JP2014514079A5 - - Google Patents

Download PDF

Info

Publication number
JP2014514079A5
JP2014514079A5 JP2014504394A JP2014504394A JP2014514079A5 JP 2014514079 A5 JP2014514079 A5 JP 2014514079A5 JP 2014504394 A JP2014504394 A JP 2014504394A JP 2014504394 A JP2014504394 A JP 2014504394A JP 2014514079 A5 JP2014514079 A5 JP 2014514079A5
Authority
JP
Japan
Prior art keywords
expandable membrane
degrees celsius
item
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014504394A
Other languages
Japanese (ja)
Other versions
JP6066217B2 (en
JP2014514079A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/GB2012/050820 external-priority patent/WO2012140439A1/en
Publication of JP2014514079A publication Critical patent/JP2014514079A/en
Publication of JP2014514079A5 publication Critical patent/JP2014514079A5/ja
Application granted granted Critical
Publication of JP6066217B2 publication Critical patent/JP6066217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

明細書及びここに記載されている実施形態の実施を考慮して、当業者には本発明の他の実施形態も明らかであろう。明細書及び例示は、あくまで例として支援されており、本発明の真の範囲及び精神は、以下の請求項に示されている。加えて、本願において特定の順序の方法またはプロシージャの段階をリストしている場合であっても、状況によっては、いくつかの段階を行う順序を変更することができたり、変更するほうが望ましかったりする場合もあり、以下に述べる方法またはプロシージャの請求項の特定の段階は、その順序の特異性が請求項で明示されていない限り、順序が重要であるとして解釈されるべきではない。
なお、本願明細書に記載の実施形態によれば、以下の構成もまた開示される。
[項目1]
拡張可能な膜を有するカテーテル装置と、
前記拡張可能な膜の拡張を調整して、前記拡張可能な膜が、5ATM(507kPa)未満の圧力で拡張するようにする、圧力制御システムと、
前記カテーテル装置が血管に配置されたとき、前記拡張可能な膜と前記血管との界面に、摂氏+15度(288K)及び摂氏−35度(238K)の間の温度を構築する冷却部材と
を備える、システム。
[項目2]
前記冷却部材が、冷媒、吸熱反応コンポーネント、熱電クーラー、及び、これらの組み合わせからなる群から選択される、項目1に記載のシステム。
[項目3]
温度を監視して、前記冷却部材を調節して、摂氏+15度(288K)及び摂氏−35度(238K)の間の前記界面の温度を維持する温度制御システムをさらに備える、項目1または2に記載のシステム。
[項目4]
前記拡張可能な膜は、流体を含むよう構成されており、
前記システムはさらに、前記拡張可能な膜に流体を供給する流体源を備え、
前記圧力制御システムは、前記流体源の圧力を調節して、前記拡張可能な膜が、5ATM(507kPa)未満の圧力で拡張されるようにする、項目1から3のいずれか一項に記載のシステム。
[項目5]
前記拡張可能な膜と流体貯蔵部との間の戻りラインに配置された真空ポンプをさらに備える、項目4に記載のシステム。
[項目6]
前記流体源からの別個の冷媒ラインによって冷媒供給ラインを冷却する接続装置をさらに備える、項目4に記載のシステム。
[項目7]
血管内のプラークにクライオエネルギーを供給する方法であって、
前記血管内の前記プラークに熱接触するよう配置されていたカテーテル装置の拡張可能な膜を、5ATM(507kPa)未満の圧力で拡張する段階と、
前記拡張可能な膜と前記血管との界面で、摂氏+15度(288K)及び摂氏−35度(238K)の間の温度を構築する段階と
を備える方法。
[項目8]
血管内のプラークの構造を修正する方法であって、
カテーテル装置を、前記血管内の前記プラークに近接する位置に配置する段階と、
前記カテーテル装置の拡張可能な膜を、5ATM(507kPa)未満の圧力で拡張する段階と、
前記拡張可能な膜と前記血管との間の界面で、摂氏+15度(288K)及び摂氏−35度(238K)の間の温度を構築する段階と
を備える方法。
[項目9]
前記カテーテル装置は、単一の拡張可能な膜を有する、項目7に記載の方法。
[項目10]
前記拡張可能な膜は、前記血管に適応する、項目7から9のいずれか一項に記載の方法。
[項目11]
前記拡張可能な膜は、前記血管に半適応する、項目7から9のいずれか一項に記載の方法。
[項目12]
前記拡張可能な膜は、前記血管に適応しない、項目7から9のいずれか一項に記載の方法。
[項目13]
前記拡張可能な膜は、実質的にスムーズな外表面を有している、項目7から12のいずれか一項に記載の方法。
[項目14]
前記カテーテル装置に設けられたセンサを利用して、拡張可能な膜特性を判断する段階をさらに備える、項目7から13のいずれか一項に記載の方法。
[項目15]
前記カテーテル装置を撮像する段階をさらに備え、
前記拡張可能な膜は、放射線不透性物質を含む、項目7から14のいずれか一項に記載の方法。
[項目16]
前記拡張可能な膜は、4ATM(405kPa)未満の圧力で拡張される、項目7から15のいずれか一項に記載の方法。
[項目17]
前記拡張可能な膜は、3ATM(304kPa)未満の圧力で拡張される、項目16に記載の方法。
[項目18]
前記拡張可能な膜は、2ATM(203kPa)未満の圧力で拡張される、項目17に記載の方法。
[項目19]
前記拡張可能な膜は、1ATM(101kPa)未満の圧力、または、1ATM(101kPa)に略等しい圧力で拡張される、項目18に記載の方法。
[項目20]
前記拡張可能な膜は、冷媒を含み、
前記温度を構築する段階は、
前記拡張可能な膜に冷媒を供給する段階を含む、項目7から19のいずれか一項に記載の方法。
[項目21]
前記拡張可能な膜の内部の冷媒は、液状に保たれる、項目20に記載の方法。
[項目22]
前記冷媒は、大気圧で摂氏+37度(310K)を超える沸点と、大気圧で摂氏−85度(358K)未満の氷点とを持ち、摂氏−85度(188K)で、10cSt(10×10 −6 /s)未満の動的粘度を持つ、項目21に記載の方法。
[項目23]
前記拡張可能な膜の内部の冷媒は、摂氏−25度(248K)及び摂氏−55度(218K)の間の温度に維持される、項目20から22のいずれか一項に記載の方法。
[項目24]
前記冷媒は、パーフルオロカーボンを含む、項目20から23のいずれか一項に記載の方法。
[項目25]
前記カテーテル装置に設けられたセンサを利用して、冷媒特性を判断する段階をさらに備える、項目20から24のいずれか一項に記載の方法。
[項目26]
前記冷媒を撮像する段階をさらに備え、
前記冷媒は、放射線不透性物質を含む、項目20から25のいずれか一項に記載の方法。
[項目27]
前記温度を構築する段階は、
吸熱反応を生じさせる段階を含む、項目7または8に記載の方法。
[項目28]
前記吸熱反応は、前記拡張可能な膜を加圧することで生じる、項目27に記載の方法。
[項目29]
前記吸熱反応は、前記拡張可能な膜を拡張することで生じる、項目27に記載の方法。
[項目30]
前記吸熱反応は、水と硝酸アンモニウム、水と塩化アンモニウム、水酸化バリウム八水和物の結晶及び乾燥塩化アンモニウム、水と塩化アンモニウム、塩化チオニルと硫酸コバルト(II)七水和物、水と塩化カリウム、水とチオシアン酸アンモニウム、及び、エタン酸と炭酸ナトリウムを含む化合物の対のうちの1以上の間の反応である、項目27に記載の方法。
[項目31]
前記拡張可能な膜の内部の温度は、前記拡張可能な膜に近接した位置の冷却部材により維持される、項目7または8に記載の方法。
[項目32]
前記冷却部材は、熱電冷却部材を含む、項目31に記載の方法。
[項目33]
前記冷却部材は、ペルチェコンポーネントを含む、項目32に記載の方法。
[項目34]
前記カテーテル装置に設けられた温度センサを利用して、前記血管の詰りの状態を判断する段階をさらに備える、項目7から33のいずれか一項に記載の方法。
[項目35]
図面を参照して示した脆弱なプラークを処置するカテーテル装置。
[項目36]
図面を参照して示した脆弱なプラークを処置するシステム。
[項目37]
図面を参照して示した脆弱なプラークを処置する方法。
[項目38]
血管内のプラークに、5ATM(507kPa)未満の圧力まで、且つ、内表面の血管に、摂氏+15度(288K)及び摂氏−35度(238K)の間の温度にまで、クライオエネルギーを供給して、コラーゲンのレベルを増加させ、前記プラークを安定させる、方法。
[項目39]
液体冷媒を利用するクライオ医療冷媒システム(cryomedical refrigerant system)であって、
前記液体は懸濁液に気泡が吹き込まれたものであり、
前記気泡は、熱伝達部内で拡張してはじけ、前記液体冷媒内でジュールトムソン効果による冷却を行う、クライオ医療冷媒システム。
Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments described herein. The specification and illustrations are provided as examples only, with the true scope and spirit of the invention being indicated in the following claims. In addition, even if a particular order of method or procedure steps is listed in this application, depending on the situation, the order in which several steps are performed may or may be desirable to change. In particular, certain steps in a method or procedure claim set forth below should not be construed as critical unless the specificity of the order is explicitly stated in the claim.
In addition, according to embodiment described in this-application specification, the following structures are also disclosed.
[Item 1]
A catheter device having an expandable membrane;
A pressure control system that adjusts the expansion of the expandable membrane such that the expandable membrane expands at a pressure of less than 5 ATM (507 kPa);
A cooling member that builds a temperature between +15 degrees Celsius (288K) and -35 degrees Celsius (238K) at the interface between the expandable membrane and the blood vessel when the catheter device is placed in a blood vessel;
A system comprising:
[Item 2]
The system according to item 1, wherein the cooling member is selected from the group consisting of a refrigerant, an endothermic reaction component, a thermoelectric cooler, and combinations thereof.
[Item 3]
Item 1 or 2, further comprising a temperature control system that monitors temperature and adjusts the cooling member to maintain the temperature of the interface between +15 degrees Celsius (288K) and -35 degrees Celsius (238K) The described system.
[Item 4]
The expandable membrane is configured to contain a fluid;
The system further comprises a fluid source for supplying fluid to the expandable membrane;
4. The pressure control system according to any one of items 1 to 3, wherein the pressure control system adjusts the pressure of the fluid source so that the expandable membrane is expanded at a pressure of less than 5 ATM (507 kPa). system.
[Item 5]
5. The system of item 4, further comprising a vacuum pump disposed in a return line between the expandable membrane and a fluid reservoir.
[Item 6]
5. The system of item 4, further comprising a connection device that cools a refrigerant supply line by a separate refrigerant line from the fluid source.
[Item 7]
A method of supplying cryoenergy to plaque in a blood vessel,
Expanding the expandable membrane of the catheter device that was placed in thermal contact with the plaque in the blood vessel with a pressure of less than 5 ATM (507 kPa);
Constructing a temperature between +15 degrees Celsius (288K) and -35 degrees Celsius (238K) at the interface between the expandable membrane and the blood vessel;
A method comprising:
[Item 8]
A method for modifying the structure of plaque in a blood vessel,
Placing a catheter device at a location in the blood vessel close to the plaque;
Expanding the expandable membrane of the catheter device with a pressure of less than 5 ATM (507 kPa);
Building a temperature between +15 degrees Celsius (288K) and -35 degrees Celsius (238K) at the interface between the expandable membrane and the blood vessel;
A method comprising:
[Item 9]
8. The method of item 7, wherein the catheter device has a single expandable membrane.
[Item 10]
10. A method according to any one of items 7 to 9, wherein the expandable membrane is adapted to the blood vessel.
[Item 11]
10. A method according to any one of items 7 to 9, wherein the expandable membrane is semi-adapted to the blood vessel.
[Item 12]
10. A method according to any one of items 7 to 9, wherein the expandable membrane does not adapt to the blood vessel.
[Item 13]
13. A method according to any one of items 7 to 12, wherein the expandable membrane has a substantially smooth outer surface.
[Item 14]
14. A method according to any one of items 7 to 13, further comprising determining expandable membrane properties using a sensor provided on the catheter device.
[Item 15]
Further comprising imaging the catheter device;
15. A method according to any one of items 7 to 14, wherein the expandable membrane comprises a radiopaque material.
[Item 16]
16. A method according to any one of items 7 to 15, wherein the expandable membrane is expanded at a pressure of less than 4 ATM (405 kPa).
[Item 17]
The method of item 16, wherein the expandable membrane is expanded at a pressure of less than 3 ATM (304 kPa).
[Item 18]
18. The method of item 17, wherein the expandable membrane is expanded at a pressure of less than 2 ATM (203 kPa).
[Item 19]
19. The method of item 18, wherein the expandable membrane is expanded at a pressure of less than 1 ATM (101 kPa) or approximately equal to 1 ATM (101 kPa).
[Item 20]
The expandable membrane includes a refrigerant;
Building the temperature comprises:
20. A method according to any one of items 7 to 19, comprising supplying a coolant to the expandable membrane.
[Item 21]
21. A method according to item 20, wherein the refrigerant inside the expandable membrane is kept in a liquid state.
[Item 22]
The refrigerant has a boiling point above + 37 ° C (310K) at atmospheric pressure, has a freezing point of less than -85 degrees Celsius (358K) at atmospheric pressure, at -85 ° C (188K), 10cSt (10 × 10 - Item 22. The method according to Item 21, wherein the method has a dynamic viscosity of less than 6 m 2 / s).
[Item 23]
23. The method of any one of items 20 to 22, wherein the refrigerant inside the expandable membrane is maintained at a temperature between -25 degrees Celsius (248K) and -55 degrees Celsius (218K).
[Item 24]
24. A method according to any one of items 20 to 23, wherein the refrigerant comprises perfluorocarbon.
[Item 25]
25. A method according to any one of items 20 to 24, further comprising the step of determining refrigerant characteristics using a sensor provided in the catheter device.
[Item 26]
Further comprising imaging the refrigerant,
26. A method according to any one of items 20 to 25, wherein the refrigerant comprises a radiopaque material.
[Item 27]
Building the temperature comprises:
Item 9. The method according to Item 7 or 8, comprising a step of causing an endothermic reaction.
[Item 28]
28. The method of item 27, wherein the endothermic reaction occurs by pressurizing the expandable membrane.
[Item 29]
28. The method of item 27, wherein the endothermic reaction occurs by expanding the expandable membrane.
[Item 30]
The endothermic reaction consists of water and ammonium nitrate, water and ammonium chloride, barium hydroxide octahydrate crystals and dry ammonium chloride, water and ammonium chloride, thionyl chloride and cobalt (II) sulfate heptahydrate, water and potassium chloride. 28. The method of item 27, wherein the reaction is between one or more of a pair of compounds comprising water and ammonium thiocyanate and ethanoic acid and sodium carbonate.
[Item 31]
9. A method according to item 7 or 8, wherein the temperature inside the expandable membrane is maintained by a cooling member in a position proximate to the expandable membrane.
[Item 32]
32. The method of item 31, wherein the cooling member comprises a thermoelectric cooling member.
[Item 33]
33. A method according to item 32, wherein the cooling member comprises a Peltier component.
[Item 34]
34. A method according to any one of items 7 to 33, further comprising determining a clogged state of the blood vessel using a temperature sensor provided in the catheter device.
[Item 35]
The catheter apparatus which treats the vulnerable plaque shown with reference to drawings.
[Item 36]
A system for treating vulnerable plaque shown with reference to the drawings.
[Item 37]
A method of treating vulnerable plaque shown with reference to the drawings.
[Item 38]
Apply cryoenergy to plaques in blood vessels to pressures below 5 ATM (507 kPa) and to blood vessels on the inner surface to temperatures between +15 degrees Celsius (288K) and -35 degrees Celsius (238K). Increasing the level of collagen and stabilizing the plaque.
[Item 39]
A cryomedical refrigerant system that uses liquid refrigerant,
The liquid is one in which bubbles are blown into the suspension,
The cryomedical refrigerant system in which the bubbles are expanded and repelled in a heat transfer unit, and are cooled by the Joule-Thompson effect in the liquid refrigerant.

Claims (16)

拡張可能な単一の膜を有するカテーテル装置と、
液体で前記拡張可能な膜の拡張を調整して、前記拡張可能な膜が、5ATM(507kPa)未満の圧力の前記液体で拡張するようにする、圧力制御システムと、
前記カテーテル装置が血管に配置されたとき、前記拡張可能な膜と前記血管との界面に、摂氏+15度(288K)及び摂氏−35度(238K)の間の温度を構築する冷却部材と
前記界面の温度を監視して、前記冷却部材を調節して、摂氏+15度(288K)及び摂氏−35度(238K)の間の前記界面の温度を維持する温度制御システムと
を備える、システム。
A catheter device having a single expandable membrane;
A pressure control system for adjusting expansion of the expandable membrane with a liquid so that the expandable membrane expands with the liquid at a pressure of less than 5 ATM (507 kPa);
A cooling member that builds a temperature between +15 degrees Celsius (288K) and -35 degrees Celsius (238K) at the interface between the expandable membrane and the blood vessel when the catheter device is placed in a blood vessel;
A temperature control system that monitors the interface temperature and adjusts the cooling member to maintain the interface temperature between +15 degrees Celsius (288K) and -35 degrees Celsius (238K) .
前記冷却部材が、冷媒、吸熱反応コンポーネント、熱電クーラー、及び、これらの組み合わせからなる群から選択される、請求項1に記載のシステム。   The system of claim 1, wherein the cooling member is selected from the group consisting of a refrigerant, an endothermic reaction component, a thermoelectric cooler, and combinations thereof. 前記拡張可能な膜と流体貯蔵部との間の戻りラインに配置された真空ポンプをさらに備える、請求項1または2に記載のシステム。 The system of claim 1 or 2 , further comprising a vacuum pump disposed in a return line between the expandable membrane and a fluid reservoir. 前記拡張可能な膜は、前記血管に適応する、請求項1から3のいずれか一項に記載のシステム。  4. A system according to any one of claims 1 to 3, wherein the expandable membrane is adapted to the blood vessel. 前記拡張可能な膜は、前記血管に半適応する、請求項1から3いずれか一項に記載のシステム。  4. The system according to any one of claims 1 to 3, wherein the expandable membrane is semi-adapted to the blood vessel. 前記拡張可能な膜は、前記血管に適応しない、請求項1から3のいずれか一項に記載のシステム。  The system of any one of claims 1 to 3, wherein the expandable membrane does not adapt to the blood vessel. 前記カテーテル装置に設けられた温度センサをさらに備える、請求項1から6のいずれか一項に記載のシステム。The system according to any one of claims 1 to 6, further comprising a temperature sensor provided in the catheter device. ライオエネルギーを供給するシステムを動作させる方法であって、
テーテル装置の拡張可能な単一の膜を、液体を利用して5ATM(507kPa)未満の圧力で拡張する段階と、
前記拡張可能な膜において、摂氏+15度(288K)及び摂氏−35度(238K)の間の温度を構築する段階と
を備える方法。
A method of operating a system for supplying click Lion energy,
Expandable single layer of catheters device, the method comprising: expanding at a pressure less than 5ATM (507 kPa) or by using a liquid,
Building a temperature between +15 degrees Celsius (288K) and -35 degrees Celsius (238K) in the expandable membrane .
前記拡張可能な膜は、スムーズな外表面を有している、請求項に記載の方法。 The expandable membrane has a smoothly outer surface, The method of claim 8. 前記カテーテル装置に設けられたセンサを利用して、拡張可能な膜特性を判断する段階をさらに備える、請求項8または9に記載の方法。 10. The method according to claim 8 or 9 , further comprising determining expandable membrane properties utilizing a sensor provided on the catheter device. 前記拡張可能な膜は、4ATM(405kPa)未満の圧力で拡張される、請求項8から10のいずれか一項に記載の方法。 11. The method according to any one of claims 8 to 10 , wherein the expandable membrane is expanded at a pressure of less than 4 ATM (405 kPa). 前記拡張可能な膜は、冷媒を含み、
度を構築する前記段階は、
前記拡張可能な膜に冷媒を供給する段階を含む、請求項8から11のいずれか一項に記載の方法。
The expandable membrane includes a refrigerant;
Said step of constructing the temperature is
12. A method according to any one of claims 8 to 11 comprising supplying a coolant to the expandable membrane.
前記拡張可能な膜の内部の冷媒は、液状に保たれる、請求項12に記載の方法。 The method of claim 12 , wherein the refrigerant inside the expandable membrane is kept in a liquid state. 前記冷媒は、大気圧で摂氏+37度(310K)を超える沸点と、大気圧で摂氏−85度(358K)未満の氷点とを持ち、摂氏−85度(188K)で、10cSt(10×10−6/s)未満の動的粘度を持つ、請求項13に記載の方法。 The refrigerant has a boiling point above + 37 ° C (310K) at atmospheric pressure, has a freezing point of less than -85 degrees Celsius (358K) at atmospheric pressure, at -85 ° C (188K), 10cSt (10 × 10 - 14. The method according to claim 13 , having a dynamic viscosity of less than 6 m < 2 > / s). 前記拡張可能な膜の内部の冷媒は、摂氏−25度(248K)及び摂氏−55度(218K)の間の温度に維持される、請求項12から14のいずれか一項に記載の方法。 15. A method according to any one of claims 12 to 14 , wherein the refrigerant inside the expandable membrane is maintained at a temperature between -25 degrees Celsius (248K) and -55 degrees Celsius (218K). 前記冷媒は、パーフルオロカーボンを含む、請求項12から15のいずれか一項に記載の方法。 The method according to claim 12 , wherein the refrigerant includes perfluorocarbon.
JP2014504394A 2011-04-13 2012-04-13 System and method for operating a system for supplying cryoenergy Active JP6066217B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161474987P 2011-04-13 2011-04-13
US61/474,987 2011-04-13
PCT/GB2012/050820 WO2012140439A1 (en) 2011-04-13 2012-04-13 Plaque stabilisation using cryoenergy

Publications (3)

Publication Number Publication Date
JP2014514079A JP2014514079A (en) 2014-06-19
JP2014514079A5 true JP2014514079A5 (en) 2015-05-14
JP6066217B2 JP6066217B2 (en) 2017-01-25

Family

ID=45976419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014504394A Active JP6066217B2 (en) 2011-04-13 2012-04-13 System and method for operating a system for supplying cryoenergy

Country Status (9)

Country Link
US (2) US8968282B2 (en)
EP (1) EP2696821B1 (en)
JP (1) JP6066217B2 (en)
KR (1) KR101832021B1 (en)
CN (1) CN103781443B (en)
AU (1) AU2012241537B2 (en)
CA (1) CA2832803C (en)
SG (1) SG194150A1 (en)
WO (1) WO2012140439A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11304746B2 (en) 2011-06-14 2022-04-19 Aerin Medical Inc. Method of treating airway tissue to reduce mucus secretion
US11033318B2 (en) 2011-06-14 2021-06-15 Aerin Medical, Inc. Methods and devices to treat nasal airways
DE102012104381A1 (en) * 2012-05-22 2013-11-28 Acandis Gmbh & Co. Kg Medical system for the endovascular tempering of blood and medical catheters
WO2015124232A1 (en) 2014-02-24 2015-08-27 Cryotherapeutics Gmbh Heat exchanger unity for cryotherapy
EP3328331A4 (en) * 2015-07-27 2019-04-10 University of Maryland, Baltimore Body temperature management devices and methods
WO2017047545A1 (en) * 2015-09-14 2017-03-23 テルモ株式会社 Ablation catheter
EP3344201B1 (en) 2015-11-16 2023-09-20 Cryotherapeutics GmbH Balloon catheter
US11090100B2 (en) * 2016-07-05 2021-08-17 Biosense Webster (Israel) Ltd. Catheter with micro-peltier cooling components
EP3506846A4 (en) * 2016-08-30 2021-01-06 The General Hospital Corporation Cryotherapy and cryoablation systems and methods for treatment of tissue
US20180280658A1 (en) * 2017-04-03 2018-10-04 Biosense Webster (Israel) Ltd. Balloon catheter with ultrasonic transducers
US11090101B2 (en) * 2018-05-02 2021-08-17 Medtronic Cryocath Lp Soft balloon device and system
CN110464444B (en) * 2019-08-14 2023-03-31 心诺普医疗技术(北京)有限公司 Temperature-controllable cryoablation system
CN111329575B (en) * 2020-03-04 2021-10-26 上海微创电生理医疗科技股份有限公司 Freezing sacculus pipe system
CN111297549B (en) * 2020-03-19 2022-03-08 中国人民解放军陆军特色医学中心 Wound first aid ice bag convenient to carry and heat preservation storage facilities thereof
US11770377B1 (en) * 2020-06-29 2023-09-26 Cyral Inc. Non-in line data monitoring and security services
US20220233226A1 (en) 2021-01-23 2022-07-28 CryoTherapeutics SA Distal Perfusion Cooling Mechanism
CN117137609B (en) * 2023-08-25 2024-04-05 上海交通大学医学院附属瑞金医院 Cryoablation device with ablation record and saccule positioning functions

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620188B1 (en) * 1998-08-24 2003-09-16 Radiant Medical, Inc. Methods and apparatus for regional and whole body temperature modification
US7220257B1 (en) 2000-07-25 2007-05-22 Scimed Life Systems, Inc. Cryotreatment device and method
US5868735A (en) * 1997-03-06 1999-02-09 Scimed Life Systems, Inc. Cryoplasty device and method
US6027499A (en) 1997-05-23 2000-02-22 Fiber-Tech Medical, Inc. (Assignee Of Jennifer B. Cartledge) Method and apparatus for cryogenic spray ablation of gastrointestinal mucosa
US5971979A (en) 1997-12-02 1999-10-26 Odyssey Technologies, Inc. Method for cryogenic inhibition of hyperplasia
DE19803455C1 (en) 1998-01-30 1999-08-26 Saarberg Interplan Gmbh Method and device for producing a coking coal cake for coking in an oven chamber
US6905494B2 (en) * 1998-03-31 2005-06-14 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6514245B1 (en) 1999-03-15 2003-02-04 Cryovascular Systems, Inc. Safety cryotherapy catheter
US6468297B1 (en) 1999-02-24 2002-10-22 Cryovascular Systems, Inc. Cryogenically enhanced intravascular interventions
US6432102B2 (en) 1999-03-15 2002-08-13 Cryovascular Systems, Inc. Cryosurgical fluid supply
US6514255B1 (en) 2000-02-25 2003-02-04 Bret Ferree Sublaminar spinal fixation apparatus
EP1261304A4 (en) 2000-03-01 2005-06-08 Innercool Therapies Inc Cooling therapies/device for angioplasty with restenosis
US6726708B2 (en) 2000-06-14 2004-04-27 Innercool Therapies, Inc. Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US6955174B2 (en) 2000-08-18 2005-10-18 Uryovascular Systems, Inc. Cryotherapy method for detecting and treating vulnerable plaque
US6602246B1 (en) 2000-08-18 2003-08-05 Cryovascular Systems, Inc. Cryotherapy method for detecting and treating vulnerable plaque
US20030149368A1 (en) 2000-10-24 2003-08-07 Hennemann Willard W. Method and apparatus for locating and detecting vascular plaque via impedence and conductivity measurements, and for cryogenically passivating vascular plaque and inhibiting vascular plaque progression and rupture
US20020071474A1 (en) 2000-11-10 2002-06-13 Werneth Randell L. Device for measuring temperature of vessel walls
US6673066B2 (en) 2000-11-10 2004-01-06 Cardiostream, Inc. Apparatus and method to diagnose and treat vulnerable plaque
US6666858B2 (en) 2001-04-12 2003-12-23 Scimed Life Systems, Inc. Cryo balloon for atrial ablation
US6752786B2 (en) * 2001-05-31 2004-06-22 Radiant Medical, Inc. Moving heat exchange catheter system
AU2002326548A1 (en) 2001-08-17 2003-04-14 Innercool Therapies, Inc. Preparation of working fluid for use in cryotherapies
US7912554B2 (en) * 2001-09-26 2011-03-22 Medtronic Cryocath Lp Method for treatment of aneurysms
US20030088240A1 (en) 2001-11-02 2003-05-08 Vahid Saadat Methods and apparatus for cryo-therapy
US6918869B2 (en) * 2002-12-02 2005-07-19 Scimed Life Systems System for administering a combination of therapies to a body lumen
US7604631B2 (en) 2004-12-15 2009-10-20 Boston Scientific Scimed, Inc. Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices
DE102005050344A1 (en) 2005-10-20 2007-05-03 Siemens Ag Cryocatheter for medical investigation and treatment equipment for e.g. diagnosis and treatment of heart infarcts, has image capture device that maps region of vessel around balloon arranged near catheter tip
US9937332B2 (en) 2006-02-06 2018-04-10 Medtronic Cryocath Lp Cryo-perfusion balloon device
US8845627B2 (en) * 2008-08-22 2014-09-30 Boston Scientific Scimed, Inc. Regulating pressure to lower temperature in a cryotherapy balloon catheter
WO2010081062A1 (en) 2009-01-12 2010-07-15 Boston Scientific Scimed, Inc. Systems and methods of making and using a coiled coolant transfer tube for a catheter of a cryoablation system
WO2011014812A1 (en) 2009-07-31 2011-02-03 Boston Scientific Scimed, Inc. Systems and methods for regulating pressure levels in an inter-expansion-element space of a cryoablation system
US8702689B2 (en) 2009-09-01 2014-04-22 Boston Scientific Scimed, Inc. Systems and methods for twisting an expansion element of a cryoablation system
US20120053577A1 (en) * 2010-08-25 2012-03-01 Neuwave Medical, Inc. Energy delivery systems and uses thereof

Similar Documents

Publication Publication Date Title
JP2014514079A5 (en)
Semenic et al. Use of biporous wicks to remove high heat fluxes
WO2006137850A3 (en) Heat exchange system for use with a cavitation system
BRPI0819341B8 (en) expandable multitubular cryoprobe and cryosurgical system
EP3398414B1 (en) Vacuum-based thermal management system
ES2910103T3 (en) Refrigeration systems and procedures
CN102652372A (en) Controllable, thermally insulated housing and method for the control thereof
WO2005016177A3 (en) Method and apparatus for reducing body temperature of a subject
TW200712191A (en) Heat storable substance, heat storage agent, heat storage maaterial, heat transfer medium, low temperataure insulation agent, low temperature insulation material, melting point controlling agent for heat storage agent, agent for prevention of overcooling
JP2005040588A (en) Improved distal end for cryoablation catheter
PH12015502562A1 (en) Method and a device for preparation of expanded microspheres
JP2014090167A5 (en)
WO2009154089A1 (en) High‑pressure treatment apparatus
JP2008510890A (en) Device for cooling objects
CN206548670U (en) A kind of cold/hot dressing machine
JP2008255298A (en) Fibroin sponge substance and its preparation
EP2253918A3 (en) Enclosure For Heat Transfer Devices, Methods Of Manufacture Thereof And Articles Comprising The Same
CN109803697A (en) Device and method for carrying out through-flow temperature adjustment to liquid in medical device
US9931030B2 (en) Endoscope defogging and pre-heating device
US20180266748A1 (en) Cooling storage container in phases
Zhou et al. Investigation on the thermal performance of a novel microchannel-aided device for vitrification of cells/tissues
CN109976415A (en) A kind of temperature range control system of infrared optical system
CN202211781U (en) Skin cooler
CN110997859A (en) Cryogenic cooling composition and method
CN109157681A (en) A kind of preparation method of medical use anti-infection conduit