JP2014515323A - Method for joining a thermoplastic polymer to a thermosetting polymer part - Google Patents

Method for joining a thermoplastic polymer to a thermosetting polymer part Download PDF

Info

Publication number
JP2014515323A
JP2014515323A JP2014512784A JP2014512784A JP2014515323A JP 2014515323 A JP2014515323 A JP 2014515323A JP 2014512784 A JP2014512784 A JP 2014512784A JP 2014512784 A JP2014512784 A JP 2014512784A JP 2014515323 A JP2014515323 A JP 2014515323A
Authority
JP
Japan
Prior art keywords
polymer
thermoplastic
implant
thermoplastic polymer
thermosetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014512784A
Other languages
Japanese (ja)
Other versions
JP6014658B2 (en
Inventor
トーレン,ミハエル ヨハネス レオナルドゥス ファン
Original Assignee
フォッカー エアロストラクチャーズ ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォッカー エアロストラクチャーズ ビー.ブイ. filed Critical フォッカー エアロストラクチャーズ ビー.ブイ.
Publication of JP2014515323A publication Critical patent/JP2014515323A/en
Application granted granted Critical
Publication of JP6014658B2 publication Critical patent/JP6014658B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3468Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the means for supplying heat to said heated elements which remain in the join, e.g. special electrical connectors of windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3484Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
    • B29C65/3488Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being an electrically conductive polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/76Making non-permanent or releasable joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/003Protecting areas of the parts to be joined from overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • B29C66/0342Cooling, e.g. transporting through welding and cooling zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/348Avoiding melting or weakening of the zone directly next to the joint area, e.g. by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/474Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73115Melting point
    • B29C66/73116Melting point of different melting point, i.e. the melting point of one of the parts to be joined being different from the melting point of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73755General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being fully cured, i.e. fully cross-linked, fully vulcanized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91931Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined
    • B29C66/91935Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to the fusion temperature or melting point of the material of one of the parts to be joined lower than said fusion temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3404Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint
    • B29C65/3408Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the type of heated elements which remain in the joint comprising single particles, e.g. fillers or discontinuous fibre-reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3476Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/34Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement"
    • B29C65/3472Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint
    • B29C65/3484Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic
    • B29C65/3492Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated elements which remain in the joint, e.g. "verlorenes Schweisselement" characterised by the composition of the heated elements which remain in the joint being non-metallic being carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/725General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs
    • B29C66/7252General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs hollow-walled
    • B29C66/72525General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being hollow-walled or honeycombs hollow-walled comprising honeycomb cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73751General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being uncured, i.e. non cross-linked, non vulcanized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73753General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being partially cured, i.e. partially cross-linked, partially vulcanized
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/87Auxiliary operations or devices
    • B29C66/874Safety measures or devices
    • B29C66/8744Preventing overheating of the parts to be joined, e.g. if the machine stops or slows down
    • B29C66/87445Preventing overheating of the parts to be joined, e.g. if the machine stops or slows down by introducing protection shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91921Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature
    • B29C66/91941Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined
    • B29C66/91943Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to another temperature, e.g. to the softening temperature or softening point, to the thermal degradation temperature or to the ambient temperature in explicit relation to Tg, i.e. the glass transition temperature, of the material of one of the parts to be joined higher than said glass transition temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31533Of polythioether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Abstract

本発明は、熱硬化性ポリマーの硬化温度を超える融点を有する熱可塑性ポリマーを熱硬化性ポリマー部品に接合する方法に関する。本方法は以下のステップを有する。硬化される熱硬化性ポリマー部品が、少なくとも結合される部分に熱可塑性ポリマー製の埋込物を備えるステップと、熱可塑性ポリマーを少なくとも接合させる部分を接触させて配置するステップと、アセンブリを熱可塑性ポリマーの融点に加熱するステップと、これにより、埋込物を構成する熱可塑性ポリマーが融解して熱可塑性ポリマーと融合し、そしてアセンブリを冷却するステップと、を有する。本発明においては、熱可塑性ポリマーは熱硬化性ポリマーの硬化温度を超える融点を有しており、その埋込物の熱硬化性ポリマー部品との接合部分で接合ステップの際に熱硬化性ポリマーの最大使用温度を超える加熱が避けられるように、埋込物が設計される。
【選択図】 図1
The present invention relates to a method of joining a thermoplastic polymer having a melting point above the curing temperature of a thermosetting polymer to a thermosetting polymer component. The method includes the following steps. A thermoset polymer part to be cured comprising at least a portion to be joined with an implant made of a thermoplastic polymer, a portion to be brought into contact with at least a portion to which the thermoplastic polymer is joined, and a thermoplastic assembly; Heating to the melting point of the polymer, thereby melting the thermoplastic polymer constituting the implant to fuse with the thermoplastic polymer and cooling the assembly. In the present invention, the thermoplastic polymer has a melting point that exceeds the curing temperature of the thermosetting polymer, and the thermosetting polymer has a melting point during the joining step at the joint portion of the implant with the thermosetting polymer component. The implant is designed so that heating above the maximum service temperature is avoided.
[Selection] Figure 1

Description

本発明は、熱硬化性ポリマー部品に熱可塑性ポリマーを接合する方法に関する。本発明はまた、熱硬化性ポリマー部品を別の熱硬化性ポリマー部品と接合する方法にも関する。本発明は、さらに、熱硬化性ポリマー部品が接合される部分の少なくとも一部に熱可塑性ポリマー製の埋込物(implant)を有する硬化された熱硬化性ポリマー部品に関し、さらに、接合可能な表面を形成する熱可塑性ポリマー製の埋込物を有する熱硬化していない、または部分的に熱硬化された熱硬化性ポリマー部品に関する。本発明はさらに、熱可塑性表面及びそれに溶着された熱可塑性ポリマー部品を有する硬化された熱硬化性ポリマー部品のアセンブリに関する。   The present invention relates to a method of joining a thermoplastic polymer to a thermosetting polymer part. The present invention also relates to a method of joining a thermoset polymer part to another thermoset polymer part. The present invention further relates to a cured thermoset polymer part having a thermoplastic polymer implant in at least a portion of the part to which the thermoset polymer part is joined, and further to a bondable surface. It relates to a non-thermoset or partially thermoset thermoset polymer part having an implant made of a thermoplastic polymer that forms. The present invention further relates to an assembly of a cured thermoset polymer component having a thermoplastic surface and a thermoplastic polymer component welded thereto.

オリゴマーを含む熱可塑性(繊維強化)ポリマーは、リサイクルの可能性があるので、構造材料としての使用が増加している。熱可塑性ポリマーは加熱することで、これを軟化することができ(非晶質熱可塑性物質)、または究極的にはこれを融解することができる(半結晶化熱可塑性物質)。その後、これを冷却することで固体状態になる。このような温度が引き起こす物理的な変化は一般的には可逆的であるため、熱可塑性ポリマーをリサイクル可能にしている。固体非晶質熱可塑性物質においてはポリマーの分子鎖はランダムに配列されているのに対して、固体半結晶化熱可塑性物質においては、それらのうちのある部分は結晶化領域として規則的に配列されているポリマーの分子鎖を含む。本発明においては、たとえ用語「融解(melting)」または「融解する(melt)」が用いられていても、一つのタイプの熱可塑性ポリマーに限定されることはない。熱可塑性ポリマーは、ガラス転移点温度(Tg)を超えて加熱すると進行性の軟化が生じる。実質的にガラス転移点より高い温度では、非晶質熱可塑性物質は高粘度の液体のようにふるまうのに対して、半結晶化ポリマーはこの温度領域では固体のままである。半結晶化熱可塑性物質は、これ(融点)を超えると材料が融解し、液体のようにふるまう融点(Tm)を示す。更なる温度上昇によって粘度は急速に低下する。   Thermoplastic (fiber reinforced) polymers containing oligomers are increasingly used as structural materials because of their potential for recycling. The thermoplastic polymer can be softened by heating (amorphous thermoplastic) or ultimately melted (semi-crystallized thermoplastic). Then, it will be in a solid state by cooling it. The physical changes caused by such temperatures are generally reversible, making thermoplastic polymers recyclable. In solid amorphous thermoplastics, polymer molecular chains are randomly arranged, whereas in solid semi-crystalline thermoplastics, some of them are regularly arranged as crystallized regions. The molecular chain of the polymer is included. In the present invention, even if the term “melting” or “melt” is used, it is not limited to one type of thermoplastic polymer. Thermoplastic polymers undergo progressive softening when heated above the glass transition temperature (Tg). At temperatures substantially above the glass transition point, amorphous thermoplastics behave like high viscosity liquids, whereas semi-crystalline polymers remain solid at this temperature range. The semi-crystallized thermoplastic material exhibits a melting point (Tm) at which the material melts when it exceeds this (melting point) and behaves like a liquid. The viscosity decreases rapidly with further temperature rise.

熱硬化性ポリマーは典型的な架橋ポリマーであって、エポキシド(しばしばエポキシと呼ばれる)、ビスマレイミド(bismaleimide)、不飽和ポリエステル、およびビニルエステルポリマーのような樹脂から構成される。熱硬化性ポリマーは、典型的には、硬化に先立って協働して架橋ポリマーを生成する樹脂(モノマー)および硬化剤を含む。硬化は、室温またはより高い温度(典型的には80℃から200℃の間)で生じるように設計されてもよい。硬化の際、モノマーと硬化剤が反応し、その混合の粘度は、この熱硬化性ポリマーがその劣化温度を超える温度で劣化されない限り、その状態が温度変化によって可逆的でない架橋固体ポリマーになるまで増加する。硬化の後で、熱硬化性ポリマーもまた、これを超えると熱硬化性ポリマーの相当な軟化が生じ、熱硬化性ポリマーがゴムのようにふるまうガラス転移点温度を示す。   Thermosetting polymers are typical cross-linked polymers and are composed of resins such as epoxides (often referred to as epoxies), bismaleimides, unsaturated polyesters, and vinyl ester polymers. Thermosetting polymers typically include a resin (monomer) and a curing agent that cooperate to form a crosslinked polymer prior to curing. Curing may be designed to occur at room temperature or higher (typically between 80 ° C. and 200 ° C.). Upon curing, the monomer and curing agent react and the viscosity of the mixture is until the state becomes a cross-linked solid polymer that is not reversible with temperature change unless the thermosetting polymer is degraded at a temperature above its degradation temperature. To increase. After curing, the thermosetting polymer also exhibits a glass transition temperature above which it causes considerable softening of the thermosetting polymer and behaves like a rubber.

ポリマー複合材料は、熱硬化性でも熱可塑性でもあることができる基質ポリマー(matrix polymer)に埋め込まれた繊維または微粒子強化剤を含む。周知のポリマー複合材料は、ガラス繊維で強化されたポリエステル樹脂、及び炭素繊維で強化されたエポキシ樹脂を含む。これらの複合材料は基質に熱硬化性ポリマーを用いているので、多くの場合、熱硬化性複合材料と呼ばれている。   The polymer composite includes fibers or particulate reinforcements embedded in a matrix polymer that can be either thermoset or thermoplastic. Known polymer composites include polyester resins reinforced with glass fibers and epoxy resins reinforced with carbon fibers. Since these composite materials use a thermosetting polymer as a substrate, they are often called thermosetting composite materials.

熱硬化性(複合材料)ポリマーの一つの大きな欠点は、それらが、通常溶着できないことである。なぜならば、熱硬化性ポリマーは融解させることができないし、温度を上げたり下げたりすることによって再固体化できないからである。熱硬化性(複合材料)ポリマーは典型的には、接着接合またはボルト締めという共に欠点を有している方法によって他の部品に接着される。接着接合は高コストであり、ときには環境に有害であり、さらに接合の品質は通常、プロセスパラメータの変化に敏感である。他方、ボルト締めは接合される部品に穴を生成するが、これはストレスの集中と初期不良の可能性を生じさせる。   One major drawback of thermosetting (composite) polymers is that they usually cannot be welded. This is because thermosetting polymers cannot be melted and cannot be resolidified by raising or lowering the temperature. Thermoset (composite) polymers are typically bonded to other parts by methods that have the disadvantages of both adhesive bonding or bolting. Adhesive bonding is expensive and sometimes harmful to the environment, and the quality of the bonding is usually sensitive to changes in process parameters. On the other hand, bolting creates holes in the parts to be joined, which creates stress concentrations and the possibility of initial failure.

溶着によって、他の熱硬化性ポリマーまたは熱硬化性ポリマー複合材料または熱可塑性ポリマー(複合材料)と接合させることが可能なより広範囲にわたる熱硬化性ポリマーまたは熱硬化性ポリマー複合材料が求められている。   There is a need for a wider range of thermosetting polymers or thermosetting polymer composites that can be joined by welding to other thermosetting polymers or thermosetting polymer composites or thermoplastic polymers (composites). .

本発明は、熱硬化性ポリマー(複合材料)部品を他の熱硬化性ポリマー部品に接合するための方法を、熱的に接合可能な表面を与える熱可塑性埋込物を有した熱硬化性ポリマー(複合材料)を用いることによって提供する。   The present invention relates to a method for bonding a thermosetting polymer (composite) part to another thermosetting polymer part, a thermosetting polymer having a thermoplastic implant that provides a thermally bondable surface. It is provided by using (composite material).

本発明は、さらに、少なくとも接合される熱硬化性ポリマー部品の部分に熱可塑性ポリマー製の埋込物を備える硬化された熱硬化性ポリマー部品を提供するとともに、接合可能な表面を形成する熱可塑性ポリマー製の埋込物を備える未硬化または部分的に硬化された熱硬化性ポリマー部品を提供する。   The present invention further provides a cured thermoset polymer part comprising a thermoplastic polymer implant at least in the part of the thermoset polymer part to be joined and the thermoplastic forming a bondable surface. An uncured or partially cured thermoset polymer part with a polymeric implant is provided.

本発明は、また、熱可塑性表面と熱可塑性ポリマーとを有する硬化された熱硬化性ポリマー部品のアセンブリを提供する。   The present invention also provides an assembly of cured thermoset polymer parts having a thermoplastic surface and a thermoplastic polymer.

本発明は、さらに、熱的に接合可能な表面を形成する熱可塑性ポリマー(部品)を有する未硬化または部分的に硬化された熱硬化性ポリマー部品と、熱可塑性表面およびそれに溶着可能な熱可塑性ポリマー複合材料を有する硬化された熱硬化性ポリマー複合材料のアセンブリと、を提供する。   The present invention further includes an uncured or partially cured thermoset polymer part having a thermoplastic polymer (part) that forms a thermally bondable surface, a thermoplastic surface and a thermoplastic that is weldable thereto. An assembly of a cured thermoset polymer composite having a polymer composite.

第1の観点によれば、本発明は熱可塑性ポリマー(部品)を熱硬化性ポリマー部品に接合する方法であって、熱可塑性ポリマーは熱硬化性ポリマーの硬化温度を超える融点を有し、本方法は以下のステップを含む。
a) 熱可塑性ポリマーを提供するステップと、
b) 熱可塑性ポリマーの融点より低い硬化温度を有するとともに、熱硬化性ポリマー部品における少なくとも接合される部分に熱可塑性ポリマー製の埋込物(implant)を備える、未硬化または部分的に硬化された熱硬化性ポリマー部品を提供するステップと、
c) 熱可塑性ポリマーを少なくとも接合させる部分と接触させて配置するステップと、
d) 熱可塑性ポリマーと熱硬化性ポリマー部品とを熱可塑性ポリマーの融点に加熱するステップであって、これにより、埋込物を構成する熱可塑性ポリマーが融解して熱可塑性ポリマーと融合し、さらに、それにより、未硬化熱硬化性ポリマー部品と熱可塑性ポリマー製の埋込物とが少なくとも部分的に相互に浸透するステップと、
e) 熱可塑性ポリマーと硬化された熱硬化性ポリマー部品とのアセンブリを熱可塑性ポリマーが硬化された熱硬化性ポリマー部品と接合するように冷却するステップと、を含む。なお、熱可塑性ポリマーは、熱硬化性ポリマー部品の硬化温度を超える融点を有するが、その埋込物の熱硬化性ポリマー部品との接合部分(interface)が、接合ステップd)の際に熱硬化性ポリマーの最大使用温度を超える加熱が避けられるように、埋込物が設計される。
According to a first aspect, the present invention is a method of joining a thermoplastic polymer (part) to a thermosetting polymer part, the thermoplastic polymer having a melting point above the curing temperature of the thermosetting polymer, The method includes the following steps.
a) providing a thermoplastic polymer;
b) Uncured or partially cured having a curing temperature below the melting point of the thermoplastic polymer and comprising a thermoplastic polymer implant in at least the joined part of the thermosetting polymer part Providing a thermosetting polymer part;
c) placing the thermoplastic polymer in contact with at least the part to be joined;
d) heating the thermoplastic polymer and the thermosetting polymer part to the melting point of the thermoplastic polymer, whereby the thermoplastic polymer constituting the implant melts and fuses with the thermoplastic polymer; The uncured thermosetting polymer part and the thermoplastic polymer implant at least partially interpenetrate;
e) cooling the assembly of the thermoplastic polymer and the cured thermoset polymer part to join the thermoplastic polymer to the cured thermoset polymer part. It should be noted that the thermoplastic polymer has a melting point that exceeds the curing temperature of the thermosetting polymer part, but the interface of the implant with the thermosetting polymer part is thermoset during the joining step d). The implant is designed so that heating beyond the maximum use temperature of the functional polymer is avoided.

ポリマー(複合材料)の最大使用温度は当業者には良く知られており、一般的には供給業者によって与えられる。   The maximum use temperature of the polymer (composite material) is well known to those skilled in the art and is generally given by the supplier.

本発明による方法において、熱可塑性ポリマー製の埋込物は熱硬化性ポリマー(複合材料)部品に対するヒートシンクのように働く。これにより、接合される熱可塑性ポリマーおよび埋込物を構成する熱可塑性の埋込用のポリマーの融解に加えられる熱が、実質的に溶着される接合部分に存在する一方で、この熱は埋込物を構成する熱可塑性ポリマーの融解によって吸収される。本発明によれば、かりに、加熱がそのような(熱硬化性ポリマーの)劣化温度をこえるときでも、埋込物と熱硬化性ポリマー(複合材料)部品との接合部分における温度が実質的に熱硬化性ポリマーを劣化させることがなく十分低いように、溶着による熱接合の際の温度勾配が熱可塑性埋込物で維持される。これにより、熱硬化性ポリマー(複合材料)と埋込物との間の接合部分での過剰な加熱が避けられるので、溶着によって熱可塑性ポリマーを熱硬化性ポリマー部品へ接合する可能性を与える。この熱可塑性ポリマーは熱硬化性ポリマーの硬化温度を超える融点を有する。   In the method according to the invention, the thermoplastic polymer implant acts as a heat sink for the thermosetting polymer (composite) part. This allows heat added to the melt of the thermoplastic polymer to be joined and the thermoplastic embedding polymer that makes up the implant to be present in the welded joint where it is substantially welded. Absorbed by melting of the thermoplastic polymer comprising the inclusion. According to the present invention, even when heating exceeds such a degradation temperature (of the thermosetting polymer), the temperature at the joint between the implant and the thermosetting polymer (composite material) component is substantially reduced. The temperature gradient during thermal bonding by welding is maintained in the thermoplastic implant so that it is sufficiently low without degrading the thermosetting polymer. This avoids excessive heating at the joint between the thermosetting polymer (composite material) and the implant, thus giving the possibility of joining the thermoplastic polymer to the thermosetting polymer part by welding. The thermoplastic polymer has a melting point that exceeds the curing temperature of the thermosetting polymer.

上記の利点は、相対的に高い使用温度であることにより、相対的に高い融点を有する熱可塑性ポリマーを用いることを決定づけている航空宇宙および航空機への用途に特に有益である。   The above advantages are particularly beneficial for aerospace and aircraft applications where it is determined to use a thermoplastic polymer having a relatively high melting point due to the relatively high service temperature.

本発明の1実施形態における方法においては、J/°K/mで示される埋込物の単位長あたりの熱容量が、ステップd)の際にアセンブリに与えられる単位長あたりの熱よりも大きい。言い換えれば、埋込物の位置決めおよび断面の寸法、同様に埋込物を構成する熱可塑性ポリマーは、上記の要求に合うように選択される。ステップd)の際にアセンブリに与えられる単位長あたりの熱、特に、長さあたりの溶着熱は、また材料特有であり、使用される溶着方法、溶着される材料の比熱容量、その導電度、および局部加熱または局部溶着後に良好に一体化された(consolidated)材料を得るために融解した状態を持続するための必要な時間などの種々の要因に依存する。長さあたりの溶着熱は、当業者であれば容易に実験的に決定することができる。   In the method according to an embodiment of the invention, the heat capacity per unit length of the implant, denoted J / ° K / m, is greater than the heat per unit length given to the assembly during step d). In other words, the implant positioning and cross-sectional dimensions, as well as the thermoplastic polymer making up the implant, are selected to meet the above requirements. The heat per unit length given to the assembly during step d), in particular the heat of welding per length, is also material specific, the welding method used, the specific heat capacity of the material to be welded, its conductivity, And depends on various factors such as the time required to remain molten to obtain a well consolidated material after local heating or local welding. The welding heat per length can be easily determined experimentally by those skilled in the art.

本発明の別の実施形態における方法において、ヒートシンクは、埋込物の一部に、より好ましくは埋込物の外部に、最も好ましくは埋込物の外縁部に適用される。適切なヒートシンクはブロック、ストリップ、バーのような材料を含み、典型的には相対的に高い比熱容量を有している材料がヒートシンク材料として用いられる。適切な材料は金属を含む。ヒートシンクと埋込物の接合部分は、さらに、例えば熱吸収ペーストを備えても良い。ヒートシンクは接合の後、除去される。   In a method in another embodiment of the present invention, the heat sink is applied to a portion of the implant, more preferably to the exterior of the implant, and most preferably to the outer edge of the implant. Suitable heat sinks include materials such as blocks, strips, bars, and typically a material having a relatively high specific heat capacity is used as the heat sink material. Suitable materials include metals. The joint portion between the heat sink and the embedded material may further include, for example, a heat absorbing paste. The heat sink is removed after bonding.

熱硬化性ポリマー部品の埋込物は、好ましくは強化繊維を含む。しかしながら、本発明の別の実施形態における方法においては、埋込物が熱硬化性ポリマー内に延びる強化繊維を備える。このような実施形態は、溶着熱および/または時間を削減することができ、これにより、熱可塑性および/または熱硬化性ポリマーの接合の際の劣化を避ける一方で十分な接合強度をも得ることができる。   The implant of the thermosetting polymer part preferably comprises reinforcing fibers. However, in another embodiment of the present invention, the implant comprises reinforcing fibers that extend into the thermoset polymer. Such embodiments can reduce welding heat and / or time, thereby obtaining sufficient bond strength while avoiding degradation during the joining of thermoplastic and / or thermosetting polymers. Can do.

本発明の別の観点による方法においては、熱硬化性ポリマー部品へ別の熱硬化性ポリマー部品を接合することを提供する。ここで、本方法では、熱可塑性ポリマーに熱可塑性ポリマー製の埋込物を備える硬化した熱硬化性ポリマー部品という形で提供される。   In a method according to another aspect of the invention, it is provided to join another thermosetting polymer part to a thermosetting polymer part. Here, the method is provided in the form of a cured thermoset polymer part comprising a thermoplastic polymer implant in the thermoplastic polymer.

本発明のさらに別の観点によれば、硬化された熱硬化性ポリマー部品は、熱硬化性ポリマー部品が少なくとも接合される部分に熱可塑性ポリマー製の埋込物を備える。   According to yet another aspect of the present invention, the cured thermoset polymer part comprises an implant made of a thermoplastic polymer at least where the thermoset polymer part is joined.

本発明の第1の観点に基づく好ましい実施形態による方法においては、埋込物と熱硬化性ポリマー部品の接合部分で過剰な加熱を避けるように埋込物が設計される。   In a method according to a preferred embodiment according to the first aspect of the invention, the implant is designed to avoid excessive heating at the joint between the implant and the thermosetting polymer part.

本発明の別の好ましい実施形態による方法においては、熱硬化性ポリマー部品は繊維強化熱硬化性複合材料部品を含む。   In a method according to another preferred embodiment of the present invention, the thermosetting polymer part comprises a fiber reinforced thermosetting composite part.

さらに、本発明による方法の別の好ましい実施形態によれば、熱硬化性ポリマー部品は、予め含浸させた熱硬化性ポリマー複合材料テープの積層体のアセンブリであり、埋込物は予め含浸させた熱硬化性ポリマー複合材料テープの積層体を含む。   Furthermore, according to another preferred embodiment of the method according to the invention, the thermosetting polymer part is an assembly of a pre-impregnated thermosetting polymer composite tape laminate and the implant is pre-impregnated. Includes a laminate of thermoset polymer composite tape.

本発明による方法の更なる実施形態は、接合される熱可塑性ポリマーが熱可塑性ポリマー部品、または熱可塑性ポリマー表面と相溶性を有する部品である方法に関する。   A further embodiment of the method according to the invention relates to a method wherein the thermoplastic polymer to be joined is a thermoplastic polymer part or a part that is compatible with the thermoplastic polymer surface.

本発明による方法の別の好ましい実施形態に用いられる接合される熱可塑性ポリマーおよび/または埋込物を構成する熱可塑性ポリマーは、少なくとも200℃の融点を有するエンジニアリング熱可塑性ポリマーのクラスから選択されている。さらに、より好ましい方法によれば、接合される熱可塑性ポリマーおよび/または埋込物を構成する熱可塑性ポリマーは、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)及びそれらの組み合わせまたはそれらの同等物から選択される。   The thermoplastic polymer to be joined and / or the thermoplastic polymer constituting the implant used in another preferred embodiment of the method according to the invention is selected from the class of engineering thermoplastic polymers having a melting point of at least 200 ° C. Yes. Further, according to a more preferred method, the thermoplastic polymer to be joined and / or the thermoplastic polymer constituting the implant is polyetherimide (PEI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), Selected from polyetherketone (PEK), polyetherketoneketone (PEKK) and combinations thereof or equivalents thereof.

本発明による方法の別の実施形態では、接合される熱可塑性ポリマー又は埋込物を構成する熱可塑性ポリマーは局部加熱のための導電性粒子を含むという特徴がある。   Another embodiment of the method according to the invention is characterized in that the thermoplastic polymer to be joined or the thermoplastic polymer constituting the implant contains conductive particles for local heating.

本発明による方法の1実施形態においては、熱硬化性ポリマーは、エポキシ樹脂および/またはビスマレイミド樹脂及び硬化剤の混合物(hardener mixture)を含む。   In one embodiment of the method according to the invention, the thermosetting polymer comprises a hardener mixture of an epoxy resin and / or a bismaleimide resin and a curing agent.

接続可能な表面を形成する熱可塑性ポリマーの埋込物を有する未硬化または部分的に硬化された熱硬化性ポリマー部品は、積層事前含浸熱硬化性ポリマー複合材料テープ及び埋込物を形成する積層事前含浸熱可塑性ポリマー複合材料テープによって便利に作られることができる。熱可塑性埋込物はまた、注入法を用いてその場で製造されることができる。熱硬化性ポリマーと熱可塑性ポリマーの同時注入もまた可能である。   Uncured or partially cured thermoset polymer parts having thermoplastic polymer implants that form connectable surfaces are laminated pre-impregnated thermoset polymer composite tapes and laminates to form implants It can be conveniently made with pre-impregnated thermoplastic polymer composite tape. Thermoplastic implants can also be produced in situ using an injection method. Simultaneous injection of thermosetting polymer and thermoplastic polymer is also possible.

埋込物を備える熱硬化性ポリマー部品は、好ましくは熱可塑性ポリマー(部品)、または他の熱硬化性ポリマーもしくは熱硬化性ポリマー複合材料への溶着による埋込物を備える他の熱硬化性ポリマー部品、または、熱可塑性ポリマー(複合材料)へ接合される。   The thermosetting polymer part comprising an implant is preferably a thermoplastic polymer (part), or other thermosetting polymer comprising an implant by welding to other thermosetting polymers or thermosetting polymer composites Bonded to a part or thermoplastic polymer (composite material).

好ましい溶着方法は、誘導溶着、抵抗溶着、およびレーザ溶着を含むが、これらに限定されるものではない。   Preferred welding methods include, but are not limited to, induction welding, resistance welding, and laser welding.

本発明の他の観点においては、熱可塑性の表面とそれに接合されている熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマー部品のアセンブリが提供される。ここで、熱可塑性ポリマーは熱硬化性ポリマーの硬化温度を超える融点を有する。   In another aspect of the present invention, an assembly of a cured thermoset polymer part having a thermoplastic surface and a thermoplastic polymer part bonded thereto is provided. Here, the thermoplastic polymer has a melting point exceeding the curing temperature of the thermosetting polymer.

本発明の上記の実施形態のいずれにおいても、熱可塑性ポリマー埋込物およびその埋込物に隣接している未硬化熱硬化性ポリマーまたは熱硬化性ポリマー複合材料は、加熱されたときに熱硬化性ポリマーが硬化する前に少なくとも部分的に相互に貫通させあうことができ、これにより、熱可塑性ポリマー埋込物と、熱硬化性ポリマーまたは熱硬化性ポリマー複合材料とが接合することができる。このことにより、埋込物によって熱硬化性ポリマー(複合材料)へ提供される熱可塑性の表面は、熱硬化性ポリマーまたは熱硬化性ポリマー複合材料から容易に引き離されることができないことを確実にしている。   In any of the above embodiments of the present invention, the thermoplastic polymer implant and the uncured thermoset polymer or thermoset polymer composite adjacent to the implant are thermoset when heated. The curing polymer can be at least partially interpenetrated before curing, thereby allowing the thermoplastic polymer implant to join the thermosetting polymer or thermosetting polymer composite. This ensures that the thermoplastic surface provided to the thermoset polymer (composite) by the implant cannot be easily detached from the thermoset polymer or thermoset polymer composite. Yes.

熱可塑性の埋込物を有する硬化されたまたは未硬化の熱硬化性ポリマーまたは熱硬化性ポリマー複合材料は、本発明の方法により、さらに熱可塑性ポリマーに接合されてもよく、また、熱可塑性の埋込物を有する第2の熱硬化性ポリマーまたは熱硬化性ポリマー複合材料に接合されてもよい。   A cured or uncured thermoset polymer or thermoset polymer composite with a thermoplastic implant may be further joined to the thermoplastic polymer by the method of the present invention, and the thermoplastic It may be joined to a second thermosetting polymer or thermosetting polymer composite with an implant.

発明された方法の更なる利点は、接合される融解した熱可塑性ポリマーと埋込物を構成する熱可塑性ポリマーがお互いに接触したときに、高い熱可塑性ポリマー流れを提供し、これにより、接合される接触表面においていかなる凹凸や欠陥をも満たすことである。この熱可塑性の流れは、加熱の際や接合に対する追加の時間を許容する際に、温度を変えることにより、および/または接合される部品へ接触圧力をより加えることにより、影響される。   A further advantage of the invented method is that it provides a high thermoplastic polymer flow when the molten thermoplastic polymer to be joined and the thermoplastic polymer making up the implant are in contact with each other, thereby being joined. Filling any irregularities or defects on the contact surface. This thermoplastic flow is affected by changing the temperature and / or by applying more contact pressure to the parts to be joined, upon heating and allowing additional time for joining.

本発明による方法の利点はさらに、予め相互に接合されていた部品が必要なときに分解されても再組立てされてもよく、これが溶着された熱可塑性物質および熱可塑性埋込物を単に少なくとも部分的に再加熱することにより行える、という事実に関する。もし必要であれば、追加の熱可塑性ポリマーがより良い接合のために接合すべき表面の間に追加されても良い。再加熱はまた、もし必要であれば選択された領域における溶着された製品の品質を向上させるためにも使用できる。   The advantages of the method according to the invention may further be that the parts that have been previously joined together may be disassembled or reassembled when needed, which merely at least partially removes the welded thermoplastic and thermoplastic implant. It is related to the fact that it can be done by reheating it. If necessary, additional thermoplastic polymer may be added between the surfaces to be joined for better joining. Reheating can also be used to improve the quality of the welded product in selected areas if necessary.

一般に、本発明による方法は、少なくとも熱可塑性ポリマー埋込物と熱硬化性ポリマーとの間の接合部分において、硬化される熱硬化性ポリマーまたはポリマー複合材料部品のガラス転移点を超える温度で行われる。しかしながら、接合は、この温度よりも若干高い温度を含んでも良く、または、熱硬化性ポリマーの劣化温度に近くてもよい。   In general, the method according to the invention is carried out at a temperature above the glass transition point of the thermoset polymer or polymer composite part to be cured, at least at the joint between the thermoplastic polymer implant and the thermoset polymer. . However, the bond may include a temperature slightly higher than this temperature, or may be close to the degradation temperature of the thermosetting polymer.

熱硬化性ポリマー(複合材料)部品は、金属の埋込物、発泡体、またはハニカム状の芯材、熱硬化性の部品またはフィルムの熱可塑性物質、などの他の部品を含んでもよく、本発明以外の方法によってそれらが接合されてもよく、または、いかなる他の材料が熱硬化性材料(複合材料)部品の一体化された部分として組み込まれてもよい。   Thermoset polymer (composite) parts may include other parts such as metal implants, foams or honeycomb cores, thermoset parts or film thermoplastics, etc. They may be joined by methods other than the invention, or any other material may be incorporated as an integral part of the thermoset material (composite material) part.

本発明は、添付図を参照のために用いて、しかしながらそれらに限定されることなく、例として以下に詳細に説明する。   The present invention will be described in detail below by way of example, using the accompanying drawings for reference, but not limited thereto.

熱可塑性表面とそこへ溶着する熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマー部品からなる本発明による第1の実施形態を示す概略図である。1 is a schematic diagram illustrating a first embodiment according to the present invention consisting of a cured thermoset polymer part having a thermoplastic surface and a thermoplastic polymer part welded thereto; FIG. 熱可塑性表面とそこへ溶着する熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマー部品からなる本発明による第2の実施形態を示す概略図である。FIG. 4 is a schematic diagram illustrating a second embodiment according to the present invention consisting of a cured thermoset polymer part having a thermoplastic surface and a thermoplastic polymer part welded thereto. 熱可塑性表面とそこへ溶着する熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマー部品からなる本発明による別の実施形態を示す概略図である。FIG. 5 is a schematic diagram illustrating another embodiment according to the present invention consisting of a cured thermoset polymer part having a thermoplastic surface and a thermoplastic polymer part welded thereto. 本発明の方法に用いられる熱可塑性埋込物の実施形態を概略的に示す概略図である。1 is a schematic diagram schematically illustrating an embodiment of a thermoplastic implant used in the method of the present invention. FIG.

図1を参照すれば、熱可塑性表面3を備える硬化された熱硬化性ポリマー部品2のアセンブリ1の実施形態が示されており、これに熱可塑性ポリマー部品4を本発明に示される方法により溶着することができる。熱可塑性ポリマー部品4を構成する熱可塑性ポリマーは、250℃から400℃の間の融点を有しており、これは、硬化温度の範囲が典型的におよそ室温から200℃の間である熱硬化性ポリマー部品2に用いられている熱硬化性ポリマーの硬化温度を超えている。アセンブリ1は、以下の方法によって得られている。少なくとも熱硬化性ポリマー部品が接合される部分、即ち、この場合における表面3に熱可塑性ポリマー製の埋込物5を有する未硬化または部分的に硬化された熱硬化性ポリマー(硬化する部品2の前駆体)を提供するステップと、この熱硬化性ポリマーを硬化させるステップとを有し、これにより未硬化熱硬化性ポリマー部品2及び埋込物5を構成する熱可塑性ポリマーが少なくとも部分的に相互に浸透する。この工程が熱可塑性ポリマー埋込物5と硬化される熱硬化性ポリマー2との間の接合を形成する。硬化時の昇温により、熱硬化性モノマーは実際に埋込物5を構成する熱可塑性ポリマーへ、特に、それらの結晶性領域(crystalline domains)に容易に移動する。この方法によれば、これら2つの間に強力な接合が形成される。熱硬化性モノマー(および硬化剤)が埋込物5の融解されたポリマーの中に十分深く移動することができるように硬化温度と時間サイクルが選択されることが好ましいのは当然である。熱可塑性埋込物5を有する熱硬化性ポリマー2を提供することは、その熱硬化性ポリマー2に対する製造業者から推奨された硬化サイクルの変更なしに行ってもよい。しかしながら、特に熱硬化性ポリマー2と埋込物5の熱可塑性ポリマーと間の適合性が最適でないときは、若干の変更が要求されてもよい。   Referring to FIG. 1, there is shown an embodiment of an assembly 1 of a cured thermoset polymer part 2 comprising a thermoplastic surface 3, to which a thermoplastic polymer part 4 is welded by the method shown in the present invention. can do. The thermoplastic polymer making up the thermoplastic polymer part 4 has a melting point between 250 ° C. and 400 ° C., which is a thermosetting temperature range typically between about room temperature and 200 ° C. The curing temperature of the thermosetting polymer used for the heat-resistant polymer part 2 is exceeded. The assembly 1 is obtained by the following method. At least the part to which the thermosetting polymer part is to be joined, i.e. in this case the uncured or partly cured thermosetting polymer with a thermoplastic polymer implant 5 on the surface 3 (of the part to be cured 2 Providing a precursor) and curing the thermosetting polymer so that the thermoplastic polymer comprising the uncured thermosetting polymer part 2 and the implant 5 is at least partially interleaved with each other. To penetrate. This step forms a bond between the thermoplastic polymer implant 5 and the thermosetting polymer 2 to be cured. Due to the temperature rise during curing, the thermosetting monomers actually migrate easily to the thermoplastic polymers that make up the implant 5, in particular to their crystalline domains. According to this method, a strong bond is formed between the two. Of course, the curing temperature and time cycle are preferably selected so that the thermosetting monomer (and the curing agent) can move sufficiently deep into the melted polymer of the implant 5. Providing a thermosetting polymer 2 having a thermoplastic implant 5 may be performed without modification of the curing cycle recommended by the manufacturer for that thermosetting polymer 2. However, slight modifications may be required, particularly when the compatibility between the thermosetting polymer 2 and the thermoplastic polymer of the implant 5 is not optimal.

本発明によれば、熱可塑性ポリマー(部品)4は、少なくともアセンブリ1の表面3と接触状態とされ、熱可塑性ポリマーと熱硬化性ポリマー部品が熱可塑性ポリマー4の融点まで加熱され、これにより、埋込物5を構成する熱可塑性ポリマーが融解し、熱可塑性ポリマー(部品)4と融合する。換言すれば、熱可塑性ポリマー埋込物5と熱可塑性ポリマー(部品)4との間における接合を形成し、この結合が熱可塑性ポリマー5と硬化された熱硬化性ポリマー部品2とのアセンブリ1の冷却によって強化される。   According to the invention, the thermoplastic polymer (part) 4 is brought into contact with at least the surface 3 of the assembly 1, and the thermoplastic polymer and the thermosetting polymer part are heated to the melting point of the thermoplastic polymer 4, thereby The thermoplastic polymer constituting the implant 5 melts and fuses with the thermoplastic polymer (part) 4. In other words, a bond is formed between the thermoplastic polymer implant 5 and the thermoplastic polymer (part) 4, and this bond of the assembly 1 of the thermoplastic polymer 5 and the cured thermoset polymer part 2. Strengthened by cooling.

接合工程の際に熱硬化性ポリマーの過剰な加熱を避けるために、溶着領域は熱可塑性埋込物5の幾何学的形状(geometry)に従って選択されなければならない。図1において、溶着可能な領域は、領域6で概略的に示されている。この領域6を加熱することは熱可塑性ポリマー4及び5の一方または双方の融点で行うことができる。これらのポリマー4及び5は、好ましくは融点が20℃だけ異なり、より好ましくは融点が15℃だけ異なり、最も好ましくは融点が10℃だけ異なる。好ましくは、熱可塑性ポリマー4及び5は実質的に同じポリマーである。埋込物5を構成する熱可塑性ポリマーは、熱硬化性ポリマー2の硬化の際に好ましくは半相互浸透高分子網目(semi-interpenetrating polymer network)を形成することにより、(図1に示されている例のように)内部界面で接合されているか、または(図2に示されている例のように)熱硬化性ポリマー2の外部界面で接合されている。この目的を達成するために、熱可塑性ポリマー5は、好ましくは、熱硬化性ポリマー2の選択された熱硬化性モノマーと相溶性を有する。高分子科学の当業者は、周知の熱力学的な基準及び融解度の基準のような自由に使える十分な手段を有している。   In order to avoid excessive heating of the thermosetting polymer during the joining process, the weld area must be selected according to the geometry of the thermoplastic implant 5. In FIG. 1, the weldable area is schematically indicated by area 6. Heating this region 6 can be done at the melting point of one or both of the thermoplastic polymers 4 and 5. These polymers 4 and 5 preferably differ in melting point by 20 ° C, more preferably differ by 15 ° C, and most preferably differ by 10 ° C. Preferably, the thermoplastic polymers 4 and 5 are substantially the same polymer. The thermoplastic polymer comprising the implant 5 is preferably formed by forming a semi-interpenetrating polymer network upon curing of the thermosetting polymer 2 (shown in FIG. 1). Joined at the internal interface (as in the example shown) or joined at the external interface of the thermosetting polymer 2 (as in the example shown in FIG. 2). To achieve this objective, the thermoplastic polymer 5 is preferably compatible with the selected thermosetting monomer of the thermosetting polymer 2. Those skilled in the art of polymer science have sufficient means at their disposal, such as the well-known thermodynamic criteria and melt criteria.

本発明による方法を用いて達成可能な典型的な接合強度は、30MPaを超えており、より好ましくは35MPa、最も好ましくは40MPaを超えている(二重重ね合わせ継手強度試験(double lap joint strength test)による)。   Typical joint strengths achievable with the method according to the invention are over 30 MPa, more preferably over 35 MPa, most preferably over 40 MPa (double lap joint strength test )by).

一般的な溶着圧力範囲は50kPaから1MPaであり、100kPaから350kPaが推奨されている。しかしながら、本発明による方法は圧力を加えないときにも良好な接合を提供しうる。しかし、1MPaを超える圧力もまた、使用しても良い。とはいえ、このような圧力は、融解した熱可塑性物質に対していくらかの絞り(squeezing)を引き起こすかもしれない。   The general welding pressure range is 50 kPa to 1 MPa, and 100 kPa to 350 kPa is recommended. However, the method according to the invention can provide a good bond even when no pressure is applied. However, pressures in excess of 1 MPa may also be used. Nonetheless, such pressure may cause some squeezing to the molten thermoplastic.

本発明の方法に従って熱可塑性ポリマー部品4へ溶着することができる熱可塑性表面3を有する硬化された熱硬化性ポリマー部品2のアセンブリ1の別の実施形態が図2に示されている。この場合、熱可塑性ポリマー埋込物5は、実際に熱硬化性ポリマー部品2の外側表面と接合している。けれども、本発明によれば、埋込物5の溶着可能な領域が領域6に限定されているとき、埋込物5との接合部分での熱硬化性ポリマーの過剰な加熱が避けられるように埋込物5が寸法設定されているので、その機能は維持される。   Another embodiment of an assembly 1 of a cured thermoset polymer part 2 having a thermoplastic surface 3 that can be welded to a thermoplastic polymer part 4 according to the method of the present invention is shown in FIG. In this case, the thermoplastic polymer implant 5 is actually bonded to the outer surface of the thermosetting polymer part 2. However, according to the present invention, when the weldable region of the implant 5 is limited to the region 6, excessive heating of the thermosetting polymer at the joint with the implant 5 is avoided. Since the implant 5 is dimensioned, its function is maintained.

熱可塑性ポリマー埋込物5を備える熱硬化性ポリマー2は、例えば加熱平板のような外部からの熱および圧力の供給下で熱可塑性部品4へ接合してもよい。代わりに、溶着領域6へ熱が集中するのを許容するために、接合される部品内に組み入れられた局部加熱素子または加熱可能な材料でさえも使用してもよい。   The thermosetting polymer 2 with the thermoplastic polymer embedding 5 may be joined to the thermoplastic part 4 under external heat and pressure, such as a heated plate. Alternatively, even local heating elements or even heatable materials incorporated in the parts to be joined may be used to allow heat to concentrate on the weld zone 6.

本発明による方法によれば、加熱は、熱可塑性ポリマー4及び5の融点を超えて生じ、それらの熱可塑性物質は、相対的に低い溶着圧力下でも溶着の際に実質的に流れを示す。この流れが、熱可塑性物質4及び5のそれらの表面における小さな不規則性を満たし、または、接合される部品2と4との間の相対的に小さな隙間でさえも満たす。   According to the method according to the invention, heating occurs above the melting point of the thermoplastic polymers 4 and 5, and these thermoplastics exhibit a substantial flow during welding even at relatively low welding pressures. This flow fills the small irregularities in the surfaces of the thermoplastics 4 and 5 or even the relatively small gap between the parts 2 and 4 to be joined.

本発明の方法に従って熱可塑性ポリマー部品4へ溶着することができる熱可塑性表面3を有する硬化された熱硬化性ポリマー部品2のアセンブリ1のさらに別の実施形態が図3に示されている。この場合、熱可塑性ポリマー埋込物5は、二つのヒートシンク10及び11をその外縁で備えている。溶着可能な領域が領域6に限られているとき、接合部分7で埋込物5を有する熱硬化性ポリマー2の加熱が熱硬化性ポリマーの最大使用温度を超えないよう限定されるように、埋込物5は寸法設定されている。ヒートシンク10及び11は溶着熱の一部を吸収する。ヒートシンク10及び11は、熱吸収ペースト8の層を用いて埋込物5に装着されている。熱可塑性ポリマー埋込物5を備える熱硬化性ポリマー2は、接触領域6の中で溶着部分4に溶着トーチ9を接触させて用いることにより、熱可塑性物質部品4に接合される。   Yet another embodiment of an assembly 1 of a cured thermoset polymer part 2 having a thermoplastic surface 3 that can be welded to the thermoplastic polymer part 4 according to the method of the present invention is shown in FIG. In this case, the thermoplastic polymer implant 5 comprises two heat sinks 10 and 11 at the outer edges. When the weldable region is limited to region 6, so that the heating of the thermosetting polymer 2 with the implant 5 at the joint 7 is limited so as not to exceed the maximum use temperature of the thermosetting polymer, The implant 5 is dimensioned. The heat sinks 10 and 11 absorb part of the welding heat. The heat sinks 10 and 11 are attached to the implant 5 using a layer of heat absorbing paste 8. The thermosetting polymer 2 with the thermoplastic polymer implant 5 is joined to the thermoplastic part 4 by using the welding torch 9 in contact with the welded portion 4 in the contact area 6.

図4は最終的に本発明の方法に用いられる好ましい埋込物の概略側面図を示す。示された実施形態では、埋込物5の境界(50,51)までに渡って延びる連続的な強化繊維12を備える熱可塑性ポリマーの埋込物が提供されている。熱硬化性ポリマー部品を有するこのような埋込物が固まるとき、繊維12の自由(乾燥)部分は熱硬化性ポリマー内へ延び、ここで、これらの繊維部分は熱硬化性ポリマーで含浸され一度硬化された熱硬化性ポリマー部品と一体化される。この実施形態による埋込物は、本発明の方法において特に有用であることが明らかになる。なぜならば、それは、十分な接合強度をもたらし、一方で接合の際に加えられる熱を制限するからである。   FIG. 4 shows a schematic side view of a preferred implant finally used in the method of the present invention. In the embodiment shown, an implant of thermoplastic polymer is provided, comprising continuous reinforcing fibers 12 extending to the boundary (50, 51) of the implant 5. When such an implant with a thermoset polymer part solidifies, the free (dry) portions of the fibers 12 extend into the thermoset polymer, where these fiber portions are impregnated with the thermoset polymer once. Integrated with the cured thermoset polymer part. The implant according to this embodiment will prove particularly useful in the method of the invention. This is because it provides sufficient bond strength while limiting the heat applied during bonding.

本発明による方法は、さらに、前もって溶着した部品2と4の溶着を外して分離することを許容する。部品(2,4)は、そこで、熱可塑性ポリマー(4,5)の融点を超える温度で加熱され、双方の部品(2,4)は、少なくとも部分的に分離されるが、これには限られた力が必要とされるに留まる。各部品(2,4)は、その後、その表面特性の大部分を保持し、分離された部品はその後、この発明された方法に従って再び溶着されてもよい。もし必要であれば、追加の熱可塑性材料が接合される熱可塑性物質表面に加えられてもよい、この場合、不十分な熱可塑性材料でも良い接合のために利用できる。   The method according to the invention further allows to remove and separate the previously welded parts 2 and 4. The parts (2, 4) are then heated at a temperature above the melting point of the thermoplastic polymer (4, 5) and both parts (2, 4) are at least partially separated, but this is not the case. The required power is only needed. Each part (2, 4) then retains most of its surface properties, and the separated parts may then be welded again according to the invented method. If necessary, additional thermoplastic material may be added to the surface of the thermoplastic material to be joined, in which case insufficient thermoplastic material can be utilized for joining.

本発明により接合されたアセンブリ1は、改善された耐薬品性、改善された耐久性および耐浸蝕性、改善された生体適合性、改善された摩擦性、及びこのような、さらなる利点を提供する。   The assembly 1 joined according to the present invention provides improved chemical resistance, improved durability and erosion resistance, improved biocompatibility, improved friction, and such further advantages. .

詳細な説明に開示された本発明は例示としてのみ提供しているので、添付された特許請求の範囲内において、当業者には多数の変形が想定されることが理解される。   Since the invention disclosed in the detailed description is provided by way of illustration only, it will be appreciated that numerous variations are envisioned by those skilled in the art within the scope of the appended claims.

本発明は、熱硬化性ポリマー部品に熱可塑性ポリマーを接合する方法に関する。本発明はまた、熱硬化性ポリマー部品を別の熱硬化性ポリマー部品と接合する方法にも関する。本発明は、さらに、熱硬化性ポリマー部品が接合される部分の少なくとも一部に熱可塑性ポリマー製の埋込物(implant)を有する硬化された熱硬化性ポリマー部品に関し、さらに、接合可能な表面を形成する熱可塑性ポリマー製の埋込物を有する熱硬化していない、または部分的に熱硬化された熱硬化性ポリマー部品に関する。本発明はさらに、熱可塑性表面及びそれに溶着された熱可塑性ポリマー部品を有する硬化された熱硬化性ポリマー部品のアセンブリに関する。   The present invention relates to a method of joining a thermoplastic polymer to a thermosetting polymer part. The present invention also relates to a method of joining a thermoset polymer part to another thermoset polymer part. The present invention further relates to a cured thermoset polymer part having a thermoplastic polymer implant in at least a portion of the part to which the thermoset polymer part is joined, and further to a bondable surface. It relates to a non-thermoset or partially thermoset thermoset polymer part having an implant made of a thermoplastic polymer that forms. The present invention further relates to an assembly of a cured thermoset polymer component having a thermoplastic surface and a thermoplastic polymer component welded thereto.

オリゴマーを含む熱可塑性(繊維強化)ポリマーは、リサイクルの可能性があるので、構造材料としての使用が増加している。熱可塑性ポリマーは加熱することで、これを軟化することができ(非晶質熱可塑性物質)、または究極的にはこれを融解することができる(半結晶化熱可塑性物質)。その後、これを冷却することで固体状態になる。このような温度が引き起こす物理的な変化は一般的には可逆的であるため、熱可塑性ポリマーをリサイクル可能にしている。固体非晶質熱可塑性物質においてはポリマーの分子鎖はランダムに配列されているのに対して、固体半結晶化熱可塑性物質においては、それらのうちのある部分は結晶化領域として規則的に配列されているポリマーの分子鎖を含む。本発明においては、たとえ用語「融解(melting)」または「融解する(melt)」が用いられていても、一つのタイプの熱可塑性ポリマーに限定されることはない。熱可塑性ポリマーは、ガラス転移点温度(Tg)を超えて加熱すると進行性の軟化が生じる。実質的にガラス転移点より高い温度では、非晶質熱可塑性物質は高粘度の液体のようにふるまうのに対して、半結晶化ポリマーはこの温度領域では固体のままである。半結晶化熱可塑性物質は、これ(融点)を超えると材料が融解し、液体のようにふるまう融点(Tm)を示す。更なる温度上昇によって粘度は急速に低下する。   Thermoplastic (fiber reinforced) polymers containing oligomers are increasingly used as structural materials because of their potential for recycling. The thermoplastic polymer can be softened by heating (amorphous thermoplastic) or ultimately melted (semi-crystallized thermoplastic). Then, it will be in a solid state by cooling it. The physical changes caused by such temperatures are generally reversible, making thermoplastic polymers recyclable. In solid amorphous thermoplastics, polymer molecular chains are randomly arranged, whereas in solid semi-crystalline thermoplastics, some of them are regularly arranged as crystallized regions. The molecular chain of the polymer is included. In the present invention, even if the term “melting” or “melt” is used, it is not limited to one type of thermoplastic polymer. Thermoplastic polymers undergo progressive softening when heated above the glass transition temperature (Tg). At temperatures substantially above the glass transition point, amorphous thermoplastics behave like high viscosity liquids, whereas semi-crystalline polymers remain solid at this temperature range. The semi-crystallized thermoplastic material exhibits a melting point (Tm) at which the material melts when it exceeds this (melting point) and behaves like a liquid. The viscosity decreases rapidly with further temperature rise.

熱硬化性ポリマーは典型的な架橋ポリマーであって、エポキシド(しばしばエポキシと呼ばれる)、ビスマレイミド(bismaleimide)、不飽和ポリエステル、およびビニルエステルポリマーのような樹脂から構成される。熱硬化性ポリマーは、典型的には、硬化に先立って協働して架橋ポリマーを生成する樹脂(モノマー)および硬化剤を含む。硬化は、室温またはより高い温度(典型的には80℃から200℃の間)で生じるように設計されてもよい。硬化の際、モノマーと硬化剤が反応し、その混合の粘度は、この熱硬化性ポリマーがその劣化温度を超える温度で劣化されない限り、その状態が温度変化によって可逆的でない架橋固体ポリマーになるまで増加する。硬化の後で、熱硬化性ポリマーもまた、これを超えると熱硬化性ポリマーの相当な軟化が生じ、熱硬化性ポリマーがゴムのようにふるまうガラス転移点温度を示す。   Thermosetting polymers are typical cross-linked polymers and are composed of resins such as epoxides (often referred to as epoxies), bismaleimides, unsaturated polyesters, and vinyl ester polymers. Thermosetting polymers typically include a resin (monomer) and a curing agent that cooperate to form a crosslinked polymer prior to curing. Curing may be designed to occur at room temperature or higher (typically between 80 ° C. and 200 ° C.). Upon curing, the monomer and curing agent react and the viscosity of the mixture is until the state becomes a cross-linked solid polymer that is not reversible with temperature change unless the thermosetting polymer is degraded at a temperature above its degradation temperature. To increase. After curing, the thermosetting polymer also exhibits a glass transition temperature above which it causes considerable softening of the thermosetting polymer and behaves like a rubber.

ポリマー複合材料は、熱硬化性でも熱可塑性でもあることができる基質ポリマー(matrix polymer)に埋め込まれた繊維または微粒子強化剤を含む。周知のポリマー複合材料は、ガラス繊維で強化されたポリエステル樹脂、及び炭素繊維で強化されたエポキシ樹脂を含む。これらの複合材料は基質に熱硬化性ポリマーを用いているので、多くの場合、熱硬化性複合材料と呼ばれている。   The polymer composite includes fibers or particulate reinforcements embedded in a matrix polymer that can be either thermoset or thermoplastic. Known polymer composites include polyester resins reinforced with glass fibers and epoxy resins reinforced with carbon fibers. Since these composite materials use a thermosetting polymer as a substrate, they are often called thermosetting composite materials.

熱硬化性(複合材料)ポリマーの一つの大きな欠点は、それらが、通常溶着できないことである。なぜならば、熱硬化性ポリマーは融解させることができないし、温度を上げたり下げたりすることによって再固体化できないからである。熱硬化性(複合材料)ポリマーは典型的には、接着接合またはボルト締めという共に欠点を有している方法によって他の部品に接着される。接着接合は高コストであり、ときには環境に有害であり、さらに接合の品質は通常、プロセスパラメータの変化に敏感である。他方、ボルト締めは接合される部品に穴を生成するが、これはストレスの集中と初期不良の可能性を生じさせる。   One major drawback of thermosetting (composite) polymers is that they usually cannot be welded. This is because thermosetting polymers cannot be melted and cannot be resolidified by raising or lowering the temperature. Thermoset (composite) polymers are typically bonded to other parts by methods that have the disadvantages of both adhesive bonding or bolting. Adhesive bonding is expensive and sometimes harmful to the environment, and the quality of the bonding is usually sensitive to changes in process parameters. On the other hand, bolting creates holes in the parts to be joined, which creates stress concentrations and the possibility of initial failure.

国際公開公報2007/109855号は、熱硬化性ポリマーの成形品部分に熱可塑性ポリマーの挿入材(insert)を備え、これに熱可塑性成形品部分を接着する方法を開示している。接着は、熱可塑性成形品部分を接合させる部分へ接触させ、熱可塑性成形品部分の全体を融点に熱し、そのとき、熱可塑性ポリマーの挿入材は融解して熱可塑性成形品部分と融合することにより行われる。加熱は高周波溶着によって行われる。   WO 2007/109855 discloses a method in which a thermoplastic polymer insert is provided in a molded part of a thermosetting polymer, and the thermoplastic molded part is bonded thereto. Adhesion is the process of bringing the thermoplastic part into contact with the part to be joined and heating the entire thermoplastic part to the melting point, at which time the thermoplastic polymer insert melts and fuses with the thermoplastic part. Is done. Heating is performed by high frequency welding.

プラット(Pratt)らの論文「熱可塑性挿入材を用いたRIM部分の超音波溶着方法」(モトローラ技術開発27巻、1996年、5月1日、200−201頁)は、また、RIMナイロン部分に熱可塑性挿入材を備えている熱硬化性RIMナイロンポリマーの成形品部分に熱可塑性成形品部分を接着する方法と超音波溶着を適用する方法を開示している。   Pratt et al., “Ultrasonic Welding Method for RIM Parts Using Thermoplastic Inserts” (Motorola Technology Development Vol. 27, 1996, May 1, pp. 200-201) also describes RIM nylon parts. Discloses a method of adhering a thermoplastic molded part to a molded part of a thermosetting RIM nylon polymer having a thermoplastic insert and a method of applying ultrasonic welding.

米国特許公開公報第2002/0113066号は、熱硬化性ポリマーの成形品部分に熱可塑性成形品部分を接着する他の方法を開示している。熱硬化性成形品部分は、強磁性体微粒子を加えた熱可塑性材料層と共に硬化して得られる。この方法では、接合可能な表面が超音波溶着によって熱可塑性成形品部分と接合するように生成される。   U.S. Patent Publication No. 2002/0113066 discloses another method of adhering a thermoplastic molded part to a molded part of a thermosetting polymer. The thermosetting molded product portion is obtained by curing together with a thermoplastic material layer to which ferromagnetic fine particles are added. In this method, a bondable surface is generated so as to bond with a thermoplastic molded part by ultrasonic welding.

国際出願PCT/AU2007/001296号は、例えば、熱可塑性挿入材を備えている熱硬化性複合材料チューブを熱可塑性コネクタに接合するための方法を開示している。接合は、熱可塑性樹脂の加熱および再冷却によって達成されている。   International application PCT / AU2007 / 001296, for example, discloses a method for joining a thermoset composite tube with a thermoplastic insert to a thermoplastic connector. Joining is achieved by heating and recooling the thermoplastic resin.

溶着によって、他の熱硬化性ポリマーまたは熱硬化性ポリマー複合材料または熱可塑性ポリマー(複合材料)と接合させることが可能なより広範囲にわたる熱硬化性ポリマーまたは熱硬化性ポリマー複合材料が求められている。   There is a need for a wider range of thermosetting polymers or thermosetting polymer composites that can be joined by welding to other thermosetting polymers or thermosetting polymer composites or thermoplastic polymers (composites). .

本発明は、熱硬化性ポリマー(複合材料)部品を他の熱硬化性ポリマー部品に接合するための方法を、熱的に接合可能な表面を与える熱可塑性埋込物を有した熱硬化性ポリマー(複合材料)を用いることによって提供する。   The present invention relates to a method for bonding a thermosetting polymer (composite) part to another thermosetting polymer part, a thermosetting polymer having a thermoplastic implant that provides a thermally bondable surface. It is provided by using (composite material).

本発明は、さらに、少なくとも接合される熱硬化性ポリマー部品の部分に熱可塑性ポリマー製の埋込物を備える硬化された熱硬化性ポリマー部品を提供するとともに、接合可能な表面を形成する熱可塑性ポリマー製の埋込物を備える未硬化または部分的に硬化された熱硬化性ポリマー部品を提供する。   The present invention further provides a cured thermoset polymer part comprising a thermoplastic polymer implant at least in the part of the thermoset polymer part to be joined and the thermoplastic forming a bondable surface. An uncured or partially cured thermoset polymer part with a polymeric implant is provided.

本発明は、また、熱可塑性表面と熱可塑性ポリマーとを有する硬化された熱硬化性ポリマー部品のアセンブリを提供する。   The present invention also provides an assembly of cured thermoset polymer parts having a thermoplastic surface and a thermoplastic polymer.

本発明は、さらに、熱的に接合可能な表面を形成する熱可塑性ポリマー(部品)を有する未硬化または部分的に硬化された熱硬化性ポリマー部品と、熱可塑性表面およびそれに溶着可能な熱可塑性ポリマー複合材料を有する硬化された熱硬化性ポリマー複合材料のアセンブリと、を提供する。   The present invention further includes an uncured or partially cured thermoset polymer part having a thermoplastic polymer (part) that forms a thermally bondable surface, a thermoplastic surface and a thermoplastic that is weldable thereto. An assembly of a cured thermoset polymer composite having a polymer composite.

第1の観点によれば、本発明は熱可塑性ポリマー(部品)を熱硬化性ポリマー部品に接合する方法であって、熱可塑性ポリマーは熱硬化性ポリマーの硬化温度を超える融点を有し、本方法は以下のステップを含む。
a) 熱可塑性ポリマーを提供するステップと、
b) 熱可塑性ポリマーの融点より低い硬化温度を有するとともに、熱硬化性ポリマー部品における少なくとも接合される部分に熱可塑性ポリマー製の埋込物(implant)を備える、未硬化または部分的に硬化された熱硬化性ポリマー部品を提供するステップと、
c) 熱可塑性ポリマーを少なくとも接合させる部分と接触させて配置するステップと、
d) 熱可塑性ポリマーと熱硬化性ポリマー部品とを熱可塑性ポリマーの融点に加熱するステップであって、これにより、埋込物を構成する熱可塑性ポリマーが融解して熱可塑性ポリマーと融合し、さらに、それにより、未硬化熱硬化性ポリマー部品と熱可塑性ポリマー製の埋込物とが少なくとも部分的に相互に浸透するステップと、
e) 熱可塑性ポリマーと硬化された熱硬化性ポリマー部品とのアセンブリを熱可塑性ポリマーが硬化された熱硬化性ポリマー部品と接合するように冷却するステップと、を含む。なお、熱可塑性ポリマーは、熱硬化性ポリマー部品の硬化温度を超える融点を有するが、その埋込物の熱硬化性ポリマー部品との接合部分(interface)が、接合ステップd)の際に熱硬化性ポリマーの最大使用温度を超える加熱が避けられるように、埋込物が設計される。
According to a first aspect, the present invention is a method of joining a thermoplastic polymer (part) to a thermosetting polymer part, the thermoplastic polymer having a melting point above the curing temperature of the thermosetting polymer, The method includes the following steps.
a) providing a thermoplastic polymer;
b) Uncured or partially cured having a curing temperature below the melting point of the thermoplastic polymer and comprising a thermoplastic polymer implant in at least the joined part of the thermosetting polymer part Providing a thermosetting polymer part;
c) placing the thermoplastic polymer in contact with at least the part to be joined;
d) heating the thermoplastic polymer and the thermosetting polymer part to the melting point of the thermoplastic polymer, whereby the thermoplastic polymer constituting the implant melts and fuses with the thermoplastic polymer; The uncured thermosetting polymer part and the thermoplastic polymer implant at least partially interpenetrate;
e) cooling the assembly of the thermoplastic polymer and the cured thermoset polymer part to join the thermoplastic polymer to the cured thermoset polymer part. It should be noted that the thermoplastic polymer has a melting point that exceeds the curing temperature of the thermosetting polymer part, but the interface of the implant with the thermosetting polymer part is thermoset during the joining step d). The implant is designed so that heating beyond the maximum use temperature of the functional polymer is avoided.

ポリマー(複合材料)の最大使用温度は当業者には良く知られており、一般的には供給業者によって与えられる。   The maximum use temperature of the polymer (composite material) is well known to those skilled in the art and is generally given by the supplier.

本発明による方法において、熱可塑性ポリマー製の埋込物は熱硬化性ポリマー(複合材料)部品に対するヒートシンクのように働く。これにより、接合される熱可塑性ポリマーおよび埋込物を構成する熱可塑性の埋込用のポリマーの融解に加えられる熱が、実質的に溶着される接合部分に存在する一方で、この熱は埋込物を構成する熱可塑性ポリマーの融解によって吸収される。本発明によれば、かりに、加熱がそのような(熱硬化性ポリマーの)劣化温度をこえるときでも、埋込物と熱硬化性ポリマー(複合材料)部品との接合部分における温度が実質的に熱硬化性ポリマーを劣化させることがなく十分低いように、溶着による熱接合の際の温度勾配が熱可塑性埋込物で維持される。これにより、熱硬化性ポリマー(複合材料)と埋込物との間の接合部分での過剰な加熱が避けられるので、溶着によって熱可塑性ポリマーを熱硬化性ポリマー部品へ接合する可能性を与える。この熱可塑性ポリマーは熱硬化性ポリマーの硬化温度を超える融点を有する。   In the method according to the invention, the thermoplastic polymer implant acts as a heat sink for the thermosetting polymer (composite) part. This allows heat added to the melt of the thermoplastic polymer to be joined and the thermoplastic embedding polymer that makes up the implant to be present in the welded joint where it is substantially welded. Absorbed by melting of the thermoplastic polymer comprising the inclusion. According to the present invention, even when heating exceeds such a degradation temperature (of the thermosetting polymer), the temperature at the joint between the implant and the thermosetting polymer (composite material) component is substantially reduced. The temperature gradient during thermal bonding by welding is maintained in the thermoplastic implant so that it is sufficiently low without degrading the thermosetting polymer. This avoids excessive heating at the joint between the thermosetting polymer (composite material) and the implant, thus giving the possibility of joining the thermoplastic polymer to the thermosetting polymer part by welding. The thermoplastic polymer has a melting point that exceeds the curing temperature of the thermosetting polymer.

上記の利点は、相対的に高い使用温度であることにより、相対的に高い融点を有する熱可塑性ポリマーを用いることを決定づけている航空宇宙および航空機への用途に特に有益である。   The above advantages are particularly beneficial for aerospace and aircraft applications where it is determined to use a thermoplastic polymer having a relatively high melting point due to the relatively high service temperature.

本発明の1実施形態における方法においては、J/°K/mで示される埋込物の単位長あたりの熱容量が、ステップd)の際にアセンブリに与えられる単位長あたりの熱よりも大きい。言い換えれば、埋込物の位置決めおよび断面の寸法、同様に埋込物を構成する熱可塑性ポリマーは、上記の要求に合うように選択される。ステップd)の際にアセンブリに与えられる単位長あたりの熱、特に、長さあたりの溶着熱は、また材料特有であり、使用される溶着方法、溶着される材料の比熱容量、その導電度、および局部加熱または局部溶着後に良好に一体化された(consolidated)材料を得るために融解した状態を持続するための必要な時間などの種々の要因に依存する。長さあたりの溶着熱は、当業者であれば容易に実験的に決定することができる。   In the method according to an embodiment of the invention, the heat capacity per unit length of the implant, denoted J / ° K / m, is greater than the heat per unit length given to the assembly during step d). In other words, the implant positioning and cross-sectional dimensions, as well as the thermoplastic polymer making up the implant, are selected to meet the above requirements. The heat per unit length given to the assembly during step d), in particular the heat of welding per length, is also material specific, the welding method used, the specific heat capacity of the material to be welded, its conductivity, And depends on various factors such as the time required to remain molten to obtain a well consolidated material after local heating or local welding. The welding heat per length can be easily determined experimentally by those skilled in the art.

本発明の別の実施形態における方法において、ヒートシンクは、埋込物の一部に、より好ましくは埋込物の外部に、最も好ましくは埋込物の外縁部に適用される。適切なヒートシンクはブロック、ストリップ、バーのような材料を含み、典型的には相対的に高い比熱容量を有している材料がヒートシンク材料として用いられる。適切な材料は金属を含む。ヒートシンクと埋込物の接合部分は、さらに、例えば熱吸収ペーストを備えても良い。ヒートシンクは接合の後、除去される。   In a method in another embodiment of the present invention, the heat sink is applied to a portion of the implant, more preferably to the exterior of the implant, and most preferably to the outer edge of the implant. Suitable heat sinks include materials such as blocks, strips, bars, and typically a material having a relatively high specific heat capacity is used as the heat sink material. Suitable materials include metals. The joint portion between the heat sink and the embedded material may further include, for example, a heat absorbing paste. The heat sink is removed after bonding.

熱硬化性ポリマー部品の埋込物は、好ましくは強化繊維を含む。しかしながら、本発明の別の実施形態における方法においては、埋込物が熱硬化性ポリマー内に延びる強化繊維を備える。このような実施形態は、溶着熱および/または時間を削減することができ、これにより、熱可塑性および/または熱硬化性ポリマーの接合の際の劣化を避ける一方で十分な接合強度をも得ることができる。   The implant of the thermosetting polymer part preferably comprises reinforcing fibers. However, in another embodiment of the present invention, the implant comprises reinforcing fibers that extend into the thermoset polymer. Such embodiments can reduce welding heat and / or time, thereby obtaining sufficient bond strength while avoiding degradation during the joining of thermoplastic and / or thermosetting polymers. Can do.

本発明の別の観点による方法においては、熱硬化性ポリマー部品へ別の熱硬化性ポリマー部品を接合することを提供する。ここで、本方法では、熱可塑性ポリマーに熱可塑性ポリマー製の埋込物を備える硬化した熱硬化性ポリマー部品という形で提供される。   In a method according to another aspect of the invention, it is provided to join another thermosetting polymer part to a thermosetting polymer part. Here, the method is provided in the form of a cured thermoset polymer part comprising a thermoplastic polymer implant in the thermoplastic polymer.

本発明のさらに別の観点によれば、硬化された熱硬化性ポリマー部品は、熱硬化性ポリマー部品が少なくとも接合される部分に熱可塑性ポリマー製の埋込物を備える。   According to yet another aspect of the present invention, the cured thermoset polymer part comprises an implant made of a thermoplastic polymer at least where the thermoset polymer part is joined.

本発明の第1の観点に基づく好ましい実施形態による方法においては、埋込物と熱硬化性ポリマー部品の接合部分で過剰な加熱を避けるように埋込物が設計される。   In a method according to a preferred embodiment according to the first aspect of the invention, the implant is designed to avoid excessive heating at the joint between the implant and the thermosetting polymer part.

本発明の別の好ましい実施形態による方法においては、熱硬化性ポリマー部品は繊維強化熱硬化性複合材料部品を含む。   In a method according to another preferred embodiment of the present invention, the thermosetting polymer part comprises a fiber reinforced thermosetting composite part.

さらに、本発明による方法の別の好ましい実施形態によれば、熱硬化性ポリマー部品は、予め含浸させた熱硬化性ポリマー複合材料テープの積層体のアセンブリであり、埋込物は予め含浸させた熱硬化性ポリマー複合材料テープの積層体を含む。   Furthermore, according to another preferred embodiment of the method according to the invention, the thermosetting polymer part is an assembly of a pre-impregnated thermosetting polymer composite tape laminate and the implant is pre-impregnated. Includes a laminate of thermoset polymer composite tape.

本発明による方法の更なる実施形態は、接合される熱可塑性ポリマーが熱可塑性ポリマー部品、または熱可塑性ポリマー表面と相溶性を有する部品である方法に関する。   A further embodiment of the method according to the invention relates to a method wherein the thermoplastic polymer to be joined is a thermoplastic polymer part or a part that is compatible with the thermoplastic polymer surface.

本発明による方法の別の好ましい実施形態に用いられる接合される熱可塑性ポリマーおよび/または埋込物を構成する熱可塑性ポリマーは、少なくとも200℃の融点を有するエンジニアリング熱可塑性ポリマーのクラスから選択されている。さらに、より好ましい方法によれば、接合される熱可塑性ポリマーおよび/または埋込物を構成する熱可塑性ポリマーは、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)及びそれらの組み合わせまたはそれらの同等物から選択される。   The thermoplastic polymer to be joined and / or the thermoplastic polymer constituting the implant used in another preferred embodiment of the method according to the invention is selected from the class of engineering thermoplastic polymers having a melting point of at least 200 ° C. Yes. Further, according to a more preferred method, the thermoplastic polymer to be joined and / or the thermoplastic polymer constituting the implant is polyetherimide (PEI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), Selected from polyetherketone (PEK), polyetherketoneketone (PEKK) and combinations thereof or equivalents thereof.

本発明による方法の別の実施形態では、接合される熱可塑性ポリマー又は埋込物を構成する熱可塑性ポリマーは局部加熱のための導電性粒子を含むという特徴がある。   Another embodiment of the method according to the invention is characterized in that the thermoplastic polymer to be joined or the thermoplastic polymer constituting the implant contains conductive particles for local heating.

本発明による方法の1実施形態においては、熱硬化性ポリマーは、エポキシ樹脂および/またはビスマレイミド樹脂及び硬化剤の混合物(hardener mixture)を含む。   In one embodiment of the method according to the invention, the thermosetting polymer comprises a hardener mixture of an epoxy resin and / or a bismaleimide resin and a curing agent.

接続可能な表面を形成する熱可塑性ポリマーの埋込物を有する未硬化または部分的に硬化された熱硬化性ポリマー部品は、積層事前含浸熱硬化性ポリマー複合材料テープ及び埋込物を形成する積層事前含浸熱可塑性ポリマー複合材料テープによって便利に作られることができる。熱可塑性埋込物はまた、注入法を用いてその場で製造されることができる。熱硬化性ポリマーと熱可塑性ポリマーの同時注入もまた可能である。   Uncured or partially cured thermoset polymer parts having thermoplastic polymer implants that form connectable surfaces are laminated pre-impregnated thermoset polymer composite tapes and laminates to form implants It can be conveniently made with pre-impregnated thermoplastic polymer composite tape. Thermoplastic implants can also be produced in situ using an injection method. Simultaneous injection of thermosetting polymer and thermoplastic polymer is also possible.

埋込物を備える熱硬化性ポリマー部品は、好ましくは熱可塑性ポリマー(部品)、または他の熱硬化性ポリマーもしくは熱硬化性ポリマー複合材料への溶着による埋込物を備える他の熱硬化性ポリマー部品、または、熱可塑性ポリマー(複合材料)へ接合される。   The thermosetting polymer part comprising an implant is preferably a thermoplastic polymer (part), or other thermosetting polymer comprising an implant by welding to other thermosetting polymers or thermosetting polymer composites Bonded to a part or thermoplastic polymer (composite material).

好ましい溶着方法は、誘導溶着、抵抗溶着、およびレーザ溶着を含むが、これらに限定されるものではない。   Preferred welding methods include, but are not limited to, induction welding, resistance welding, and laser welding.

本発明の他の観点においては、熱可塑性の表面とそれに接合されている熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマー部品のアセンブリが提供される。ここで、熱可塑性ポリマーは熱硬化性ポリマーの硬化温度を超える融点を有する。   In another aspect of the present invention, an assembly of a cured thermoset polymer part having a thermoplastic surface and a thermoplastic polymer part bonded thereto is provided. Here, the thermoplastic polymer has a melting point exceeding the curing temperature of the thermosetting polymer.

本発明の上記の実施形態のいずれにおいても、熱可塑性ポリマー埋込物およびその埋込物に隣接している未硬化熱硬化性ポリマーまたは熱硬化性ポリマー複合材料は、加熱されたときに熱硬化性ポリマーが硬化する前に少なくとも部分的に相互に貫通させあうことができ、これにより、熱可塑性ポリマー埋込物と、熱硬化性ポリマーまたは熱硬化性ポリマー複合材料とが接合することができる。このことにより、埋込物によって熱硬化性ポリマー(複合材料)へ提供される熱可塑性の表面は、熱硬化性ポリマーまたは熱硬化性ポリマー複合材料から容易に引き離されることができないことを確実にしている。   In any of the above embodiments of the present invention, the thermoplastic polymer implant and the uncured thermoset polymer or thermoset polymer composite adjacent to the implant are thermoset when heated. The curing polymer can be at least partially interpenetrated before curing, thereby allowing the thermoplastic polymer implant to join the thermosetting polymer or thermosetting polymer composite. This ensures that the thermoplastic surface provided to the thermoset polymer (composite) by the implant cannot be easily detached from the thermoset polymer or thermoset polymer composite. Yes.

熱可塑性の埋込物を有する硬化されたまたは未硬化の熱硬化性ポリマーまたは熱硬化性ポリマー複合材料は、本発明の方法により、さらに熱可塑性ポリマーに接合されてもよく、また、熱可塑性の埋込物を有する第2の熱硬化性ポリマーまたは熱硬化性ポリマー複合材料に接合されてもよい。   A cured or uncured thermoset polymer or thermoset polymer composite with a thermoplastic implant may be further joined to the thermoplastic polymer by the method of the present invention, and the thermoplastic It may be joined to a second thermosetting polymer or thermosetting polymer composite with an implant.

発明された方法の更なる利点は、接合される融解した熱可塑性ポリマーと埋込物を構成する熱可塑性ポリマーがお互いに接触したときに、高い熱可塑性ポリマー流れを提供し、これにより、接合される接触表面においていかなる凹凸や欠陥をも満たすことである。この熱可塑性の流れは、加熱の際や接合に対する追加の時間を許容する際に、温度を変えることにより、および/または接合される部品へ接触圧力をより加えることにより、影響される。   A further advantage of the invented method is that it provides a high thermoplastic polymer flow when the molten thermoplastic polymer to be joined and the thermoplastic polymer making up the implant are in contact with each other, thereby being joined. Filling any irregularities or defects on the contact surface. This thermoplastic flow is affected by changing the temperature and / or by applying more contact pressure to the parts to be joined, upon heating and allowing additional time for joining.

本発明による方法の利点はさらに、予め相互に接合されていた部品が必要なときに分解されても再組立てされてもよく、これが溶着された熱可塑性物質および熱可塑性埋込物を単に少なくとも部分的に再加熱することにより行える、という事実に関する。もし必要であれば、追加の熱可塑性ポリマーがより良い接合のために接合すべき表面の間に追加されても良い。再加熱はまた、もし必要であれば選択された領域における溶着された製品の品質を向上させるためにも使用できる。   The advantages of the method according to the invention may further be that the parts that have been previously joined together may be disassembled or reassembled when needed, which merely at least partially removes the welded thermoplastic and thermoplastic implant. It is related to the fact that it can be done by reheating it. If necessary, additional thermoplastic polymer may be added between the surfaces to be joined for better joining. Reheating can also be used to improve the quality of the welded product in selected areas if necessary.

一般に、本発明による方法は、少なくとも熱可塑性ポリマー埋込物と熱硬化性ポリマーとの間の接合部分において、硬化される熱硬化性ポリマーまたはポリマー複合材料部品のガラス転移点を超える温度で行われる。しかしながら、接合は、この温度よりも若干高い温度を含んでも良く、または、熱硬化性ポリマーの劣化温度に近くてもよい。   In general, the method according to the invention is carried out at a temperature above the glass transition point of the thermoset polymer or polymer composite part to be cured, at least at the joint between the thermoplastic polymer implant and the thermoset polymer. . However, the bond may include a temperature slightly higher than this temperature, or may be close to the degradation temperature of the thermosetting polymer.

熱硬化性ポリマー(複合材料)部品は、金属の埋込物、発泡体、またはハニカム状の芯材、熱硬化性の部品またはフィルムの熱可塑性物質、などの他の部品を含んでもよく、本発明以外の方法によってそれらが接合されてもよく、または、いかなる他の材料が熱硬化性材料(複合材料)部品の一体化された部分として組み込まれてもよい。   Thermoset polymer (composite) parts may include other parts such as metal implants, foams or honeycomb cores, thermoset parts or film thermoplastics, etc. They may be joined by methods other than the invention, or any other material may be incorporated as an integral part of the thermoset material (composite material) part.

本発明は、添付図を参照のために用いて、しかしながらそれらに限定されることなく、例として以下に詳細に説明する。   The present invention will be described in detail below by way of example, using the accompanying drawings for reference, but not limited thereto.

熱可塑性表面とそこへ溶着する熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマー部品からなる本発明による第1の実施形態を示す概略図である。1 is a schematic diagram illustrating a first embodiment according to the present invention consisting of a cured thermoset polymer part having a thermoplastic surface and a thermoplastic polymer part welded thereto; FIG. 熱可塑性表面とそこへ溶着する熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマー部品からなる本発明による第2の実施形態を示す概略図である。FIG. 4 is a schematic diagram illustrating a second embodiment according to the present invention consisting of a cured thermoset polymer part having a thermoplastic surface and a thermoplastic polymer part welded thereto. 熱可塑性表面とそこへ溶着する熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマー部品からなる本発明による別の実施形態を示す概略図である。FIG. 5 is a schematic diagram illustrating another embodiment according to the present invention consisting of a cured thermoset polymer part having a thermoplastic surface and a thermoplastic polymer part welded thereto. 本発明の方法に用いられる熱可塑性埋込物の実施形態を概略的に示す概略図である。1 is a schematic diagram schematically illustrating an embodiment of a thermoplastic implant used in the method of the present invention. FIG.

図1を参照すれば、熱可塑性表面3を備える硬化された熱硬化性ポリマー部品2のアセンブリ1の実施形態が示されており、これに熱可塑性ポリマー部品4を本発明に示される方法により溶着することができる。熱可塑性ポリマー部品4を構成する熱可塑性ポリマーは、250℃から400℃の間の融点を有しており、これは、硬化温度の範囲が典型的におよそ室温から200℃の間である熱硬化性ポリマー部品2に用いられている熱硬化性ポリマーの硬化温度を超えている。アセンブリ1は、以下の方法によって得られている。少なくとも熱硬化性ポリマー部品が接合される部分、即ち、この場合における表面3に熱可塑性ポリマー製の埋込物5を有する未硬化または部分的に硬化された熱硬化性ポリマー(硬化する部品2の前駆体)を提供するステップと、この熱硬化性ポリマーを硬化させるステップとを有し、これにより未硬化熱硬化性ポリマー部品2及び埋込物5を構成する熱可塑性ポリマーが少なくとも部分的に相互に浸透する。この工程が熱可塑性ポリマー埋込物5と硬化される熱硬化性ポリマー2との間の接合を形成する。硬化時の昇温により、熱硬化性モノマーは実際に埋込物5を構成する熱可塑性ポリマーへ、特に、それらの結晶性領域(crystalline domains)に容易に移動する。この方法によれば、これら2つの間に強力な接合が形成される。熱硬化性モノマー(および硬化剤)が埋込物5の融解されたポリマーの中に十分深く移動することができるように硬化温度と時間サイクルが選択されることが好ましいのは当然である。熱可塑性埋込物5を有する熱硬化性ポリマー2を提供することは、その熱硬化性ポリマー2に対する製造業者から推奨された硬化サイクルの変更なしに行ってもよい。しかしながら、特に熱硬化性ポリマー2と埋込物5の熱可塑性ポリマーと間の適合性が最適でないときは、若干の変更が要求されてもよい。   Referring to FIG. 1, there is shown an embodiment of an assembly 1 of a cured thermoset polymer part 2 comprising a thermoplastic surface 3, to which a thermoplastic polymer part 4 is welded by the method shown in the present invention. can do. The thermoplastic polymer making up the thermoplastic polymer part 4 has a melting point between 250 ° C. and 400 ° C., which is a thermosetting temperature range typically between about room temperature and 200 ° C. The curing temperature of the thermosetting polymer used for the heat-resistant polymer part 2 is exceeded. The assembly 1 is obtained by the following method. At least the part to which the thermosetting polymer part is to be joined, i.e. in this case the uncured or partly cured thermosetting polymer with a thermoplastic polymer implant 5 on the surface 3 (of the part to be cured 2 Providing a precursor) and curing the thermosetting polymer so that the thermoplastic polymer comprising the uncured thermosetting polymer part 2 and the implant 5 is at least partially interleaved with each other. To penetrate. This step forms a bond between the thermoplastic polymer implant 5 and the thermosetting polymer 2 to be cured. Due to the temperature rise during curing, the thermosetting monomers actually migrate easily to the thermoplastic polymers that make up the implant 5, in particular to their crystalline domains. According to this method, a strong bond is formed between the two. Of course, the curing temperature and time cycle are preferably selected so that the thermosetting monomer (and the curing agent) can move sufficiently deep into the melted polymer of the implant 5. Providing a thermosetting polymer 2 having a thermoplastic implant 5 may be performed without modification of the curing cycle recommended by the manufacturer for that thermosetting polymer 2. However, slight modifications may be required, particularly when the compatibility between the thermosetting polymer 2 and the thermoplastic polymer of the implant 5 is not optimal.

本発明によれば、熱可塑性ポリマー(部品)4は、少なくともアセンブリ1の表面3と接触状態とされ、熱可塑性ポリマーと熱硬化性ポリマー部品が熱可塑性ポリマー4の融点まで加熱され、これにより、埋込物5を構成する熱可塑性ポリマーが融解し、熱可塑性ポリマー(部品)4と融合する。換言すれば、熱可塑性ポリマー埋込物5と熱可塑性ポリマー(部品)4との間における接合を形成し、この結合が熱可塑性ポリマー5と硬化された熱硬化性ポリマー部品2とのアセンブリ1の冷却によって強化される。   According to the invention, the thermoplastic polymer (part) 4 is brought into contact with at least the surface 3 of the assembly 1, and the thermoplastic polymer and the thermosetting polymer part are heated to the melting point of the thermoplastic polymer 4, thereby The thermoplastic polymer constituting the implant 5 melts and fuses with the thermoplastic polymer (part) 4. In other words, a bond is formed between the thermoplastic polymer implant 5 and the thermoplastic polymer (part) 4, and this bond of the assembly 1 of the thermoplastic polymer 5 and the cured thermoset polymer part 2. Strengthened by cooling.

接合工程の際に熱硬化性ポリマーの過剰な加熱を避けるために、溶着領域は熱可塑性埋込物5の幾何学的形状(geometry)に従って選択されなければならない。図1において、溶着可能な領域は、領域6で概略的に示されている。この領域6を加熱することは熱可塑性ポリマー4及び5の一方または双方の融点で行うことができる。これらのポリマー4及び5は、好ましくは融点が20℃だけ異なり、より好ましくは融点が15℃だけ異なり、最も好ましくは融点が10℃だけ異なる。好ましくは、熱可塑性ポリマー4及び5は実質的に同じポリマーである。埋込物5を構成する熱可塑性ポリマーは、熱硬化性ポリマー2の硬化の際に好ましくは半相互浸透高分子網目(semi-interpenetrating polymer network)を形成することにより、(図1に示されている例のように)内部界面で接合されているか、または(図2に示されている例のように)熱硬化性ポリマー2の外部界面で接合されている。この目的を達成するために、熱可塑性ポリマー5は、好ましくは、熱硬化性ポリマー2の選択された熱硬化性モノマーと相溶性を有する。高分子科学の当業者は、周知の熱力学的な基準及び融解度の基準のような自由に使える十分な手段を有している。   In order to avoid excessive heating of the thermosetting polymer during the joining process, the weld area must be selected according to the geometry of the thermoplastic implant 5. In FIG. 1, the weldable area is schematically indicated by area 6. Heating this region 6 can be done at the melting point of one or both of the thermoplastic polymers 4 and 5. These polymers 4 and 5 preferably differ in melting point by 20 ° C, more preferably differ by 15 ° C, and most preferably differ by 10 ° C. Preferably, the thermoplastic polymers 4 and 5 are substantially the same polymer. The thermoplastic polymer comprising the implant 5 is preferably formed by forming a semi-interpenetrating polymer network upon curing of the thermosetting polymer 2 (shown in FIG. 1). Joined at the internal interface (as in the example shown) or joined at the external interface of the thermosetting polymer 2 (as in the example shown in FIG. 2). To achieve this objective, the thermoplastic polymer 5 is preferably compatible with the selected thermosetting monomer of the thermosetting polymer 2. Those skilled in the art of polymer science have sufficient means at their disposal, such as the well-known thermodynamic criteria and melt criteria.

本発明による方法を用いて達成可能な典型的な接合強度は、30MPaを超えており、より好ましくは35MPa、最も好ましくは40MPaを超えている(二重重ね合わせ継手強度試験(double lap joint strength test)による)。   Typical joint strengths achievable with the method according to the invention are over 30 MPa, more preferably over 35 MPa, most preferably over 40 MPa (double lap joint strength test )by).

一般的な溶着圧力範囲は50kPaから1MPaであり、100kPaから350kPaが推奨されている。しかしながら、本発明による方法は圧力を加えないときにも良好な接合を提供しうる。しかし、1MPaを超える圧力もまた、使用しても良い。とはいえ、このような圧力は、融解した熱可塑性物質に対していくらかの絞り(squeezing)を引き起こすかもしれない。   The general welding pressure range is 50 kPa to 1 MPa, and 100 kPa to 350 kPa is recommended. However, the method according to the invention can provide a good bond even when no pressure is applied. However, pressures in excess of 1 MPa may also be used. Nonetheless, such pressure may cause some squeezing to the molten thermoplastic.

本発明の方法に従って熱可塑性ポリマー部品4へ溶着することができる熱可塑性表面3を有する硬化された熱硬化性ポリマー部品2のアセンブリ1の別の実施形態が図2に示されている。この場合、熱可塑性ポリマー埋込物5は、実際に熱硬化性ポリマー部品2の外側表面と接合している。けれども、本発明によれば、埋込物5の溶着可能な領域が領域6に限定されているとき、埋込物5との接合部分での熱硬化性ポリマーの過剰な加熱が避けられるように埋込物5が寸法設定されているので、その機能は維持される。   Another embodiment of an assembly 1 of a cured thermoset polymer part 2 having a thermoplastic surface 3 that can be welded to a thermoplastic polymer part 4 according to the method of the present invention is shown in FIG. In this case, the thermoplastic polymer implant 5 is actually bonded to the outer surface of the thermosetting polymer part 2. However, according to the present invention, when the weldable region of the implant 5 is limited to the region 6, excessive heating of the thermosetting polymer at the joint with the implant 5 is avoided. Since the implant 5 is dimensioned, its function is maintained.

熱可塑性ポリマー埋込物5を備える熱硬化性ポリマー2は、例えば加熱平板のような外部からの熱および圧力の供給下で熱可塑性部品4へ接合してもよい。代わりに、溶着領域6へ熱が集中するのを許容するために、接合される部品内に組み入れられた局部加熱素子または加熱可能な材料でさえも使用してもよい。   The thermosetting polymer 2 with the thermoplastic polymer embedding 5 may be joined to the thermoplastic part 4 under external heat and pressure, such as a heated plate. Alternatively, even local heating elements or even heatable materials incorporated in the parts to be joined may be used to allow heat to concentrate on the weld zone 6.

本発明による方法によれば、加熱は、熱可塑性ポリマー4及び5の融点を超えて生じ、それらの熱可塑性物質は、相対的に低い溶着圧力下でも溶着の際に実質的に流れを示す。この流れが、熱可塑性物質4及び5のそれらの表面における小さな不規則性を満たし、または、接合される部品2と4との間の相対的に小さな隙間でさえも満たす。   According to the method according to the invention, heating occurs above the melting point of the thermoplastic polymers 4 and 5, and these thermoplastics exhibit a substantial flow during welding even at relatively low welding pressures. This flow fills the small irregularities in the surfaces of the thermoplastics 4 and 5 or even the relatively small gap between the parts 2 and 4 to be joined.

本発明の方法に従って熱可塑性ポリマー部品4へ溶着することができる熱可塑性表面3を有する硬化された熱硬化性ポリマー部品2のアセンブリ1のさらに別の実施形態が図3に示されている。この場合、熱可塑性ポリマー埋込物5は、二つのヒートシンク10及び11をその外縁で備えている。溶着可能な領域が領域6に限られているとき、接合部分7で埋込物5を有する熱硬化性ポリマー2の加熱が熱硬化性ポリマーの最大使用温度を超えないよう限定されるように、埋込物5は寸法設定されている。ヒートシンク10及び11は溶着熱の一部を吸収する。ヒートシンク10及び11は、熱吸収ペースト8の層を用いて埋込物5に装着されている。熱可塑性ポリマー埋込物5を備える熱硬化性ポリマー2は、接触領域6の中で溶着部分4に溶着トーチ9を接触させて用いることにより、熱可塑性物質部品4に接合される。   Yet another embodiment of an assembly 1 of a cured thermoset polymer part 2 having a thermoplastic surface 3 that can be welded to the thermoplastic polymer part 4 according to the method of the present invention is shown in FIG. In this case, the thermoplastic polymer implant 5 comprises two heat sinks 10 and 11 at the outer edges. When the weldable region is limited to region 6, so that the heating of the thermosetting polymer 2 with the implant 5 at the joint 7 is limited so as not to exceed the maximum use temperature of the thermosetting polymer, The implant 5 is dimensioned. The heat sinks 10 and 11 absorb part of the welding heat. The heat sinks 10 and 11 are attached to the implant 5 using a layer of heat absorbing paste 8. The thermosetting polymer 2 with the thermoplastic polymer implant 5 is joined to the thermoplastic part 4 by using the welding torch 9 in contact with the welded portion 4 in the contact area 6.

図4は最終的に本発明の方法に用いられる好ましい埋込物の概略側面図を示す。示された実施形態では、埋込物5の境界(50,51)までに渡って延びる連続的な強化繊維12を備える熱可塑性ポリマーの埋込物が提供されている。熱硬化性ポリマー部品を有するこのような埋込物が固まるとき、繊維12の自由(乾燥)部分は熱硬化性ポリマー内へ延び、ここで、これらの繊維部分は熱硬化性ポリマーで含浸され一度硬化された熱硬化性ポリマー部品と一体化される。この実施形態による埋込物は、本発明の方法において特に有用であることが明らかになる。なぜならば、それは、十分な接合強度をもたらし、一方で接合の際に加えられる熱を制限するからである。   FIG. 4 shows a schematic side view of a preferred implant finally used in the method of the present invention. In the embodiment shown, an implant of thermoplastic polymer is provided, comprising continuous reinforcing fibers 12 extending to the boundary (50, 51) of the implant 5. When such an implant with a thermoset polymer part solidifies, the free (dry) portions of the fibers 12 extend into the thermoset polymer, where these fiber portions are impregnated with the thermoset polymer once. Integrated with the cured thermoset polymer part. The implant according to this embodiment will prove particularly useful in the method of the invention. This is because it provides sufficient bond strength while limiting the heat applied during bonding.

本発明による方法は、さらに、前もって溶着した部品2と4の溶着を外して分離することを許容する。部品(2,4)は、そこで、熱可塑性ポリマー(4,5)の融点を超える温度で加熱され、双方の部品(2,4)は、少なくとも部分的に分離されるが、これには限られた力が必要とされるに留まる。各部品(2,4)は、その後、その表面特性の大部分を保持し、分離された部品はその後、この発明された方法に従って再び溶着されてもよい。もし必要であれば、追加の熱可塑性材料が接合される熱可塑性物質表面に加えられてもよい、この場合、不十分な熱可塑性材料でも良い接合のために利用できる。   The method according to the invention further allows to remove and separate the previously welded parts 2 and 4. The parts (2, 4) are then heated at a temperature above the melting point of the thermoplastic polymer (4, 5) and both parts (2, 4) are at least partially separated, but this is not the case. The required power is only needed. Each part (2, 4) then retains most of its surface properties, and the separated parts may then be welded again according to the invented method. If necessary, additional thermoplastic material may be added to the surface of the thermoplastic material to be joined, in which case insufficient thermoplastic material can be utilized for joining.

本発明により接合されたアセンブリ1は、改善された耐薬品性、改善された耐久性および耐浸蝕性、改善された生体適合性、改善された摩擦性、及びこのような、さらなる利点を提供する。   The assembly 1 joined according to the present invention provides improved chemical resistance, improved durability and erosion resistance, improved biocompatibility, improved friction, and such further advantages. .

詳細な説明に開示された本発明は例示としてのみ提供しているので、添付された特許請求の範囲内において、当業者には多数の変形が想定されることが理解される。   Since the invention disclosed in the detailed description is provided by way of illustration only, it will be appreciated that numerous variations are envisioned by those skilled in the art within the scope of the appended claims.

Claims (15)

a) 熱可塑性ポリマーを提供するステップと、
b) 熱硬化性ポリマー部品が熱可塑性ポリマーから構成される埋込物を少なくとも接合される部分に備える、硬化された熱硬化性ポリマー部品を提供するステップと、
c) 前記熱可塑性ポリマーを前記少なくとも接合させる部分と接触させて配置するステップと、
d) 少なくとも接触する領域で前記熱可塑性ポリマーと前記熱硬化性ポリマー部品とを前記熱可塑性ポリマーの融点に加熱するステップであって、これにより、前記埋込物の熱可塑性ポリマーが融解して前記熱可塑性ポリマーと融合し、
e) 前記熱可塑性ポリマーと硬化された熱硬化性ポリマー部品とのアセンブリを、前記熱可塑性ポリマーが前記硬化された熱硬化性ポリマー部品と接合するように冷却するステップとを含む、熱硬化性ポリマー部品に熱可塑性ポリマーを接合する方法であって、
前記熱可塑性ポリマーは、前記熱硬化性ポリマーの硬化温度を超える融点を有し、
前記埋込物は、前記埋込物と前記熱硬化性ポリマー部品の接合部分で前記熱硬化性ポリマーの最大使用温度を超える加熱が前記接合ステップd)の際に避けられるように設計されていることを特徴とする方法。
a) providing a thermoplastic polymer;
b) providing a cured thermosetting polymer part, wherein the thermosetting polymer part comprises at least a portion to be joined with an implant composed of a thermoplastic polymer;
c) placing the thermoplastic polymer in contact with the at least a portion to be joined;
d) heating the thermoplastic polymer and the thermosetting polymer part to the melting point of the thermoplastic polymer at least in the contact area, whereby the thermoplastic polymer of the implant is melted and Fused with thermoplastic polymer,
e) cooling an assembly of the thermoplastic polymer and a cured thermoset polymer part such that the thermoplastic polymer joins the cured thermoset polymer part. A method of joining a thermoplastic polymer to a part, comprising:
The thermoplastic polymer has a melting point above the curing temperature of the thermosetting polymer;
The implant is designed such that heating above the maximum use temperature of the thermosetting polymer at the joint between the implant and the thermosetting polymer part is avoided during the joining step d). A method characterized by that.
J/°K/mで示される埋込物の単位長あたりの熱容量が、ステップd)の際にアセンブリに与えられる単位長あたりの熱よりも大きい、請求項1に記載の方法。   The method according to claim 1, wherein the heat capacity per unit length of the implant, expressed in J / ° K / m, is greater than the heat per unit length provided to the assembly during step d). 前記埋込物の一部にヒートシンクが適用されている、請求項1または2に記載の方法。   The method according to claim 1, wherein a heat sink is applied to a portion of the implant. 前記ヒートシンクが前記埋込物の外部に提供される、請求項3に記載の方法。   The method of claim 3, wherein the heat sink is provided external to the implant. 前記ヒートシンクが前記埋込物の外縁で提供される、請求項3または4に記載の方法。   The method according to claim 3 or 4, wherein the heat sink is provided at the outer edge of the implant. 前記埋込物は、前記熱硬化性ポリマー内へ延びる強化繊維を備える、請求項1から5のいずれかに記載の方法。   6. A method according to any preceding claim, wherein the implant comprises reinforcing fibers that extend into the thermosetting polymer. 前記熱可塑性ポリマーは、前記熱可塑性ポリマーから構成される埋込物を備える硬化した状態の熱硬化性ポリマー部品を備える、請求項1から6のいずれかに記載の方法。   7. A method according to any preceding claim, wherein the thermoplastic polymer comprises a cured thermoset polymer part comprising an implant composed of the thermoplastic polymer. 前記熱可塑性埋込物を備える前記硬化された熱硬化性ポリマーは、硬化温度が前記熱可塑性ポリマーの融点より低い未硬化または部分的に硬化された熱硬化性ポリマー部品を用いて、前記熱可塑性ポリマーと前記熱硬化性ポリマー部品とを前記熱硬化性ポリマーの硬化温度へ加熱し、これにより、未硬化または部分的に硬化された熱硬化性ポリマー部品と埋込物を構成する熱可塑性ポリマーとが少なくとも部分的に相互浸透することにより得られる、請求項1から7のいずれかに記載の方法。   The cured thermoset polymer comprising the thermoplastic implant is formed by using the uncured or partially cured thermoset polymer component having a cure temperature lower than the melting point of the thermoplastic polymer. Heating the polymer and the thermosetting polymer part to the curing temperature of the thermosetting polymer, thereby forming an uncured or partially cured thermosetting polymer part and the thermoplastic polymer constituting the implant; The method according to claim 1, which is obtained by at least partially interpenetrating. 前記熱硬化性ポリマー部品は、繊維強化熱硬化性ポリマー複合材料部品を有する、請求項1から8のいずれかに記載の方法。   9. A method according to any preceding claim, wherein the thermosetting polymer part comprises a fiber reinforced thermosetting polymer composite part. 接合される前記熱可塑性ポリマーは、熱可塑性ポリマー部品、または熱可塑性ポリマー表面と相溶性を有する部品である、請求項1から9のいずれかに記載の方法。   10. A method according to any preceding claim, wherein the thermoplastic polymer to be joined is a thermoplastic polymer part or a part that is compatible with the thermoplastic polymer surface. 接合される前記熱可塑性ポリマーおよび/または前記埋込物を構成する前記熱可塑性ポリマーは、少なくとも200℃の融点を有するエンジニアリング熱可塑性ポリマーのクラスから選択される、請求項1から10のいずれかに記載の方法。   11. The thermoplastic polymer to be joined and / or the thermoplastic polymer making up the implant are selected from the class of engineering thermoplastic polymers having a melting point of at least 200 <0> C. The method described. 接合される前記熱可塑性ポリマーおよび/または前記埋込物を構成する前記熱可塑性ポリマーは、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリエーテルケトン(PEK)、ポリエーテルケトンケトン(PEKK)及びそれらの組み合わせまたはそれらの同等物から選択される、請求項11に記載の方法。   The thermoplastic polymer to be joined and / or the thermoplastic polymer constituting the implant is polyetherimide (PEI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyetherketone (PEK). 12. The method of claim 11, wherein the method is selected from:, polyether ketone ketone (PEKK) and combinations thereof or equivalents thereof. 接合される前記熱可塑性ポリマーまたは前記埋込物を構成する前記熱可塑性ポリマーは、局部加熱のための導電性粒子を含む、請求項1から12のいずれかに記載の方法。   The method according to any one of claims 1 to 12, wherein the thermoplastic polymer to be joined or the thermoplastic polymer constituting the implant comprises conductive particles for local heating. 前記熱硬化性ポリマーは、エポキシ樹脂および/またはビスマレイミド樹脂及び硬化剤の混合物を含む、請求項1から13のいずれかに記載の方法。   The method according to claim 1, wherein the thermosetting polymer comprises a mixture of an epoxy resin and / or a bismaleimide resin and a curing agent. 熱可塑性表面とそれへ溶着される熱可塑性ポリマー部品とを有する硬化された熱硬化性ポリマーのアセンブリであって、前記熱可塑性ポリマーは、前記熱硬化性ポリマーの硬化温度を超える融点を有することを特徴とするアセンブリ。   A cured thermoset polymer assembly having a thermoplastic surface and a thermoplastic polymer component welded thereto, wherein the thermoplastic polymer has a melting point above the curing temperature of the thermoset polymer. Feature assembly.
JP2014512784A 2011-05-25 2012-05-25 Method for joining a thermoplastic polymer to a thermosetting polymer part Expired - Fee Related JP6014658B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2006848 2011-05-25
NL2006848A NL2006848C2 (en) 2011-05-25 2011-05-25 Method for bonding a thermoplastic polymer to a thermosetting polymer component.
PCT/NL2012/000035 WO2012161569A1 (en) 2011-05-25 2012-05-25 Method for bonding a thermoplastic polymer to a thermosetting polymer component

Publications (2)

Publication Number Publication Date
JP2014515323A true JP2014515323A (en) 2014-06-30
JP6014658B2 JP6014658B2 (en) 2016-10-25

Family

ID=46458582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014512784A Expired - Fee Related JP6014658B2 (en) 2011-05-25 2012-05-25 Method for joining a thermoplastic polymer to a thermosetting polymer part

Country Status (11)

Country Link
US (1) US9211674B2 (en)
EP (1) EP2714372B1 (en)
JP (1) JP6014658B2 (en)
KR (1) KR101983613B1 (en)
CN (1) CN103796816B (en)
BR (1) BR112013030154B1 (en)
CA (1) CA2837230C (en)
ES (1) ES2550048T3 (en)
NL (1) NL2006848C2 (en)
RU (1) RU2608420C2 (en)
WO (1) WO2012161569A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175397A (en) * 2015-03-20 2016-10-06 トヨタ自動車株式会社 Resin joined body, method for producing resin joined body, and structure for vehicle
JP2017013724A (en) * 2015-07-06 2017-01-19 本田技研工業株式会社 Method for manufacturing wheel

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102142936B1 (en) * 2013-07-09 2020-08-10 플라이 테크놀로지스 잉크 Controlled formation of cellular material and apparatus
DE102013114829A1 (en) * 2013-12-23 2015-06-25 KTM Technologies GmbH Fiber-reinforced thermoset component with functional layer for connection to a thermoplastic component
JP6179542B2 (en) 2015-03-19 2017-08-16 トヨタ自動車株式会社 Resin bonded body, resin bonded body manufacturing method, and vehicle structure
US10105898B2 (en) 2015-03-20 2018-10-23 Toyota Jidosha Kabushiki Kaisha Resin joined body, manufacturing method of resin joined body, and vehicle structure
US10240012B2 (en) 2015-08-11 2019-03-26 University Of South Carolina Thermoplastic/thermoset grafted composites
EP3341179A4 (en) 2015-08-25 2019-10-30 University of South Carolina Integrated robotic 3d printing system for printing of fiber reinforced parts
DE102015224613A1 (en) * 2015-12-08 2017-06-08 Airbus Defence and Space GmbH Connecting element, connection arrangement, method for producing a connecting element and method for producing a connection arrangement
US10724994B2 (en) 2015-12-15 2020-07-28 University Of South Carolina Structural health monitoring method and system
US11192297B2 (en) 2016-05-24 2021-12-07 University Of South Carolina Composite continuous filament for additive manufacturing
US11001008B2 (en) 2016-06-03 2021-05-11 University Of South Carolina Welding head and method for use with polymeric components
FR3056936B1 (en) * 2016-10-03 2018-10-05 Airbus Operations METHOD FOR MANUFACTURING AN ACOUSTIC PANEL REINFORCED BY AT LEAST ONE LAYER OF THERMOPLASTIC COMPOSITE MATERIAL
DE102017204512A1 (en) * 2017-03-17 2018-09-20 Airbus Defence and Space GmbH Connection optimization for hybrid composite structures
US11117362B2 (en) 2017-03-29 2021-09-14 Tighitco, Inc. 3D printed continuous fiber reinforced part
US10549489B2 (en) 2017-09-24 2020-02-04 The Boeing Company Partial curing of thermoset composites
EP3837104A4 (en) 2018-08-13 2022-04-27 University of South Carolina Systems and methods for printing 3-dimensional objects from thermoplastics
US11022561B2 (en) 2018-10-08 2021-06-01 University Of South Carolina Integrated and automated video/structural health monitoring system
US10766672B2 (en) 2018-12-12 2020-09-08 Yeti Coolers, Llc Insulating container
CN113825625A (en) * 2019-05-10 2021-12-21 汉高知识产权控股有限责任公司 Direct application of thermoset composite surface films to UV-treated thermoplastic surfaces and related composite structures
EP3789189A1 (en) * 2019-09-09 2021-03-10 Habasit AG Process for welding profiles to a belt
CN112569881B (en) * 2020-07-24 2021-07-20 苏州恒瑞宏远医疗科技有限公司 Reaction device and processing method thereof
WO2022020309A1 (en) 2020-07-20 2022-01-27 Saudi Arabian Oil Company Apparatus and method for welding reinforced thermosetting resin pipe joints by induction heating
US11761571B2 (en) 2020-07-20 2023-09-19 Saudi Arabian Oil Company Apparatus and method for electrofusion welding of reinforced thermosetting resin pipe joints
WO2022020323A1 (en) 2020-07-20 2022-01-27 Saudi Arabian Oil Company Apparatus and method for friction welding of reinforced thermosetting resin pipe joints
US11697244B2 (en) 2020-08-28 2023-07-11 University Of South Carolina In-line polymerization for customizable composite fiber manufacture in additive manufacturing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294128A (en) * 1990-12-17 1992-10-19 United Technol Corp <Utc> Method of bonding thermo-setting composite material structure
US5240542A (en) * 1990-09-06 1993-08-31 The Board Of Trustees Of The Leland Stanford Junior University Joining of composite materials by induction heating
JP2009531194A (en) * 2006-03-28 2009-09-03 シーアールシー フォー アドバンスト コンポジット ストラクチャーズ リミテッド Welding of functional members to polymer composite members

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022814A (en) * 1957-02-04 1962-02-27 Jr Albert G Bodine Method and apparatus for sonic bonding
JPH01156025A (en) * 1987-12-14 1989-06-19 Calsonic Corp Composite pipe made of synthetic resin and its manufacture
JPH02246248A (en) * 1989-03-20 1990-10-02 Mitsubishi Electric Corp Method and apparatus for manufacturing integrated circuit package
US5916469A (en) * 1996-06-06 1999-06-29 The Boeing Company Susceptor integration into reinforced thermoplastic composites
US6939477B2 (en) * 1997-06-06 2005-09-06 Ashland, Inc. Temperature-controlled induction heating of polymeric materials
AUPR673101A0 (en) * 2001-07-31 2001-08-23 Cooperative Research Centre For Advanced Composite Structures Limited Welding techniques for polymer or polymer composite components
NL1030029C2 (en) * 2005-09-26 2007-03-27 Gtm Consulting B V Method and device for gluing components to a composite molded part.
WO2008028224A1 (en) * 2006-09-08 2008-03-13 Crc For Advanced Composite Structures Limited Joining of concentric section polymer composite components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240542A (en) * 1990-09-06 1993-08-31 The Board Of Trustees Of The Leland Stanford Junior University Joining of composite materials by induction heating
JPH04294128A (en) * 1990-12-17 1992-10-19 United Technol Corp <Utc> Method of bonding thermo-setting composite material structure
JP2009531194A (en) * 2006-03-28 2009-09-03 シーアールシー フォー アドバンスト コンポジット ストラクチャーズ リミテッド Welding of functional members to polymer composite members

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175397A (en) * 2015-03-20 2016-10-06 トヨタ自動車株式会社 Resin joined body, method for producing resin joined body, and structure for vehicle
JP2017013724A (en) * 2015-07-06 2017-01-19 本田技研工業株式会社 Method for manufacturing wheel

Also Published As

Publication number Publication date
US20140220356A1 (en) 2014-08-07
NL2006848C2 (en) 2012-11-27
KR101983613B1 (en) 2019-05-29
CN103796816A (en) 2014-05-14
CN103796816B (en) 2017-08-29
ES2550048T3 (en) 2015-11-04
BR112013030154B1 (en) 2021-07-27
CA2837230A1 (en) 2012-11-29
RU2013156793A (en) 2015-06-27
EP2714372B1 (en) 2015-07-15
JP6014658B2 (en) 2016-10-25
BR112013030154A2 (en) 2017-03-21
WO2012161569A1 (en) 2012-11-29
EP2714372A1 (en) 2014-04-09
KR20140049989A (en) 2014-04-28
RU2608420C2 (en) 2017-01-18
US9211674B2 (en) 2015-12-15
CA2837230C (en) 2020-07-21

Similar Documents

Publication Publication Date Title
JP6014658B2 (en) Method for joining a thermoplastic polymer to a thermosetting polymer part
JP4434731B2 (en) Polymer or polymer composite element welding technology
AU2007294461B2 (en) Joining of concentric section polymer composite components
CA2888974C (en) Joining composite components using low temperature thermoplastic film fusion
Tsiangou et al. On the sensitivity of ultrasonic welding of epoxy-to polyetheretherketone (PEEK)-based composites to the heating time during the welding process
US11458719B2 (en) Method for joining by bonding of parts, in particular composite parts having fibrous reinforcement
JP6964502B2 (en) How to join composite materials
Beiss et al. Vibration joining of fiber‐reinforced thermosets
US20230398748A1 (en) Semi-conformable pressure application system and method for joining composite parts
AU2002355611B2 (en) Welding techniques for polymer or polymer composite components
Tsiangou Ultrasonic welding of epoxy-to thermoplastic-based composites
AU2002355611A1 (en) Welding techniques for polymer or polymer composite components
Roos et al. Welding of thermoplastic composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6014658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees