウエブ2a及び裏面シート3の連続ウエブ3aの素材例としては、熱可塑性樹脂等の熱溶着性素材からなる不織布や織布、フィルムなどが挙げられるが、超音波溶着可能な素材であれば、何等これに限らない。また、本発明は、おむつ1の製造における本プロセスでの使用に限定されない。   Incidentally, examples of the material of the continuous web 2a of the top sheet 2 and the continuous web 3a of the back sheet 3 include non-woven fabrics, woven fabrics, and films made of a heat-welding material such as a thermoplastic resin, but ultrasonic welding is possible. If it is a simple material, it is not limited to this. Moreover, this invention is not limited to the use in this process in manufacture of the diaper 1. FIG.

図4Aは、超音波シール装置20の概略側面図であり、図4Bは、図4A中のB−B線矢視図であり、図4Cは、図4A中のC−C矢視図である。なお、図4Aでは、アンビル保持部72等を破断して示しており、また、図4B及び図4C中では、図の錯綜を防ぐべく、本来断面部に示すべきハッチングを一部の部材に対しては省略して示している。   4A is a schematic side view of the ultrasonic sealing device 20, FIG. 4B is a view taken along the line BB in FIG. 4A, and FIG. 4C is a view taken along the line CC in FIG. 4A. . In FIG. 4A, the anvil holding portion 72 and the like are shown broken, and in FIGS. 4B and 4C, hatching that should originally be shown in the cross-section portion is applied to some members in order to prevent complication of the drawing. Are omitted.

また、以下の説明では、製造ラインの幅方向のことを「CD方向」又は「左右方向」とも言う。なお、CD方向は水平方向を向いている。また、CD方向と直交する2方向のうちで、鉛直方向のことを「上下方向」とも言い、同水平方向のことを「前後方向」とも言う。ちなみに、左右方向、上下方向、及び前後方向の三者は、互いに直交関係にある。   In the following description, the width direction of the production line is also referred to as “CD direction” or “left-right direction”. The CD direction is in the horizontal direction. Of the two directions orthogonal to the CD direction, the vertical direction is also referred to as “vertical direction”, and the horizontal direction is also referred to as “front-rear direction”. Incidentally, the three in the left-right direction, the up-down direction, and the front-rear direction are orthogonal to each other.

この超音波シール装置20においては、基材1aは、搬送ローラー90等の搬送装置90により、搬送方向に所定の搬送速度値V1aで連続的に搬送されている。この例では、基材1aは、厚み方向を上下方向に向け、幅方向を左右方向に向けた姿勢で、前後方向を搬送方向とする直線軌道Tr1aに沿って搬送されている。つまり、前後方向の直線軌道Tr1aを搬送軌道Tr1aとして基材1aは搬送されている。   In this ultrasonic sealing device 20, the base material 1a is continuously transported at a predetermined transport speed value V1a in the transport direction by a transport device 90 such as a transport roller 90. In this example, the base material 1a is conveyed along a linear track Tr1a with the thickness direction in the up-down direction and the width direction in the left-right direction, with the front-rear direction as the transport direction. That is, the base material 1a is transported using the straight track Tr1a in the front-rear direction as the transport track Tr1a.

なお、搬送装置90を制御するコントローラ(不図示)は、製造ラインの他の装置との同期を取るべく同期信号を受信して、この同期信号に基づいて搬送動作を行っている。この同期信号は、例えば製造ラインの基準となる装置(例えば、脚周り開口部8を打ち抜き形成するロータリーダイカッター装置など)での基材1aの搬送量を計測するロータリーエンコーダ等のセンサーから出力される。そして、当該同期信号は、例えば製品たるおむつ一つ分の搬送量(つまり製品ピッチP1)を単位搬送量として0°〜360°の各回転角度値を、搬送量に比例して割り当ててなる回転角度信号である。つまり、おむつ一つ分だけ搬送されると、0°から360°までの回転角度値が出力され、当該一つ分の搬送の都度、0°から360°までの回転角度値の出力が周期的に繰り返される。但し、同期信号は、何等回転角度信号に限るものではない。例えば上記単位搬送量に0〜8191の各デジタル値を、搬送量に比例して割り当ててなるデジタル信号を、同期信号として用いても良い。また、同期信号として搬送量に比例した数のパルスを有するパルス信号を用い、同信号のパルスの数をカウントして回転角度を検知しても良い。   A controller (not shown) that controls the transfer device 90 receives a synchronization signal to synchronize with other devices on the production line, and performs a transfer operation based on the synchronization signal. This synchronization signal is output from a sensor such as a rotary encoder that measures the conveyance amount of the base material 1a in a device that becomes a reference of a production line (for example, a rotary die cutter device that punches and forms the opening 8 around the leg). The The synchronization signal is a rotation obtained by assigning each rotation angle value of 0 ° to 360 ° in proportion to the conveyance amount, for example, with the conveyance amount for one product diaper (that is, the product pitch P1) as a unit conveyance amount. It is an angle signal. In other words, when only one diaper is transported, a rotation angle value from 0 ° to 360 ° is output, and each time one diaper is transported, a rotation angle value from 0 ° to 360 ° is output periodically. Repeated. However, the synchronization signal is not limited to any rotation angle signal. For example, a digital signal obtained by assigning each digital value of 0 to 8191 to the unit carry amount in proportion to the carry amount may be used as the synchronization signal. Further, a pulse signal having a number of pulses proportional to the carry amount may be used as the synchronization signal, and the rotation angle may be detected by counting the number of pulses of the signal.

図4Aに示すように、超音波シール装置20は、基材1aの直線状の搬送軌道Tr1aの下方に配置された超音波ホーン30と、同搬送軌道Tr1aの上方に配置されたアンビル60と、これら超音波ホーン30及びアンビル60を、基材1aの搬送軌道Tr1aと平行な往路及び復路に沿って移動させる前後方向往復直線移動機構と、これら超音波ホーン30とアンビル60とに基材1aを厚み方向たる上下方向から挟持させる挟持駆動機構と、これら機構を制御するコントローラ80と、を有する。   As shown in FIG. 4A, the ultrasonic sealing device 20 includes an ultrasonic horn 30 disposed below the linear transport track Tr1a of the substrate 1a, an anvil 60 disposed above the transport track Tr1a, The ultrasonic horn 30 and the anvil 60 are moved along a forward and backward reciprocating linear movement mechanism parallel to the transport path Tr1a of the base material 1a, and the base material 1a is attached to the ultrasonic horn 30 and the anvil 60. It has a clamping drive mechanism that clamps in the thickness direction from the vertical direction, and a controller 80 that controls these mechanisms.

ここで、上記の往路は、基材1aの搬送方向の下流側たる前方を向いているとともに、当該往路のうちの略中央の領域には、超音波ホーン30及びアンビル60の両者が互いに厚み方向に対向した状態で基材1aの搬送速度値V1aと同じ速度値で移動する等速域Reが設定されている。また、この等速域Reを移動中に、超音波ホーン30とアンビル60とは、基材1aの挟持及び挟持の解除を行い、更に、この挟持中には、超音波ホーン30が超音波振動を発するようになっている。   Here, the outward path is directed to the front, which is the downstream side in the transport direction of the base material 1a, and both the ultrasonic horn 30 and the anvil 60 are in the thickness direction in a substantially central region of the forward path. A constant velocity region Re that moves at the same speed value as the conveyance speed value V1a of the substrate 1a in a state of facing the substrate 1a is set. Further, while moving in the constant velocity region Re, the ultrasonic horn 30 and the anvil 60 hold the base material 1a and release the holding. Further, during the holding, the ultrasonic horn 30 is ultrasonically vibrated. Is coming out.

よって、この超音波シール装置20によれば、基材1aと超音波ホーン30とアンビル60との三者の前後方向の移動速度値が揃った状態で、基材1aを挟持して溶着処理を行うことができる。つまり、溶着処理の際のこれら三者30,60,1aの間の相対速度(相対滑り)を抑制できるので、擦れや基材1aの皺の発生を抑えつつ溶着部14を安定して形成可能となる。   Therefore, according to the ultrasonic sealing device 20, the base material 1a, the ultrasonic horn 30, and the anvil 60 have the same moving speed value in the front-rear direction, and the base material 1a is sandwiched to perform the welding process. It can be carried out. That is, since the relative speed (relative slip) between these three members 30, 60, 1 a during the welding process can be suppressed, it is possible to stably form the welded portion 14 while suppressing the occurrence of rubbing and wrinkles of the base material 1 a. It becomes.

ちなみに、上述の溶着処理後には、超音波ホーン30及びアンビル60が等速域Reから出る前に順次超音波振動の停止及び挟持の解除がなされ、しかる後に超音波ホーン30とアンビル60とは前進限Pfにおいて速やかに移動方向を往路方向から復路方向へ反転して、復路の移動動作を開始する。そして、同復路の移動において往路の始端位置たる後退限Pbに到達したら、再度移動方向を復路方向から往路方向へ反転して、往路の移動動作を開始し、以降、既述の往路の移動動作から始まる一連の溶着処理に係る動作を行う。そして、これらを繰り返すことにより、基材1aには、搬送方向たる前後方向に製品ピッチP1で間隔をおいて複数の溶着部14が形成される。   Incidentally, after the above-mentioned welding process, the ultrasonic horn 30 and the anvil 60 are sequentially stopped and released before the ultrasonic horn 30 and the anvil 60 exit the constant velocity region Re, and thereafter the ultrasonic horn 30 and the anvil 60 move forward. In the limit Pf, the moving direction is quickly reversed from the forward direction to the backward direction, and the moving operation of the backward path is started. When the backward movement reaches the backward limit Pb, which is the start position of the forward path, the movement direction is reversed again from the backward direction to the forward direction, and the forward movement operation is started. The operation | movement which concerns on a series of welding processes which starts from is performed. By repeating these steps, a plurality of welds 14 are formed on the substrate 1a at intervals of the product pitch P1 in the front-rear direction, which is the transport direction.

以下、この超音波シール装置20について詳説する。
超音波シール装置20は、例えば、製造ラインに壁面の如く立設された支持部材としての鏡板19に片持ち状態で支持されている。すなわち、鏡板19は、製造ラインのCD方向の一方側(例えば左側)において、上下方向及び前後方向に延在して配されており、その鉛直面19aを支持面として、超音波シール装置20を支持している。
Hereinafter, the ultrasonic sealing device 20 will be described in detail.
For example, the ultrasonic sealing device 20 is supported in a cantilevered state on a mirror plate 19 as a support member standing on a production line like a wall surface. That is, the end plate 19 is arranged to extend in the up-down direction and the front-rear direction on one side (for example, the left side) of the CD direction of the production line. I support it.

ここで、この超音波シール装置20は、前述した構成要素の区分以外に、次のような構成要素に区分することができる。すなわち、超音波シール装置20は、超音波ホーン30を具備する超音波ホーンユニット30Uと、アンビル60を具備するアンビルユニット60Uと、コントローラ80と、を有する。そして、以下の説明では、説明の都合上、この構成要素30U,60U,80の区分で説明する。なお、前述の構成要素の区分の「前後方向往復直線移動機構」や「挟持駆動機構」に相当する構成要素については、その相当する構成要素が登場したときに、随時説明する。   Here, the ultrasonic sealing device 20 can be divided into the following components in addition to the above-described component divisions. That is, the ultrasonic sealing device 20 includes an ultrasonic horn unit 30U including the ultrasonic horn 30, an anvil unit 60U including the anvil 60, and a controller 80. In the following description, the components 30U, 60U, and 80 will be described for convenience of description. Note that the components corresponding to the “reciprocating linear movement mechanism in the back-and-forth direction” and “clamping drive mechanism” in the above-described component classification will be described as needed when the corresponding components appear.

<<<超音波ホーンユニット30U>>>
超音波ホーンユニット30Uは、当該超音波ホーンユニット30Uに係る各種機器を支持すべく鏡板19に相対移動不能に固定された水平な床板32と、床板32の上面に設けられて、超音波ホーン30を前後方向の直線軌道に沿って往復移動可能に案内するガイド部材40と、同床板32の上面に設けられて、超音波ホーン30に前後方向の往復移動に係る駆動力を付与する前後方向駆動機構50と、を有する。なお、上述のガイド部材40と前後方向駆動機構50とが、「前後方向往復直線移動機構」に相当する。
<<<< Ultrasonic Horn Unit 30U >>>>
The ultrasonic horn unit 30U is provided on the upper surface of the floor plate 32 and a horizontal floor plate 32 fixed to the end plate 19 so as not to move relative to the various kinds of equipment related to the ultrasonic horn unit 30U. Is provided on the upper surface of the floor plate 32, and applies a driving force related to the reciprocating movement in the front-rear direction to the ultrasonic horn 30. And a mechanism 50. The guide member 40 and the front-rear direction driving mechanism 50 described above correspond to a “front-rear direction reciprocating linear movement mechanism”.

床板32は、CD方向の一端縁(左端縁)にて鏡板19に固定され、これにより片持ち状態で支持されている。   The floor plate 32 is fixed to the end plate 19 at one end edge (left end edge) in the CD direction, and is supported in a cantilever state.

ガイド部材40は、例えばリニアガイド40である。すなわち、床板32の上面に相対移動不能に固定され、前後方向に沿って延在する左右一対のレール42,42と、各レール42,42に対してそれぞれ設けられ、前後方向にのみ相対移動可能に係合するスライダ44,44と、を有する。そして、これらスライダ44,44に適宜な支持台46を介して超音波ホーン30が相対移動不能に固定されており、これにより、超音波ホーン30はスライダ44,44と一体となって前後方向に往復移動可能に案内されている。   The guide member 40 is, for example, a linear guide 40. That is, it is fixed to the upper surface of the floor plate 32 so as not to be relatively movable, and is provided with respect to each of the pair of left and right rails 42 and 42 extending in the front-rear direction and the rails 42 and 42, and is relatively movable only in the front-rear direction. And sliders 44, 44 that engage with each other. The ultrasonic horn 30 is fixed to the sliders 44 and 44 through an appropriate support 46 so as not to move relative to each other. As a result, the ultrasonic horn 30 is integrated with the sliders 44 and 44 in the front-rear direction. Guided to reciprocate.

前後方向駆動機構50は、モータ52と送りねじ機構56とを有する。送りねじ機構56は、モータ52の駆動回転軸52aの回転動作を、前後方向の直線移動動作に変換して超音波ホーン30に伝達するものであり、ここでは、ボールねじ機構56が使用されている。すなわち、ボールねじ機構56のねじシャフト57は、その軸方向を前後方向に沿わせて配されており、この状態においてねじシャフト57は、その両端部を床板32の上面の軸受け部材59,59により回転自在に支持されている。また、ねじシャフト57の外周面の螺旋溝(不図示)には、多数のボール状の転動体(不図示)を介してナット部材58が螺合し、且つこのナット部材58には、既述の支持台46を介して超音波ホーン30が固定されている。更には、モータ52の駆動回転軸52aとねじシャフト57とは、適宜な軸継手55を介して同芯に連結されている。よって、モータ52の駆動回転軸52aの回転動作が、ねじシャフト57に伝達されてねじシャフト57が回転されると、ナット部材58と一体に超音波ホーン30は前後方向に移動する。   The front-rear direction drive mechanism 50 includes a motor 52 and a feed screw mechanism 56. The feed screw mechanism 56 converts the rotational operation of the drive rotary shaft 52a of the motor 52 into a linear movement operation in the front-rear direction and transmits it to the ultrasonic horn 30. Here, the ball screw mechanism 56 is used. Yes. That is, the screw shaft 57 of the ball screw mechanism 56 is arranged with its axial direction along the front-rear direction. In this state, the screw shaft 57 is supported at both ends by bearing members 59 and 59 on the upper surface of the floor plate 32. It is supported rotatably. A nut member 58 is screwed into a spiral groove (not shown) on the outer peripheral surface of the screw shaft 57 via a large number of ball-shaped rolling elements (not shown). The ultrasonic horn 30 is fixed via the support base 46. Furthermore, the drive rotating shaft 52a of the motor 52 and the screw shaft 57 are connected concentrically via an appropriate shaft coupling 55. Therefore, when the rotation operation of the drive rotation shaft 52 a of the motor 52 is transmitted to the screw shaft 57 and the screw shaft 57 is rotated, the ultrasonic horn 30 moves in the front-rear direction integrally with the nut member 58.

モータ52は、例えばサーボモータ52であり、外部から送信される位置指令信号(制御信号)に基づいて位置制御を行う。すなわち、サーボモータ52は、その実績位置を検出可能な位置検出要素を具備したアンプ(不図示)を有している。よって、前後方向の任意の位置を目標位置として与えられれば、サーボモータ52は、アンプの位置検出要素からの実績位置のフィードバック信号等に基づいて、前後方向の目標位置へと超音波ホーン30を移動することができる。なお、かかる目標位置は、コントローラ80から位置指令信号の形でサーボモータ52に送信され、サーボモータ52は、この位置指令信号に基づいて動作する。   The motor 52 is, for example, a servo motor 52, and performs position control based on a position command signal (control signal) transmitted from the outside. That is, the servo motor 52 has an amplifier (not shown) having a position detection element capable of detecting the actual position. Therefore, if an arbitrary position in the front-rear direction is given as the target position, the servo motor 52 moves the ultrasonic horn 30 to the target position in the front-rear direction based on the feedback signal of the actual position from the position detection element of the amplifier. Can move. The target position is transmitted from the controller 80 to the servo motor 52 in the form of a position command signal, and the servo motor 52 operates based on this position command signal.

超音波ホーン30は、図5A及び図5Bの拡大側面図に示すように、基材1aをその厚み方向からアンビル60とで挟持すべく、基材1aの下面に近接対向する水平且つ平坦な挟持面30aを有している。そして、この挟持面30aには、付属の超音波振動発生装置31により発生された超音波振動が伝達され、これにより、図5Bに示すように、アンビル60とで挟持した基材1aに超音波振動が投入される。そして、基材1aにおける挟持された部分は、超音波振動の摩擦発熱等の作用で溶融して同部分には溶着部14が形成される。   As shown in the enlarged side views of FIGS. 5A and 5B, the ultrasonic horn 30 is sandwiched horizontally and flatly adjacent to the lower surface of the substrate 1a so as to sandwich the substrate 1a with the anvil 60 from the thickness direction. It has a surface 30a. Then, ultrasonic vibration generated by the attached ultrasonic vibration generator 31 is transmitted to the clamping surface 30a, and as a result, as shown in FIG. 5B, ultrasonic waves are applied to the base material 1a sandwiched between the anvil 60. Vibration is applied. The sandwiched portion of the substrate 1a is melted by the action of frictional heat generated by ultrasonic vibration, and a welded portion 14 is formed in the portion.

この超音波振動の発生開始は、適宜なトリガー信号に基づいて行われるが、発生停止については、予め設定された所定のエネルギー量(ジュール)が投入されことを検知した超音波振動発生装置31が行う。これにより、基材1aの搬送速度値V1aの変動起因で溶着部14毎に溶融レベルがばらつくのを防ぎ、その結果、所定の溶着強度を有した溶着部14を安定して形成可能となる。なお、発生開始タイミングを規定する上記トリガー信号については、例えばコントローラ80が生成して、超音波振動発生装置31へと送信しても良いし、あるいは、同期信号を受信する超音波振動発生装置31が、同期信号からトリガー信号の発生開始タイミングを自己判断して自身で発生しても良い。なお、本第1実施形態では、コントローラ80が、トリガー信号として超音波発生指令信号を生成し、超音波振動発生装置31に送信している。この超音波発生指令信号の送信タイミングについては後述する。   The generation start of the ultrasonic vibration is performed based on an appropriate trigger signal, but the generation stop is performed by the ultrasonic vibration generation device 31 that detects that a predetermined amount of energy (joule) is input in advance. Do. As a result, it is possible to prevent the melt level from being varied for each welded portion 14 due to fluctuations in the conveyance speed value V1a of the substrate 1a, and as a result, the welded portion 14 having a predetermined weld strength can be stably formed. The trigger signal that defines the generation start timing may be generated, for example, by the controller 80 and transmitted to the ultrasonic vibration generating device 31, or the ultrasonic vibration generating device 31 that receives a synchronization signal. However, it may be generated by self-determination of the trigger signal generation start timing from the synchronization signal. In the first embodiment, the controller 80 generates an ultrasonic generation command signal as a trigger signal and transmits the ultrasonic generation command signal to the ultrasonic vibration generator 31. The transmission timing of this ultrasonic wave generation command signal will be described later.

<<<アンビルユニット60U>>>
アンビルユニット60Uは、当該アンビルユニット60Uに係る各種機器を支持すべく鏡板19に相対移動不能に固定された水平な天板62と、天板62の下面に設けられて、アンビル60を前後方向の直線軌道に沿って往復移動可能に案内するガイド部材40ANと、同天板62の下面に設けられて、アンビル60に前後方向の往復移動に係る駆動力を付与する前後方向駆動機構50ANと、超音波ホーン30とで基材1aを挟持すべくアンビル60を基材1aの厚み方向たる上下方向に往復移動させる上下方向往復移動機構70と、を有する。なお、上述のガイド部材40ANと前後方向駆動機構50ANとが、「前後方向往復直線移動機構」に相当し、上下方向往復移動機構70が、「挟持駆動機構」に相当する。
<<<< Anvil Unit 60U >>>>
The anvil unit 60U is provided on a horizontal top plate 62 fixed to the end plate 19 so as not to be relatively movable so as to support various devices related to the anvil unit 60U, and the lower surface of the top plate 62. A guide member 40AN that guides the reciprocating movement along a straight track, a front-rear direction driving mechanism 50AN that is provided on the lower surface of the top plate 62 and applies a driving force related to the reciprocating movement in the front-rear direction to the anvil 60; A vertical reciprocating mechanism 70 for reciprocating the anvil 60 in the vertical direction, which is the thickness direction of the base material 1a, to sandwich the base material 1a with the sonic horn 30 is provided. The guide member 40AN and the front-rear direction driving mechanism 50AN described above correspond to a “front-rear direction reciprocating linear movement mechanism”, and the up-down direction reciprocating movement mechanism 70 corresponds to a “holding drive mechanism”.

天板62は、CD方向の一端縁(左端縁)にて鏡板19に固定され、これにより片持ち支持状態で支持されている。そして、この天板62の下面にガイド部材40ANや前後方向駆動機構50ANが設けられている。これらガイド部材40ANや前後方向駆動機構50ANの基本構造は、前述の超音波ホーンユニット30Uのそれら40,50と概ね同じである。すなわち、既述の超音波ホーンユニット30Uのガイド部材40たるリニアガイド40や、前後方向駆動機構50の送りねじ機構たるボールねじ機構56を、上下反転して天板62の下面に固定したものが、ほぼそのままアンビルユニット60Uでのガイド部材40ANや前後方向駆動機構50ANになっている。よって、超音波ホーンユニット30Uのガイド部材40や前後方向駆動機構50とは、上記の点で主に異なり、それ以外の点では概ね同構造なので、アンビルユニット60Uのガイド部材40ANや前後方向駆動機構50ANに係る各種構成については、既にそうしているように、超音波ホーンユニット30Uの各種構成と同一の符号の末尾に更に「AN」を付けた符号で示し、その説明については省略する。   The top plate 62 is fixed to the end plate 19 at one end edge (left end edge) in the CD direction, and is supported in a cantilevered state. And the guide member 40AN and the front-back direction drive mechanism 50AN are provided in the lower surface of this top plate 62. As shown in FIG. The basic structures of the guide member 40AN and the longitudinal drive mechanism 50AN are substantially the same as those 40 and 50 of the ultrasonic horn unit 30U. That is, the linear guide 40 that is the guide member 40 of the ultrasonic horn unit 30U and the ball screw mechanism 56 that is the feed screw mechanism of the front-rear direction driving mechanism 50 are turned upside down and fixed to the lower surface of the top plate 62. The guide member 40AN and the front-rear direction drive mechanism 50AN in the anvil unit 60U are almost as they are. Therefore, the guide member 40 and the longitudinal drive mechanism 50 of the ultrasonic horn unit 30U are mainly different in the above points, and are otherwise substantially the same in structure, so the guide member 40AN and the longitudinal drive mechanism of the anvil unit 60U are the same. As described above, the various configurations related to 50AN are denoted by the same reference numerals as those of the various configurations of the ultrasonic horn unit 30U, and further denoted by “AN”, and the description thereof is omitted.

図4Aに示すように、アンビルユニット60Uのリニアガイド40AN及びボールねじ機構56ANは、それぞれ、超音波ホーンユニット30Uのリニアガイド40及びボールねじ機構56とで、基材1aの搬送軌道Tr1aを上下から(厚み方向から)挟むように、これら超音波ホーンユニット30Uのリニアガイド40及びボールねじ機構56の直上に配置されている。よって、このアンビルユニット60Uのリニアガイド40ANのスライダ44ANに吊下支持されるアンビル60は、基材1aの上方の位置において、基材1a越しに超音波ホーン30と対向して配されている。そのため、アンビルユニット60Uのボールねじ機構56ANのサーボモータ52ANを、超音波ホーンユニット30Uのボールねじ機構56のサーボモータ52と連動して動作するように制御すれば、超音波ホーン30との対向状態を維持しつつ、アンビル60を超音波ホーン30に連動させて前後方向に往復移動することができる。   As shown in FIG. 4A, the linear guide 40AN and the ball screw mechanism 56AN of the anvil unit 60U are respectively connected with the linear guide 40 and the ball screw mechanism 56 of the ultrasonic horn unit 30U, so that the transport track Tr1a of the base material 1a is viewed from above and below. These are arranged immediately above the linear guide 40 and the ball screw mechanism 56 of the ultrasonic horn unit 30U so as to be sandwiched (from the thickness direction). Therefore, the anvil 60 that is suspended and supported by the slider 44AN of the linear guide 40AN of the anvil unit 60U is disposed opposite to the ultrasonic horn 30 over the base 1a at a position above the base 1a. Therefore, if the servo motor 52AN of the ball screw mechanism 56AN of the anvil unit 60U is controlled so as to operate in conjunction with the servo motor 52 of the ball screw mechanism 56 of the ultrasonic horn unit 30U, the opposed state to the ultrasonic horn 30 is achieved. The anvil 60 can be reciprocated in the front-rear direction in conjunction with the ultrasonic horn 30 while maintaining the above.

図5A及び図5Bにアンビル60及び超音波ホーン30の拡大側面図を示す。
アンビル60を上下方向に往復移動させる上下方向往復移動機構70(厚み方向往復移動機構に相当)は、図5Aに示すように、アンビル60を上下方向に相対移動可能に保持するアンビル保持部72を有している。そして、このアンビル保持部72は、適宜な支持台76を介してリニアガイド40ANのスライダ44AN,44ANに相対移動不能に固定されており、これにより、同保持部72はアンビル60を保持しながら、スライダ44AN,44ANと一体となって前後方向に往復移動する。
5A and 5B are enlarged side views of the anvil 60 and the ultrasonic horn 30. FIG.
As shown in FIG. 5A, an up / down reciprocating mechanism 70 that reciprocates the anvil 60 in the up / down direction (equivalent to a reciprocating mechanism in the thickness direction) includes an anvil holding portion 72 that holds the anvil 60 so as to be relatively movable in the up / down direction. Have. The anvil holding portion 72 is fixed to the sliders 44AN and 44AN of the linear guide 40AN through an appropriate support base 76 so as not to move relative to each other. As a result, the holding portion 72 holds the anvil 60 while holding the anvil 60. The sliders 44AN and 44AN integrally move back and forth in the front-rear direction.

このアンビル保持部72は、例えば箱部材72を本体とし、その内部の空間には、上下方向に上記往復移動に相応する遊びをもってアンビル60を収容している。また、同箱部材72の下面壁部72dには、アンビル60の挟持面60aに係る下面60dを外方に突出させるべくアンビル60の横断面形状よりも若干大きい貫通孔72hが形成されている。更に、アンビル60の方は、その上端部から側方に環状に突出した鍔部60fを有しており、この鍔部60fは、上記箱部材72の下面壁部72dの貫通孔72hの周縁部と係合するようになっている。そして、この係合により、アンビル60の下方への移動量が所定量に制限されており、つまり、アンビル60は、所定の上限位置と下限位置との間だけ、上下移動が許容されている。
ここで、図5Aに示すように、上限位置では、アンビル60は、下方の基材1aとは所定の間隔をもって対向した状態になる。つまり基材1aとは接触していない。一方、白い矢印で示すようにこの上限位置から下限位置へと下降する際には、図5Bに示すように、アンビル60は、基材1aに接触するとともに、更に若干下方に基材1aを押し込み、これにより、アンビル60は、超音波ホーン30の挟持面30aとで基材1aを所定の挟持力で挟持した状態となる。そして、この挟持状態になったら、これ以上の下方への移動は、超音波ホーン30によって止められ、実際にはアンビル60が下限位置までは下降することはない。以下では、上限位置のことを「退避位置」といい、下限位置へ向かう途中で挟持状態になる位置のことを「挟持位置」とも言う。
The anvil holding portion 72 has, for example, a box member 72 as a main body, and an anvil 60 is accommodated in a space inside thereof with play corresponding to the above-described reciprocation in the vertical direction. In addition, a through hole 72h that is slightly larger than the cross-sectional shape of the anvil 60 is formed in the lower wall portion 72d of the box member 72 so that the lower surface 60d related to the clamping surface 60a of the anvil 60 protrudes outward. Further, the anvil 60 has a flange portion 60f that protrudes annularly from the upper end portion to the side, and this flange portion 60f is a peripheral portion of the through hole 72h of the lower surface wall portion 72d of the box member 72. To engage. By this engagement, the downward movement amount of the anvil 60 is limited to a predetermined amount, that is, the anvil 60 is allowed to move up and down only between a predetermined upper limit position and a lower limit position.
Here, as shown in FIG. 5A, at the upper limit position, the anvil 60 faces the lower substrate 1a with a predetermined interval. That is, it is not in contact with the substrate 1a. On the other hand, when descending from the upper limit position to the lower limit position as shown by the white arrow, as shown in FIG. 5B, the anvil 60 contacts the base material 1a and pushes the base material 1a further downward. Thus, the anvil 60 is in a state in which the base material 1a is clamped with a predetermined clamping force with the clamping surface 30a of the ultrasonic horn 30. And if it becomes this clamping state, the further downward movement will be stopped by the ultrasonic horn 30, and the anvil 60 will not actually fall to a lower limit position. Hereinafter, the upper limit position is referred to as a “retraction position”, and the position that is in a clamping state on the way to the lower limit position is also referred to as a “clamping position”.

一方、図5Aに示すように、かかるアンビル保持部72の上面壁部72uの下面72udとアンビル60の上面60u(アンビル60の下面60dの挟持面60aとは逆側の面)との間には、アンビル60を上下移動する駆動源として例えば空気ばね74が介装されている。空気ばね74は、密閉された袋体74を本体とする。そして、この袋体74は、空気供給により内部を加圧すると膨張する一方、空気排出により内部を減圧すると収縮する。また、アンビル保持部72の下面壁部72dと、アンビル60の鍔部60fとの間には圧縮ばね75が介装されており、その復元力によってアンビル60は常に上面壁部72u側へと(つまり上方へと)押し付けられている。よって、この圧縮ばね75と協働しながら空気ばね74に空気を給排することにより、アンビル60をアンビル保持部72に対して上下方向に往復移動させることができる。すなわち、空気ばね74に空気供給して加圧すると、同空気ばね74の膨張によりアンビル60は下方に移動して挟持位置に達し、これにより、下方の超音波ホーン30とで基材1aを挟持する(図5B)。一方、空気ばね74から空気排出して減圧すると、アンビル60は圧縮ばね75の復元力によって上方へ押し戻され、これにより上限位置たる退避位置に戻る(図5A)。   On the other hand, as shown in FIG. 5A, between the lower surface 72ud of the upper surface wall portion 72u of the anvil holding portion 72 and the upper surface 60u of the anvil 60 (the surface opposite to the clamping surface 60a of the lower surface 60d of the anvil 60). For example, an air spring 74 is interposed as a drive source for moving the anvil 60 up and down. The air spring 74 has a sealed bag body 74 as a main body. The bag 74 expands when the inside is pressurized by supplying air, and contracts when the inside is depressurized by discharging air. Further, a compression spring 75 is interposed between the lower surface wall portion 72d of the anvil holding portion 72 and the flange portion 60f of the anvil 60, and the anvil 60 always moves toward the upper surface wall portion 72u by the restoring force ( In other words, it is pushed upward. Therefore, the anvil 60 can be reciprocated in the vertical direction with respect to the anvil holding portion 72 by supplying and discharging air to and from the air spring 74 in cooperation with the compression spring 75. That is, when air is supplied to the air spring 74 and pressurized, the anvil 60 moves downward and reaches the clamping position due to the expansion of the air spring 74, thereby sandwiching the base material 1 a with the ultrasonic horn 30 below. (FIG. 5B). On the other hand, when the air is discharged from the air spring 74 and the pressure is reduced, the anvil 60 is pushed back upward by the restoring force of the compression spring 75, thereby returning to the retracted position as the upper limit position (FIG. 5A).

かかる空気ばね74に対する空気の給排制御を実現する機構の一例としては、配管等の空気流路を介して不図示のコンプレッサ等の圧縮空気源を空気ばね74に連結するとともに、この圧縮空気源と空気ばね74との間の上記空気流路に、圧力調整弁等の不図示のレギュレータを配置した構成などが挙げられる。   As an example of a mechanism for realizing air supply / exhaust control to the air spring 74, a compressed air source such as a compressor (not shown) is connected to the air spring 74 through an air flow path such as a pipe, and the compressed air source And a configuration in which a regulator (not shown) such as a pressure regulating valve is arranged in the air flow path between the air spring 74 and the air spring 74.

なお、この空気の給排動作は、適宜な制御信号に基づいて行われる。この制御信号については、例えばコントローラ80が生成して、上記のレギュレータに送信しても良いし、あるいは、同期信号を受信するレギュレータが、同期信号から給排動作タイミングを自己判断して自身で生成しても良い。本第1実施形態では、コントローラ80が、制御信号としての給排指令信号を生成し、レギュレータに送信している。この給排信号は、例えばONOFF信号である。そして、ON状態を受信したら、レギュレータは加圧状態にして、ON状態の受信中に亘りこれを維持し、他方、OFF状態を受信したら、減圧状態にしてOFF状態の受信中に亘りこれを維持する。なお、このことは、言い換えると、「給排指令信号のON状態では、アンビル60は基材1aを挟持する挟持状態となり、給排指令信号のOFF状態では、アンビル60は基材1aの挟持を解除した退避状態になる」と表現することもできる。そのため、以下では、かかる給排指令信号のことを「挟持指令信号」とも言う。   The air supply / discharge operation is performed based on an appropriate control signal. This control signal may be generated by the controller 80 and transmitted to the regulator, for example, or the regulator receiving the synchronization signal may generate the control signal itself by judging the supply / discharge operation timing from the synchronization signal. You may do it. In the first embodiment, the controller 80 generates a supply / discharge command signal as a control signal and transmits it to the regulator. This supply / discharge signal is, for example, an ONOFF signal. When the ON state is received, the regulator is pressurized and maintained during reception of the ON state. On the other hand, when the OFF state is received, it is maintained under pressure reduction and reception of the OFF state. To do. In other words, this means that “when the supply / discharge command signal is in the ON state, the anvil 60 is sandwiched between the base material 1a, and when the supply / discharge command signal is in the OFF state, the anvil 60 is sandwiching the base material 1a. It can also be expressed as “to be in a released evacuation state”. Therefore, in the following, such a supply / discharge command signal is also referred to as a “holding command signal”.

ところで、アンビル60の挟持面60aは、下方の超音波ホーン30の挟持面30aと対向可能なように、アンビル60の下面60dに設定されている旨を簡単に前述したが、ここでこの挟持面60aについて詳しく説明する。図6は、アンビル60の下面60dを斜め下方から見た概略斜視図である。当該アンビル60の下面60dには、基材1aに形成すべき前後一対の溶着部14,14の形状パターン(図3)に対応させて、CD方向たる左右方向に沿った前後一対のリブ61,61が形成されている。そして、各リブ61の表面には、その長手方向に所定ピッチで並ぶ複数の凸部61a,61a…が形成されており、これら凸部61a,61a…の各頂面が、それぞれアンビル60の挟持面60aとなる。但し、これは一例であって、これ以外の形態の挟持面60aを採用しても良い。   By the way, it has been briefly described above that the clamping surface 60a of the anvil 60 is set on the lower surface 60d of the anvil 60 so as to be opposed to the clamping surface 30a of the ultrasonic horn 30 below. 60a will be described in detail. FIG. 6 is a schematic perspective view of the lower surface 60d of the anvil 60 as viewed obliquely from below. On the lower surface 60d of the anvil 60, a pair of front and rear ribs 61 along the left-right direction corresponding to the CD direction, corresponding to the shape pattern (FIG. 3) of the pair of front and rear welds 14, 14 to be formed on the substrate 1a. 61 is formed. .. Are formed on the surface of each rib 61 at a predetermined pitch in the longitudinal direction, and the top surfaces of these protrusions 61 a, 61 a. It becomes the surface 60a. However, this is only an example, and a sandwiching surface 60a of another form may be employed.

<<<コントローラ80>>>
コントローラ80は、適宜なコンピュータやシーケンサであり、不図示のプロセッサとメモリとを有している。このコントローラ80には、前述の同期信号が入力される。そして、この同期信号に基づいて、コントローラ80は、超音波ホーンユニット30U及びアンビルユニット60Uの各前後方向駆動機構50,50ANや、アンビル60の上下方向往復移動機構70などを制御する。例えば、超音波ホーンユニット30U及びアンビルユニット60Uの各前後方向駆動機構50,50ANのサーボモータ52,52ANのアンプに向けて、制御信号として位置指令信号を送信する一方、アンビルユニット60Uの上下方向往復移動機構70の空気ばね74のレギュレータに向けては、制御信号として挟持指令信号(給排指令信号)を送信し、更には、超音波ホーンユニット30Uの超音波振動発生装置31に向けて、制御信号として超音波発生指令信号を送信する。
ちなみに、コントローラ80のメモリには、上述の制御に係る制御プログラムが予め格納されている。また、同メモリには、超音波ホーン30及びアンビル60の前後方向の往復移動動作を規定する動作パターンのデータ、挟持指令信号のON/OFF状態を規定するデータ、及び、超音波発生指令信号の送信タイミングを規定するデータも予め格納されている。そして、プロセッサがメモリから随時対応する制御プログラムやデータを適宜読み出して実行することにより、上述の超音波ホーンユニット30U及びアンビルユニット60Uに係る各前後方向駆動機構50,50ANの制御や、アンビルユニット60Uに係る上下方向往復移動機構70の制御、並びに超音波ホーンユニット30Uに係る超音波振動発生装置31の制御が実現される。
<<< Controller 80 >>>
The controller 80 is an appropriate computer or sequencer, and has a processor and a memory (not shown). The controller 80 receives the above-described synchronization signal. Based on this synchronization signal, the controller 80 controls the longitudinal drive mechanisms 50 and 50AN of the ultrasonic horn unit 30U and the anvil unit 60U, the vertical reciprocating mechanism 70 of the anvil 60, and the like. For example, the position command signal is transmitted as a control signal to the amplifiers of the servo motors 52 and 52AN of the longitudinal drive mechanisms 50 and 50AN of the ultrasonic horn unit 30U and the anvil unit 60U, while the anvil unit 60U is reciprocated in the vertical direction. A clamping command signal (supply / discharge command signal) is transmitted as a control signal toward the regulator of the air spring 74 of the moving mechanism 70, and further, control is performed toward the ultrasonic vibration generator 31 of the ultrasonic horn unit 30U. An ultrasonic generation command signal is transmitted as a signal.
Incidentally, a control program related to the above-described control is stored in advance in the memory of the controller 80. In addition, the memory stores operation pattern data defining the longitudinal reciprocating motion of the ultrasonic horn 30 and the anvil 60, data defining the ON / OFF state of the clamping command signal, and the ultrasonic generation command signal. Data defining transmission timing is also stored in advance. Then, the processor appropriately reads out the corresponding control program and data from the memory as needed, and executes them to control the longitudinal drive mechanisms 50 and 50AN related to the ultrasonic horn unit 30U and the anvil unit 60U, and the anvil unit 60U. The control of the vertical reciprocating mechanism 70 according to the above and the control of the ultrasonic vibration generator 31 according to the ultrasonic horn unit 30U are realized.

図7は、超音波ホーン30及びアンビル60の前後方向の往復移動動作の動作パターン(超音波ホーン30及びアンビル60の前後方向の目標位置と、同期信号の回転角度値との対応関係を示すパターン)のデータの説明図であり、上段には超音波ホーン30のデータを示し、下段にはアンビル60のデータを示している。縦軸には、前後方向の目標位置を取っており、前方には前進限Pfが設定され、後方には後退限Pbが設定されている。そして、勿論、往路では、後退限Pbから前進限Pfへと移動し、復路では前進限Pfから後退限Pbへと移動する。また、横軸は、同期信号に対応する回転角度値であり、つまり基材1aの製品ピッチP1分の搬送量たる単位搬送量を0°〜360°の各値に割り当てたものである。なお、360°は、0°でもある。
更に、同図7中には、アンビル60の上下往復移動に係る挟持指令信号(給排指令信号)のON/OFF状態や、超音波ホーン30に係る超音波発生指令信号の送信タイミングを規定するデータたる第1回転角度値についても併記している。
FIG. 7 shows an operation pattern of the reciprocating movement of the ultrasonic horn 30 and the anvil 60 in the front-rear direction (a pattern showing a correspondence relationship between the target position of the ultrasonic horn 30 and the anvil 60 in the front-rear direction and the rotation angle value of the synchronization signal). ), The data of the ultrasonic horn 30 is shown in the upper part, and the data of the anvil 60 is shown in the lower part. On the vertical axis, the target position in the front-rear direction is taken, a forward limit Pf is set in the front, and a backward limit Pb is set in the rear. And, of course, in the forward path, it moves from the backward limit Pb to the forward limit Pf, and in the backward path, it moves from the forward limit Pf to the backward limit Pb. Further, the horizontal axis represents the rotation angle value corresponding to the synchronization signal, that is, the unit transport amount corresponding to the product pitch P1 of the substrate 1a is assigned to each value of 0 ° to 360 °. 360 ° is also 0 °.
Further, in FIG. 7, the ON / OFF state of the clamping command signal (supply / discharge command signal) related to the vertical reciprocation of the anvil 60 and the transmission timing of the ultrasonic generation command signal related to the ultrasonic horn 30 are defined. The first rotation angle value as data is also shown.

コントローラ80は、所定の制御周期で、同期信号の回転角度値に対応する目標位置を、メモリ内の上記動作パターンのデータから取得し、取得した目標位置のデータを位置指令信号として超音波ホーンユニット30U及びアンビルユニット60Uの各前後方向駆動機構50,50ANのサーボモータ52,52ANのアンプに送信する。すると、各サーボモータ52,52ANのアンプは、この位置指令信号の目標位置に超音波ホーン30やアンビル60を移動すべくサーボモータ52,52ANを制御し、これにより、図7の動作パターンで、超音波ホーン30とアンビル60との両者は往復移動する。   The controller 80 acquires the target position corresponding to the rotation angle value of the synchronization signal from the data of the operation pattern in the memory at a predetermined control cycle, and uses the acquired target position data as a position command signal for the ultrasonic horn unit. 30U and the anvil unit 60U are transmitted to the amplifiers of the servo motors 52 and 52AN of the front and rear direction drive mechanisms 50 and 50AN. Then, the amplifiers of the servo motors 52 and 52AN control the servo motors 52 and 52AN so as to move the ultrasonic horn 30 and the anvil 60 to the target position of the position command signal. Both the ultrasonic horn 30 and the anvil 60 reciprocate.

ここで、図7の上段のグラフと下段のグラフとの対比からわかるように、この例では、前後方向の往復移動動作に関して、0°〜360°の回転角度値の全域に亘り、超音波ホーン30の動作パターンとアンビル60の動作パターンとは、互いの間に回転角度値の位相のずれもない完全な同一パターンとなっている。よって、超音波ホーン30とアンビル60とは、基材1a越しに互いの挟持面30a,60aを上下に対向した状態を維持しながら、互いに完全に連動して前後方向に往復移動することができる。   Here, as can be seen from the comparison between the upper graph and the lower graph in FIG. 7, in this example, the ultrasonic horn covers the entire range of rotation angle values of 0 ° to 360 ° with respect to the reciprocating movement in the front-rear direction. The operation pattern of 30 and the operation pattern of the anvil 60 are completely the same pattern with no phase shift of the rotation angle value between them. Therefore, the ultrasonic horn 30 and the anvil 60 can reciprocate in the front-rear direction in complete interlock with each other while maintaining the state in which the clamping surfaces 30a, 60a face each other over the base 1a. .

また、同図7に示すように、往路には、第1加減速域と、一定の速度値で移動する定速域と、第2加減速域とが設定されており、復路にも、同様の第3加減速域と定速域と第4加減速域とが設定されている。ここで、往路の定速域の速度値は、基材1aの前後方向の搬送速度値V1aと同値に設定されている。つまり、この定速域は、超音波ホーン30及びアンビル60の速度値が基材1aの搬送速度値V1aと等しくなる等速域Reである。また、かかる等速域Reの略中央の領域内には、挟持指令信号のON状態が、所定の回転角度値の範囲RONに亘って設定されている。更に、このON状態が対応付けられた上記回転角度値の範囲RON内には、超音波発生指令信号を超音波振動発生装置31に送信する第1回転角度値が設定されている。   Further, as shown in FIG. 7, the first acceleration / deceleration area, the constant speed area moving at a constant speed value, and the second acceleration / deceleration area are set in the forward path, and the same is applied to the return path. The third acceleration / deceleration area, the constant speed area, and the fourth acceleration / deceleration area are set. Here, the speed value in the constant speed region of the forward path is set to the same value as the conveyance speed value V1a in the front-rear direction of the substrate 1a. That is, this constant speed region is a constant velocity region Re in which the velocity values of the ultrasonic horn 30 and the anvil 60 are equal to the conveyance velocity value V1a of the substrate 1a. Further, the ON state of the pinching command signal is set over a predetermined rotation angle value range RON within a substantially central region of the constant velocity region Re. Furthermore, a first rotation angle value for transmitting an ultrasonic wave generation command signal to the ultrasonic vibration generator 31 is set within the rotation angle value range RON associated with the ON state.

よって、同期信号が示す回転角度値が、上記の範囲RON内に入ったら、コントローラ80は、アンビルユニット60Uの上下方向往復移動機構70への挟持指令信号をOFF状態からON状態に切り換える。これにより、上限位置たる退避位置に位置するアンビル60は下降して、超音波ホーン30の挟持面30aとで基材1aを挟持する。そして、同期信号の回転角度値が上記の第1回転角度値を超えたら、コントローラ80は、超音波振動発生装置31へ向けて超音波発生指令信号を送信する。これにより、超音波ホーン30の挟持面30aから超音波振動が発せられ、超音波ホーン30の挟持面30aとアンビル60の挟持面60aとで挟持された基材1aの部分が溶融して溶着部14が形成される。なお、この超音波振動の停止は、前述したように、超音波振動発生装置31によって自動的に行われる。例えば、同超音波振動発生装置31は、投入したエネルギー量(ジュール)を溶着処理毎に累積計測しており、当該投入したエネルギー量が規定の設定値に達したことを検知したら停止する。一方、同期信号の回転角度値が、上記範囲RONから外れたら、コントローラ80は、挟持指令信号をOFF状態にする。これにより、アンビル60は上昇し、そして、基材1aの挟持状態の解除を経て、最終的には上限位置たる退避位置まで戻り、次に挟持指令信号がOFF状態からON状態に切り換わるまで待機する。   Therefore, when the rotation angle value indicated by the synchronization signal falls within the above range RON, the controller 80 switches the clamping command signal to the vertical reciprocating mechanism 70 of the anvil unit 60U from the OFF state to the ON state. As a result, the anvil 60 located at the retracted position, which is the upper limit position, descends and clamps the base material 1 a with the clamping surface 30 a of the ultrasonic horn 30. Then, when the rotation angle value of the synchronization signal exceeds the first rotation angle value, the controller 80 transmits an ultrasonic wave generation command signal to the ultrasonic vibration generator 31. Thereby, ultrasonic vibration is emitted from the sandwiching surface 30a of the ultrasonic horn 30, and the portion of the base material 1a sandwiched between the sandwiching surface 30a of the ultrasonic horn 30 and the sandwiching surface 60a of the anvil 60 is melted and welded. 14 is formed. The ultrasonic vibration is automatically stopped by the ultrasonic vibration generator 31 as described above. For example, the ultrasonic vibration generator 31 cumulatively measures the amount of energy (joule) that has been input for each welding process, and stops when it detects that the amount of energy that has been input has reached a specified set value. On the other hand, when the rotation angle value of the synchronization signal is out of the range RON, the controller 80 turns the clamping command signal to the OFF state. As a result, the anvil 60 ascends, and after the holding state of the base material 1a is released, it finally returns to the retracted position that is the upper limit position, and then waits until the holding command signal is switched from the OFF state to the ON state. To do.

ここで、上述したことや図7から明らかなように、上記の回転角度値の範囲RONは、完全に往路の等速域Reに包含されている。よって、基材1aの挟持及びその解除は、完全に、超音波ホーン30及びアンビル60の前後方向の速度値と基材1aの搬送速度値V1aとが等しい状態で行われる。そして、その結果として、互いの間に相対速度は発生せず、擦れや皺の発生は抑制され、溶着部14を安定して形成可能となる。   Here, as is clear from the above description and FIG. 7, the range RON of the rotation angle value is completely included in the constant velocity region Re of the forward path. Therefore, the clamping and release of the base material 1a are performed in a state where the longitudinal speed values of the ultrasonic horn 30 and the anvil 60 are equal to the transport speed value V1a of the base material 1a. As a result, no relative speed is generated between them, the occurrence of rubbing and wrinkles is suppressed, and the welded portion 14 can be formed stably.

ところで、図7の例では、往路の動作パターンと復路との動作パターンとは、180°の回転角度値を境界とする鏡像関係になっている。つまり、向きが逆転している点を除けば、これら動作パターン同士は、パターン形状の点で同一になっているが、何等これに限らない。例えば、回転角度値が360°になるまでに、超音波ホーン30とアンビル60とが、後退限Pbに復位可能であれば、復路の動作パターンが、往路の動作パターンと鏡像関係になっていなくても良い。   By the way, in the example of FIG. 7, the operation pattern of the outward path and the operation pattern of the return path have a mirror image relationship with a rotation angle value of 180 ° as a boundary. That is, except for the fact that the direction is reversed, these operation patterns are the same in terms of the pattern shape, but the present invention is not limited to this. For example, if the ultrasonic horn 30 and the anvil 60 can be restored to the backward limit Pb before the rotation angle value reaches 360 °, the return path operation pattern is not mirror-imaged with the forward path operation pattern. May be.

また、図7の例では、前後方向の往復移動動作の動作パターンを、超音波ホーンユニット30Uとアンビルユニット60Uとで同一にしていたが、何等これに限るものでない。すなわち、往路において、超音波ホーン30及びアンビル60の前後方向の速度値が基材1aの搬送速度値V1aと同値になるような等速域Reが、所定範囲の回転角度値として確保できるのであれば、何等超音波ホーンユニット30Uの動作パターンとアンビルユニット60Uの動作パターンとを完全同一にしなくても良い。   In the example of FIG. 7, the operation pattern of the reciprocating motion in the front-rear direction is the same for the ultrasonic horn unit 30U and the anvil unit 60U, but the present invention is not limited to this. That is, in the forward path, a constant velocity region Re in which the longitudinal velocity values of the ultrasonic horn 30 and the anvil 60 are the same as the conveyance velocity value V1a of the substrate 1a can be secured as a rotation angle value within a predetermined range. For example, the operation pattern of the ultrasonic horn unit 30U and the operation pattern of the anvil unit 60U may not be completely the same.

更には、本第1実施形態では、コントローラ80は、前後方向の往復移動の動作パターンのデータを、超音波ホーンユニット30U用とアンビルユニット60U用とで別々に有していたが、何等これに限るものではなく、これら両者で一つの動作パターンのデータを共用しても良い。そして、その場合には、この単一の動作パターンのデータに基づいて生成された位置指令信号を、コントローラ80は、超音波ホーンユニット30Uとアンビルユニット60Uとの両者に対して送信することになる。これにより、超音波ホーン30とアンビル60とを、完全同期で往復移動させることができる。   Furthermore, in the first embodiment, the controller 80 has the data of the reciprocating movement pattern in the front-rear direction separately for the ultrasonic horn unit 30U and the anvil unit 60U. However, the data of one operation pattern may be shared by both of them. In that case, the controller 80 transmits a position command signal generated based on the data of the single operation pattern to both the ultrasonic horn unit 30U and the anvil unit 60U. . Thereby, the ultrasonic horn 30 and the anvil 60 can be reciprocated in perfect synchronization.

ところで、一般に使い捨ておむつ1の製造ラインでは、製造すべきおむつ1の製品サイズを変更する所謂サイズ替えを行うことがあるが、本第1実施形態では、このサイズ替えにも、容易に対処可能である。例えば、コントローラ80のメモリには、図7で例示した動作パターンが、S、M、L等の製品サイズ毎にそれぞれ予め格納されている。図8に、その一例としてSサイズ及びLサイズの動作パターンのデータを示すが、同図8からわかるように、これらSサイズとLサイズとの間では、前進限Pfと後退限Pbとの間の距離DS,DLが異なっており、つまり、Sサイズよりも大きい製品サイズのLサイズの方が、上記距離Dが大きくなっている。   By the way, in general, in the production line of the disposable diaper 1, there is a so-called size change in which the product size of the diaper 1 to be manufactured is changed. In the first embodiment, this size change can be easily dealt with. is there. For example, the operation pattern illustrated in FIG. 7 is stored in advance in the memory of the controller 80 for each product size such as S, M, and L. FIG. 8 shows S-size and L-size operation pattern data as an example. As can be seen from FIG. 8, between these S-size and L-size, between the forward limit Pf and the reverse limit Pb. The distances D and DL are different. That is, the distance D is larger in the L size of the product size larger than the S size.

そして、この距離Dが変化すれば、前後方向に隣り合って形成される溶着部14,14同士の間の間隔が変化する。よって、当該動作パターンのデータを、これから製造予定の製品サイズに応じてコントローラ80が選択するように構成すれば、溶着部14の前後方向の形成ピッチの大きさ(つまり、前後方向に隣り合う溶着部14,14同士の間隔寸法)の変更を通して、サイズ替えに容易に対処可能となる。   And if this distance D changes, the space | interval between the welding parts 14 and 14 formed adjacent to the front-back direction will change. Therefore, if the controller 80 selects the data of the operation pattern according to the product size to be manufactured from now on, the size of the formation pitch in the front-rear direction of the welded portion 14 (that is, welding adjacent in the front-rear direction). It is possible to easily cope with the size change through the change of the distance dimension between the portions 14 and 14.

また、製品サイズに応じて、溶着部14の溶着強度を変更したい場合には、前述した超音波振動発生装置31が、超音波振動に係り投入すべきエネルギー量(ジュール)の設定値を、S、M、L等の製品サイズ毎に設定可能に有し、同超音波振動発生装置31が、製品サイズに応じて設定値を選択するように構成すれば良い。なお、Sサイズよりも溶着部14の総面積の大きいLサイズの方が、エネルギー量の設定値が大きな値になっているのは言うまでもない。   Further, when it is desired to change the welding strength of the welded portion 14 according to the product size, the set value of the energy amount (joule) to be input by the ultrasonic vibration generating device 31 in connection with the ultrasonic vibration is set to S. , M, L, etc., can be set for each product size, and the ultrasonic vibration generator 31 may be configured to select a set value according to the product size. Needless to say, the set value of the amount of energy is larger in the L size, which has a larger total area of the welded portion 14, than in the S size.

なお、上述の製品サイズに応じて溶着強度を変更する別の方法としては、例えば超音波ホーン30とアンビル60とで基材1aを挟持する際の挟持力の大きさを製品サイズ毎に変更することが挙げられる。この挟持力は、既述のように空気ばね74の加圧力によって生じている。よって、これを実現するには、例えば、空気ばね74の加圧力を、互いの値が異なる複数の設定値で設定可能にレギュレータを構成し、そして、当該レギュレータが、製品サイズに応じて、上記複数の設定値のなかから一つの設定値を選択するように構成すれば良い。ちなみに、この製品サイズに応じた加圧力の変更と、上述の製品サイズに応じて超音波振動のエネルギー量の設定値を変更することとの両者を行うようにしても良い。   In addition, as another method of changing the welding strength in accordance with the above-described product size, for example, the holding force when holding the base material 1a between the ultrasonic horn 30 and the anvil 60 is changed for each product size. Can be mentioned. This clamping force is generated by the pressure of the air spring 74 as described above. Therefore, in order to realize this, for example, a regulator is configured so that the pressurizing force of the air spring 74 can be set with a plurality of set values different from each other, and the regulator is configured according to the product size. What is necessary is just to comprise so that one setting value may be selected from several setting values. Incidentally, you may make it perform both the change of the applied pressure according to this product size, and changing the setting value of the energy amount of ultrasonic vibration according to the above-mentioned product size.

===第2実施形態===
図9は、第2実施形態の超音波シール装置20aの概略側面図である。
前述の第1実施形態では、超音波シール装置20として、超音波ホーンユニット30Uと、アンビルユニット60Uとを組とするモジュール20Mを1組だけ有していたが、何等これに限るものではなく、例えば複数のモジュール20M,20M…を基材1aの搬送軌道Tr1aに沿って並べて配置しても良い。図9の例では、複数の一例として二つのモジュール20M,20Mが前後方向に並んで配置されている。なお、これ以外の点は、第1実施形態とほぼ同じなので、同一の構成には同一の符号を付して、その説明については省略する。
=== Second Embodiment ===
FIG. 9 is a schematic side view of the ultrasonic sealing device 20a of the second embodiment.
In the first embodiment described above, the ultrasonic sealing device 20 has only one set of the module 20M including the ultrasonic horn unit 30U and the anvil unit 60U. However, the present invention is not limited to this. For example, a plurality of modules 20M, 20M... May be arranged side by side along the transport track Tr1a of the substrate 1a. In the example of FIG. 9, two modules 20M and 20M are arranged side by side in the front-rear direction as a plurality of examples. Since the other points are almost the same as those in the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted.

ここで、前後に並ぶモジュール20M,20M同士は、それぞれの超音波ホーン30,30及びアンビル60,60の前後方向の往復移動動作に関して、互いに同じ動作をするようになっている。すなわち、後方のモジュール20Mに係る超音波ホーン30及びアンビル60が、前後方向の往路を移動する際には、前方のモジュール20Mに係る超音波ホーン30及びアンビル60も、往路を移動し、他方、後方のモジュール20Mに係る超音波ホーン30及びアンビル60が、前後方向の復路を移動する際には、前方のモジュール20Mに係る超音波ホーン30及びアンビル60も、復路を移動するように構成されている。以下では、これを「順動作」とも言う。   Here, the modules 20 </ b> M and 20 </ b> M arranged in the front-rear direction perform the same operation with respect to the reciprocating movement in the front-rear direction of the ultrasonic horns 30, 30 and the anvils 60, 60. That is, when the ultrasonic horn 30 and the anvil 60 related to the rear module 20M move in the forward / rearward direction, the ultrasonic horn 30 and the anvil 60 related to the front module 20M also move in the forward direction, When the ultrasonic horn 30 and the anvil 60 related to the rear module 20M move along the forward and backward directions, the ultrasonic horn 30 and the anvil 60 related to the front module 20M are also configured to move along the backward path. Yes. Hereinafter, this is also referred to as “forward operation”.

このような二つのモジュール20M,20Mが互いに順動作を行う第2実施形態に係る超音波シール装置20aは、例えば、次のように構成することで実現される。先ず、コントローラ80のメモリは、図10に示すような後方のモジュール20M用の動作パターンのデータと前方のモジュール20M用の動作パターンのデータとを有する。そして、これら動作パターンのデータ同士は、互いの間に回転角度値の位相ずれも無い完全に同一のものである。また、挟持指令信号のON状態に係る回転角度値の範囲RONや、超音波振動の発生開始を規定する第1回転角度値についても、後方のモジュール20Mと前方のモジュール20Mとの両者で同じに設定されている。   Such an ultrasonic sealing device 20a according to the second embodiment in which the two modules 20M and 20M perform forward operations with each other is realized, for example, by configuring as follows. First, the memory of the controller 80 has operation pattern data for the rear module 20M and operation pattern data for the front module 20M as shown in FIG. The data of these operation patterns are completely the same without any phase shift of the rotation angle value between them. The same applies to both the rear module 20M and the front module 20M with respect to the rotation angle value range RON related to the ON state of the clamping command signal and the first rotation angle value that defines the start of ultrasonic vibration generation. Is set.

また、この第2実施形態では、モジュール20M,20Mが二つなので、動作パターンの1周期には、おむつ二つ分の搬送量に相当する0°から720°までの回転角度値が対応付けられている。そして、これにより、これら二つのモジュール20M,20Mは互いに協働して、おむつ1の基材1aに対し製品ピッチP1で溶着部14を形成することができる。   In the second embodiment, since there are two modules 20M and 20M, a rotation angle value from 0 ° to 720 ° corresponding to the conveyance amount for two diapers is associated with one cycle of the operation pattern. ing. And these two modules 20M and 20M can mutually cooperate and can form the welding part 14 with the product pitch P1 with respect to the base material 1a of the diaper 1. FIG.

ところで、この第2実施形態では、モジュール20Mの数が二つの場合を例示したが、三つ以上並べて配置しても良いのは言うまでもない。   By the way, in this 2nd Embodiment, although the case where the number of the modules 20M was two was illustrated, it cannot be overemphasized that you may arrange | position 3 or more side by side.

===第3実施形態===
図11A乃至図11Jは、第3実施形態の説明図であり、詳しくは、後方のモジュール20M及び前方のモジュール20Mの両者が、基材1aに溶着部14を形成していく様子をコマ送りで示す模式図である。なお、同図中では、後方のモジュール20Mが形成する溶着部14を○印で示し、前方のモジュール20Mが形成する溶着部14を△印で示している。
=== Third Embodiment ===
FIGS. 11A to 11J are explanatory views of the third embodiment. Specifically, the state in which both the rear module 20M and the front module 20M form the welded portion 14 on the base material 1a is frame-fed. It is a schematic diagram shown. In the drawing, the welded portion 14 formed by the rear module 20M is indicated by a circle, and the welded portion 14 formed by the front module 20M is indicated by a Δ.

前述の第2実施形態では、図10に示すように、二つのモジュール20M,20M同士が、前後方向の往復移動動作に関して同一の動作たる順動作をしていたが、この第3実施形態では、逆動作を行う点で相違する。   In the above-described second embodiment, as shown in FIG. 10, the two modules 20M and 20M are performing the same operation in the same manner with respect to the reciprocating movement in the front-rear direction. In this third embodiment, The difference is that the reverse operation is performed.

すなわち、図11A乃至図11Jに示すように、この第3実施形態では、後方のモジュール20M(第1モジュールに相当)に係る超音波ホーン30及びアンビル60が、前後方向の往路を移動する際には、前方のモジュール20M(第2モジュールに相当)に係る超音波ホーン30及びアンビル60は、復路を移動し、他方、後方のモジュール20Mに係る超音波ホーン30及びアンビル60が、前後方向の復路を移動する際には、前方のモジュール20Mに係る超音波ホーン30及びアンビル60は、往路を移動するように構成されている。   That is, as shown in FIGS. 11A to 11J, in the third embodiment, when the ultrasonic horn 30 and the anvil 60 related to the rear module 20M (corresponding to the first module) move in the forward and backward directions. The ultrasonic horn 30 and the anvil 60 related to the front module 20M (corresponding to the second module) move on the return path, while the ultrasonic horn 30 and the anvil 60 related to the rear module 20M move back and forth. When moving, the ultrasonic horn 30 and the anvil 60 related to the front module 20M are configured to move in the forward path.

そして、このような構成によれば、超音波ホーン30及びアンビル60の前後方向の往復移動に起因して、これら後方のモジュール20M及び前方のモジュール20Mを支持している鏡板19に作用し得る慣性力を互いに相殺させることができて、その結果、鏡板19に生じ得る機械的振動を低減可能となる。   And according to such a structure, it originates in the back-and-forth movement of the ultrasonic horn 30 and the anvil 60 in the front-back direction, and the inertia which can act on the end plate 19 which supports these back modules 20M and the front modules 20M. The forces can be canceled with each other, and as a result, the mechanical vibration that can occur in the end plate 19 can be reduced.

なお、このような二つのモジュール20M,20Mが互いに逆動作を行う本第3実施形態に係る超音波シール装置20bは、例えば、次のように構成することで実現される。図12は、その説明図であって、各モジュール20M,20Mの動作パターンなどのデータの図である。   In addition, the ultrasonic sealing device 20b according to the third embodiment in which the two modules 20M and 20M perform the reverse operations with each other is realized by, for example, the following configuration. FIG. 12 is an explanatory diagram showing data such as operation patterns of the modules 20M and 20M.

先ず、コントローラ80のメモリには、図12に示すような、後方のモジュール20M用の動作パターンのデータと、前方のモジュール20M用の動作パターンのデータとが格納されている。そして、これら動作パターンのデータ同士にあっては、互いのパターン形状は同一であるが、互いの回転角度値の位相は、半周期たる360°(1周期は720°)だけずれたものになっている。これにより、上述の逆動作が実現される。
また、同図12の下段に示す前方モジュール20Mの動作パターンの回転角度値の位相が、後方モジュール20Mに対して半周期(360°)だけずれているのに伴って、同前方モジュール20Mの挟持指令信号のON状態に係る回転角度値の範囲RONや、超音波振動の発生開始を規定する第1回転角度値についても、後方のモジュール20Mの回転角度値の範囲RON及び第1回転角度値から、それぞれ半周期たる360°だけ位相がずれたものになっている。そして、これにより、前方モジュール20Mにあっても、往路の等速域Reにおいて溶着処理を行うようになっている。
First, the memory of the controller 80 stores operation pattern data for the rear module 20M and operation pattern data for the front module 20M as shown in FIG. In the operation pattern data, the pattern shapes are the same, but the phases of the rotation angle values are shifted by 360 ° which is a half cycle (one cycle is 720 °). ing. Thereby, the reverse operation described above is realized.
Further, as the phase of the rotation angle value of the operation pattern of the front module 20M shown in the lower part of FIG. 12 is shifted by a half cycle (360 °) with respect to the rear module 20M, the front module 20M is sandwiched. The rotation angle value range RON related to the ON state of the command signal and the first rotation angle value that defines the start of the generation of ultrasonic vibration are also determined from the rotation angle value range RON and the first rotation angle value of the rear module 20M. The phases are shifted by 360 ° which is a half cycle. As a result, even in the front module 20M, the welding process is performed in the constant velocity region Re of the forward path.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。また、本発明は、その趣旨を逸脱することなく、変更や改良され得るとともに、本発明にはその等価物が含まれるのはいうまでもない。例えば、以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. Further, the present invention can be changed or improved without departing from the gist thereof, and needless to say, the present invention includes equivalents thereof. For example, the following modifications are possible.

上述の実施形態では、吸収性物品の一例として、着用対象に装着されてその排泄液を吸収する使い捨ておむつ1を挙げたが、尿や経血等の排泄液を吸収するものであれば何等これに限るものではなく、例えば生理用ナプキンやペットの排泄液を吸収するペットシート等でも良い。   In the above-described embodiment, the disposable diaper 1 that is attached to a wearing target and absorbs the excretory fluid is cited as an example of the absorbent article. However, any one that absorbs excreted fluid such as urine or menstrual blood is used. For example, a sanitary napkin or a pet sheet that absorbs the excretory fluid of the pet may be used.

上述の実施形態では、超音波ホーン30及びアンビル60の前後方向往復直線移動機構に係るガイド部材40,40AN及び前後方向駆動機構50,50ANとして、それぞれリニアガイド40,40AN及びボールねじ機構56,56ANを例示したが、基材1aの直線状搬送軌道Tr1aに沿って超音波ホーン30及びアンビル60を往復移動可能であれば、何等上述に限らない。例えば、リニアガイド40,40ANのレール42,42ANの代わりに、床板32や天板62に形成した直線溝(不図示)に、スライダ44,44ANを摺動可能に係合させても良いし、ボールねじ機構56,56ANの代わりに適宜なカム機構を用いることにより、サーボモータ52,52ANの回転動作を直線移動動作に変換しても良い。なお、カム機構を用いた場合には、カムのカム曲線の設定によって、前述の動作パターンを実現することもできるので、場合によっては、コントローラ80のメモリ内に格納された動作パターンのデータを省略することもできる。また、サーボモータ52,52ANの駆動回転軸52a,52ANと、ねじシャフト57,57ANとの連結も、何等軸継手55,55ANに限らず、例えば、タイミングベルトとプーリとを有する巻掛け伝導装置を用いて連結しても良い。   In the above-described embodiment, the linear guides 40 and 40AN and the ball screw mechanisms 56 and 56AN are respectively used as the guide members 40 and 40AN and the longitudinal drive mechanisms 50 and 50AN related to the longitudinal reciprocating linear movement mechanism of the ultrasonic horn 30 and the anvil 60. However, the present invention is not limited to the above as long as the ultrasonic horn 30 and the anvil 60 can be reciprocated along the linear conveyance trajectory Tr1a of the substrate 1a. For example, instead of the rails 42 and 42AN of the linear guides 40 and 40AN, the sliders 44 and 44AN may be slidably engaged with linear grooves (not shown) formed in the floor plate 32 or the top plate 62, By using an appropriate cam mechanism in place of the ball screw mechanisms 56 and 56AN, the rotation operation of the servo motors 52 and 52AN may be converted into a linear movement operation. When the cam mechanism is used, the above-described operation pattern can be realized by setting the cam curve of the cam. Therefore, in some cases, the operation pattern data stored in the memory of the controller 80 is omitted. You can also Further, the connection between the drive rotary shafts 52a and 52AN of the servo motors 52 and 52AN and the screw shafts 57 and 57AN is not limited to the shaft couplings 55 and 55AN. For example, a winding conduction device having a timing belt and a pulley is used. You may connect using.

上述の実施形態では、超音波ホーン30の上方にアンビル60を配置していたが、この上下配置関係は逆でも良い。つまり、超音波ホーン30を有する超音波ホーンユニット30Uの下方に、アンビル60を有するアンビルユニット60Uを配置しても良い。但し、メンテナンス性の観点からは、この構成よりも、図4Aや図5Aに示す第1実施形態の方が好ましい。理由は次の通りである。
例えば、第1実施形態の場合には、超音波ホーン30は上下方向に往復移動しないが、アンビル60は上下方向に往復移動し、その上下駆動に係り空気ばね74等の多くの可動部を有しており、必然、これら可動部はメンテナンスの対象になる。ここで、図4Aや図5Aの第1実施形態の構成によれば、超音波シール装置20の稼働停止状態において、アンビル60は基材1aよりも上方に位置しており、超音波ホーン30のように上方から基材1aに覆われた状態になっておらず、概ね全体が露出した状態になっている。よって、整備作業者は、アンビル60の可動部のメンテナンスを行い易くなる。
In the above-described embodiment, the anvil 60 is arranged above the ultrasonic horn 30, but this vertical arrangement relationship may be reversed. That is, the anvil unit 60U having the anvil 60 may be disposed below the ultrasonic horn unit 30U having the ultrasonic horn 30. However, from the viewpoint of maintainability, the first embodiment shown in FIGS. 4A and 5A is preferable to this configuration. The reason is as follows.
For example, in the case of the first embodiment, the ultrasonic horn 30 does not reciprocate in the vertical direction, but the anvil 60 reciprocates in the vertical direction, and has a large number of movable parts such as an air spring 74 for its vertical drive. Inevitably, these movable parts are subject to maintenance. Here, according to the structure of 1st Embodiment of FIG. 4A or 5A, in the operation stop state of the ultrasonic sealing apparatus 20, the anvil 60 is located above the base material 1a, and the ultrasonic horn 30 of FIG. Thus, it is not in a state of being covered with the base material 1a from above, and is generally in a state of being entirely exposed. Therefore, the maintenance worker can easily perform maintenance of the movable part of the anvil 60.

上述の実施形態では、基材1aの前後方向の搬送軌道Tr1aは水平であったが、何等これに限るものではなく、水平から所定の傾き角でもって上方又は下方に傾いていても良い。但し、その場合には、超音波ホーン30の前後方向の往復移動に係る直線軌道及びアンビル60の前後方向の往復移動に係る直線軌道も、上述の搬送軌道Tr1aの傾き角に対応させて同じ傾き角分、水平から傾いて設定されることになる。   In the above-described embodiment, the transport track Tr1a in the front-rear direction of the substrate 1a is horizontal. However, the present invention is not limited to this, and may be inclined upward or downward from the horizontal with a predetermined inclination angle. However, in that case, the linear trajectory related to the back-and-forth movement of the ultrasonic horn 30 and the linear trajectory related to the back-and-forth movement of the anvil 60 also have the same inclination corresponding to the inclination angle of the above-described transport track Tr1a. The angle is set to be inclined from the horizontal.

上述の実施形態では、挟持駆動機構の一例として、超音波ホーン30については上下方向には移動不能に構成し、アンビル60の方を上下方向に往復移動する構成を示したが、何等これに限らない。例えば、アンビル60の方を上下方向に移動不能に構成し、超音波ホーン30の方を上下方向往復移動機構によって上下に往復移動させても良いし、更には、超音波ホーン30とアンビル60との両者を、それぞれ上下方向に往復移動するように構成しても良い。但し、超音波ホーン30及びアンビル60のうちのどちらか一方を上下方向に移動不能に構成している方が、挟持動作に係る可動部の数を少なくできるので、その方が望ましい。   In the above-described embodiment, as an example of the sandwiching drive mechanism, the ultrasonic horn 30 is configured to be immovable in the vertical direction and reciprocated in the vertical direction of the anvil 60. However, the present invention is not limited to this. Absent. For example, the anvil 60 may be configured to be immovable in the vertical direction, and the ultrasonic horn 30 may be reciprocated up and down by a vertical reciprocating mechanism, and further, the ultrasonic horn 30 and the anvil 60 may be Both of them may be configured to reciprocate in the vertical direction. However, it is preferable that either one of the ultrasonic horn 30 and the anvil 60 is configured to be immovable in the vertical direction because the number of movable parts involved in the clamping operation can be reduced.

上述の実施形態では、挟持駆動機構たる上下方向往復移動機構70の駆動源として、空気ばね74を例示したが、何等これに限らない。例えば、エアシリンダーや油圧シリンダーを用いても良いし、送りねじ機構を適用しても良い。   In the above-described embodiment, the air spring 74 is exemplified as the drive source of the up-down reciprocating mechanism 70 that is the clamping drive mechanism, but the present invention is not limited to this. For example, an air cylinder or a hydraulic cylinder may be used, or a feed screw mechanism may be applied.

上述の実施形態では、超音波振動発生装置31の超音波振動の発生停止は、投入した超音波振動のエネルギー量(ジュール)が設定値に達したことを同装置31が検知して、行われていた。但し、場合によっては、超音波ホーン30とアンビル60とによる基材1aの挟持の解除後に、上記のエネルギー量が設定値に達することも想定され、その場合には、非挟持状態で超音波振動が投入された分だけ溶着不足になって、その結果、溶着部14が強度不足になる虞がある。そのため、望ましくは、次のように構成すると良い。先ず、コントローラ80は、超音波振動の発生停止の度に超音波振動発生装置31から発生停止に係る信号を受信する。そして、コントローラ80は、この信号から得られる発生停止の時刻と、挟持の解除を行った時刻とを比較し、発生停止の時刻の方が挟持の解除の時刻よりも遅い場合には、溶着不良発生の警報を適宜な警報装置に出力して、作業者に報知する。   In the above-described embodiment, the generation of ultrasonic vibration of the ultrasonic vibration generator 31 is stopped when the apparatus 31 detects that the energy amount (joule) of the input ultrasonic vibration has reached the set value. It was. However, in some cases, it is also assumed that the amount of energy reaches the set value after the holding of the base material 1a by the ultrasonic horn 30 and the anvil 60 is released. As a result, welding is insufficient due to the amount added, and as a result, the welded portion 14 may be insufficient in strength. Therefore, it is desirable to configure as follows. First, the controller 80 receives a signal related to the generation stop from the ultrasonic vibration generating device 31 every time the generation of the ultrasonic vibration is stopped. Then, the controller 80 compares the generation stop time obtained from this signal with the time when the pinching is released, and if the generation stop time is later than the pinching release time, the welding failure occurs. An alarm of occurrence is output to an appropriate alarm device to notify the operator.

上述の実施形態の説明では、図5Aの拡大側面図に示す挟持の解除状態での超音波ホーン30及びアンビル60の基材1aに対する遠近関係について詳しく述べていなかったので、この点について説明する。この解除状態においては、超音波ホーン30の挟持面30aの方が、アンビル60の挟持面60aよりも基材1aに近接している。そして、このような配置関係によれば、基材1aを挟持すべくアンビル60が下降して基材1aを超音波ホーン30の方へ押し込む際の押し込み量を少なくできる。そして、これにより、当該押し込みに伴う基材1aの搬送軌道Tr1aの乱れを抑制可能となり、結果、溶着部14をより安定して形成可能となる。   In the description of the above-described embodiment, the perspective relationship between the ultrasonic horn 30 and the anvil 60 with respect to the base material 1a in the released state shown in the enlarged side view of FIG. 5A has not been described in detail, and this point will be described. In this released state, the sandwiching surface 30 a of the ultrasonic horn 30 is closer to the base material 1 a than the sandwiching surface 60 a of the anvil 60. And according to such arrangement | positioning relationship, the anvil 60 descend | falls so that the base material 1a may be clamped, and the pushing amount at the time of pushing the base material 1a toward the ultrasonic horn 30 can be decreased. Thereby, it is possible to suppress the disturbance of the transport track Tr1a of the base material 1a due to the pressing, and as a result, the welded portion 14 can be formed more stably.

1 使い捨ておむつ(吸収性物品)、1a 基材(連続ウエブ)、
1c 位置、1e 部位、
2 表面シート、2a 連続ウエブ、3 裏面シート、3a 連続ウエブ、
4 吸収体、5 弾性部材、6 弾性部材、8 脚周り開口部、
10 前身頃、11 後身頃、13 股下部、14 溶着部、
19 鏡板、19a 鉛直面、
20 超音波シール装置、20a 超音波シール装置、20b 超音波シール装置、
20M 後方のモジュール(第1モジュール)、
20M 前方のモジュール(第2モジュール)、
30 超音波ホーン、30U 超音波ホーンユニット、
30a 挟持面、31 超音波振動発生装置、32 床板、
40 リニアガイド(ガイド部材)、40AN リニアガイド(ガイド部材)、
42 レール、42AN レール、44 スライダ、44AN スライダ、
46 支持台、
50 前後方向駆動機構、50AN 前後方向駆動機構、
52 サーボモータ、52AN サーボモータ、
52a 駆動回転軸、52aAN 駆動回転軸、
55 軸継手、55AN 軸継手、
56 ボールねじ機構(送りねじ機構)、56AN ボールねじ機構(送りねじ機構)、
57 ねじシャフト、57AN ねじシャフト、
58 ナット部材、58AN ナット部材、
59 軸受け部材、59AN 軸受け部材、
60 アンビル、60U アンビルユニット、
60a 挟持面、60d 下面、60f 鍔部、60u 上面、
61 リブ、61a 凸部、
62 天板、
70 上下方向往復移動機構(厚み方向往復移動機構)、
72 箱部材(アンビル保持部)、72d 下面壁部、72h 貫通孔、
72u 上面壁部、72ud 下面、
74 空気ばね、76 支持台、
80 コントローラ、
90 搬送ローラー(搬送装置)、
Pb 後退限、Pf 前進限、
Re 等速域、RON 範囲、Tr1a 搬送軌道(直線軌道)、
1 disposable diaper (absorbent article), 1a base material (continuous web),
1c position, 1e site,
2 top sheet, 2a continuous web, 3 back sheet, 3a continuous web,
4 Absorber, 5 Elastic member, 6 Elastic member, 8 Opening around leg
10 front body, 11 back body, 13 inseam, 14 welded part,
19 End plate, 19a Vertical plane,
20 ultrasonic sealing device, 20a ultrasonic sealing device, 20b ultrasonic sealing device,
20M rear module (first module),
20M front module (second module),
30 ultrasonic horn, 30U ultrasonic horn unit,
30a clamping surface, 31 ultrasonic vibration generator, 32 floor board,
40 linear guide (guide member), 40AN linear guide (guide member),
42 rail, 42AN rail, 44 slider, 44AN slider,
46 support base,
50 longitudinal driving mechanism, 50AN longitudinal driving mechanism,
52 servo motor, 52AN servo motor,
52a drive rotary shaft, 52aAN drive rotary shaft,
55 shaft coupling, 55AN shaft coupling,
56 ball screw mechanism (feed screw mechanism), 56AN ball screw mechanism (feed screw mechanism),
57 threaded shaft, 57AN threaded shaft,
58 nut member, 58AN nut member,
59 bearing member, 59AN bearing member,
60 anvil, 60U anvil unit,
60a clamping surface, 60d lower surface, 60f collar, 60u upper surface,
61 rib, 61a convex part,
62 Top plate,
70 Vertical reciprocating mechanism (thickness reciprocating mechanism),
72 box member (anvil holding part), 72d bottom wall part, 72h through-hole,
72u upper surface wall, 72ud lower surface,
74 Air spring, 76 Support base,
80 controller,
90 Conveying roller (conveying device),
Pb backward limit, Pf forward limit,
Re constant velocity range, RON range, Tr1a transport track (straight track),

Claims (11)

吸収性物品に係る連続ウエブが所定の直線軌道を搬送される間に、前記連続ウエブに超音波振動を付与することにより、前記連続ウエブの搬送方向に間隔をおいて複数の溶着部を形成する超音波シール装置であって、
前記超音波振動を発する超音波ホーンと、
前記超音波ホーンが前記超音波振動を前記連続ウエブに向けて発する際に、前記超音波ホーンと協働して、前記連続ウエブをその厚み方向から挟持するアンビルと、
前記超音波ホーン及び前記アンビルを、前記直線軌道と平行な往路及び復路に沿って移動させる往復直線移動機構と、を有し、
前記往路には、前記超音波ホーン及び前記アンビルの両者が互いに前記厚み方向に対向しつつ前記連続ウエブの搬送速度値と同じ速度値で移動する等速域が設定されており、
前記等速域を移動中に、前記超音波ホーンと前記アンビルとは、前記連続ウエブの挟持と、前記挟持の解除とを行い、
前記連続ウエブの挟持中に、前記超音波ホーンが前記超音波振動を発することを特徴とする超音波シール装置。
While the continuous web related to the absorbent article is transported along a predetermined linear track, a plurality of welds are formed at intervals in the transport direction of the continuous web by applying ultrasonic vibration to the continuous web. An ultrasonic sealing device,
An ultrasonic horn for emitting the ultrasonic vibration;
When the ultrasonic horn emits the ultrasonic vibration toward the continuous web, an anvil that holds the continuous web from its thickness direction in cooperation with the ultrasonic horn;
A reciprocating linear movement mechanism for moving the ultrasonic horn and the anvil along an outward path and a return path parallel to the linear trajectory;
In the forward path, a constant velocity region is set in which both the ultrasonic horn and the anvil move at the same speed value as the conveying speed value of the continuous web while facing each other in the thickness direction,
While moving in the constant velocity region, the ultrasonic horn and the anvil perform clamping of the continuous web and release of the clamping,
The ultrasonic sealing device, wherein the ultrasonic horn emits the ultrasonic vibration while the continuous web is sandwiched.
請求項1に記載の超音波シール装置であって、
前記超音波ホーンと前記アンビルと前記往復直線移動機構とを有するモジュールが、前記直線軌道に沿って複数並んで配置されていることを特徴とする超音波シール装置。
The ultrasonic sealing device according to claim 1,
An ultrasonic sealing device, wherein a plurality of modules each including the ultrasonic horn, the anvil, and the reciprocating linear movement mechanism are arranged along the linear trajectory.
請求項2に記載の超音波シール装置であって、
前記複数のモジュールとして少なくとも第1モジュールと第2モジュールとを有し、
前記第1モジュールの往復直線移動機構が往路の移動動作を行う際に、前記第2モジュールの往復直線移動機構は復路の移動動作を行い、
前記第1モジュールの往復直線移動機構が復路の移動動作を行う際に、前記第2モジュールの往復直線移動機構は往路の移動動作を行うことを特徴とする超音波シール装置。
The ultrasonic sealing device according to claim 2,
And having at least a first module and a second module as the plurality of modules,
When the reciprocating linear movement mechanism of the first module performs the forward movement operation, the reciprocating linear movement mechanism of the second module performs the backward movement operation,
The ultrasonic sealing device according to claim 1, wherein when the reciprocating linear movement mechanism of the first module performs a backward movement operation, the reciprocating linear movement mechanism of the second module performs an outward movement operation.
請求項2に記載の超音波シール装置であって、
前記複数のモジュールとして少なくとも第1モジュールと第2モジュールとを有し、
前記第1モジュールの往復直線移動機構が往路の移動動作を行う際に、前記第2モジュールの往復直線移動機構は往路の移動動作を行い、
前記第1モジュールの往復直線移動機構が復路の移動動作を行う際に、前記第2モジュールの往復直線移動機構は復路の移動動作を行うことを特徴とする超音波シール装置。
The ultrasonic sealing device according to claim 2,
And having at least a first module and a second module as the plurality of modules,
When the reciprocating linear movement mechanism of the first module performs an outward movement operation, the reciprocating linear movement mechanism of the second module performs an outward movement operation,
The ultrasonic sealing device, wherein when the reciprocating linear movement mechanism of the first module performs a backward movement operation, the reciprocating linear movement mechanism of the second module performs a backward movement operation.
請求項1乃至4の何れかに記載の超音波シール装置であって、
前記挟持中に、前記超音波ホーンは前記超音波振動のエネルギーを一定量だけ前記連続ウエブに付与することを特徴とする超音波シール装置。
The ultrasonic sealing device according to any one of claims 1 to 4,
During the clamping, the ultrasonic horn applies a certain amount of the energy of the ultrasonic vibration to the continuous web.
請求項1乃至5の何れかに記載の超音波シール装置であって、
前記往復直線移動機構を制御するコントローラを有し、
前記コントローラの制御によって、前記往復直線移動機構は、前記超音波ホーンと前記アンビルとを、規定の動作パターンに基づいて前記往路及び前記復路に沿って繰り返し移動し、
前記コントローラは、互いに異なる前記動作パターンのデータを複数有し、
前記コントローラは、形成すべき前記溶着部の前記搬送方向の形成ピッチの大きさに対応する動作パターンのデータを前記複数の動作パターンのデータのなかから選択して、選択した前記データを前記往復直線移動機構の制御に用いることを特徴とする超音波シール装置。
The ultrasonic sealing device according to any one of claims 1 to 5,
A controller for controlling the reciprocating linear movement mechanism;
Under the control of the controller, the reciprocating linear movement mechanism repeatedly moves the ultrasonic horn and the anvil along the forward path and the backward path based on a predetermined operation pattern,
The controller has a plurality of data of the operation patterns different from each other,
The controller selects operation pattern data corresponding to the formation pitch of the welded portion to be formed from the plurality of operation pattern data, and selects the selected data from the reciprocating straight line. An ultrasonic sealing device used for controlling a moving mechanism.
請求項1乃至6の何れかに記載の超音波シール装置であって、
超音波シール装置の上下方向は、前記直線軌道に対して直交しており、
前記アンビルは、前記上下方向において前記超音波ホーンの上方に位置することを特徴とする超音波シール装置。
The ultrasonic sealing device according to any one of claims 1 to 6,
The vertical direction of the ultrasonic sealing device is orthogonal to the linear trajectory,
The ultrasonic seal device according to claim 1, wherein the anvil is positioned above the ultrasonic horn in the vertical direction.
請求項7に記載の超音波シール装置であって、
前記アンビルは、前記上下方向に移動可能に構成され、前記超音波ホーンは前記上下方向に移動不能に構成されていることを特徴とする超音波シール装置。
The ultrasonic sealing device according to claim 7,
The ultrasonic sealing device according to claim 1, wherein the anvil is configured to be movable in the vertical direction, and the ultrasonic horn is configured to be immovable in the vertical direction.
請求項7に記載の超音波シール装置であって、
前記アンビルは、前記上下方向に移動不能に構成され、前記超音波ホーンは前記上下方向に移動可能に構成されていることを特徴とする超音波シール装置。
The ultrasonic sealing device according to claim 7,
The ultrasonic sealing device, wherein the anvil is configured to be immovable in the vertical direction, and the ultrasonic horn is configured to be movable in the vertical direction.
請求項7に記載の超音波シール装置であって、
前記アンビル及び前記超音波ホーンの両方が、前記上下方向に移動可能に構成されていることを特徴とする超音波シール装置。
The ultrasonic sealing device according to claim 7,
Both the anvil and the ultrasonic horn are configured to be movable in the vertical direction.
吸収性物品に係る連続ウエブが所定の直線軌道を搬送される間に、前記連続ウエブに超音波振動を付与することにより、前記連続ウエブの搬送方向に間隔をおいて複数の溶着部を形成する超音波シール方法であって、
前記超音波振動を発する超音波ホーンと、
前記超音波ホーンが前記超音波振動を前記連続ウエブに向けて発する際に、前記超音波ホーンと協働して、前記連続ウエブをその厚み方向から挟持するアンビルと、
前記超音波ホーン及び前記アンビルを、前記直線軌道と平行な往路及び復路に沿って移動させる往復直線移動機構と、を用い、
前記往路において、前記超音波ホーン及び前記アンビルの両者を互いに前記厚み方向に対向させつつ前記連続ウエブの搬送速度値と同じ速度値で移動することと、
前記同じ速度値で移動することにおいて、前記超音波ホーンと前記アンビルとが、前記連続ウエブの挟持を行うことと、
前記同じ速度値で移動することにおいて、前記挟持の解除をすることと、
前記挟持中に、前記超音波ホーンが前記超音波振動を発することと、を有することを特徴とする超音波シール方法。
While the continuous web related to the absorbent article is transported along a predetermined linear track, a plurality of welds are formed at intervals in the transport direction of the continuous web by applying ultrasonic vibration to the continuous web. An ultrasonic sealing method,
An ultrasonic horn for emitting the ultrasonic vibration;
When the ultrasonic horn emits the ultrasonic vibration toward the continuous web, an anvil that holds the continuous web from its thickness direction in cooperation with the ultrasonic horn;
A reciprocating linear movement mechanism that moves the ultrasonic horn and the anvil along an outward path and a return path parallel to the linear trajectory,
In the forward path, both the ultrasonic horn and the anvil are moved at the same speed value as the conveyance speed value of the continuous web while facing each other in the thickness direction;
In moving at the same speed value, the ultrasonic horn and the anvil perform clamping of the continuous web;
Releasing the clamping in moving at the same speed value;
The ultrasonic sealing method, wherein the ultrasonic horn emits the ultrasonic vibration during the clamping.
JP2014503333A 2011-08-24 2012-08-21 Ultrasonic sealing device and ultrasonic sealing method Active JP5990568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014503333A JP5990568B2 (en) 2011-08-24 2012-08-21 Ultrasonic sealing device and ultrasonic sealing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011182849 2011-08-24
JP2011182849 2011-08-24
PCT/JP2012/005231 WO2013027390A1 (en) 2011-08-24 2012-08-21 Ultrasonic sealing apparatus and ultrasonic sealing method
JP2014503333A JP5990568B2 (en) 2011-08-24 2012-08-21 Ultrasonic sealing device and ultrasonic sealing method

Publications (2)

Publication Number Publication Date
JP2014524265A true JP2014524265A (en) 2014-09-22
JP5990568B2 JP5990568B2 (en) 2016-09-14

Family

ID=47746154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014503333A Active JP5990568B2 (en) 2011-08-24 2012-08-21 Ultrasonic sealing device and ultrasonic sealing method

Country Status (5)

Country Link
JP (1) JP5990568B2 (en)
CN (1) CN103747767B (en)
IN (1) IN2014CN01519A (en)
TW (1) TWI574824B (en)
WO (1) WO2013027390A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016215281A (en) * 2015-05-15 2016-12-22 ファメッカニカ.データ エス.ピー.エー. Device and method for forming supersonic welding part on web material continuously moving
JP6286611B1 (en) * 2017-12-13 2018-02-28 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP6307660B1 (en) * 2017-12-13 2018-04-04 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP6307659B1 (en) * 2017-12-13 2018-04-04 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP2019026351A (en) * 2017-07-31 2019-02-21 株式会社川島製作所 Packaging machine equipped with ultrasonic sealing device
JP2019104224A (en) * 2018-02-23 2019-06-27 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP2019104225A (en) * 2018-02-23 2019-06-27 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169786B2 (en) 2013-05-03 2017-07-26 ザ プロクター アンド ギャンブル カンパニー Absorbent article comprising an extensible laminate
JP6302675B2 (en) * 2014-01-10 2018-03-28 ユニ・チャーム株式会社 Ultrasonic welding apparatus and ultrasonic welding method for sheet-like member related to absorbent article
JP6244208B2 (en) * 2014-01-21 2017-12-06 ユニ・チャーム株式会社 Ultrasonic welding equipment
JP6893974B2 (en) 2016-08-12 2021-06-23 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company Absorbent article with ears
CN113599079B (en) 2016-08-12 2022-10-11 宝洁公司 Elastic laminate and method for assembling an elastic laminate for an absorbent article
CN117503488A (en) 2016-08-12 2024-02-06 宝洁公司 Absorbent article with tab portions
CN110381901A (en) 2017-03-27 2019-10-25 宝洁公司 Elastomer layer with curling spun-bonded fibre net is fit
KR101962634B1 (en) * 2018-05-26 2019-03-27 (주)울티모팩 ultrasonic sealing apparatus for burlap bag
WO2020086103A1 (en) 2018-10-26 2020-04-30 Curt G. Joa, Inc. Dual bonder
US11944522B2 (en) 2019-07-01 2024-04-02 The Procter & Gamble Company Absorbent article with ear portion
CN112440476A (en) * 2020-11-04 2021-03-05 中电九天智能科技有限公司 Nose bridge strip pre-fixing equipment and mask manufacturing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254522A (en) * 2001-02-28 2002-09-11 Fujimori Kogyo Co Ltd Sealing device
JP2004298413A (en) * 2003-03-31 2004-10-28 Uni Charm Corp Seal device, and sealing method using the device
WO2011016716A1 (en) * 2009-08-07 2011-02-10 Beiler Beheer B.V. Method for performing an ultrasonic welding process on at least one web

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957853A (en) * 1995-08-21 1997-03-04 Mitsubishi Heavy Ind Ltd Controlling method for ultrasonic sealing device and apparatus therefor
JP2000343611A (en) * 1999-06-07 2000-12-12 Maruni Kk Apparatus and method for fusion bonding and cutting thermoplastic resin sheet
JP5498082B2 (en) * 2009-07-31 2014-05-21 ユニ・チャーム株式会社 Web transport device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254522A (en) * 2001-02-28 2002-09-11 Fujimori Kogyo Co Ltd Sealing device
JP2004298413A (en) * 2003-03-31 2004-10-28 Uni Charm Corp Seal device, and sealing method using the device
WO2011016716A1 (en) * 2009-08-07 2011-02-10 Beiler Beheer B.V. Method for performing an ultrasonic welding process on at least one web

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377085B2 (en) 2015-05-15 2019-08-13 Fameccanica.Data S.P.A Device and method for forming ultrasonic welds on web materials in continuous movement
JP2016215281A (en) * 2015-05-15 2016-12-22 ファメッカニカ.データ エス.ピー.エー. Device and method for forming supersonic welding part on web material continuously moving
JP2019026351A (en) * 2017-07-31 2019-02-21 株式会社川島製作所 Packaging machine equipped with ultrasonic sealing device
WO2019116505A1 (en) * 2017-12-13 2019-06-20 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP6307659B1 (en) * 2017-12-13 2018-04-04 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
WO2019116507A1 (en) * 2017-12-13 2019-06-20 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP6307660B1 (en) * 2017-12-13 2018-04-04 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP2019103659A (en) * 2017-12-13 2019-06-27 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP2019103657A (en) * 2017-12-13 2019-06-27 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP2019103658A (en) * 2017-12-13 2019-06-27 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP6286611B1 (en) * 2017-12-13 2018-02-28 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP2019104224A (en) * 2018-02-23 2019-06-27 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device
JP2019104225A (en) * 2018-02-23 2019-06-27 ユニ・チャーム株式会社 Ultrasonic sealing method and ultrasonic sealing device

Also Published As

Publication number Publication date
CN103747767A (en) 2014-04-23
JP5990568B2 (en) 2016-09-14
TWI574824B (en) 2017-03-21
CN103747767B (en) 2015-07-22
TW201332749A (en) 2013-08-16
IN2014CN01519A (en) 2015-05-08
WO2013027390A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5990568B2 (en) Ultrasonic sealing device and ultrasonic sealing method
JP4966716B2 (en) Processing equipment
CN100354112C (en) Seal device and seal method using the same
EP3092993B1 (en) Ultrasonic welding apparatus and ultrasonic welding method of sheet-like member associated with absorbent article
EP3095589B1 (en) A device for forming ultrasonic welds on web materials in continuous movement
EP3092994B1 (en) Ultrasonic welding apparatus and ultrasonic welding method of sheet-like member associated with absorbent article
EP1260203B1 (en) Apparatus and method for manufacturing wearing articles
JP6302675B2 (en) Ultrasonic welding apparatus and ultrasonic welding method for sheet-like member related to absorbent article
JP6244208B2 (en) Ultrasonic welding equipment
JP6059904B2 (en) Manufacturing apparatus and manufacturing method for absorbent article packaging
US20230398747A1 (en) Apparatus and method for ultrasonic welding
JP6155031B2 (en) Welding device and welding method for sheet-like member according to absorbent article
ES2946612T3 (en) Improved Ultrasonic Bonding Method and Apparatus
US20180056601A1 (en) Ultrasonic sealer
JPH11170404A (en) Ultrasonic fusion-bonding device
KR101676768B1 (en) Ultrasonic sewing machine and mat manufacturing the same
JP2019077063A (en) Manufacturing device and manufacturing method of sheet fusion body
JP2020082472A (en) Apparatus for manufacturing sheet fused body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5990568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250