JP2014511520A - 画像のテキスト化とテキストの画像化の関連性のためのシステム及び方法 - Google Patents

画像のテキスト化とテキストの画像化の関連性のためのシステム及び方法 Download PDF

Info

Publication number
JP2014511520A
JP2014511520A JP2013552321A JP2013552321A JP2014511520A JP 2014511520 A JP2014511520 A JP 2014511520A JP 2013552321 A JP2013552321 A JP 2013552321A JP 2013552321 A JP2013552321 A JP 2013552321A JP 2014511520 A JP2014511520 A JP 2014511520A
Authority
JP
Japan
Prior art keywords
face
computerized
image
person
face image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013552321A
Other languages
English (en)
Other versions
JP2014511520A5 (ja
JP5857073B2 (ja
Inventor
タイグマン、ヤニフ
ヒルシュ、ギル
ショハット、エデン
Original Assignee
フェイスブック,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フェイスブック,インク. filed Critical フェイスブック,インク.
Publication of JP2014511520A publication Critical patent/JP2014511520A/ja
Publication of JP2014511520A5 publication Critical patent/JP2014511520A5/ja
Application granted granted Critical
Publication of JP5857073B2 publication Critical patent/JP5857073B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • G06F16/5854Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using shape and object relationship
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
    • G06F16/5838Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • G06V40/172Classification, e.g. identification

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Library & Information Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Software Systems (AREA)
  • Processing Or Creating Images (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

人物の顔画像を分類するためのコンピュータ化されたシステムであって、顔画像を表す値を顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、値は形容詞で表される、評価子と、個別の顔属性のうちの複数に応じて顔画像を分類するコンピュータ化された分類子とを含む、コンピュータ化されたシステム。

Description

本発明は、概して、画像のテキスト化とテキストの画像化の関連性に関する。
特許文献1〜13には、当技術分野の現状が表わされていると考えられる。
米国特許第4,926,491号明細書 米国特許第5,164,992号明細書 米国特許第5,963,670号明細書 米国特許第6,292,575号明細書 米国特許第6,301,370号明細書 米国特許第6,819,783号明細書 米国特許第6,944,319号明細書 米国特許第6,990,217号明細書 米国特許第7,274,822号明細書 米国特許第7,295,687号明細書 米国特許出願公開第2006/0253491号明細書 米国特許出願公開第2007/0237355号明細書 米国特許出願公開第2009/0210491号明細書
本発明の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明の別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明の別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明のさらなる別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明のさらなる別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明のさらなる別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明のさらなる別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明のさらなる別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明のさらなる別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明のさらなる別の好ましい実施形態による、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図。 本発明のさらなる別の好ましい実施形態による、画像のテキスト化の関連性を利用するユーザ満足度モニタリングシステムの簡易図。 図1A〜6のシステムで使用されるデータベースの構築に便利な画像/テキスト/画像データベース生成方法論の簡易図。 形容詞を画像と関連付けるためのトレーニング処理を示す簡易フローチャート。 視覚的分類をトレーニングする処理を示す簡易フローチャート。 画像と関連付けられた形容詞を取り出すための処理を示す簡易フローチャート。 1つ又は複数の形容詞と関連付けられた画像を取り出すための処理を示す簡易フローチャート。 第1の画像と同様の顔画像を取り出すための処理を示す簡易フローチャート。
本発明は、画像のテキスト化とテキストの画像化の関連性のための改良されたシステム及び方法論の提供に努める。したがって、本発明の好ましい実施形態に応じた、人物の顔画像を分類するためのコンピュータ化されたシステムであって、顔画像を表す値を顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、値は形容詞で表される、評価子と、個別の顔属性のうちの複数に応じて顔画像を分類するコンピュータ化された分類子とを含む、コンピュータ化されたシステムが提供される。
本発明の好ましい実施形態に応じて、コンピュータ化された顔属性面の評価子は、複数の顔画像に対応する格納値の多種類を含むデータベースであって、顔画像の各々は、複数の個別の顔属性のうちの少なくともいくつかを有し、個別の顔属性のうちの少なくともいくつかは、顔属性と関連付けられた、形容詞で表される値を有する、データベースを含む。
好ましくは、システムは、複数種類の格納値から導出される統計情報を提供する顔属性統計報告機能をさらに含む。
好ましくは、コンピュータ化された顔属性面の評価子は、複数種類の格納顔画像及び複数種類の格納値を含むデータベースであって、格納顔画像の各々は、複数の個別の顔属性のうちの少なくともいくつかを有し、個別の顔属性のうちの少なくともいくつかは、顔属性と関連付けられた、形容詞で表される値を有する、データベースと、属性面及び形容詞面について、顔画像の複数の個別の顔属性を複数種類の格納顔画像と比較することによって、顔画像を複数種類の格納顔画像と比較する形容詞ベースの比較子とを含む。好ましくは、形容詞ベースの比較子は、形容詞面でデータベースへのクエリを行う。
好ましくは、システムは、コンピュータ化された分類子からの出力に応じて、出力に対応する格納顔画像のうちの少なくとも1つを識別するように動作可能なコンピュータ化された識別子をさらに含む。好ましくは、コンピュータ化された識別子は、前記出力に対応する格納顔画像のランク付けされたリストを生成するよう動作する。
好ましくは、システムは、ソーシャルネットワークからの情報をコンピュータ化された顔画像属性面の評価子に対して利用可能にするためのソーシャルネットワークインタフェースをさらに含む。好ましくは、システムは、顔画像に対応する顔モデルを生成するよう動作可能な顔モデル生成機能をさらに含む。好ましくは、コンピュータ化された識別子は、顔モデルを利用する。
また、本発明の他の好ましい実施形態に応じた、人物の顔画像を分類するためのコンピュータ化された方法であって、顔画像を表す値を顔画像の個別の顔属性のうちの複数に割り当てる工程であって、値は形容詞で表される、工程と、個別の顔属性のうちの複数に応じて顔画像を分類する工程とを含む、コンピュータ化された方法も提供される。
本発明の好ましい実施形態に応じて、顔画像の各々は、複数の個別の顔属性のうちの少なくともいくつかを有し、個別の顔属性のうちの少なくともいくつかは、顔属性と関連付けられた、形容詞で表される値を有する。好ましくは、本方法は、複数種類の格納値から導出される統計情報を提供する工程をさらに含む。
好ましくは、格納顔画像の各々は、複数の個別の顔属性のうちの少なくともいくつかを有し、個別の顔属性のうちの少なくともいくつかは、顔属性と関連付けられた、形容詞で表される値を有し、本方法は、好ましくは、属性面及び形容詞面について、顔画像の複数の個別の顔属性を複数種類の格納顔画像と比較することによって、顔画像を複数種類の格納顔画像と比較する工程をさらに含む。好ましくは、比較する工程では、形容詞面でデータベースへのクエリを行う。
好ましくは、本方法は、分類する工程の出力に対応する格納顔画像のうちの少なくとも1つを識別する工程をさらに含む。好ましくは、識別する工程は、出力に対応する格納顔画像であって格納顔画像のランク付けされたリストを生成するよう動作可能である。好ましくは、本方法は、ソーシャルネットワークからの情報をコンピュータ化された顔画像属性面の評価子に対して利用可能にする工程をさらに含む。好ましくは、本方法は、顔画像に対応する顔モデルを生成するよう動作可能な顔モデル生成をさらに含む。好ましくは、識別する工程では顔モデルを利用する。
さらに、本発明の他の好ましい実施形態に応じて、所定の場所における人物を登録するためのシステムであって、人物の少なくとも1つの顔画像及び個人識別のうちの少なくとも1つのアイテムを取得する顔画像/人物識別取得サブシステムと、人物の少なくとも1つの顔画像及び個人識別のうちの少なくとも1つのアイテムを受信するコンピュータ化されたサブシステムであって、少なくとも1つの顔画像に対応する顔モデルを生成するよう動作可能な顔モデル生成機能、及び、形容詞で表される値を顔画像の複数の顔属性に割り当てるよう動作可能な画像から属性へのマッピング機能を含む、コンピュータ化されたサブシステムと、複数の人物に対する情報及び顔属性の値を格納するデータベースとを含む、システムがさらに提供される。
好ましくは、システムは、顔属性の値の集合を利用して、対応する格納顔画像を識別することによって、顔モデルを利用して特定の人物を識別するよう動作可能な属性から画像へのマッピング機能をさらに含む。好ましくは、コンピュータ化されたサブシステムは、顔モデルと顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成することによって、特定の人物を識別するよう動作可能な値合成部をさらに含む。
好ましくは、システムは、少なくとも1つの顔画像を取得し、該取得した顔画像をコンピュータ化されたサブシステムに供給する後続の顔画像取得サブシステムをさらに含み、コンピュータ化されたサブシステムは、好ましくは、後続の顔画像に対応する顔モデルを作成し、形容詞で表される値を後続の顔画像の複数の顔属性に割り当て、対応する格納顔画像及び後続の顔画像を特定の人物として識別するよう動作可能であり、個人識別のうちの少なくとも1つのアイテムは、データベースに格納されている人物に関連する。
好ましくは、値合成部を使用して、顔モデルと後続の顔画像に対応する値の集合とを組
み合わせることによって、特定の人物を識別する。好ましくは、人物の個人識別のうちの少なくとも1つのアイテムは、事前登録データから入手される。
好ましくは、システムは、ソーシャルネットワークからの情報をコンピュータ化されたサブシステムに対して利用可能にするためのソーシャルネットワークインタフェースをさらに含む。好ましくは、顔画像/人物識別取得サブシステムは、サブシステムと情報のやり取りを行う人物以外の人物の少なくとも1つの顔画像及び個人識別のうちの少なくとも1つのアイテムを取得するよう動作可能である。それに加えて又はその代替として、顔画像/人物識別取得サブシステムは、サブシステムと情報のやり取りを行う人物以外の、他の識別されていない人物の少なくとも1つの顔画像を取得するよう動作可能である。
好ましくは、システムは、顔画像を表す値を顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、値は形容詞で表される、評価子と、個別の顔属性のうちの複数に応じて顔画像を分類するコンピュータ化された分類子とによって具体化される。
さらに、本発明のさらに別の好ましい実施形態に応じた、所定の場所における人物の繰り返し出現を認識するためのシステムであって、人物の少なくとも1つの顔画像を取得する顔画像/人物識別取得サブシステムと、少なくとも1つの顔画像を受信するコンピュータ化されたサブシステムであって、少なくとも1つの顔画像に対応する顔モデルを生成するよう動作可能な顔モデル生成機能、及び、形容詞で表される値を顔画像の複数の顔属性に割り当てるよう動作可能な画像から属性へのマッピング機能を含む、コンピュータ化されたサブシステムと、複数の人物に対する情報及び顔属性の値を格納するデータベースを含む、システムが提供される。
好ましくは、コンピュータ化されたサブシステムは、顔属性の値の集合を利用して、顔モデルを利用して、特定の人物と関連付けられた対応する格納顔画像を識別するよう動作可能な属性から画像へのマッピング機能をさらに含む。好ましくは、コンピュータ化されたサブシステムは、顔モデルと顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成するよう動作可能な値合成部をさらに含む。
好ましくは、システムは、少なくとも1つの顔画像を取得し、該取得した顔画像をコンピュータ化されたサブシステムに供給する後続の顔画像取得サブシステムをさらに含み、コンピュータ化されたサブシステムは、好ましくは、特定の人物の繰り返し出現を認識するため、後続の顔画像に対応する顔モデルを作成し、形容詞で表される値を後続の顔画像の複数の顔属性に割り当て、対応する格納顔画像及び後続の顔画像を特定の人物の顔画像であるとして識別するよう動作可能である。
好ましくは、値合成部を使用して、顔モデルと後続の顔画像に対応する値の集合とを組み合わせることによって、人物の繰り返し出現を認識する。好ましくは、システムは、所定の場所に繰り返し出現する人物に関する属性面の統計を生成するために、顔モデル及び値の集合を利用する繰り返し出現統計生成をさらに含む。好ましくは、システムは、ソーシャルネットワークからの情報をコンピュータ化されたサブシステムに対して利用可能にするためのソーシャルネットワークインタフェースをさらに含む。
好ましくは、顔画像/人物識別取得サブシステムは、サブシステムと情報のやり取りを行う人物以外の人物の少なくとも1つの顔画像及び個人識別のうちの少なくとも1つのアイテムを取得するよう動作可能である。それに加えて又はその代替として、顔画像/人物識別取得サブシステムは、サブシステムと情報のやり取りを行う人物以外の、他の識別されていない人物の少なくとも1つの顔画像を取得するよう動作可能である。
好ましくは、システムは、顔画像を表す値を顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、値は形容詞で表される、評価子と、個別の顔属性のうちの複数に応じて顔画像を分類するコンピュータ化された分類子とによって具体化される。
さらに、本発明のさらに別の好ましい実施形態に応じて、各々が形容詞で表される値を顔画像の個別の顔属性のうちの複数のに割り当てることができるコンピュータ化された顔画像属性面の評価子を生成するための方法であって、複数種類の顔画像を集める工程であって、各々は、顔画像と関連付けられた、形容詞によって特徴付けられる少なくとも1つの顔画像属性を有する、工程と、値を評価すべき顔画像の個別の顔属性のうちの複数に割り当てるために、評価すべき顔画像を受信し、集める工程の結果を利用するよう動作可能な機能を生成する工程であって、値は形容詞で表される工程を含む、方法が提供される。
好ましくは、集める工程は、複数種類の顔画像を収集する工程であって、各々は、公衆に利用可能な情報源からの、顔画像と関連付けられた、形容詞によって特徴付けられる少なくとも1つの顔画像属性を有する、工程と、クラウドソーシングを使用して、複数種類の顔画像に現れる形容詞と顔属性との間の一致度を高める工程とを含む。好ましくは、クラウドソーシングは、複数の個人に複数種類の顔画像のうちの複数及び形容詞を閲覧させるとともに、複数種類の画像のうちの複数における形容詞と顔属性との間の一致度に対する該複数の個人の見解を示させる工程を含む。好ましくは、値は数値である。
また、本発明の別の好ましい実施形態に応じた、少なくとも1つの刺激に対するユーザ反応を認識するためのシステムであって、刺激に対するユーザ反応に対応する時点に入手された顔画像を表す値を顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、値は形容詞で表される、評価子と、個別の顔属性のうちの複数に応じて顔画像を分類するコンピュータ化された分類子とを含む、システムも提供される。
好ましくは、システムは、個別の顔属性のうち、少なくとも1つの刺激の適用前及び適用後の個別の顔属性を比較するコンピュータ化された属性比較子をさらに含む。
さらに、本発明のさらに別の好ましい実施形態に応じた、少なくとも1つの刺激に対するユーザ反応を認識するための方法であって、刺激に対するユーザ反応に対応する時点に入手された顔画像を表す値を顔画像の個別の顔属性のうちの複数に割り当てる工程であって、値は形容詞で表される、工程と、個別の顔属性のうちの複数に応じて顔画像を分類する工程とを含む、方法が提供される。
好ましくは、本方法は、個別の顔属性のうち、少なくとも1つの刺激の適用前及び適用後の個別の顔属性を比較する工程をさらに含む。
さらに、本発明のさらに別の好ましい実施形態に応じた、人物を分類するためのコンピュータ化されたシステムであって、人物が特定の時点に特定の状況にある確率を表す関係係数を生成する関係係数生成子と、関係係数のうちの複数に応じて人物を分類するコンピュータ化された分類子とを含む、システムも提供される。
好ましくは、状況は、地理的な場所及び事象のうちの1つである。好ましくは、関係係数は、値と減衰関数とを含む。好ましくは、減衰関数は、一次関数である。あるいは、減衰関数は、指数関数である。
好ましくは、状況は、階層的な状況の階層のうちの1つである。好ましくは、状況の階層の状況の関係係数は、相互依存する。好ましくは、関係係数生成子は、複数の人物が少
なくとも第1の状況で一緒に存在し、第2の状況で複数の人物間で相互依存関係係数を生成する場合に動作可能である。
好ましくは、システムは、個別の顔属性のうちの複数に応じて顔画像を分類するコンピュータ化された分類子をさらに含む。
本発明は、図面と併せて、以下の詳細な説明から、より完全に理解され、認識されるであろう。
ここで、本発明の好ましい実施形態に応じた、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図である図1A、1B及び1Cを参照する。図1A〜1Cのシステムは、好ましくは、顔画像を表す値を顔画像の個別の顔属性のうちの複数の顔属性に割り当てるコンピュータ化された顔画像属性面の評価子であって、値は形容詞で表される、評価子と、個別の顔属性のうちの複数の顔属性に応じて顔画像を分類するコンピュータ化された分類子とを含む。
図1Aに示されるように、1月1日に、AAAデパートの顧客であるジョーンズ氏が入店し、登録スタンド100で店の重要顧客として登録される。登録スタンドは、好ましくは、店のコンピュータネットワークに接続されたコンピュータ102と、コンピュータ102に接続されたデジタルカメラ104とを含む。重要顧客登録処理は、ジョーンズ氏の氏名などの顧客の個人識別詳細情報を入力する工程と、デジタルカメラ104で顧客の顔画像108を捕える工程とを含む。あるいは、顧客の個人識別詳細情報は、例えば、顧客の既存の人物のソーシャルネットワークアカウントから取り出すことができる。あるいは、顧客は、遠隔地からインターネット上で大切な場所として登録することができる。
個人識別詳細情報及び顔画像108は、好ましくは、顔モデル生成機能112と、画像から属性へのマッピング機能114と、属性から画像へのマッピング機能116と、値合成部117とを含むコンピュータ化された人物識別システム110に送信される。また、コンピュータ化された人物識別システム110は、好ましくは、すべての登録顧客の登録詳細情報及び顔属性の値を格納する重要顧客データベース118をさらに含む。データベース118は任意の適切なコンピュータ化された情報ストアであり得ることが認識される。
顔モデル生成機能112は、顔画像108に対応する顔モデル120を生成するよう動作可能である。顔モデル生成機能112は、当技術分野で知られている任意の適切な顔モデル生成方法を使用できることが認識される。図1Aに示されるように、顔画像108に対応する顔モデル120は、顔モデル生成機能112によって生成され、ジョーンズ氏の属性のうちの1つとしてデータベース118に格納される。
本発明の好ましい実施形態に応じて、画像から属性へのマッピング機能114は、形容詞122で表される値を顔画像108の複数の顔属性に割り当てるよう動作可能である。顔属性を表す形容詞122は、例えば、髪の色、鼻の形、肌の色、顔の形、髭のタイプ及びその有無について説明する形容詞を含み得る。図1Aに示されるように、顔画像108に対応する、属性マッピング機能114によって生成された形容詞は、ジョーンズ氏の属性の値としてデータベース118に格納される。
さらに、本発明の好ましい実施形態に応じて、属性から画像へのマッピング機能116は、顔属性の値の集合を利用して、対応する格納顔画像を識別することによって、特定の人物を識別するよう動作可能である。
さらに、本発明の好ましい実施形態によれば、値合成部117は、好ましくは、顔モデ
ルと顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成することによって、特定の人物を識別するよう動作可能である。
ここで、図1Bに移ると、1月17日など後日に、顧客がAAAデパートに入り、店の入り口に装備されたデジタルカメラ150が顧客の顔画像152を捕えた様子が分かる。顔画像152は、コンピュータ化された人物識別システム110に送信され、コンピュータ化された人物識別システム110では、好ましくは、顔モデル生成機能112によって、顔画像152に対応する顔モデル160が生成される。それに加えて、好ましくは、画像から属性へのマッピング機能114によって、形容詞で表される値162が顔画像152の複数の顔属性に割り当てられる。
図1Bに示されるように、顔モデル160及び形容詞162は、好ましくは、値合成部117によって、値の合成集合に組み合わされ、値の合成集合は、データベース118に格納された値の集合と比較され、ジョーンズ氏に割り当てられた顔モデル及び形容詞と一致することが発見されることによって、カメラ150に捕らえられた顔画像152に描かれた人物をジョーンズ氏として識別する。値合成部117によって組み合わされ、データベース118に格納された値の集合と比較された値の集合は、顔モデル160及び形容詞162の任意のサブセットであり得ることが認識される。
ここで、図1Cに移ると、例えば、入店した顧客を重要顧客として登録されているジョーンズ氏として識別すると同時に、重要顧客が入店したことがシステム110によって支配人に通知され、したがって、支配人がジョーンズ氏に近づき、ジョーンズ氏に新製品を割引価格で提供する様子が示される。
ここで、本発明の別の好ましい実施形態に応じた、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図である図2A及び2Bを参照する。図2Aに示されるように、1月1日などの特定の日に、AAAデパートの顧客が入店し、店の入り口に装備されたデジタルカメラ200が顧客の顔画像202を捕らえる。顔画像202は、好ましくは、顔モデル生成機能212と、画像から属性へのマッピング機能214と、属性から画像へのマッピング機能216と、値合成部217とを含むコンピュータ化された人物識別システム210に送信される。また好ましくは、コンピュータ化された人物識別システム210は、好ましくは、これまでに入店したすべての顧客の顔属性の値を格納する顧客データベース218と、好ましくは、特定の各顧客が店に行った累積来店回数をトラッキングする来店カウンタ219とを含む。データベース218は任意の適切なコンピュータ化された情報ストアであり得ることが認識される。
顔モデル生成機能212は、顔画像202に対応する顔モデル220を生成するよう動作可能である。顔モデル生成機能212は、当技術分野で知られている任意の適切な顔モデル生成方法を使用できることが認識される。図2Aに示されるように、顔モデル生成機能212によって生成され、顔画像202に対応する顔モデル220は、顔画像202の顧客の属性のうちの1つとしてデータベース218に格納される。
本発明の好ましい実施形態に応じて、画像から属性へのマッピング機能214は、形容詞222で表される値を顔画像202の複数の顔属性に割り当てるよう動作可能である。顔属性を表す形容詞222は、例えば、年齢層、性別、民族、顔の形、雰囲気及び全体的な外観について説明する形容詞を含み得る。
さらに、本発明の好ましい実施形態に応じて、属性から画像へのマッピング機能216は、顔属性の値の集合を利用して、対応する格納顔画像を識別することによって、特定の人物を識別するよう動作可能である。値の集合は、服装のタイプ及び色などの顧客の外観
の非身体的特徴も含んでもよく、この非身体的特徴を使用すると、顔属性の現在の値が利用可能でない場合に短い時間で人物を識別できることが認識される。
さらに、本発明の好ましい実施形態に応じて、値合成部217は、好ましくは、顔モデルと顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成することによって、特定の人物を識別するよう動作可能である。
図2Aに示されるように、顔モデル220及び形容詞222は、好ましくは、値合成部217によって、値の合成集合に組み合わされ、値の合成集合は、データベース218に格納された値の集合と比較され、リピート顧客に対応する顔モデル及び形容詞と一致することが発見される。したがって、この顧客の来店カウンタ219が増加する。値合成部217によって組み合わされ、データベース218に格納された値の集合と比較された値の集合は、顔モデル220及び形容詞222の任意のサブセットであり得ることが認識される。
あるいは、値合成部217によって生成された値の合成集合がデータベース218に格納された値の集合のいずれとも一致しないことが発見されれば、値合成部217によって生成された値の合成集合及び顔画像202は、好ましくは、新規な顧客を表すものとしてデータベース218に格納され、新規な顧客のカウンタ219は、1に初期化される。
ここで、図2Bに移ると、1月1日午後5時などの閉店時間に、店の支配人が、好ましくは、1月1日の間に入店した顧客の区分を含む第1のレポート230をシステム210から受信する様子が示される。区分は、性別、年齢層、民族及び雰囲気など、データベース218に格納された形容詞のいずれかに応じる形容詞であり得る。また、レポート230は、好ましくは、1月1日の顧客が以前に来店した来店の回数に関する情報をさらに含む。
それに加えて、店の支配人は、1月1日の間に入店したリピート顧客の区分を含む第2のレポート234をシステム210から受信することもできる。区分は、性別、年齢層、民族及び雰囲気など、データベース218に格納された形容詞のいずれかに応じる形容詞であり得る。レポート230及び234は、例えば、目標の販売キャンペーンの計画又は以前に行われた販売キャンペーンの成功の評価に対して便利であることが認識される。
ここで、本発明のさらに別の好ましい実施形態に応じた、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図である図3A及び3Bを参照する。図3Aに示されるように、1月1日などの特定の日に、AAAデパートの顧客が入店して、店の玩具売場の商品を見て回っている。玩具売場に装備されたデジタルカメラ250が顧客の顔画像252を捕らえる。図3Aに示されるように、好ましくは、追加のデジタルカメラが店のさまざまな売り場の至る所に装備される。
顔画像252は、顔モデル生成機能262と、画像から属性へのマッピング機能264と、属性から画像へのマッピング機能266と、値合成部267とを含むコンピュータ化された人物識別システム260に送信される。また好ましくは、コンピュータ化された人物識別システム260は、好ましくは、その日の間に入店したすべての顧客の顔属性の値を格納する顧客データベース268と、各顧客が店のどの売り場を訪れたかを示す情報とを含む。データベース268は任意の適切なコンピュータ化された情報ストアであり得ることが認識される。
顔モデル生成機能262は、顔画像252に対応する顔モデル270を生成するよう動作可能である。顔モデル生成機能262は、当技術分野で知られている任意の適切な顔モ
デル生成方法を使用できることが認識される。図3Aに示されるように、顔モデル生成機能262によって生成され、顔画像252に対応する顔モデル270は、顔画像252の顧客の属性のうちの1つとしてデータベース268に格納される。
本発明の好ましい実施形態に応じて、画像から属性へのマッピング機能264は、形容詞272で表される値を顔画像252の複数の顔属性に割り当てるよう動作可能である。顔属性を表す形容詞272は、例えば、年齢層、性別、民族、顔の形、雰囲気及び全体的な外観について説明する形容詞を含み得る。図3Aに示されるように、顔画像252に対応する、属性マッピング機能264によって生成された形容詞は、顔画像252の顧客の属性の値としてデータベース268に格納される。
さらに、本発明の好ましい実施形態に応じた、属性から画像へのマッピング機能266は、顔属性の値の集合を利用して、対応する格納顔画像を識別することによって、特定の人物を識別するよう動作可能である。値の集合は、服装のタイプ及び色などの顧客の外観の非身体的特徴も含んでもよく、この非身体的特徴を使用すると、顔属性の現行値が利用可能でない場合に短い時間で人物を識別できることが認識される。
さらに、本発明の好ましい実施形態に応じた、値合成部267は、好ましくは、顔モデルと顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成することによって、特定の人物を識別するよう動作可能である。
それに加えて、システム260は、顧客が訪れた売り場を玩具売り場としてデータベース268に記録する。
ここで、図3Bに移ると、1月1日午後5時などの閉店時間に、店の支配人が、好ましくは、1月1日の間に店の玩具売り場に入場した顧客の区分を含むレポート280をシステム260から受信する様子が示される。区分は、性別、年齢層、民族及び雰囲気など、データベース268に格納された形容詞のいずれかに応じる形容詞であり得る。レポート280は、例えば、目標の販売キャンペーンの計画又は以前に行われた販売キャンペーンの成功の評価に便利であることが認識される。
ここで、本発明のさらに別の好ましい実施形態に応じた、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図である図4A、4B及び4Cを参照する。図4Aに示されるように、1月1日に、好ましくは、コンピュータ300を介して、潜在的出席者がフローリストの年次カンファレンスに出席するために登録している。登録処理の一部として、潜在的出席者は、好ましくは、自身の氏名などの個人識別詳細情報を入力し、潜在的出席者自身の少なくとも1つの顔画像302をアップロードするように勧められる。あるいは、潜在的出席者は、例えば、既存の人物のソーシャルネットワークアカウントから、個人識別詳細情報及び1つ又は複数の顔画像をインポートすることを選択することができる。
個人識別詳細情報及び顔画像302は、好ましくは、顔モデル生成機能312と、画像から属性へのマッピング機能314と、属性から画像へのマッピング機能316と、値合成部317とを含むコンピュータ化された会議登録システム310に送信される。また、コンピュータ化された会議登録システム310は、好ましくは、すべての登録出席者の登録詳細情報及び顔属性の値を格納するデータベース318をさらに含む。データベース318は任意の適切なコンピュータ化された情報ストアであり得ることが認識される。
顔モデル生成機能312は、顔画像302に対応する顔モデル320を生成するよう動作可能である。顔モデル生成機能312は、当技術分野で知られている任意の適切な顔モデル生成方法を使用できることが認識される。図4Aに示されるように、顔モデル生成機
能312によって生成され、顔画像302に対応する顔モデル320は、潜在的出席者ジョーンズ氏の属性のうちの1つとしてデータベース318に格納される。
本発明の好ましい実施形態に応じて、画像から属性へのマッピング機能314は、形容詞322で表される値を顔画像308の複数の顔属性に割り当てるよう動作可能である。顔属性を表す形容詞は、例えば、髪の色、鼻の形、肌の色、顔の形、髭のタイプ及びその有無について説明する形容詞を含み得る。図4Aに示されるように、顔画像302に対応する、属性マッピング機能314によって生成された形容詞は、潜在的出席者であるジョーンズ氏の属性の値としてデータベース318に格納される。
さらに、本発明の好ましい実施形態に応じて、属性から画像へのマッピング機能316は、顔属性の値の集合を利用して、対応する格納顔画像を識別することによって、特定の人物を識別するよう動作可能である。
さらに、本発明の好ましい実施形態に応じて、値合成部317は、好ましくは、顔モデルと顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成することによって、特定の人物を識別するよう動作可能である。
ここで、図4Bに移ると、1月17日など後日に、出席者がフローリストの年次カンファレンスに入り、会議場の登録ブース330に近づく様子が分かる。登録ブース330は、出席者の顔画像334を捕らえるデジタルカメラ332を含む。顔画像334は、コンピュータ化された会議登録システム310に送信され、コンピュータ化された会議登録システム310では、好ましくは、顔モデル生成機能312によって、顔画像334に対応する顔モデル340が生成される。それに加えて、好ましくは、画像から属性へのマッピング機能314によって、形容詞で表される値342が顔画像334の複数の顔属性に割り当てられる。
図4Bに示されるように、顔モデル340及び値342は、好ましくは、値合成部317によって、値の合成集合に組み合わされ、値の合成集合は、データベース318に格納された値の集合と比較され、ジョーンズ氏に割り当てられた顔モデル及び値と一致することが発見されることによって、カメラ332によって捕らえられた顔画像334に描かれた人物をジョーンズ氏として識別する。値合成部317によって組み合わされ、データベース318に格納された値の集合と比較された値の集合は、顔モデル340及び形容詞342の任意のサブセットであり得ることが認識される。ジョーンズ氏として識別されると同時に、出席者の登録が完了し、出席者は会議スタッフによって歓迎される。
ここで、図4Cに移ると、カンファレンスに出席している間、他の出席者への紹介を希望する出席者が、例えば、モバイル通信デバイス352に埋め込まれたデジタルカメラを使用して、他の出席者に他の出席者への紹介を希望する出席者の顔画像350を撮らせている様子が示される。会議出席者のモバイル通信デバイス352は、コンピュータネットワークを介してコンピュータ化された会議登録システム310へのアクセスが許可されている。コンピュータネットワークは、例えば、ローカルコンピュータネットワークでも、インターネットでもあり得ることが認識される。
それに加えて又はその代替として、出席者は、新規な出席者の顔画像を撮って、顔画像を、好ましくは、関連個人識別情報とともに登録システム310に送信することによって、コンピュータ化された会議登録システム310にアクセスして、現在未登録の新規な出席者を会議に登録することができる。
会議出席者の画像350を捕えると同時に、モバイル通信デバイス352は、コンピュ
ータネットワーク上でコンピュータ化された会議登録システム310に画像350を送信し、コンピュータ化された会議登録システム310では、好ましくは、顔モデル生成機能312によって、顔画像350に対応する顔モデル360が生成される。それに加えて、好ましくは、画像から属性へのマッピング機能314によって、形容詞で表される値362が顔画像350の複数の顔属性に割り当てられる。
図4Cに示されるように、顔モデル360及び値362は、値合成部317によって、値の合成集合に組み合わされ、値の合成集合は、データベース318に格納された値の集合と比較され、ジョーンズ氏に割り当てられた顔モデル及び値と一致することが発見されることによって、モバイル通信デバイス352によって捕らえられた顔画像350に描かれた人物をジョーンズ氏として識別する。値合成部317によって組み合わされ、データベース318に格納された値の集合と比較された値の集合は、顔モデル360及び形容詞362の任意のサブセットであり得ることが認識される。画像350に描かれた出席者をジョーンズ氏として識別したことの通知は、コンピュータ化された会議登録システム310によって、モバイル通信デバイス352に返信され、該識別したことの通知により、モバイル通信デバイス352のオペレータがジョーンズ氏にアプローチしていることをオペレータが知ることが可能になる。
ここで、本発明のさらに別の好ましい実施形態に応じた、画像のテキスト化とテキストの画像化の関連性を利用する識別システムの簡易図である図5A及び5Bを参照する。図5A及び5Bの実施形態では、人物と状況との関係を測定する関係係数が使用される。状況は、例えば、地理的な場所又は事象であってもよく、関係係数は、値と事前に定義された減衰関数とを含む。複数の状況を有する関係係数を一人が同時に有することができる。関係係数を使用して、例えば、人物が特定の時点に所定の場所に出現する確率を予測することができる。
減衰関数は、任意の数学関数であり得る。例えば、地理的な場所に対する減衰関数は一次関数であってもよく、人物が時間とともに徐々に直線的にその場所から遠ざかる傾向を表す。1回の事象に対する減衰関数は、例えば、指数減衰関数であってもよい。
人物が特定の状況内にある間、生成された人物と状況との間の関係係数の現行値は、高く設定される。人物がその状況内に繰り返し目撃される度に、関係係数の値は、潜在的に指数関数的に増加する。
関係は階層的であり得ることが認識される。例えば、地理的な場所は、都市又は国など、より広大な地理的な地域内にあり得る。したがって、特定の地理的な場所を有する関係係数を有する人物も、特定の地理的な場所に対して他のすべての場所が階層的な、より低い関係係数を有することになり、その関係係数は、特定の地理的な場所と関連する階層的な地理的な場所との間の距離の関数として減少する。
また、異なる人々の関係係数は、少なくとも部分的に相互依存し得ることも認識される。例えば、第1の人物であって、複数の時点に複数の場所において第2の人物とともに目撃されている第1の人物は、第2の人物が目撃されている新たな場所に対して、比較的高い関係係数が割り当てられることになる。
図5Aに示されるように、2011年1月1日などの特定の日に、ダイナーが、フランスのパリのエッフェル塔に極めて近いカフェジャックで食事している。ダイナーの友人が、ハンドヘルド式モバイルデバイス402の一部であるデジタルカメラを使用して、ダイナーの顔画像400を撮り、インターネット上でコンピュータ化された人物識別システム410に顔画像400を関連時間及び場所とともに送信することによって、ダイナーの目
撃情報を登録する。場所は、例えば、デバイス402に提供されるGPSモジュールによって提供することができる。あるいは、場所は、例えば、ソーシャルネットワークから取り出すことができる。関連時間及び場所を使用することによって、上記で説明されるように、ダイナーを場所と関連付ける関係係数が生成される。
コンピュータ化された人物識別システム410は、顔モデル生成機能412と、画像から属性へのマッピング機能414と、属性から画像へのマッピング機能416と、値合成部417とを含む。また好ましくは、コンピュータ化された人物識別システム410は、好ましくは、目撃され、登録されているすべての人物の顔属性の値を関連時間及び場所とともに格納する目撃情報データベース418をさらに含む。データベース418は任意の適切なコンピュータ化された情報ストアであり得ることが認識される。
顔モデル生成機能412は、顔画像400に対応する顔モデル420を生成するよう動作可能である。顔モデル生成機能422は、当技術分野で知られている任意の適切な顔モデル生成方法を使用できることが認識される。図5Aに示されるように、顔モデル生成機能412によって生成され、顔画像400に対応する顔モデル420は、顔画像400の人物の属性のうちの1つとしてデータベース418に格納される。
本発明の好ましい実施形態に応じて、画像から属性へのマッピング機能414は、形容詞422で表される値を顔画像400の複数の顔属性に割り当てるよう動作可能である。顔属性を表す形容詞422は、例えば、年齢層、性別、民族、顔の形、雰囲気及び全体的な外観について説明する形容詞を含み得る。図5Aに示されるように、顔画像400に対応する、属性マッピング機能414によって生成された形容詞は、顔画像400の人物の属性の値としてデータベース418に格納される。それに加えて、顔画像400と関連付けられた時間及び場所も、データベース418に格納される。
さらに、本発明の好ましい実施形態に応じて、属性から画像へのマッピング機能416は、顔属性の値の集合を利用して、対応する格納顔画像を識別することによって、特定の人物を識別するよう動作可能である。値の集合は、服装のタイプ及び色などの顧客の外観の非身体的特徴も含んでもよく、この非身体的特徴を使用すると、顔属性の現行値が利用可能でない場合に短い時間で人物を識別できることが認識される。
さらに、本発明の好ましい実施形態に応じて、値合成部417は、好ましくは、顔モデルと顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成することによって、特定の人物を識別するよう動作可能である。
ここで、図5Bに移ると、2011年2月1日など後日に、ダイナーが、フランスのパリのエッフェル塔に極めて近いカフェジャックで食事する様子が示される。居合わせた者が、ハンドヘルド式モバイルデバイス452の一部であるデジタルカメラを使用して、ダイナーの顔画像450を撮り、インターネット上で、好ましくは、顔画像450に対応する顔モデル460が顔モデル生成機能412によって生成されるコンピュータ化された人物識別システム410に顔画像450を関連時間及び場所とともに送信することによって、ダイナーの目撃情報を登録する。それに加えて、形容詞で表される値462は、好ましくは、画像から属性へのマッピング機能414によって、顔画像450の複数の顔属性に割り当てられる。
図5Bに示されるように、顔モデル460、値462、並びに、顔画像450と関連付けられた時間及び場所は、好ましくは、値合成部417によって、値の合成集合に組み合わされ、値の合成集合は、データベース418に格納された値の集合と比較され、2011年1月1日に最後にエッフェル塔で目撃されたダイナーに割り当てられた合成値と一致
することが発見される。値合成部417によって組み合わされ、データベース418に格納された値の集合と比較された値の集合は、顔モデル460及び形容詞462の任意のサブセットであり得ることが認識される。画像450に描かれたダイナーを識別したことの通知は、インターネット上で、コンピュータ化された人物識別システム410によって、モバイル通信デバイス452に返信される。
ダイナーを場所と関連付ける関係係数を、ダイナーの識別の信頼性を増加する属性値として使用できることは、本発明の本実施形態の特定の特徴である。
顔画像と関連付けられた顔属性の値の合成は、人物が頻繁に訪れた特定の場所などの追加情報とともに、特定の場所又は特定の場所に極めて近い他の場所などの関連場所における人物を、より効果的に識別するよう動作可能であることは、本発明の本実施形態の特定の特徴である。
本発明の本実施形態に応じた人物の識別は、氏名などの個人識別情報に基づく特定の人物の正確な識別に制限されず、むしろ、顔属性や人物に関係する挙動情報の収集によって一致する人物の識別をさらに含むことは、本発明の本実施形態の別の特定の特徴である。
ここで、本発明のさらに別の好ましい実施形態に応じた、画像のテキスト化の関連性を利用するユーザ満足度モニタリングシステムの簡易図である図6を参照する。図6に示されるように、閲覧者は、マルチメディア閲覧デバイス480を使用して、コンピュータ化されたコンテンツ482を閲覧する。デバイス480は、例えば、テレビデバイス又はコンピュータであり得ることが認識される。コンテンツ482は、例えば、ビデオクリップ、映画又は広告であり得る。
マルチメディア閲覧デバイス480に接続されたデジタルカメラ484は、好ましくは、例えば、数秒ごとなどの事前に定義された間隔で、閲覧者の顔画像486を捕え、好ましくは、インターネット上で、コンピュータ化されたオンラインコンテンツ満足度モニタリングシステム490に画像486を送信する。あるいは、画像486は、デバイス480に埋め込まれた適切な機能によって、モニタし、格納し、解析することができる。
好ましくは、システム490は、画像から属性へのマッピング機能492と、閲覧者表現データベース494とを含む。データベース494は任意の適切なコンピュータ化された情報ストアであり得ることが認識される。
本発明の好ましい実施形態に応じて、画像から属性へのマッピング機能492は、形容詞496で表される値を顔画像486などの捕えられた閲覧者の表現に割り当て、形容詞496をデータベース494に格納するよう動作可能である。形容詞496は、例えば、「喜」、「哀」、「怒」、「満足気」及び「無関心」を含み得る。データベース494に格納された形容詞496は、例えば、コンテンツ482の有効性の評価に便利であることが認識される。
ここで、図1A〜6のシステムで使用されるデータベースの構築に便利な画像/テキスト/画像データベース生成方法論の簡易図である図7を参照する。図7に示されるように、複数の画像500が、コンピュータ化された人物識別トレーニングシステム510によって、インターネット上で公衆に利用可能な画像リポジトリ502から収集される。画像リポジトリ502は、例えば、画像と同一のページ上に存在するか又はそのページに近い1つ若しくは複数のページ上に存在するテキストを画像と関連付ける公衆に利用可能なソーシャルネットワーク又はテキスト検索エンジンであり得る。好ましくは、画像リポジトリによって、画像500の各々とともに1つ又は複数の関連特性が提供される。特性は、例えば、氏名、年齢又は年齢層、性別、全体的な外観及び雰囲気を含んでもよく、一般に
主観的であり、画像を公開した個人又はこのような特性を含み得るコメントに公開画像をタグ付けした個人によって画像と関連付けられる。
コンピュータ化された人物識別トレーニングシステム510は、最初に、画像500の各々と関連付けられた特性の各々を解析し、これらの適切な各特性を属性値に変換する。次いで、これらの各値に対し、システム510は、画像500の各々及びその関連属性値をアマゾンメカニカルターク(Amazon Mechanical Turk)などのクラウドソーシングプロバイダに送信し、クラウドソーシングプロバイダでは、複数の個人が各画像とその関連属性値との一致レベルに関する該複数の個人の意見を表明する。各画像属性値対に対するクラウドソーシング結果を受信すると同時に、システム510は、これらの関連画像との概して高い一致レベルを受け取った画像の属性値をデータベース520に格納する。
ここで、形容詞を画像と関連付けるためのトレーニング処理を示す簡易フローチャートである図8を参照する。図8に示されるように、顔属性を定義する形容詞は、システムによって、トレーニングすべき形容詞のリストから選択され、好ましくは、1つ又は複数の公衆に利用可能なテキスト検索エンジンを使用して、形容詞と関連付けられた画像を取り出す。それに加えて、好ましくは、1つ又は複数の公衆に利用可能なテキスト検索エンジンを使用して、形容詞のさまざまな言語による1つ又は複数の翻訳と関連付けられた画像を取り出す。例えば、辞書から形容詞を収集することによって形容詞のリストを集めることができる。
視覚的顔検出を使用して、顔画像を含む、それらの引き出された画像を識別する。次いで、好ましくは、クラウドソーシングを使用して、多数決に基づいて、どの顔画像が形容詞に対応するかを確認する。次いで、図9に関して以下に説明されるように、形容詞及び対応する顔画像を使用して、視覚的分類をトレーニングする。次いで、視覚的分類を使用して、形容詞を顔画像の追加セットと関連付け、クラウドソーシングをさらに使用して、顔画像の追加セットの各々と形容詞との一致レベルを確認し、その結果を使用して、視覚的分類をさらにトレーニングする。クラウドソーシング及び視覚的分類のトレーニングの追加サイクルを使用して、所望の精度レベルに達するまで、視覚的分類の精度をさらに高めることができることが認識される。視覚的分類のトレーニング後、分類子は、属性関数のバンクに追加され、顔属性を定義する形容詞によって顔画像を分類するためにシステムによって後に使用することができる。
ここで、視覚的分類をトレーニングする処理を示す簡易フローチャートである図9を参照する。図9に示されるように、各形容詞に対し、図8に関して上記で説明されるクラウドソーシング処理の結果を使用して、画像の2つの集合を生成する。第1の集合である「正の」集合は、形容詞に対応することが確認されている画像を含み、第2の集合である「負の」集合は、形容詞に対応することが確認されていない画像を含む。
次いで、正の集合と負の集合の両方の画像は、二次元アライメント及び三次元アライメント間の変動並びに異なる照度を補正するように正規化さることによって、画像の各々が基準画像に変換される。次いで、基準画像は基準数値ベクトルに変換され、分類子は、サポートベクターマシン(Support Vector Machine)(SVM)などの教師あり分類(supervised−classifier)を使用して、一組の正及び負の数値ベクトルを含むトレーニングセットから学習する。
ここで、画像と関連付けられた形容詞を取り出すための処理を示す簡易フローチャートである図10を参照する。図10に示されるように、最初に、画像の一部である顔画像を検出してクロップするように画像が解析される。次いで、顔画像は、二次元ポーズアライ
メント及び三次元ポーズアライメント間の変動並びに異なる照度を補正するように画像を正規化することによって、基準数値ベクトルに変換される。次いで、図8に関して上記で説明される属性関数のバンクが数値ベクトルに適用され、各属性関数から返された値が、顔画像と関連付けられた形容詞を表す数値ベクトルに記録される。
ここで、事前にインデックス化された画像のデータベースから、1つ又は複数の形容詞と関連付けられた画像を取り出すための処理を示す簡易フローチャートである図11を参照する。図11に示されるように、最初に、画像と関連付けられた形容詞の付いた画像に対するテキストクエリが作成される。自然言語処理(Natural Language
Processing)(NLP)を使用して、テキストクエリから形容詞が抽出される。次いで、システムは、好ましくは、潜在的ディリクレ配分法(Latent Dirichlet Allocation)(LDA)を使用して、以前に処理された顔画像のデータベースから、クエリから抽出された形容詞に最も一致する画像を取り出す。取り出された顔画像は、クエリから抽出された形容詞に対する画像の関連数値ベクトルの相関レベルごとに順序付けされ、結果として得られた順序付けされた顔画像は、システムの出力として提供される。
ここで、第1の画像と類似する顔画像を取り出すための処理を示す簡易フローチャートである図12を参照する。図12に示されるように、最初に、画像の一部である顔画像を検出してクロップするために第1の画像が解析される。次いで、顔画像は、二次元ポーズアライメント及び三次元ポーズアライメント間の変動並びに異なる照度を補正するように画像を正規化することによって、基準数値ベクトルに変換される。次いで、図8に関して上記で説明される属性関数のバンクが数値ベクトルに適用され、各属性関数から返された値が、顔画像と関連付けられた形容詞を表す数値ベクトルに記録される。
第1の画像の数値ベクトルに厳密に一致する画像を表す数値ベクトルの集合を発見するため、ユークリッド距離(Euclidian distance)などの類似度関数を使用して、KD木など、画像の数値ベクトルを含む以前にインデックス化されたデータベースが検索される。
当業者であれば、本発明が、上記で具体的に示され、説明されるものによって制限されないことが認識されるであろう。さらに、本発明の範囲は、当業者であれば、前述の説明を読み進めると同時に思い浮かぶであろう、先行技術にない、上記で説明されるさまざまな特徴の組合せと副組合せの両方並びにその変更形態を含む。

Claims (57)

  1. 人物の顔画像を分類するためのコンピュータ化されたシステムであって、
    顔画像を表す値を前記顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、前記値は形容詞で表される、前記評価子と、
    前記個別の顔属性のうちの前記複数に応じて前記顔画像を分類するコンピュータ化された分類子と、
    を備える、コンピュータ化されたシステム。
  2. 前記コンピュータ化された顔属性面の評価子は、
    複数の顔画像に対応する複数種類の格納値を含むデータベースであって、前記顔画像の各々は、前記複数の個別の顔属性のうちの少なくともいくつかを有し、前記個別の顔属性のうちの少なくともいくつかは、顔属性と関連付けられた形容詞で表される前記値を有する、データベース
    を備える、請求項1に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  3. 前記複数種類の格納値から導出される統計情報を提供する顔属性統計報告機能
    をさらに備える、請求項2に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  4. 前記コンピュータ化された顔属性面の評価子は、
    複数種類の格納顔画像及び複数種類の格納値を含むデータベースであって、前記格納顔画像の各々は、前記複数の個別の顔属性のうちの少なくともいくつかを有し、前記個別の顔属性のうちの少なくともいくつかは、顔属性と関連付けられた形容詞で表される前記値を有する、前記データベースと、
    属性面及び形容詞面について、前記顔画像の前記複数の個別の顔属性と前記複数種類の格納顔画像とを比較することによって、顔画像と前記複数種類の格納顔画像とを比較する形容詞ベースの比較子と、
    を備える、請求項1に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  5. 前記形容詞ベースの比較子は、形容詞面について前記データベースへのクエリを行う、請求項4に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  6. 前記コンピュータ化された分類子からの出力に応じて、前記出力に対応する格納顔画像のうちの少なくとも1つを識別するように動作可能なコンピュータ化された識別子をさらに備える、請求項1〜5のいずれか一項に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  7. 前記コンピュータ化された識別子は、前記出力に対応する格納顔画像のランク付けされたリストを生成するよう動作可能である、請求項6に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  8. ソーシャルネットワークからの情報を前記コンピュータ化された顔画像属性面の評価子に対して利用可能にするためのソーシャルネットワークインタフェースをさらに備える、請求項1〜7のいずれか一項に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  9. 前記顔画像に対応する顔モデルを生成するよう動作可能な顔モデル生成機能をさらに備
    える、請求項1〜8のいずれか一項に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  10. 前記コンピュータ化された識別子は、前記顔モデルを利用する、請求項6及び9に記載の人物の顔画像を分類するためのコンピュータ化されたシステム。
  11. 人物の顔画像を分類するためのコンピュータ化された方法であって、
    顔画像を表す値を前記顔画像の個別の顔属性のうちの複数に割り当てる工程であって、前記値は形容詞で表される、前記工程と、
    前記個別の顔属性のうちの前記複数に応じて前記顔画像を分類する工程と
    を含む、コンピュータ化された方法。
  12. 前記顔画像の各々は、前記複数の個別の顔属性のうちの少なくともいくつかを有し、前記個別の顔属性のうちの少なくともいくつかは、顔属性と関連付けられた形容詞で表される前記値を有する、請求項11に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  13. 前記複数種類の格納値から導出される統計情報を提供する工程をさらに含む、請求項12に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  14. 前記格納顔画像の各々は、前記複数の個別の顔属性のうちの少なくともいくつかを有し、前記個別の顔属性のうちの少なくともいくつかは、顔属性と関連付けられた形容詞で表される前記値を有し、
    属性面及び形容詞面について、前記顔画像の前記複数の個別の顔属性と前記複数種類の格納顔画像とを比較することによって、顔画像と複数種類の格納顔画像とを比較する工程をさらに含む、請求項11に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  15. 前記比較する工程では、形容詞面でデータベースへのクエリを行う、請求項14に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  16. 前記分類する工程の出力に対応する格納顔画像のうちの少なくとも1つを識別する工程をさらに含む、請求項11〜15のいずれか一項に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  17. 前記識別する工程では、前記出力に対応する格納顔画像であってランク付けされた格納顔画像のリストを生成するよう動作可能である、請求項16に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  18. ソーシャルネットワークからの情報を前記コンピュータ化された顔画像属性面の評価子に対して利用可能にする工程をさらに含む、請求項11〜17のいずれか一項に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  19. 前記顔画像に対応する顔モデルを生成するよう動作可能な顔モデル生成をさらに含む、請求項11〜18のいずれか一項に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  20. 前記識別する工程では前記顔モデルを利用する、請求項16及び19に記載の人物の顔画像を分類するためのコンピュータ化された方法。
  21. 所定の場所における人物を登録するためのシステムであって、
    人物の少なくとも1つの顔画像及び個人識別のうちの少なくとも1つのアイテムを取得する顔画像又は人物識別の取得サブシステムと、
    前記人物の前記少なくとも1つの顔画像及び前記個人識別のうちの少なくとも1つのアイテムを受信するコンピュータ化されたサブシステムであって、
    前記少なくとも1つの顔画像に対応する顔モデルを生成するよう動作可能な顔モデル生成機能、及び、形容詞で表される値を前記顔画像の複数の顔属性に割り当てるよう動作可能な画像から属性へのマッピング機能を備える、前記コンピュータ化されたサブシステムと、
    複数の前記人物に対する情報及び顔属性の前記値を格納するデータベースと、
    を備える、システム。
  22. 前記コンピュータ化されたサブシステムは、
    顔属性の値の集合を用いて対応する格納顔画像を識別することによって、前記顔モデルを用いて特定の人物を識別するよう動作可能な属性から画像へのマッピング機能をさらに備える、請求項21に記載の所定の場所における人物を登録するためのシステム。
  23. 前記コンピュータ化されたサブシステムは、
    前記顔モデルと前記顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成することによって、特定の人物を識別するよう動作可能な値合成部をさらに備える、請求項21に記載の所定の場所における人物を登録するためのシステム。
  24. 少なくとも1つの顔画像を取得し、該取得した顔画像を前記コンピュータ化されたサブシステムに供給する後続の顔画像取得サブシステムをさらに備え、
    前記コンピュータ化されたサブシステムは、
    前記後続の顔画像に対応する顔モデルを作成し、
    形容詞で表される値を前記後続の顔画像の複数の顔属性に割り当て、
    対応する格納顔画像及び前記後続の顔画像を特定の人物として識別するよう動作可能であり、個人識別のうちの少なくとも1つのアイテムは、前記データベースに格納されている人物に関連する、請求項22又は23に記載の所定の場所における人物を登録するためのシステム。
  25. 前記値合成部を利用して、前記顔モデルと前記後続の顔画像に対応する前記値の集合とを組み合わせることによって、前記特定の人物を識別する、請求項23及び24に記載の所定の場所における人物を登録するためのシステム。
  26. 前記人物の前記個人識別のうちの少なくとも1つのアイテムは、事前登録データから入手される、請求項21〜25のいずれか一項に記載の所定の場所における人物を登録するためのシステム。
  27. ソーシャルネットワークからの情報を前記コンピュータ化されたサブシステムに対して利用可能にするためのソーシャルネットワークインタフェースをさらに備える、請求項21〜26のいずれか一項に記載の所定の場所における人物を登録するためのシステム。
  28. 前記顔画像又は人物識別の取得サブシステムは、前記サブシステムと情報のやり取りを行う人物以外の人物の少なくとも1つの顔画像及び個人識別のうちの少なくとも1つのアイテムを取得するよう動作可能である、請求項24〜27のいずれか一項に記載の所定の場所における人物を登録するためのシステム。
  29. 前記顔画像又は人物識別の取得サブシステムは、前記サブシステムと情報のやり取りを行う人物以外の、他の識別されていない人物の少なくとも1つの顔画像を取得するよう動作可能である、請求項21〜27のいずれか一項に記載の所定の場所における人物を登録するためのシステム。
  30. 顔画像を表す値を前記顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、前記値は形容詞で表される、評価子と、
    前記個別の顔属性のうちの前記複数に応じて前記顔画像を分類するコンピュータ化された分類子と、
    によって具体化される、請求項21〜29のいずれか一項に記載の所定の場所における人物を登録するためのシステム。
  31. 所定の場所における人物の繰り返し出現を認識するためのシステムであって、
    人物の少なくとも1つの顔画像を取得する顔画像又は人物識別の取得サブシステムと、
    前記少なくとも1つの顔画像を受信するコンピュータ化されたサブシステムであって、
    前記少なくとも1つの顔画像に対応する顔モデルを生成するよう動作可能な顔モデル生成機能、及び、形容詞で表される値を前記顔画像の複数の顔属性に割り当てるよう動作可能な画像から属性へのマッピング機能を備える、前記コンピュータ化されたサブシステムと、
    複数の前記人物に対する情報及び顔属性の前記値を格納するデータベースと、
    を備える、システム。
  32. 前記コンピュータ化されたサブシステムは、
    顔属性の値の集合を用いて、前記顔モデルを用いて、特定の人物と関連付けられた対応する格納顔画像を識別するよう動作可能な属性から画像へのマッピング機能をさらに備える、請求項31に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  33. コンピュータ化されたサブシステムは、
    前記顔モデルと前記顔属性の値の集合とを組み合わせて、対応する格納値の集合と一致し得る値の合成集合を形成するよう動作可能な値合成部
    をさらに備える、請求項31に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  34. 少なくとも1つの顔画像を取得し、該取得した顔画像を前記コンピュータ化されたサブシステムに供給する後続の顔画像取得サブシステムをさらに備え、
    前記コンピュータ化されたサブシステムは、
    特定の人物の繰り返し出現を認識するため、前記後続の顔画像に対応する顔モデルを作成し、
    形容詞で表される値を前記後続の顔画像の複数の顔属性に割り当て、
    対応する格納顔画像及び前記後続の顔画像を特定の人物の顔画像であるとして識別するよう動作可能である、請求項32又は33に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  35. 前記値合成部を使用して、前記顔モデルと前記後続の顔画像に対応する前記値の集合とを組み合わせることによって、人物の度重なる出現を認識する、請求項33及び34に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  36. 所定の場所に繰り返し出現する人物に関する属性面の統計を生成するために、前記顔モデル及び前記値の集合を利用する繰り返し出現統計生成子
    をさらに備える、請求項31〜36のいずれか一項に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  37. ソーシャルネットワークからの情報を前記コンピュータ化されたサブシステムに対して利用可能にするためのソーシャルネットワークインタフェースをさらに備える、請求項31〜36のいずれか一項に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  38. 前記顔画像又は人物識別の取得サブシステムは、前記サブシステムと情報のやり取りを行う人物以外の人物の少なくとも1つの顔画像及び個人識別のうちの少なくとも1つのアイテムを取得するよう動作可能である、請求項31〜37のいずれか一項に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  39. 前記顔画像又は人物識別の取得サブシステムは、前記サブシステムと情報のやり取りを行う人物以外の、他の識別されていない人物の少なくとも1つの顔画像を取得するよう動作可能である、請求項31〜37のいずれか一項に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  40. 顔画像を表す値を前記顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、前記値は形容詞で表される、前記評価子と、
    前記個別の顔属性のうちの前記複数に応じて前記顔画像を分類するコンピュータ化された分類子と、
    によって具体化される、請求項31〜39のいずれか一項に記載の所定の場所における人物の繰り返し出現を認識するためのシステム。
  41. 各々が形容詞で表される値を顔画像の個別の顔属性のうちの複数に割り当てることができるコンピュータ化された顔画像属性面の評価子を生成するための方法であって、
    複数種類の顔画像を集める工程であって、各々は、顔画像と関連付けられた、形容詞によって特徴付けられる少なくとも1つの顔画像属性を有する、前記工程と、
    評価すべき顔画像の個別の顔属性のうちの複数に割り当てるために、前記評価すべき顔画像を受信し、前記集める工程の結果を利用するよう動作可能な機能を生成する工程であって、前記値は形容詞で表される、前記工程と
    を含む、方法。
  42. 前記集める工程は、
    複数種類の顔画像を収集する工程であって、顔画像の各々は、公衆に利用可能な情報源からの、顔画像と関連付けられた形容詞によって特徴付けられる少なくとも1つの顔画像属性を有する、前記工程と、
    クラウドソーシングを使用して、前記複数種類の顔画像に現れる形容詞と顔属性との間の一致度を高める工程と、
    を含む、請求項41に記載のコンピュータ化された顔画像属性面の評価子を生成するための方法。
  43. 前記クラウドソーシングは、
    複数の個人に前記複数種類の顔画像のうちの複数及び前記形容詞を閲覧させるとともに、前記複数種類の画像のうちの前記複数における前記形容詞と前記顔属性との間の一致度に対する該複数の個人の見解を示させる工程
    を含む、請求項42に記載のコンピュータ化された顔画像属性面の評価子を生成するための方法。
  44. 前記値は数値である、請求項41〜43のいずれか一項に記載のコンピュータ化された顔画像属性面の評価子を生成するための方法。
  45. 少なくとも1つの刺激に対するユーザ反応を認識するためのシステムであって、
    刺激に対するユーザ反応に対応する時点に入手された顔画像を表す値を前記顔画像の個別の顔属性のうちの複数に割り当てるコンピュータ化された顔画像属性面の評価子であって、前記値は形容詞で表される、前記評価子と、
    前記個別の顔属性のうちの前記複数に応じて前記顔画像を分類するコンピュータ化された分類子と、
    を備える、システム。
  46. 前記個別の顔属性のうち、前記少なくとも1つの刺激の適用前及び適用後の個別の顔属性を比較するコンピュータ化された属性比較子をさらに備える、請求項45に記載の少なくとも1つの刺激に対するユーザ反応を認識するためのシステム。
  47. 少なくとも1つの刺激に対するユーザ反応を認識するための方法であって、
    刺激に対するユーザ反応に対応する時点に入手された顔画像を表す値を前記顔画像の個別の顔属性のうちの複数に割り当てる工程であって、前記値は形容詞で表される、前記工程と、
    前記個別の顔属性のうちの前記複数に応じて前記顔画像を分類する工程と、
    を含む、方法。
  48. 前記個別の顔属性のうち、前記少なくとも1つの刺激の適用前及び適用後の個別の顔属性を比較する工程をさらに含む、請求項45に記載の少なくとも1つの刺激に対するユーザ反応を認識するための方法。
  49. 人物を分類するためのコンピュータ化されたシステムであって、
    人物が特定の時点に特定の状況に存在する確率を表す関係係数を生成する関係係数生成子と、
    前記関係係数のうちの前記複数に応じて前記人物を分類するコンピュータ化された分類子と、
    を備える、システム。
  50. 前記状況は地理的な場所及び事象のうちの1つである、請求項49に記載の人物を分類するためのコンピュータ化されたシステム。
  51. 前記関係係数は値と減衰関数とを含む、請求項49又は50に記載の人物を分類するためのコンピュータ化されたシステム。
  52. 前記減衰関数は一次関数である、請求項51に記載の人物を分類するためのコンピュータ化されたシステム。
  53. 前記減衰関数は指数関数である、請求項51に記載の人物を分類するためのコンピュータ化されたシステム。
  54. 前記状況は階層的な状況の階層のうちの1つである、請求項49〜53のいずれか一項に記載の人物を分類するためのコンピュータ化されたシステム。
  55. 状況の階層の状況の関係係数は相互依存する、請求項51に記載の人物を分類するためのコンピュータ化されたシステム。
  56. 前記関係係数生成子は、複数の人物が少なくとも第1の状況に一緒に存在し、第2の状況で前記複数の人物間における相互依存関係係数を生成する場合に動作可能である、請求項49〜55のいずれか一項に記載の人物を分類するためのコンピュータ化されたシステム。
  57. 個別の顔属性のうちの複数に応じて顔画像を分類するコンピュータ化された分類子をさらに備える、請求項49に記載の人物を分類するためのコンピュータ化されたシステム。
JP2013552321A 2011-02-03 2011-03-31 画像のテキスト化とテキストの画像化の関連性のためのシステム及び方法 Active JP5857073B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161439021P 2011-02-03 2011-02-03
US61/439,021 2011-02-03
PCT/IL2011/000287 WO2012104830A1 (en) 2011-02-03 2011-03-31 Systems and methods for image-to-text and text-to-image association

Publications (3)

Publication Number Publication Date
JP2014511520A true JP2014511520A (ja) 2014-05-15
JP2014511520A5 JP2014511520A5 (ja) 2014-06-26
JP5857073B2 JP5857073B2 (ja) 2016-02-10

Family

ID=46602131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013552321A Active JP5857073B2 (ja) 2011-02-03 2011-03-31 画像のテキスト化とテキストの画像化の関連性のためのシステム及び方法

Country Status (8)

Country Link
JP (1) JP5857073B2 (ja)
KR (1) KR101649322B1 (ja)
CN (1) CN103620590B (ja)
AU (1) AU2011358100B2 (ja)
BR (1) BR112013019907A2 (ja)
CA (1) CA2826177C (ja)
MX (1) MX345437B (ja)
WO (1) WO2012104830A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477338B1 (ko) * 2022-02-23 2022-12-14 주식회사 블랙탠저린 이미지를 이용한 얼굴 분위기 진단 플랫폼 제공 방법, 장치 및 프로그램

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9158970B2 (en) 2012-11-16 2015-10-13 Canon Kabushiki Kaisha Devices, systems, and methods for visual-attribute refinement
US9626597B2 (en) 2013-05-09 2017-04-18 Tencent Technology (Shenzhen) Company Limited Systems and methods for facial age identification
CN104143079B (zh) 2013-05-10 2016-08-17 腾讯科技(深圳)有限公司 人脸属性识别的方法和系统
WO2015122195A1 (ja) * 2014-02-17 2015-08-20 Necソリューションイノベータ株式会社 印象分析装置、ゲーム装置、健康管理装置、広告支援装置、印象分析システム、印象分析方法、プログラム、及びプログラム記録媒体
US10635672B2 (en) * 2015-09-02 2020-04-28 Oath Inc. Method and system for merging data
US10909779B2 (en) 2016-08-11 2021-02-02 Tekion Corp 3D vehicle model data capturing and retrieving for vehicle inspection, service and maintenance
CN106951825B (zh) * 2017-02-13 2021-06-29 苏州飞搜科技有限公司 一种人脸图像质量评估系统以及实现方法
CN108009280B (zh) * 2017-12-21 2021-01-01 Oppo广东移动通信有限公司 图片处理方法、装置、终端及存储介质
US11941044B2 (en) 2018-01-26 2024-03-26 Walmart Apollo, Llc Automatic personalized image-based search
KR102585358B1 (ko) * 2021-08-09 2023-10-05 양주섭 인공지능 기반의 영상 분석 모델을 이용하여 무인 매장 고객의 행동 패턴을 분석하는 방법 및 장치
US12038968B2 (en) 2021-08-13 2024-07-16 Samsung Electronics Co., Ltd. Method and device for personalized search of visual media
CN113641857A (zh) * 2021-08-13 2021-11-12 三星电子(中国)研发中心 视觉媒体个性化搜索方法和装置
CN117095083B (zh) * 2023-10-17 2024-03-15 华南理工大学 一种文本-图像生成方法、系统、装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510109A (ja) * 2002-12-13 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 表情不変顔認識方法及び装置
JP2006221355A (ja) * 2005-02-09 2006-08-24 Hitachi Ltd 監視装置及び監視システム
US20060251292A1 (en) * 2005-05-09 2006-11-09 Salih Burak Gokturk System and method for recognizing objects from images and identifying relevancy amongst images and information
JP2006323507A (ja) * 2005-05-17 2006-11-30 Yamaha Motor Co Ltd 属性識別システムおよび属性識別方法
US20100135584A1 (en) * 2006-08-23 2010-06-03 Microsoft Corporation Image-Based Face Search
JP2011013732A (ja) * 2009-06-30 2011-01-20 Sony Corp 情報処理装置、情報処理方法、およびプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298931B2 (en) * 2002-10-14 2007-11-20 Samsung Electronics Co., Ltd. Image retrieval method and apparatus using iterative matching
US7680330B2 (en) * 2003-11-14 2010-03-16 Fujifilm Corporation Methods and apparatus for object recognition using textons
US7864989B2 (en) 2006-03-31 2011-01-04 Fujifilm Corporation Method and apparatus for adaptive context-aided human classification
US8670597B2 (en) 2009-08-07 2014-03-11 Google Inc. Facial recognition with social network aiding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510109A (ja) * 2002-12-13 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 表情不変顔認識方法及び装置
JP2006221355A (ja) * 2005-02-09 2006-08-24 Hitachi Ltd 監視装置及び監視システム
US20060251292A1 (en) * 2005-05-09 2006-11-09 Salih Burak Gokturk System and method for recognizing objects from images and identifying relevancy amongst images and information
JP2006323507A (ja) * 2005-05-17 2006-11-30 Yamaha Motor Co Ltd 属性識別システムおよび属性識別方法
US20100135584A1 (en) * 2006-08-23 2010-06-03 Microsoft Corporation Image-Based Face Search
JP2011013732A (ja) * 2009-06-30 2011-01-20 Sony Corp 情報処理装置、情報処理方法、およびプログラム

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CSND200500179002; 小舘 香椎子 他: '携帯電話を利用した顔認証技術による遠隔講義出欠管理システム' 月刊自動認識 第17巻、第10号, 20040902, pp.20-24., 日本工業出版株式会社 *
CSNG201000069035; 松川 徹 他: '複数人物の顔方向・表情認識に基づく映像中の満足度の自動定量評価' 情報処理学会論文誌 論文誌ジャーナル Vol.50,No.12, 20091215, pp.3222-3232., 社団法人情報処理学会 *
CSNG201000881006; 相澤 清晴: 'パーソナル写真コレクションと検索' 映像メディア学会誌 Vol.64,No.11, 20101101, pp.35-39., (社)映像情報メディア学会 *
JPN6015009133; Neeraj Kumar et al: 'FaceTracer: A search engine for large collections of images with faces' Proc. Europican Conference on Computer Vision(ECCV2008) Part IV, 20081018, pp.340-353, Springer International Publishing AG *
JPN6015009135; 小舘 香椎子 他: '携帯電話を利用した顔認証技術による遠隔講義出欠管理システム' 月刊自動認識 第17巻、第10号, 20040902, pp.20-24., 日本工業出版株式会社 *
JPN6015009137; 松川 徹 他: '複数人物の顔方向・表情認識に基づく映像中の満足度の自動定量評価' 情報処理学会論文誌 論文誌ジャーナル Vol.50,No.12, 20091215, pp.3222-3232., 社団法人情報処理学会 *
JPN6015009140; 相澤 清晴: 'パーソナル写真コレクションと検索' 映像メディア学会誌 Vol.64,No.11, 20101101, pp.35-39., (社)映像情報メディア学会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102477338B1 (ko) * 2022-02-23 2022-12-14 주식회사 블랙탠저린 이미지를 이용한 얼굴 분위기 진단 플랫폼 제공 방법, 장치 및 프로그램

Also Published As

Publication number Publication date
MX345437B (es) 2017-01-31
CA2826177A1 (en) 2012-08-09
BR112013019907A2 (pt) 2016-10-11
CN103620590B (zh) 2018-10-09
AU2011358100A1 (en) 2013-09-05
CA2826177C (en) 2017-08-08
CN103620590A (zh) 2014-03-05
JP5857073B2 (ja) 2016-02-10
AU2011358100B2 (en) 2016-07-07
KR101649322B1 (ko) 2016-08-18
WO2012104830A1 (en) 2012-08-09
KR20140058409A (ko) 2014-05-14
MX2013008985A (es) 2014-02-27

Similar Documents

Publication Publication Date Title
JP5857073B2 (ja) 画像のテキスト化とテキストの画像化の関連性のためのシステム及び方法
US10515114B2 (en) Facial recognition with social network aiding
US7860347B2 (en) Image-based face search
US8897508B2 (en) Method and apparatus to incorporate automatic face recognition in digital image collections
US20220103505A1 (en) Social media influence of geographic locations
JP5383705B2 (ja) 個人的写真集合からの社会的関係の割出し
US8024359B2 (en) System and method for accessing electronic data via an image search engine
WO2016015437A1 (zh) 图片搜索库的生成及图片搜索方法、装置和设备
CN110325983A (zh) 图像检索装置和图像检索方法
CN110472057B (zh) 话题标签的生成方法及装置
KR102228873B1 (ko) 치안정보를 활용한 범죄인물 지식망 구축 시스템 및 그 방법
US20150039607A1 (en) Providing a summary presentation
KR101720685B1 (ko) 웹 데이터 기반 방송 콘텐츠 객체 식별 검증 장치 및 방법
US20180157668A1 (en) System and method for determining a potential match candidate based on a social linking graph
CN113239769A (zh) 一种人脸数据分类管理方法及系统
Gallagher et al. User-Assisted People Search in Consumer Image Collections

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5857073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250