JP2014517277A - リストモードダイナミックイメージ再構成 - Google Patents

リストモードダイナミックイメージ再構成 Download PDF

Info

Publication number
JP2014517277A
JP2014517277A JP2014509869A JP2014509869A JP2014517277A JP 2014517277 A JP2014517277 A JP 2014517277A JP 2014509869 A JP2014509869 A JP 2014509869A JP 2014509869 A JP2014509869 A JP 2014509869A JP 2014517277 A JP2014517277 A JP 2014517277A
Authority
JP
Japan
Prior art keywords
event
image
time
preserving
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014509869A
Other languages
English (en)
Inventor
プレフラル,スフェン
ブレドノ,イェルク
パーキンス,エイミー
オリヴァー,パトリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2014517277A publication Critical patent/JP2014517277A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nuclear Medicine (AREA)

Abstract

核撮像装置は、各イベントが核崩壊イベントのタイムスタンプと空間ローカリゼーション情報とを少なくとも記録するイベントを有する核撮像データを取得する。イベントプリザービング画像再構成モジュールは、イベントプリザービング再構成アルゴリズムを利用して、各イベントについてタイムスタンプと少なくとも1つの空間ボクセル割当てとを有するイベントプリザービング再構成画像データセットとして表現された画像を生成する核撮像データを再構成する。1以上の構成が画像において特定され、独立した動き補償が各構成について実行される。1つのアプローチでは、イベントグループが、イベントプリザービング再構成画像データセットによって当該構成に割り当てられたイベントを有する構成に対応して特定され、各イベントグループのイベントの時間ビン化が、当該構成の動きプロファイルに基づき最適化され、当該構成は、時間ビン画像において空間的に位置合わせされる。

Description

以下は、核撮像技術、PET(Positron Emission Tomography)撮像技術、SPECT(Single Emission Computed Tomography)撮像技術、画像動き補償技術及び関連技術に関する。
核撮像では、被検者の周囲に配置された放射線検出装置が核崩壊イベントを検出する。核イベントは、PET(Positron Emission Tomography)の場合にはライン・オブ・レスポンス(LOR)又はSPECT(Single Photon Emission Computed Tomography)の場合にはプロジェクションライン若しくはスモールアングルコーン(一般に“プロジェクション”と呼ばれる)にローカライズされる。タイム・オブ・フライト(TOF)能力を有するPET撮像の場合、2つの対向した511keVγ光線の検出間の小さな時間差が、LORに沿って電子陽電子消滅イベントをさらにローカライズするのに利用される。典型的には、このローカライゼーションは、電子陽電子消滅イベントの最も可能性のある位置におけるガウスピーク及びTOFローカライゼーションにおける不確実性を示すガウス幅(分散や標準偏差など)によるLORに“沿った”ガウス又は他の統計分布により表される。
核撮像による困難さは、データ取得レートが通常低いことである。例えば、医療撮像用途では、人間の被検者(患者など)に放射線医薬品が投薬され、核撮像は投薬された放射線医薬品により生じる核崩壊イベント(又はより具体的には、PETの場合における電子陽電子消滅イベント)を検出する。患者の安全は、投薬された放射性医薬品の投与量が患者の放射線被曝を最小限にするため低くなるべきであることを指示し、これは、低レートの崩壊イベントに言い換えられる。この結果、核撮像データ取得は、典型的には、数分間、数十分間又はそれ以上行われる。患者がこの延長された時間じっとし続けることは困難であるか、又は不可能である。さらに、患者の呼吸に関する鼓動する心臓や胸部領域の動きなどの動的に挙動する組織によって動きが導入されうる。機能的撮像の場合、放射線医薬品の分布はまた、患者の代謝や他の機能的活動に従って経時的に変化しうる。
この場合、延長された取得時間において取得される核撮像データは、動きに関連するアーチファクト(ここで、“動き”とは、患者の機能的活動により生じ放射線医薬品の包括的な動きとして広く解釈される)と共に、心臓又は呼吸の自発的又は非自発的循環又は患者の動きの形式による解剖学的動きを示す。取得された核撮像データの動きに関連するアーチファクトは、通常は再構成された画像におけるぼけとして現れる。
核撮像において動きに関連するアーチファクトを減少させるための各種アプローチが知られている。1つのアプローチは、例えば、患者の拘束を利用するなどにより動きを予防的に最小限にすることである。このような予防的アプローチは、撮像データ取得時間の長さが増加するに従って有効性が低下し、一般に撮像データ取得時間よりはるかに短い時間フレームにおいて行われる心臓又は呼吸循環などの自律的動きを抑制するのに効果的でない。
心臓循環、呼吸循環又は他の循環的動きの場合、ゲーティングが利用されてもよい。このアプローチでは、循環的動きが、例えば、心臓循環の場合には心電図などを利用して、撮像データ取得中にモニタされる。核撮像データは、その後、フェーズ毎にソートされ、核フェーズにソートされたデータが、循環的動きの異なるフェーズに対応する異なる画像を生成するため一緒に再構成される。このアプローチによる問題点は、撮像データの各“フェーズサブセット”が取得された核撮像データセット全体の小さな一部しか含まないことである。この結果、“フェーズ”画像は、再構成のため利用可能な限定的なデータによりノイズとされることがある。一方では低いフェーズ解像度により生じる画像のぼけ(フェーズ“ビン”の個数が少ない場合)と、他方ではデータの希薄さからのノイズ(フェーズビンの個数が大きい場合)との間でトレードオフが行われる。
さらなる他のアプローチは、一部の例が2010年7月1日に公開されたBuschらによる米国公開2010/0166274A1に記載されるローカル動き補償である。例示的なローカル動き補償アプローチでは、イベントは、100ミリ秒のインターバルなどの小さなインターバルにグループ化され、各グループは、ノイズである可能性があるが、実質的に抑制された動きアーチファクトを有する可能性のある画像を生成するよう再構成される。これらの画像は、関心領域におけるローカルな動きを特徴付けるのに利用され、対応するイベントが、ローカルな動きを補償するため空間的にシフトされる。このように訂正されたイベントデータは、その後、ローカル動き補償を有する画像を生成するため再構成される。
以下は、ここに開示されるような新規かつ改良された装置及び方法を提供する。
開示される1つの態様によると、方法は、イベントを有する核撮像データを提供するステップであって、各イベントは核崩壊イベントのための空間ローカリゼーション情報と前記核崩壊イベントのためのタイムスタンプとを少なくとも記録する、前記提供するステップと、各イベントについて前記タイムスタンプと少なくとも1つの空間ボクセル割当てとを有するイベントプリザービング再構成画像データセットを生成するため、イベントプリザービング再構成アルゴリズムを実現するデジタル処理装置を利用して前記核撮像データを再構成するステップと、前記イベントプリザービング再構成画像データセットにおいて複数の関心構成を特定するステップと、動き補償された画像データを生成するため、特定された各関心構成について独立した動き補償を実行するステップと、前記動き補償された画像データを視覚的に知覚可能なフォーマットにより表示するステップとを有する。
開示される1つの態様によると、方法は、イベントを有する核撮像データを提供するステップであって、各イベントは核崩壊イベントのための空間ローカリゼーション情報と前記核崩壊イベントのためのタイムスタンプとを少なくとも記録する、前記提供するステップと、各イベントについて前記タイムスタンプと少なくとも1つの空間ボクセル割当てとを有するイベントプリザービング再構成画像データセットを生成するため、イベントプリザービング再構成アルゴリズムを実現するデジタル処理装置を利用して前記核撮像データを再構成するステップと、前記イベントプリザービング再構成画像データセットにおいて関心構成を特定するステップと、前記構成に対応するイベントグループを特定するステップであって、前記イベントグループは前記イベントプリザービング再構成画像データセットにより前記構成の空間ボクセルに割り当てられたイベントを有する、前記対応するイベントグループを特定するステップと、前記構成の動きプロファイルを特定するステップと、前記構成の動きプロファイルに基づき前記イベントグループの時間ビン化イベントについて時間ビンを最適化するステップと、最適化された各時間ビンについて時間ビン画像を生成するステップとを有する。
開示される他の態様によると、方法は、イベントを有する核撮像データを提供するステップであって、各イベントは核崩壊イベントのための空間ローカリゼーション情報と前記核崩壊イベントのためのタイムスタンプとを少なくとも記録する、前記提供するステップと、各イベントについて前記タイムスタンプと少なくとも1つの空間ボクセル割当てとを有するイベントプリザービング再構成画像データセットを生成するため、イベントプリザービング再構成アルゴリズムを実現するデジタル処理装置を利用することによって画像を生成するため、前記核撮像データを再構成するステップと、前記イベントプリザービング再構成画像データセットを有する画像を画像データセットストレージに格納するステップとを有する。
開示される他の態様によると、記憶媒体は、イベントのセットを受信するステップであって、各イベントは被検者に生じる核崩壊イベントのための空間ローカリゼーション情報とタイムスタンプとを少なくとも記録する、前記受信するステップと、イベントプリザービング再構成画像データセットを有する画像を生成するため前記イベントのセットを再構成するステップであって、前記イベントのセットのイベントに空間ボクセルを割り当てることを含む、前記再構成するステップと、前記画像に対して再構成画像後処理を実行するステップであって、前記再構成画像後処理は前記イベントプリザービング再構成画像データセットのタイムスタンプを利用する、前記実行するステップとを有する方法を実行するためデジタルプロセッサにより実行可能な命令を格納する。いくつかの実施例では、再構成画像後処理は、イベントプリザービング再構成画像データセットのタイムスタンプ情報に基づき非均一な動きを補償する前記画像に対する動き補償を実行することを含む。いくつかの実施例では、前記再構成画像後処理は、前記画像において構成を特定するステップと、前記構成に対応するイベントグループを特定するステップであって、前記イベントグループは前記イベントプリザービング再構成画像データセットにより前記構成の空間ボクセルに割り当てられたイベントを有する、前記対応するイベントグループを特定するステップと、前記構成の動きを特徴付ける動きプロファイルに基づき前記イベントグループのイベントの時間ビン化を最適化するステップと、動き訂正された構成画像を生成するため、前記時間ビン画像において前記構成を空間的に位置決めするステップとを有する。
1つの効果は、核撮像データから再構成されたイベントプリザービング再構成画像データセットを提供することに関する。
他の効果は、最適化された時間セグメント化による低減された動きアーチファクトによる核画像を提供することに関する。
他の効果は、時間インターバル画像、フェーズセグメント化画像、選択可能な時間分解能の映画的シーケンスなどを生成するための時間セグメント化のフレキシビリティを含むフレキシブルな再構成画像後処理に関する。
他の効果は、“不良”な撮像データの時間インターバルの削除を実現することに関する。
他の効果は、周期的動きと非周期的動きとの双方を特定及び訂正する機能を提供することに関する。
他の効果は、同一画像における異なる動きの軌跡を有する異なる構成の動きを訂正する機能を提供することに関する。
さらなる効果は、以下の詳細な説明を読み理解した当業者に明らかであろう。
図1は、ここに開示されるようなイベントプリザービング画像再構成及び再構成後の処理モジュールを含む核撮像システムを図示する。 図2は、イベントプリザービング再構成画像データセットを格納するのに適した2つのフォーマットを図示する。 図3は、イベントプリザービング再構成画像データセットを格納するのに適した2つのフォーマットを図示する。 図4は、図1のインターバル画像及びシネマシーケンスディスプレイモジュールにより実行される適した処理を図示する。 図5は、異なる時間インターバル幅Δt(左側)及び3Δt(右側)の連続的な時間インターバルのインターバル画像シーケンスを図示する。 図6は、選択されたユーザ入力ダイアログを含む図1のシステムを示すのに適したディスプレイを図示する。 図7は、図1のマルチフェーズ画像系列モジュールにより実行されるのに適した処理を図示する。 図8は、図1のデータ編集選択モジュールにより実行されるのに適した処理を図示する。 図9は、図1のデータ編集選択モジュールにより実行されるのに適した処理を図示する。 図10は、図1のデータ編集選択モジュールにより実行されるのに適した処理を図示する。 図11は、図1の動き補償モジュールにより実行されるのに適した処理を図示する。
図1を参照して、PET(Positron Emission Tomography)スキャナ8は、撮像領域12を観察するよう構成される複数の放射線検出手段10を有する。図1において、複数の放射線検出手段10が、軸方向に沿って複数の検出手段のリング状に配置されるが、放射線検出手段の他の構成が利用可能である。さらに、複数の放射線検出手段10が図示されていることが理解されるべきであり、典型的には、放射線検出手段は、スキャナ8のハウジング14内に収容され、外部からは見えず、典型的には放射線検出手段の各リングは、数百又は数千の放射線検出手段を有する。いくつかのPETスキャナでは、1つのリングのみの放射線検出手段が設けられ、他のものでは、2、3、4、5又はより多くのリングの放射線検出手段が設けられる。可動的なSPECT又はPET検出ヘッドが、被検者の360度のビューを実現するため、例示的な検出手段のリングの代わりに利用可能であることが理解されるべきである。PETスキャナ8は、撮像領域12に人間の患者又は他の撮像主体を配置するためのカウチ16又は他のサポートを有する。任意的には、カウチ16は、3次元撮像データの取得を実現するため、リング状の放射線検出手段10に一般に横断する軸方向にリニアに可動的である。さらに又は代わりに、撮像対象の被検者は固定されたままにすることが可能であり、3次元TOF−PET撮像データを取得するため、複数のリングの放射線検出手段が利用される。さらなる他の実施例では、1つのみのリングの検出手段が設けられ、撮像対象の被検者は固定されたままであり、結果として得られる画像は2次元である。
適切な放射線医薬品が、PET撮像の開始前に患者又は他の撮像対象被検者に投与される。放射線医薬品は、陽電子を発生する核崩壊イベントを受ける放射性物質を含む。陽電子は、撮像対象被検者の近くの電子により急速に消滅する。結果として得られる陽電子電子消滅イベントは、511keVのエネルギーを有する2つの対向するガンマ線を生じさせる。
いくつかの実施例では、PETスキャナ8は、タイム・オブ・フライト(TOF)イベントローカリゼーション能力を提供する。例えば、TOF−PET能力を備えたいくつかの適切な撮像システムは、TOF能力を備えたIngenuityTM及びGeminiTMPET/CTシステム(オランダのエジンバラのKoninklijke Philips Electronics NVから入手可能)を有する。これらの例示的なシステムにおいて、これらの撮像システムがPETとCTとの双方のモダリティを提供するデュアルモダリティシステムであるとき、“CT”という略語は“Computed Tomography”を示すことに留意されたい。
PETスキャナ8(任意的にはTOF能力を有する)が一例として示されるが、核崩壊イベントに対応するイベントを記録する他の核撮像モダリティがまた適切に利用される。他の例示的な具体例として、撮像装置は、SPECT撮像データを取得するガンマカメラであってもよい。記録された各イベントは、(1)対応する核崩壊イベントの空間ローカリゼーションを規定し、(2)タイムスタンプを有するデータを含む。
従来のPETの例示的なケースでは、核崩壊イベントは、(ii)2つの対向する511keVガンマ線を発する電子陽電子崩壊イベントにおいて消滅する(i)陽電子を発する核崩壊のシーケンスを有する。記録された各核崩壊イベントは、核崩壊イベントが発生したと予想される対向する511keVのガンマ線により規定されるライン・オブ・レスポンス(LOR)である(その消滅前に発せられた陽電子の典型的には極めて短い移動距離を無視する)。イベントのタイムスタンプは、同時的な511keVの検出が行われた取得時間である。
TOF−PETの例示的なケースでは、記録されたイベントは、例えば、ガウス又は他の確率分布として表されるLORに沿ったさらなるタイム・オブ・フライトローカリゼーションによるLORを有する。イベントのタイムスタンプは、実質的に同時的な511keVの検出が行われた取得時間である(タイムスタンプの割当てのため、TOFローカリゼーションを計算するのに利用される小さな有限の時間差はごくわずかであり、無視できる。これは、小さな有限の時間差が典型的には1ナノ秒のオーダ又はそれ未満である一方、TOF−PET取得時間は、数分、数十分又はそれ以上のオーダであるためである)。
SPECTの例示的なケースでは、核崩壊イベントは、α粒子、β粒子、γ粒子などを発する放射性同位体崩壊イベントを有する。記録された各イベントは、SPECT検出ヘッドに搭載されたコリメータにより規定されるライン又はスモールアングルコーンに沿ったプロジェクションである。放射性同位体崩壊イベントは、プロジェクションに沿って行われることが知られている(散乱などを無視)。イベントのタイムスタンプは、発せられた粒子の検出が行われた時間である。
図1をさらに参照して、取得した核撮像データは、リストモードではリストモードデータストレージ20に格納される。“リストモード”によって、それは、各イベント記録が(1)対応する核崩壊イベントの測定された空間ローカリゼーションを規定するのに十分な情報(任意的にはさらなるTOFローカリゼーションと共にPETの場合のLOR又はSPECTの場合のプロジェクションなど)と共に、(2)イベントのタイムスタンプとを少なくとも含む。リストモードデータは、イベントプリザービング画像データセットストレージ24に格納される再構成された画像データセットを生成するため、イベントプリザービング画像再構成モジュール22により再構成される。
イベントプリザービング画像再構成モジュール22は、記録された各イベントの再構成された画像に対する貢献が特定(すなわち、保存)されるイベントプリザービング画像再構成アルゴリズムを利用する。大部分の既知の画像再構成アルゴリズムはイベントプリザービングでない。例えば、典型的なフィルタリングバックプロジェクションアルゴリズム、繰り返しフォーワード/バックプロジェクションアルゴリズム、フーリエ変換ベース再構成アルゴリズムなどは、通常はイベントプリザービングでない。大部分の再構成アルゴリズムでは、出力は、各ボクセルに当該ボクセルにおいて始まる核崩壊イベントの個数を統計的に示すグレイスケール強度が割り当てられる空間マップである。
容易に理解されるイベントプリザービング再構成アルゴリズムは、記録された各イベントが空間内の1つのポイント(又は小さなアスペクトレシオボリューム)に対応する核崩壊イベントをローカライズするのに十分なローカライゼーション情報を記録するリストモードデータに対して実行されるものである。この場合、記録される各イベントは、核崩壊イベントの位置に対応する再構成された画像の1つのボクセルからの強度に対する貢献として特定可能である。再構成された画像のボクセルのグレイスケール強度は、このとき当該ボクセルにおいて発生する核崩壊イベントの合計数として計算される。このイベントプリザービング再構成アルゴリズムは、TOFローカリゼーションのスケールがボクセルサイズに相当する場合、TOF−PETデータに適用可能である。実際には、現在のTOF−PET撮像システムでは、TOFローカリゼーションは粗すぎるため、このタイプの再構成が利用可能でない。
より一般には、イベントプリザービング再構成アルゴリズムは、記録された各イベントを最も可能性のあるボクセル、すなわち、対応する核崩壊イベントを最も高い確実性(統計的な意味で)で含んだボクセルに分類又は割り当てる記録イベント分類アルゴリズムとしてみなすことができる。記録されたイベントは、その後に最も高い確実性のあるボクセルに割り当てられる(又は、確率的な意味で各ボクセルに対するメンバーシップ確率により1つ、2つ又はそれ以上のボクセルに割り当てられてもよい)。所与のボクセルの強度は、そのとき当該ボクセルに割り当てられた記録されたイベントのカウントである(確率的な変形では、所与のボクセルの強度は、当該ボクセルのメンバーシップ確率によりスケーリングされた記録された各イベントにより当該ボクセルに割り当てられた記録されたイベントの和である)。
高解像度画像のイベントプリザービング再構成を実行するよう構成可能な再構成アルゴリズムの一例は、Arkadiusz Sitek,“Reconstruction of Emission Tomography Data Using Origin Ensembles”,IEEE Transactions on Medical Imaging,published online Dec.10 2010(DOI番号10.1109/TMI.2010.2098036)(以降、“Sitek”)である。このアルゴリズムは、ボクセルのグレイスケール強度を、当該ボクセルから生じたと推定される記録されたイベントの個数のカウントとして表現する。しかしながら、Sitek再構成アルゴリズムにより出力される画像は、ボクセルグレイスケール値として表され、実際にはイベント保持を提供しない。
図2を参照して、イベントプリザービング再構成アルゴリズムにより適切に生成されるイベントプリザービング再構成画像データセットIが示される。図2の例では、再構成されたイベントプリザービング再構成画像データセットIは、記録された各イベントがさらにイベントプリザービング再構成により生成されるボクセル割当てを含む記録されたイベントのリストとして表される。図2(及び図3)に用いられる“イベント”という単語は、空間ローカリゼーション情報を示し、各イベントはまた、タイムスタンプ及びボクセル割当てを含む。イベントプリザービング再構成画像データセットIの“イベント”及び“タイムスタンプ”データは、そのときオリジナルリストモードデータ(リストモードデータストレージ20に格納される)の対応する情報コンテンツと同じであると理解されるが、イベントプリザービング再構成アルゴリズムにより提供されるようなボクセル割当ての追加により拡張される。
1つの適したフォーマットでは、イベントプリザービング再構成画像データセットIは、各行が核崩壊イベントに対応する記録されたイベントに対応するデータのリスト又はテーブルとして格納され、当該テーブルは、空間ローカリゼーション(すなわち、“イベント”)、タイムスタンプ及びボクセル割当て列を含む。(当該例示的なリスト又はテーブルフォーマットは、ここでは例示的な具体例において利用されるが、データセットIは、列がイベントに対応し、行がデータアイテムに対応する転置された配置、及び/又は各種行又は列が様々に配置されるなどの他のフォーマットにより構成されてもよい。)例示的なイベントプリザービング再構成画像データセットI(イベントがリスト又はテーブルの行として構成される)は、何れかの列に関してソートされてもよい。データがタイムスタンプ列に関してソートされる場合、オリジナルのリストモードの順序付けは保持される。これは、図2に示されるフォーマットである。
図3を参照して、イベントプリザービング再構成画像データセットIが、代わりにボクセル割当て列に関してソートされてもよい。複数の記録されたイベントが再構成アルゴリズムにより同一のボクセルに割り当てられてもよいため、図3に示されるように順序付けされたイベントプリザービング再構成画像データセットIは、各イベントがそれの空間ローカリゼーション及びタイムスタンプ情報により表される、各ボクセルに関連する0、1、2、3又はより多くのイベントのグループを適切に含む。各“ボクセルグループ”は、当該ボクセルにおいてイベントが発生したときの時間のレコードを提供するため、タイムスタンプによりソートされてもよい。イベントプリザービング再構成画像データセットIを格納するフォーマットは、適切なソート処理又は他のリフォーマット処理を適用することによって容易に変換されてもよいことが容易に明らかである。例えば、図2のフォーマットから図3のフォーマットに移行するため、ソート処理はボクセル割当て列に対して適切に実行される。
図2及び3の具体例では、イベントプリザービング再構成画像データセットIは、各イベントについて、(1)撮像データ取得中に取得され、リストモードデータの一部として格納される空間ローカリゼーション情報、(2)タイムスタンプ、及び(3)ボクセル割当てを含む。しかしながら、ボクセル割当てにより効果的に代替されるため(取得されたリストモードデータにおいて提供されるLOR、プロジェクション又は他の空間ローカリゼーションと比較して、より具体的な空間ローカリゼーションである)、データアイテム(1)を省略することが想定される。当該実施例では、イベントプリザービング再構成画像データセットは、各イベントについてタイムスタンプ及びボクセル割当てを有する。
他方、データアイテム(1)がイベントプリザービング再構成画像データセットIの一部として保持される場合(図示されるように)、一変形の実施例では、イベントプリザービング再構成画像データセットIはリストモードデータのスーパーセットであるため(すなわち、リストモードデータのすべての情報に加えてボクセル割当て情報を含む)、2つのデータストレージ20、24がマージ可能である。
図2及び3のイベントプリザービング再構成画像データセットIは、イベントプリザービング再構成アルゴリズムが各イベントを1つのボクセルに割り当てることを仮定している。あるいは、イベントプリザービング再構成アルゴリズムは、各ボクセルのメンバーシップ確率により1つの記録されたイベントを(おそらく複数の)ボクセルに割り当てるよう設計されてもよい。この場合、所与の記録されたイベントに関連するボクセル割当ては、各ボクセル割当てがメンバーシップ確率を有する複数のボクセル割当てを含むものであってもよい。図3のデータセットフォーマットでは、これは、1つのイベントが、各ボクセルの(一般に異なる)メンバーシップ確率を有する2以上の異なるボクセルの下でリストされてもよいことを意味する。このようなイベントのメンバーシップ確率によるボクセル割当てへの“ソフト”な分類は、最も高いメンバーシップ確率を有するボクセルを選択することによって(各イベントについて)、各イベントの単一のボクセル割当てへの“ハード”な分類に容易に変換できることが理解されるであろう。
イベントプリザービング再構成データセットIによると、表示用のグレイスケール画像を生成することが直接的であり、計算効率的である。例えば、図3のフォーマットを利用して、何れか所与のボクセルのグレイスケール強度は、当該ボクセルに割り当てられた記録されたイベントの個数のカウントに比例する。正比例でなく、例えば、コントラストエンハンスメントなどのための選択されたトーン再生曲線を実現するためなど、比例しないカウント・ツー・グレイスケール強度変換を利用することが想定される。ボクセル毎のイベントのカウントがまた、図2のフォーマットを利用して容易に計算可能であるが、この場合、ボクセルに割り当てられたすべてのイベントを特定及びカウントするため、記録されたイベントのリストをサーチすることを伴う。所与の記録されたイベントがメンバーシップ確率を有する2以上の異なるボクセルに割り当てられる変形となる実施例では、ボクセルグレイスケール値が、それのメンバーシップ確率による記録された各イベントのボクセルへの貢献をスケーリングすることによって計算される。
図1を再び参照して、開示されたイベントプリザービング再構成アルゴリズム及び出力されるイベントプリザービング再構成画像データセットIの機構を介したタイムスタンプ情報を含む個々のイベントアイデンティティの画像スペースにおける保存は、新たなタイプの再構成後処理を可能にすることが認識される。イベントプリザービング再構成画像データセットIは、取得した(リストモードなど)データを再構成することなく、時間次元において“セグメント化”することができる。これは、改良された動き検出及び補償、選択された時間インターバルにおいて取得されたデータから生成される“インターバル”画像の表示、映画的なムービーの生成などの機能を可能にする。このため、図1の例示的な実施例では、時間画像ナビゲータモジュール30が、各種の時間関連再構成画像後処理タスクを実行するため提供される。例示的なナビゲータモジュール30は、ユーザにより選択された連続的な時間インターバルにおいて取得されたデータから生成される画像を表示するためのインターバル画像表示モジュール32を有する。映画的シーケンス表示モジュール34は、映画的シーケンス(すなわち、映画的ムービー)の表示フレームを生成及び映画的に表示するため、連続する時間インターバルにおいて当該処理を繰り返す。データ編集選択モジュール36は、放射線技師又は他のユーザが患者の動き又は他のアーチファクトソースにより損傷した“不良”データの時間インターバルを特定するため、選択的時間セグメント化を介して時間に関してイベントプリザービング再構成画像データセットIをナビゲートすることを可能にする。フェーズ画像表示モジュール38は、心臓循環、呼吸循環又は他の関連する生理サイクルに従って画像が時間に関してセグメント化されることを可能にする。例示的な具体例では、フェーズ画像表示モジュール38は、ECG装置40により核撮像データ取得中に収集され、データストレージ42に格納された心電図(ECG)データを利用する。さらなる他の適した用途では、周期的/非周期的動き補償モジュール44は、周期的な動きの軌跡と非周期的な動きの軌跡との双方の動き訂正を実行し、同一の画像において異なる動きの軌跡を有する複数のオブジェクトの動きを訂正可能である。これらの各種機能がここで説明される。
図1の撮像システムの計算コンポーネント22、30は、デジタル処理装置50により適切に実現される(任意的には、特定用途向け集積回路、すなわち、ASICや他のアナログ又はハイブリッドコンポーネントにより実現されるアナログ又はハイブリッドデジタル/アナログ回路により拡張される)。例示的なデジタル処理装置は、メモリコンポーネント20、24、42を適切に実現するハードディスクドライブ、RAM(Random Access Memory)、FLASHメモリ、光メモリ又は他のデータストレージ装置若しくはコンポーネント(又はこれらの組み合わせ)を含むか、又はアクセスする例示的なコンピュータ50と同様である。コンピュータ又は他のデジタル処理装置50はまた、各種の生成された画像及び映画的シーケンスが表示される表示装置52を有するか、又はアクセス可能であってもよい。コンピュータ又は他のデジタル処理装置50はまた、放射線技師又は他の人間のユーザが撮像装置8を操作するためシステムとやりとりし、計算コンポーネント22、30とやりとりし制御するキーボード又は他のユーザ入力装置54を有するか、又はアクセス可能であってもよい。開示された画像再構成及び再構成後処理技術は、ここに開示されるような各種方法を実行するためデジタル処理装置50により実行可能な命令を格納する記憶媒体(ハードディスクなどの磁気媒体、RAM又はFALSHメモリなどの電子記憶媒体、光メモリなど)により実現されてもよいことが理解されるであろう。
図1を再び参照すると共に、さらに図4を参照して、ユーザにより選択された連続的な時間インターバルにおいて取得されるデータから生成されるインターバル画像を表示するためインターバル画像表示モジュール32により実行される適切な処理が説明される。図4の例示的なアプローチでは、イベントプリザービング再構成画像データセットIが、各時間インターバルがΔtの幅を有する連続的な時間インターバルにセグメント化される。処理60において、イベントが幅Δtの時間インターバルのビンにビン化される。例示的な具体例では、すべてのビンは等しい幅Δtを有するが、様々な幅のビンを利用することが想到される。(例えば、関心領域への放射線医薬品投入の開始時間が知られている場合、当該開始以前の時間全体が1つのビンに配置されてもよい。)処理62において、各ビンに対応するインターバル画像が、当該ボクセルに割り当てられた時間ビンにおけるイベント数に対応するよう各ボクセルグレイスケール値を設定することによって生成及び表示される。(ソフトボクセル割当ての場合には、各イベントのボクセルへの貢献は、当該ボクセルのメンバーシップ確率により適切にスケーリングされる。)さらなる又は他の処理64では、画像のシーケンスは映画的ムービーとして表示され、各インターバル画像はムービーのフレームを形成し、連続する各インターバル画像を表示するためのフレーム時間は、当該ビンのΔtに比例する。
図5を参照して、処理62により出力されるインターバル画像シーケンスの2つの例示的な具体例が図示される。図5の左側は時間インターバルΔtのビンの結果を示し、図5の右側は時間インターバル3Δtの“より幅の広い”ビンの結果を示す。例示的な具体例は、5Δtの期間により循環的に移動するある特徴(黒塗りのオブジェクト)を含む。この場合、時間分解能Δtを有する左側の時間セグメント化はまた、当該循環的な動きを決定することができる。他方、時間分解能3Δtを有する右側の時間セグメントは“粗すぎて”循環的な動きを決定することができず、(より長い)時間インターバルにおける当該特徴の有意な動きによるぼやけた特徴を示す。
図4及び5の処理は、すべてのデータを1つの再構成に再構成し(イベントアイデンティティを保存しながら)、その後結果として得られたイベントプリザービング再構成画像データセットIをセグメント化する。このアプローチは、有意な効果を有する。イベントプリザービング再構成画像データセットIは撮像データの取得したすべてのイベントを含むため、画像再構成中のデータが疎であることの問題が回避される。他方、再構成前にデータをビン化することによって時間セグメント化を実行する試みは、データの希薄さの問題を導く可能性がある。ビンが狭すぎる場合、正確な再構成を可能にするのに不十分なデータしか有しない可能性がある。
図4及び5のアプローチは、リストモード撮像データの再再構成を実行することなく異なる時間インターバルが表示可能であるため、ワークフローの効率性を向上させる。図4に図示された処理において、図5の左側のΔtの分解能から図5の右側の3Δtの分解能への移行(又はその逆)は、新たなビンサイズに対するビン化処理60及び表示生成処理62を単に繰り返すことを伴い、これらはシンプルな再カウント処理になる。
図6を参照して、コンピュータ50により表示装置52上に適切に表示される例示的なディスプレイは、時間領域における便利なユーザナビゲーションが最適な時間セグメントを特定することを可能にする。ユーザは、スライダ入力70を利用して時間インターバルΔtを選択する。時間インターバルΔtがスライダ入力70を介しユーザにより調整されるときは常に、図4の処理60、62が繰り返される。処理64により生成される映画的ムービーはウィンドウ72において表示され、任意的には、ユーザが任意の移動するオブジェクトの動きを研究できるようにループするようにしてもよい。当該特徴がぼやけて現れる場合、ユーザは、映画的ムービーの時間分解能を増加させるため、スライダ70を用いてΔtを低減することができる。他方、Δtが小さすぎる場合、各ビンにはほとんどデータがなく、強度がなくなるか(最も高いカウントのボクセルが最大の許容されるグレイスケール値を有するように、ボクセル強度が正規化されない場合に可能性のある結果)、又はコントラストを失うか若しくはノイズになる(フレーム毎の正規化ファクタがノイズになるとき、強度が正規化される場合、2つの可能性のある結果)。
さらに、図6の例示的なディスプレイは、ウィンドウ74に示されるインターバル画像を含む。表示されるインターバル画像は、入力ウィンドウ76を介しユーザにより入力される時間tにおいてスタートする(又は中心とする若しくは参照される)時間インターバルΔt(スライダ70を介しユーザにより選択された)に対するモノである。ユーザは、ウィンドウ76に示されるインターバル画像の時間tを調整することによって、時間に関してナビゲートすることができる。インターバル画像を更新するため、図3の処理は任意的には1つのビンに限定可能であり、すなわち、処理60は時間tにおいて幅Δtのビンのデータを特定するためのに適用可能であり、表示処理62は当該ビンについてのみ適用可能である。
例示的なナビゲーションコントロール70、76は、単なる例示的な具体例であり、他のユーザ入力フォーマットと置換可能である。例えば、tはΔtスライダ70と同様に、スライダ入力を介しユーザにより提供されてもよい。他の実施例では、連続的なインターバル画像の全体が表示可能であり(図5により)、この場合、tの入力は不要である。任意的には、ユーザは、クリックオンすることによって、又はフルスクリーンビューイングのためそれを選択することによって、ウィンドウ72又は74を“フルスクリーン”モードに拡大することが可能であってもよい。
図6の例示的なディスプレイはさらに、選択ボックス80を介しユーザにより選択可能な(図6において現在選択されていないものとして表示される)マルチファジック(multiphasic)時間セグメント化オプションを含む。ディスプレイに図示されるように、例示的なマルチファジック時間セグメント化オプションは、データが時間インターバルΔtsystoleの収縮期と時間インターバルΔtdiastoleの拡張期とにセグメント化される心臓サイクルセグメント化を実行する。本例では、Δtdiastole>Δtsystoleであり、これは拡張期が収縮期と比較してより長く、より静止した状態であることを説明する。この例示的な具体例は2つの心臓フェーズへのセグメント化であるが、3、4又はそれ以上のフェースへのセグメント化もまた、呼吸循環などの他の生理循環に基づくセグメント化と共に想定される。
図7を参照して、図6のディスプレイに提供されるマルチファジック時間セグメント化を実現するためのフェーズ画像ディスプレイモジュール38(図1を参照)により実行される処理が説明される。処理82は、撮像データの取得中にECG40により取得された心電図(ECG)データを利用して、対象となる各心臓フェーズインターバル(例えば、図6の具体例における収縮期インターバルΔtsystole及び拡張期Δtdiastole)に対応する時間インターバルを特定する。収縮期インターバルΔtsystole及び拡張期インターバルΔtdiastoleが各心臓サイクルについて繰り返され、従って、処理82は収縮期に対応する不連続の時間インターバルセットを特定し、また拡張期に対応する他の不連続の時間インターバルセットを特定することに留意されたい。処理84において、イベントプリザービング再構成画像データセットIが心臓フェーズによりソートされる。各イベントは、当該イベントのタイムスタンプが収縮期インターバルΔtsystole又は拡張期インターバルΔtdiastoleにそれぞれ属するかに基づき、収縮期又は拡張期に割り当てられる。処理86において、各フェーズ(又はあるいは1つの関心フェーズ)の画像が、当該フェーズにソートされ、当該ボクセルに割り当てられるイベントのカウントに想到するよう各ボクセルグレイスケール値を設定することによって表示される。(再び、ソフトボクセル割当てのケースでは、フェーズの各イベントのボクセルへの貢献は、当該ボクセルのメンバーシップ確率により適切にスケーリングされる。)
再び、図7の処理は、Retrospective Gating技術にある程度類似している。しかしながら、Retrospective Gating技術では、リストモード撮像データは、再構成前にECGデータ(又は他の生理サイクルレコード)に基づき各種フェーズにタイムスタンプによりソートされ、各フェーズにソートされたデータは別々に再構成される。他方、図7の処理では、リストモードデータセット全体が、イベントプリザービング再構成画像データセットIを生成するため一緒に再構成され、各種フェーズへのセグメント化が、イベントプリザービング再構成画像データセットIにより提供されるイベント保存により可能とされるように、再構成後処理される。この結果、画像再構成は、疎なデータに対して実行されることが強制されず、大きなデータセットに対して実行される(すなわち、イベントプリザービング再構成画像データセットI)。さらに、フェーズセグメント化が不満足であるとユーザが判断した場合、ユーザは、フェーズインターバルを調整し、データを再び再構成することなくフェーズ画像生成を繰り返すことができる。図6を簡単に参照して、例えば、Δtsystole及びΔtdistoleの境界を示す垂直のバーは、任意的にはこれらのインターバルを調整するためユーザにより調整可能である。調整されると、フェーズ特定、ソート処理及び表示処理82、84、86が繰り返される。これらの処理は、原理的にはソート処理及びカウント処理であり、効率的に実行可能である。他方、ゲート化された撮像では、フェーズインターバルの変化は、ビン化されたデータを更新されたフェーズインターバルに再び再構成することを伴う。
開示されたイベントプリザービング再構成画像データセットIの効果は、それがリストモード画像データを再び再構成することなく時間セグメント化の調整を可能にすることである。しかしながら、さらに開示されるように、イベントプリザービング再構成画像データセットIはまた、再度の再構成を調整するのに有用であり得る。この機能は、データ編集選択モジュール36により提供される。
図8〜10を参照して、データ編集選択モジュール36の処理が説明される。図8は、インターバル画像表示モジュール32(それの処理は、図4及び5を参照してすでに説明された)の適切な出力を示す。その出力は、幅Δtの連続的な時間インターバルにおける連続的なインターバル画像である。図6を参照してすでに説明されたように、ユーザが時間インターバルの幅Δtをすでに調整したことが仮定される。しかしながら、図8の具体例において、1つのインターバル画像90(図8の先頭から2番目の画像)はぼやけたままであり、特に黒の特徴が左下に突出する低強度部分を含むことが観察される。残りの画像はこの低強度部分を有さず、これらの画像の黒の特徴は左下にやや拡張される。これの妥当な解釈は、インターバル画像90における特徴のぼけは、動き、撮像システムにより生じるアーチファクトなどのあるタイプのアーチファクトによるものである。さらに、残りの画像における特徴の膨張は、ぼやけた画像90の時間インターバルのデータを含むすべてのデータに対してイベントプリザービング画像再構成が実行されるため、理解できる。この結果、画像90におけるアーチファクトの残りのインターバル画像への“漏れ”が存在しうる。これを解決するため、ユーザはデータセットからの削除のため、ぼやけたインターバル画像90を選択する。例示的な具体例では、これは、“Yes”又は“Cancel”の選択可能なオプションを有するダイアログ“Re−reconstruct without this time interval?”により実行される。“Yes”を選択することによって、ユーザは、図10に示される更新された画像を生成するため、図9に示される再再構成処理を呼び出す。
図9を特に参照して、再再構成がストレージ20に格納されているリストモードデータに対して実行される。処理100において、ぼやけた画像90に対応する排除されたインターバル内のタイムスタンプを有するイベントが削除される。残りのリストモード撮像データが、排除された削除されたデータによりリストモードデータを再び再構成するため、イベントプリザービング画像再構成モジュール22(図1を参照)を呼び出すことによって、処理102において再構成される。処理102の出力は、ストレージ24に適切に格納される更新されたイベントプリザービング再構成画像データセットI’である。更新されたイベントプリザービング再構成画像データセットI’は、削除された排除されたインターバルと、再再構成処理102により生成された更新されたボクセル割当てとを有するリストモードデータを含む。
図10は、再度再構成されたデータにインターバル画像表示モジュール32を適用することによって生成されるインターバル画像を示す。即座に明らかになる結果は、図8に示されるぼやけた画像90に等価な更新はされないことである。これは、当該時間インターバルのデータが削除されたためであり、この結果、ビン化処理60(図4を参照)がデータを各種時間インターバルにビン化するとき、排除された時間インターバルにイベントはビン化されず、画像は表示されない。任意的には、図10の欠落したインターバル画像は、ぼやけた画像が完全に欠落した画像より好ましい場合、ぼやけた画像90によって、又は時間に関して2つの近傍の画像を平均化又は合成することによって生成される画像によって充填可能である。
再度の再構成の他の結果は、図8の画像において明らかである黒い特徴の左下方への膨張が排除されることである。これは、再再構成が、ぼやけた画像90に示される低強度のアーチファクトを含む排除されたインターバルのデータを利用しないためであり、当該アーチファクトは、他のインターバル画像に“漏れる”可能性はない。この結果は、図10に示される残りの画像の実質的な改良である。
図9の処理では、再再構成102は、イベントプリザービング画像再構成モジュール22を利用する。しかしながら、再再構成が、filtered backprojection(FBP)などの異なっていて、任意的に非イベントプリザービングな再構成モジュール(又はアルゴリズム)を利用することが想定される。これは、他の再構成アルゴリズムがイベントプリザービング再構成アルゴリズムにより実現されない効果を有する場合に適切であるかもしれない。この場合、イベントプリザービング画像再構成モジュール22はまず、イベントプリザービング再構成画像データセットIを生成するため適用される。その後、データ編集選択モジュール36が、データ取得の“不良”な時間インターバルを特定するため、時間に関して画像を各種セグメント化するため適用される。これらの“不良”な時間インターバルはその後に削除され、残りの“良好”なデータが、FBP又は他の最適な再構成アルゴリズムにより再構成される。
図11を参照して、周期的/非周期的動き補償モジュール44の処理が説明される。イベントプリザービング再構成画像データセットIは、関心のある個々の構成に貢献する画像スペースにおけるイベントの選択を可能にする。これは、関心のある異なる構成が非一様な背景に対して又はホットスタティックな背景の近傍において個々の一般には異なる動きパターンにおいて移動する不均一な動きベクトルフィールドの存在において、動き訂正が効果的に適用されることを可能にする。ここで用いられる“関心構成”という用語は、(限定することなく)解剖学的構造(組織など)、アーチファクト構造(インプラントなど)、代謝構造(代謝活動により生成される放射線医薬品の濃度など)、区別される組織構造(腫瘍、壊死組織など)など、画像において識別可能な任意の関心構成を広範に含むことが意図される。
データストレージ20に格納されているリストモードデータからスタートして、イベントプリザービング画像再構成モジュール22が、イベントプリザービング再構成画像を生成するため、処理110において適用される。当該画像は、1以上の構成の動きのためぼやける可能性がある。処理112では、イベントプリザービング再構成画像は、関心のある1以上の構成を特定するためセグメント化される。このセグメント処理112は、手作業によるセグメント化(ディスプレイ装置52上で画像スライスを表示し、マウスポインタなどを用いてユーザに手動により構成の輪郭を示させるなど)、自動的なセグメント化アルゴリズム又は半自動的なセグメント化(初期的な自動的セグメント化の後に、輪郭の手動による詳細化など)を利用してもよい。一般に、これらの構成は、不均一な背景上にある可能性があり、及び/又は高いバックグラウンド活動の近くに配置されている可能性がある(例えば、肺結節に対する肝臓など)。さらに、各構成は、データ取得中に個別の一般に異なる動きを示す可能性がある。
セグメント化処理112は、各関心構成により占有される領域を描写する。すなわち、セグメント化処理112は、各関心構成に対応するボクセルセットを特定する。このようにして閲覧されると、処理114は、各関心構成に対応するイベントグループを容易に構成する。ある構成に対するイベントグループは、イベントプリザービング再構成によって当該構成に対応するボクセルセットに割り当てられたイベントを有する。再構成が“ソフト”割当てを利用する場合、イベントグループのイベントはボクセルセットの各自のメンバーシップ確率によって適切に重み付けされる。
処理116において、動きプロファイルが、時間の関数として各関心構成について決定される。動きプロファイルは、例えば、実際の動きを示すことによって(すなわち、軌跡)、被検者に付属された動きセンサにより示されるような動きの大きさを示すことによって、又はECG出力などの相関センサ出力によって、当該構成の動きを特徴付ける。動きプロファイルは、一般に周期的又は非周期的な動きを示すことが可能であるか、又は当該構成がスキャン中に静止したままであることを示すことが可能である。一般に、別々の独立した動きプロファイルが、各関心構成について決定される。処理116は、動きプロファイルを決定するため各種アプローチを利用可能である。
1つのアプローチでは、動きの軌跡を有する動きプロファイルは、以下のように決定される。ある構成のイベントグループは、小さな(及び相対的に高い分解能の)時間インターバルにビン化される。各時間ビンのイベントは、イベントプリザービング再構成画像データセットIのボクセル割当てを利用して画像スペースに変換される。各時間便の構成について重心が決定され、時間の関数として得られた重心がパラメータ曲線に適合されるか、又は動きの軌跡に変換される。各時間ビンの変換された画像は、小さな時間インターバルが各時間ビンの相対的に少数のイベントに対応するため、ノイズである可能性があることに留意されたい。しかしながら、ノイズデータは、動きの軌跡を推定するのに十分である。いくつかの実施例では、動きの軌跡は、非周期的な突然の動きイベントがある可能性があるため(例えば、撮像被検者の突然の自発的又は非自発的動きによって生じる)、スムースな軌跡であると事前には仮定されない。
いくつかの実施例では、処理116がECGデータなどの撮像データ以外の情報に基づき動きプロファイルを決定することが想定される。さらに、動きプロファイルは、動きの軌跡である必要はないが、時間の関数として動きを特徴付ける他のメトリックとすることが可能である。例えば、ECGは、心臓フェーズを特定するのに利用可能であるか(実際の軌跡を提供することなく心臓の動きを間接的に示す)、又は被検者に付属された動きセンサが、動きの方向を検出することなく突然の動きの発生を検出可能である。
結果として得られる動きプロファイルは、移動する各関心構成のイベントグループの最適な時間的ビン化を実行するため処理118において利用される。一般に、所与の構成の時間ビンの最適化は、関心構成の所与の位置について取得されたイベントをグループ化する最適化の課題に個別なものである。動きプロファイルは、当該構成がほとんど又は全く動かない“静止”した時間インターバルにおいてより大きなビンと、当該構成が有意に動く動的な時間インターバルについては小さなビンとを最適に定義するのに利用される。動きプロファイルが循環的な動きを示す場合、時間的ビン化処理118は、任意的には、循環的時間ビン、すなわち、循環的動きの異なるフェーズに対応する不連続な時間ビンによるGatingアプローチを利用可能である。動きプロファイルがゆっくりとしたドリフトを示す場合、相対的に大きな等しい間隔の時間ビンが利用可能である。動きプロファイルが非周期的な突然の動きを示す場合(患者による自発的又は非自発的な動きの場合と同様に)、これらの突然の動きイベントの発生時間は、時間ビンの時間境界として適切に機能する。異なる構成の一般に異なる動きの軌跡について最適化されるため、処理118により生成される最適な時間ビンは、一般に各関心構成について異なる。
処理120において、時間ビン画像が、各構成の最適化された各時間ビンについて生成される。適切なアプローチでは、各(現在最適化された)時間ビンのイベントは、イベントプリザービング再構成画像データセットIのボクセル割当てを利用して画像スペースに変換される。あるいは、各構成/最適化された時間ビングループの再度の再構成を実行するため、イベントプリザービング画像再構成モジュール22を適用することが想定される。(再度の再構成を利用することは、突然の構成の動きイベントによって分離される長い静止期間に対応する時間ビンなどの多数のイベントを有する最適化された時間ビンにとって有用である可能性がある。)
処理120の出力は、処理112において定義された各構成の時間ビン画像セットである。当該情報は、各種方法により利用可能である。図示されたアプローチでは、動き補償された画像は、以下のようにして処理122において時間ビン画像から合成される。移動する各関心構成について、時間ビン画像の構成は、動き訂正された構成の画像を生成するため空間位置合わせされる。1つの適したレジストレーションアプローチでは、移動する各関心構成について、空間テンプレートに構成をマッチングする幾何学的変換が決定及び適用される。例えば、1つの適した空間テンプレートは、処理110により生成された初期画像と、処理112によるそれのセグメント化とを有する。あるいは、他の適した空間テンプレートは、当該構成の最初の時間ビンについて処理120により生成された時間ビン画像セットを有する。幾何学的変換は、各種時間ビンの時間ビン画像をリファレンス時間における当該構成の位置に空間的にシフトするよう構成される(例えば、最初の時間ビン画像がテンプレートして利用される場合、スキャンのスタートなど)。時間tを中心とする時間ビンに適した幾何学的変換はシフトx−xであり、xは時間tにおける当該構成の(3D)位置であり、xはリファレンス時間tにおける当該構成の(3D)位置である。時間の関数としてのシフトxは、処理120が軌跡として動きプロファイルを計算する場合、動きの軌跡から決定できる。あるいは、処理120が軌跡でない動きプロファイルを計算する場合、シフトxは、例えば、各時間ビン画像における当該構成の重心を決定し、その後に当該重心が時間シフトされた画像のリファレンス位置xに一致するように、各時間ビン画像をシフトするなどによって、時間ビン画像自体から推定可能である。変換的シフトに加えて、幾何学的変換は、回転変換コンポーネント、スケーリング変換コンポーネント(例えば、経時的にオブジェクトのサイズ及び/又は形状の変化を説明するためなど)などの他の幾何学的変換コンポーネントをさらに又は代わりに有することが可能である。
時間シフトされた画像(リファレンス時間tにおけるそれの位置にシフトされた構成を有する)は、その後に当該構成の動き補償された構成画像を形成するため、適切に合成される(例えば、所与のボクセルのボクセルカウントを、構成要素となる時間シフトされた当該ボクセルのボクセルカウントの和として計算するなどによって)。動き補償された各構成画像のカウント統計は、取得時間全体において当該構成に貢献したすべてのカウントを含む。ぼやけは、当該構成の動きについて最適化された各構成について動き補償を利用することによって有意に低減される。これらの動き補償された構成画像は、その後に最終的な動き補償された画像を形成するため、処理110により生成される初期画像により提供される背景上に重畳される。
さらに又はあるいは、各構成の時間ビン画像セットを有する処理120の出力は、他の方法により利用可能である。例えば、時間の関数としての画像セットのセットは、CINEシーケンスとして表示可能であり、ここでは、各“フレーム”が1つの最適化された時間ビンの画像を有し、当該最適化された時間ビンの期間に等しい(又は比例する)期間において表示される。循環的な動きをする構成のケースでは、循環フェースのフレームは、他の構成の(非循環的)動きの背景に対する当該構成の動きの循環を示すよう繰り返し可能である。複数の独立した移動する構成の複合的なCINEシーケンスが示される場合、これは、フレーム時間インターバルについてフレームを生成することによって実現可能であり、各フレームのコンテンツはフレーム時間インターバルに一致する時間ビンの時間ビン画像から構成される。その結果は、異なる構成の独立した一般に異なる動きを示すCINEシーケンスである。
開示された動き補償を、例えば、循環的な動きと非循環的な動きとの双方を行う2以上の異なる独立した動きを行う構成に拡張することが想定される。例えば、心臓が心臓循環を行い、患者の動きのため1以上の突然の並進的な動きを行う心臓撮像を検討する。これら2つの独立した動きコンポーネントを処理する1つの方法は、図11のアプローチを直接的に適用することであり、動きプロファイル決定処理116について用いられた小さな時間ビンは、循環的動きコンポーネントと非循環的動きコンポーネントとの双方を決定するのに十分小さい。しかしながら、この無修正のアプローチは、同一の心臓フェーズサイクルの異なる繰り返しからのデータを合成するため、Retrospective Phase Gatingを利用しない。これは、突然の動きの境界における所与の心臓フェーズの繰り返しは。追加的な並進シフトがあるため、もはや本当の周期的なものではないためである。
Retrospective Phase Gatingを可能にする修正されたアプローチは、突然の動きプロファイルと循環的動きプロファイルとのコンポーネントを別々に特定するため、処理116を修正することである。このとき、時間的ビン最適化処理118は2回繰り返され、1回目は各自を非循環的動きにビン化し、2回目は各自を各非循環的動きビン内の心臓循環にビン化することである。非循環的(突然の)動きイベントに個別の第1時間ビン最適化はかなり多くの時間ビンを生成する。例えば、被検者が3つの自発的な動き事象により3つの突然の動きイベントを生じさせた場合、突然の動きに対するビン最適化は4つの時間ビンを生成することになる。このとき、これらの時間ビンのそれぞれは循環的動きコンポーネントに対して最適化されるより小さな時間ビンに分割される。第1(非循環的)最適化により生成される各時間ビン内のイベントが突然の患者の動きに対して静止しているため、時間ビン内の同じ心臓フェーズの連続的なインターバルが、時間ビン内のRetrospective Cardiac Gatingを実現するため合成可能である。これは、突然の各動き時間ビン内の所与の心臓フェーズのすべてのデータを合成する。処理120は、非循環的な各時間ビン内でフェーズ画像セットを生成するため、各非循環的時間ビン内の各フェーズビンについて適用される。最後に、処理122は、突然の動きコンポーネントのみを補償するものと、心臓循環動きコンポーネントのみを補償するものとの2つの幾何学的変換を生成及び適用することによって、心臓循環と非循環的な突然の患者の動きとの双方について補償される単一の心臓画像を生成するため、すべてのイベントを合成するよう変更される。他方、心臓以外の構成は、心臓循環の付随的な補償なしに非循環的な突然の患者の動き(被検者のすべての構成に影響を与える)を補償するため、変更なく図11のアプローチにより処理される。
本出願は、1以上の好適な実施例について説明した。上述した詳細な説明を読み理解した他人にとって、変更及び変形が想到するであろう。本出願は、添付した請求項又はその均等の範囲内にある限り、このようなすべての変更及び変形を含むものとして解釈されることが意図される。

Claims (26)

  1. イベントを有する撮像データを提供するステップであって、各イベントは崩壊イベントのための空間ローカリゼーション情報と前記崩壊イベントのためのタイムスタンプとを少なくとも記録する、前記提供するステップと、
    各イベントについて前記タイムスタンプと少なくとも1つの空間ボクセル割当てとを有するイベントプリザービング再構成画像データセットを生成するため、イベントプリザービング再構成アルゴリズムを実現するデジタル処理装置を利用して前記撮像データを再構成するステップと、
    前記画像に対して再構成画像後処理を実行するステップであって、前記再構成画像後処理は前記イベントプリザービング再構成画像データセットのタイムスタンプを利用する、前記実行するステップと、
    を有する方法。
  2. 前記再構成画像後処理を実行するステップは、
    前記イベントプリザービング再構成画像データセットにおいて複数の関心構成を特定するステップと、
    動き補償された画像データを生成するため、特定された各関心構成について独立した動き補償を実行するステップと、
    前記動き補償された画像データを視覚的に知覚可能なフォーマットにより表示するステップと、
    を有する、請求項1記載の方法。
  3. 前記動き補償された画像データを生成するため、特定された各関心構成について独立した動き補償を実行するステップは、少なくとも1つの特定された構成の非循環的動きを補償する動き補償を実行することを含む、請求項2記載の方法。
  4. 前記動き補償された画像データを生成するため、特定された各関心構成について独立した動き補償を実行するステップは、少なくとも1つの特定された構成の突然の動きを補償する動き補償を実行することを含む、請求項2又は3記載の方法。
  5. 前記動き補償された画像データを生成するため、特定された各関心構成について独立した動き補償を実行するステップは、特定された異なる構成の異なる動きの軌跡を補償する動き補償を実行することを含む、請求項2乃至4何れか一項記載の方法。
  6. 前記実行するステップは、
    前記イベントプリザービング再構成画像データセットにおいて関心構成を特定するステップと、
    前記構成に対応するイベントグループを特定するステップであって、前記イベントグループは前記イベントプリザービング再構成画像データセットにより前記構成の空間ボクセルに割り当てられたイベントを有する、前記対応するイベントグループを特定するステップと、
    前記構成の動きプロファイルを特定するステップと、
    前記構成の動きプロファイルに基づき前記イベントグループの時間ビン化イベントについて時間ビンを最適化するステップと、
    最適化された各時間ビンについて時間ビン画像を生成するステップと、
    を有する、請求項1記載の方法。
  7. 前記時間ビン画像を生成するステップは、前記時間ビンに対して画像再構成を実行することを含まない、請求項6記載の方法。
  8. 前記実行するステップはさらに、
    前記時間ビン画像をリファレンス時間に空間シフトすることによって動き補償された構成画像を生成するため、前記構成の時間ビン画像を合成するステップと、
    前記動き補償された構成画像を少なくとも有する画像を表示するステップと、
    を有する、請求項6又は7記載の方法。
  9. 前記実行するステップはさらに、動き訂正された構成画像を生成するため、前記時間ビン画像において前記構成を空間的に位置合わせすることを含む、請求項6又は7記載の方法。
  10. 前記実行するステップはさらに、前記時間ビン画像を少なくとも含むCINEシーケンスを表示することを含む、請求項6又は7記載の方法。
  11. 前記動きプロファイルを特定するステップは、前記構成の非循環的な動きの軌跡を特定することを含む、請求項6乃至10何れか一項記載の方法。
  12. 前記動きプロファイルを特定するステップは、前記構成の動きプロファイルを少なくとも1つの突然の動きイベントを有するものとして特定することを含む、請求項6乃至11何れか一項記載の方法。
  13. イベントを有する撮像データを提供するステップであって、各イベントは崩壊イベントのための空間ローカリゼーション情報と前記崩壊イベントのためのタイムスタンプとを少なくとも記録する、前記提供するステップと、
    各イベントについて前記タイムスタンプと少なくとも1つの空間ボクセル割当てとを有するイベントプリザービング再構成画像データセットを生成するため、イベントプリザービング画像再構成アルゴリズムを実行するデジタル処理装置を利用することによって画像を生成するため前記撮像データを再構成するステップと、
    前記イベントプリザービング再構成画像データセットを有する前記画像を画像データセットストレージに格納するステップと、
    を有する方法。
  14. 前記再構成するステップ後、前記イベントプリザービング再構成画像データセットの前記イベントのサブセットを有する導出された画像を生成するステップであって、前記サブセットは前記イベントのタイムスタンプに少なくとも基づき選択され、前記導出された画像は前記イベントのサブセットに対して画像再構成アルゴリズムを実行することなく生成される、前記生成するステップと、
    前記導出された画像を表示するステップと、
    をさらに有する、請求項13記載の方法。
  15. 前記導出された画像を生成するステップは、前記導出された画像の各ボクセルについて、該ボクセルに割り当てられた前記サブセットのイベントの個数のカウントに基づきグレイスケール強度を割り当てることを含む、請求項14記載の方法。
  16. イベントを有する撮像データを提供するステップであって、各イベントは崩壊イベントのための空間ローカリゼーション情報と前記崩壊イベントのためのタイムスタンプとを少なくとも記録する、前記提供するステップと、
    前記イベントのタイムスタンプが保存されるイベントプリザービング画像を生成するため、イベントプリザービング画像再構成アルゴリズムを利用して前記撮像データを再構成するステップと、
    前記保存されたタイムスタンプに基づき前記イベントプリザービング画像から導出された画像を生成するステップであって、前記導出された画像は画像再構成アルゴリズムを実行することなく前記イベントプリザービング画像から生成される、前記生成するステップと、
    を有する方法であって、
    前記再構成するステップと前記生成するステップとは、デジタル処理装置により実行される方法。
  17. 前記導出された画像を生成するステップは、前記保存されたタイムスタンプに基づき前記イベントプリザービング画像に対して動き補償を実行することによって、前記導出された画像を生成することを含む、請求項16記載の方法。
  18. 前記導出された画像を生成するステップは、前記撮像データの一部の前記イベントプリザービング画像に対する貢献を削除することによって、前記導出された画像を生成することを含み、
    前記一部は、前記保存されたタイムスタンプに基づき選択される、請求項16記載の方法。
  19. 前記導出された画像を表示するステップをさらに有する、請求項16乃至18何れか一項記載の方法。
  20. イベントを有する撮像データを提供するステップであって、各イベントは崩壊イベントのための空間ローカリゼーション情報と前記崩壊イベントのためのタイムスタンプとを少なくとも記録する、前記提供するステップと、
    前記イベントのタイムスタンプが保存されるイベントプリザービング画像を生成するため、イベントプリザービング画像再構成アルゴリズムを利用して前記撮像データを再構成するステップと、
    前記保存されたタイムスタンプに基づき前記イベントプリザービング画像の前記イベントを時間ビンにソートするステップと、
    各時間ビンについて時間ビン画像を生成するステップと、
    (i)前記時間ビン画像の1以上と(ii)前記時間ビン画像のCINEシーケンスとの少なくとも1つを表示するステップと、
    を有する方法であって、
    前記再構成するステップ、前記ソートするステップ及び前記生成するステップは、デジタル処理装置により実行される方法。
  21. 前記時間ビン画像を生成するステップは、画像再構成アルゴリズムを実行することを含まない、請求項20記載の方法。
  22. 前記時間ビンの時間インターバルのユーザ選択を受信するステップをさらに有し、
    前記生成するステップ及び前記表示するステップは前記ユーザにより選択された時間インターバルの時間ビンについて実行され、
    前記生成するステップ及び前記表示するステップは、更新されたユーザにより選択された時間インターバルが受信されると更新される、請求項20又は21記載の方法。
  23. 前記受信するステップは、ユーザが前記時間インターバルを選択するスライダ入力を利用して実行される、請求項22記載の方法。
  24. 前記撮像データは、(1)PET(Positron Emission Tomography)により取得されたLOR(Line−Of−Response)データ、(2)TOF(Time−Of−Flight)−PETにより取得されたTOFローカリゼーションを有するLORデータ、及び(3)SPECT(Single Photon Emission Computed Tomography)により取得されたプロジェクションデータからなる群から選ばれる、請求項1乃至23何れか一項記載の方法。
  25. 前記提供するステップは、投与された放射線医薬品を含む前記撮像データを被検者から取得することを含み、
    前記撮像データはイベントを有し、
    各イベントは、核崩壊イベントの空間ローカリゼーション情報と前記核崩壊イベントのタイムスタンプとを少なくとも記録する、請求項1乃至24何れか一項記載の方法。
  26. 請求項1乃至25何れか一項記載の方法を実行するためデジタルプロセッサにより実行可能な命令を有するコンピュータプログラム。
JP2014509869A 2011-05-12 2012-05-08 リストモードダイナミックイメージ再構成 Withdrawn JP2014517277A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161485135P 2011-05-12 2011-05-12
US61/485,135 2011-05-12
PCT/IB2012/052273 WO2012153262A1 (en) 2011-05-12 2012-05-08 List mode dynamic image reconstruction

Publications (1)

Publication Number Publication Date
JP2014517277A true JP2014517277A (ja) 2014-07-17

Family

ID=46177463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014509869A Withdrawn JP2014517277A (ja) 2011-05-12 2012-05-08 リストモードダイナミックイメージ再構成

Country Status (6)

Country Link
US (1) US9761020B2 (ja)
EP (1) EP2707853B1 (ja)
JP (1) JP2014517277A (ja)
CN (1) CN103534730B (ja)
RU (1) RU2013155186A (ja)
WO (1) WO2012153262A1 (ja)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9396283B2 (en) 2010-10-22 2016-07-19 Daniel Paul Miranker System for accessing a relational database using semantic queries
CN103901463B (zh) * 2014-04-14 2016-04-20 清华大学 一种基于离散晶体的高能光子反应深度的定位方法
US9508157B2 (en) * 2014-12-12 2016-11-29 Siemens Medical Solutions Usa, Inc. Reconstruction of aneurysm wall motion
US20160203621A1 (en) * 2015-01-09 2016-07-14 Kabushiki Kaisha Toshiba Medical diagnostic imaging apparatus, image processing apparatus and image processing method
US20170119322A1 (en) * 2015-11-02 2017-05-04 Toshiba Medical Systems Corporation Medical image diagnosis system, structural image diagnosis apparatus, and nuclear medical image diagnosis apparatus
JP6540477B2 (ja) * 2015-11-27 2019-07-10 株式会社島津製作所 画像処理装置および放射線撮影装置
US20170238882A1 (en) * 2016-02-18 2017-08-24 Shanghai United Imaging Healthcare Co., Ltd. System and method for medical imaging
CN107133549B (zh) 2016-02-29 2020-11-24 上海联影医疗科技有限公司 Ect运动门控信号获取方法及ect图像重建方法
US11675808B2 (en) 2016-06-19 2023-06-13 Data.World, Inc. Dataset analysis and dataset attribute inferencing to form collaborative datasets
US10853376B2 (en) 2016-06-19 2020-12-01 Data.World, Inc. Collaborative dataset consolidation via distributed computer networks
US11042556B2 (en) 2016-06-19 2021-06-22 Data.World, Inc. Localized link formation to perform implicitly federated queries using extended computerized query language syntax
US11468049B2 (en) 2016-06-19 2022-10-11 Data.World, Inc. Data ingestion to generate layered dataset interrelations to form a system of networked collaborative datasets
US11023104B2 (en) 2016-06-19 2021-06-01 data.world,Inc. Interactive interfaces as computerized tools to present summarization data of dataset attributes for collaborative datasets
US10747774B2 (en) 2016-06-19 2020-08-18 Data.World, Inc. Interactive interfaces to present data arrangement overviews and summarized dataset attributes for collaborative datasets
US10324925B2 (en) 2016-06-19 2019-06-18 Data.World, Inc. Query generation for collaborative datasets
US11334625B2 (en) 2016-06-19 2022-05-17 Data.World, Inc. Loading collaborative datasets into data stores for queries via distributed computer networks
US10452975B2 (en) 2016-06-19 2019-10-22 Data.World, Inc. Platform management of integrated access of public and privately-accessible datasets utilizing federated query generation and query schema rewriting optimization
US10438013B2 (en) 2016-06-19 2019-10-08 Data.World, Inc. Platform management of integrated access of public and privately-accessible datasets utilizing federated query generation and query schema rewriting optimization
US10353911B2 (en) 2016-06-19 2019-07-16 Data.World, Inc. Computerized tools to discover, form, and analyze dataset interrelations among a system of networked collaborative datasets
US10824637B2 (en) 2017-03-09 2020-11-03 Data.World, Inc. Matching subsets of tabular data arrangements to subsets of graphical data arrangements at ingestion into data driven collaborative datasets
US11755602B2 (en) 2016-06-19 2023-09-12 Data.World, Inc. Correlating parallelized data from disparate data sources to aggregate graph data portions to predictively identify entity data
US11036697B2 (en) * 2016-06-19 2021-06-15 Data.World, Inc. Transmuting data associations among data arrangements to facilitate data operations in a system of networked collaborative datasets
US10645548B2 (en) 2016-06-19 2020-05-05 Data.World, Inc. Computerized tool implementation of layered data files to discover, form, or analyze dataset interrelations of networked collaborative datasets
US11042560B2 (en) 2016-06-19 2021-06-22 data. world, Inc. Extended computerized query language syntax for analyzing multiple tabular data arrangements in data-driven collaborative projects
US11947554B2 (en) 2016-06-19 2024-04-02 Data.World, Inc. Loading collaborative datasets into data stores for queries via distributed computer networks
US11941140B2 (en) 2016-06-19 2024-03-26 Data.World, Inc. Platform management of integrated access of public and privately-accessible datasets utilizing federated query generation and query schema rewriting optimization
CN106251381B (zh) * 2016-07-29 2020-02-04 上海联影医疗科技有限公司 图像重建方法
CN106251380B (zh) * 2016-07-29 2022-07-15 上海联影医疗科技股份有限公司 图像重建方法
KR20180014992A (ko) * 2016-08-02 2018-02-12 삼성전자주식회사 이벤트 신호 처리 방법 및 장치
EP3503810A4 (en) 2016-09-30 2019-08-14 Shenzhen United Imaging Healthcare Co., Ltd. METHOD AND SYSTEM FOR CALIBRATING AN IMAGE SYSTEM
EP3549104B1 (en) * 2016-11-29 2020-09-09 Koninklijke Philips N.V. Interactive targeted ultrafast reconstruction in emission and transmission tomography
CN107137102B (zh) * 2016-12-29 2021-02-02 上海联影医疗科技股份有限公司 一种pet成像系统及多模态医学图像处理系统
US11238109B2 (en) 2017-03-09 2022-02-01 Data.World, Inc. Computerized tools configured to determine subsets of graph data arrangements for linking relevant data to enrich datasets associated with a data-driven collaborative dataset platform
JP7232192B2 (ja) * 2017-03-24 2023-03-02 コーニンクレッカ フィリップス エヌ ヴェ データ駆動型呼吸性体動推定方法
DE102017211677A1 (de) * 2017-07-07 2019-01-10 Siemens Healthcare Gmbh Bewegungsabhängige Rekonstruktion von Magnetresonanzabbildungen
US10504250B2 (en) * 2018-01-27 2019-12-10 Uih America, Inc. Systems and methods for correcting mismatch induced by respiratory motion in positron emission tomography image reconstruction
US11568581B2 (en) * 2018-01-27 2023-01-31 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for correcting mismatch induced by respiratory motion in positron emission tomography image reconstruction
US10922308B2 (en) 2018-03-20 2021-02-16 Data.World, Inc. Predictive determination of constraint data for application with linked data in graph-based datasets associated with a data-driven collaborative dataset platform
US11243960B2 (en) 2018-03-20 2022-02-08 Data.World, Inc. Content addressable caching and federation in linked data projects in a data-driven collaborative dataset platform using disparate database architectures
CN108564554A (zh) * 2018-05-09 2018-09-21 上海大学 一种基于运动轨迹优化的视频稳定方法
US11947529B2 (en) 2018-05-22 2024-04-02 Data.World, Inc. Generating and analyzing a data model to identify relevant data catalog data derived from graph-based data arrangements to perform an action
USD940732S1 (en) 2018-05-22 2022-01-11 Data.World, Inc. Display screen or portion thereof with a graphical user interface
USD940169S1 (en) 2018-05-22 2022-01-04 Data.World, Inc. Display screen or portion thereof with a graphical user interface
US11442988B2 (en) 2018-06-07 2022-09-13 Data.World, Inc. Method and system for editing and maintaining a graph schema
EP3582182B1 (en) * 2018-06-12 2020-07-29 Axis AB A method, a device, and a system for estimating a sub-pixel position of an extreme point in an image
CN110473271B (zh) 2019-08-20 2022-12-06 上海联影医疗科技股份有限公司 一种图像数据处理方法、系统、装置及存储介质
US11947600B2 (en) 2021-11-30 2024-04-02 Data.World, Inc. Content addressable caching and federation in linked data projects in a data-driven collaborative dataset platform using disparate database architectures
WO2023220905A1 (en) * 2022-05-17 2023-11-23 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for image reconstruction

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7620444B2 (en) * 2002-10-05 2009-11-17 General Electric Company Systems and methods for improving usability of images for medical applications
EP1639550A1 (en) 2003-06-18 2006-03-29 Philips Intellectual Property & Standards GmbH Motion compensated reconstruction technique
JP2008528996A (ja) * 2005-01-28 2008-07-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 放射線源を用いるタイミング較正
WO2007100955A2 (en) 2006-02-28 2007-09-07 Koninklijke Philips Electronics, N.V. Local motion compensation based on list mode data
US8923588B2 (en) 2006-07-21 2014-12-30 Koninklijke Philips N.V. Method and system for improved TOF PET reconstruction
EP2106603A2 (en) * 2006-12-19 2009-10-07 Koninklijke Philips Electronics N.V. Temporal registration of medical data
US7729467B2 (en) * 2007-03-22 2010-06-01 General Electric Company Methods and systems for attentuation correction in medical imaging
ATE542197T1 (de) * 2007-07-26 2012-02-15 Koninkl Philips Electronics Nv Bewegungsausgleich bei nuklearer bildgebung
US9535145B2 (en) * 2007-11-09 2017-01-03 Koninklijke Philips N.V. MR-PET cyclic motion gating and correction
JP5389907B2 (ja) 2008-05-28 2014-01-15 コーニンクレッカ フィリップス エヌ ヴェ リストモードフォーマットを維持する幾何学的変換
EP2163201A1 (en) 2008-09-15 2010-03-17 Westfälische Wilhelms-Universität Münster List mode-based respiratory and cardiac gating in positron emission tomography

Also Published As

Publication number Publication date
US20140119611A1 (en) 2014-05-01
RU2013155186A (ru) 2015-06-20
CN103534730B (zh) 2016-12-14
EP2707853A1 (en) 2014-03-19
WO2012153262A1 (en) 2012-11-15
US9761020B2 (en) 2017-09-12
CN103534730A (zh) 2014-01-22
EP2707853B1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
EP2707853B1 (en) List mode dynamic image reconstruction
EP2174294B1 (en) Motion correction in nuclear imaging
JP5654869B2 (ja) 移動対象に対するコンピュータ画像の空間及び時間解像度を上げる方法及びシステム
US8331639B2 (en) Radiological imaging incorporating local motion monitoring, correction, and assessment
US20050226527A1 (en) Motion artifact correction of tomographical images
JP7232192B2 (ja) データ駆動型呼吸性体動推定方法
JP6662880B2 (ja) 放射線放出撮像システム、記憶媒体及び撮像方法
JP2010517655A (ja) 処置計画における動き推定
CN110536640B (zh) 从pet列表数据中的呼吸运动信号的噪声鲁棒的实时提取
US9760992B2 (en) Motion compensated iterative reconstruction
Lucignani Respiratory and cardiac motion correction with 4D PET imaging: shooting at moving targets
US11701067B2 (en) Attenuation correction-based weighting for tomographic inconsistency detection
EP3559705A1 (en) Time-of-flight resolution-adaptive image regularization and filtering in positron emission tomography
WO2021071487A1 (en) Determination of motion frames based on image data
CN114930384A (zh) Pet图像数据的实况显示

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150501

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160304