JP2014506666A - 電界を燃焼容積に印加するシステム及び装置 - Google Patents

電界を燃焼容積に印加するシステム及び装置 Download PDF

Info

Publication number
JP2014506666A
JP2014506666A JP2013550460A JP2013550460A JP2014506666A JP 2014506666 A JP2014506666 A JP 2014506666A JP 2013550460 A JP2013550460 A JP 2013550460A JP 2013550460 A JP2013550460 A JP 2013550460A JP 2014506666 A JP2014506666 A JP 2014506666A
Authority
JP
Japan
Prior art keywords
electrode
electric field
combustion volume
waveform
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013550460A
Other languages
English (en)
Inventor
トーマス エス. ハートウィック、
デイビッド グッドソン、
リチェード エフ. ルトコフスキ、
ジェフ オスラー
クリストファー エー. ウィクロフ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clearsign Technologies Corp
Original Assignee
Clearsign Combustion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clearsign Combustion Corp filed Critical Clearsign Combustion Corp
Publication of JP2014506666A publication Critical patent/JP2014506666A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • F23C99/001Applying electric means or magnetism to combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q3/00Igniters using electrically-produced sparks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99005Combustion techniques using plasma gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

実施の形態に基づいて、燃焼容積の燃焼は、少なくとも2つの順次印加される非平行電界によって影響を受ける。実施の形態に基づいて、燃焼容積は、少なくとも3つの個々に変調可能な電極を備える。実施の形態に基づいて、燃焼容積用の電界印加装置は、危険を軽減又は取り除く安全装置を含む。

Description

電界は、火炎に印加することができる。火炎は、その挙動を変えることによって、例えばその発熱率を増加させることによって、反応することができる。
実施の形態に基づくシステムは、火炎の近傍又は中を通る複数の電界軸を備えていてもよい。
実施の形態に基づく2つより多い複数の電極は、火炎を通る又はその近傍に2つより多い複数の電界軸を選択的に形成することができる。実施の形態に基づく選択可能な電界軸の少なくとも1つは、選択可能な電界軸の他の少なくとも1つに対して、傾いていてもよく、平行又は逆平行でなくてもよい。
実施の形態に基づくコントローラは、燃焼容積内で電界配置を順次選択することができる。2つより多い複数の電極駆動装置は、燃焼容積内に連続した電界配置を駆動することができる。実施の形態に基づくコントローラは、ある周期率で連続した電界配置を駆動することもできる。
実施の形態に基づく複数の電界変調状態は、約120Hz以上の周期的な周波数で順次発生してもよい。実施の形態に基づく複数の電界変調状態は、約1kHz以上の変化の周波数で順次発生してもよい。
実施の形態に基づく燃焼容積の電界状態の変調周波数は、燃料供給量、空気流量、所望のエネルギ出力率又は他の所望の操作パラメータの関数として変えることができる。
実施の形態に基づくアルゴリズムを用いて、電界変調状態の1つ以上の順序の1つ以上の特性を決定することができる。アルゴリズムは、入力変数及び/又は検出変数の関数であってもよい。入力変数は、燃料供給量、空気流量、所望のエネルギ出力率及び/又は他の操作パラメータを含んでいてもよい。
実施の形態に基づく電界コントローラは、燃焼容積における連続した電界変調状態を、入力変数及び/又は検出変数の関数として決定するファジー論理回路を含んでいてもよい。入力変数は、燃料供給量、空気流量、所望のエネルギ出力率及び/又は他の操作パラメータを含んでいてもよい。
実施の形態に基づく関連システムは、方法の実施の形態を実現する回路及び/又はプログラミングを含むが、それらに限定されない。システム設計者は、好みに基づいて、ハードウェア、ソフトウェア及び/又はファームウェアを組み合わせることができる。
実施の形態に基づいて、時間的に変化する電界が印加される燃焼容量を示す図である。
実施の形態に基づいた、図1に対応する燃焼容積の第1の時刻における電界を示す図である。
実施の形態に基づいた、図1に対応する燃焼容積の第2の時刻における電界を示す図である。
実施の形態に基づいた、図1に対応する燃焼容積の第3の時刻における電界を示す図である。
実施の形態に基づいて、燃焼容量を横切って時間的に変化する電界を印加するシステムの構成を示すブロック図である。
実施の形態に基づいて、燃焼容積を横切って時間的に変化する電界を印加するシステムの構成を示すブロック図である。
実施の形態に基づいて、電極変調を制御するタイミングチャートである。
実施の形態に基づいて、電極変調を制御する波形を示す図である
実施の形態に基づいて、電極変調を制御する波形を示す図である。
以下、明細書の一部を構成する添付の図面を参照して、詳細に説明する。詳細な説明で明記しない限り、図面において、同様の記号は、一般的に同様の部品を表す。本発明は、詳細な説明、図面及び請求の範囲に記載した具体例に限定されるものではない。開示の精神又は範囲から逸脱することなく、他の実施の形態を用いることができ及び/又は、他の変更を行うことができる。
図1は、実施の形態に基づいて、時間的に変化する電界を燃焼容積103に印加するシステム101による燃焼容積103を示す図である。バーナノズル102は、火炎104を燃焼容積103内に維持する。例えば、燃焼容積103は、ボイラ、例えば水管ボイラ又は煙管ボイラ、温水タンク、燃焼加熱炉、オーブン、煙道、排気管、ガスコンロ又は同等なものの一部を形成することができる。
少なくとも3つの電極106、108、110は、燃焼容積103の近傍に又は中に配置され、電極に電圧信号を印加することにより、バーナノズル102によってその中に維持される火炎104の近傍の又はそれを貫通する電界を、燃焼容積103を横切って形成することができる。電極106、108、110は、対応するリード線112、114、116によってそれぞれ励起されてもよく、コントローラ及び/又は増幅器(図示せず)から電圧信号が供給されてもよい。
バーナノズル102は、簡単な中空円筒として示しているが、幾つかの他の実施の形態も考えることができる。バーナ102及び電極106、108、110は、それぞれの形状及び幾何学的関係で示しているが、他の幾何学的関係及び形状も考えることができる。例えば、電極106、108、110は、円筒形以外の形状にしてもよい。幾つかの実施の形態に基づいて、バーナノズル102は、電極の1つを形成するために、励起してもよい。幾つかの実施の形態に基づいて、複数のノズル102により、燃焼容積103内に複数の火炎104を維持してもよい。
実施の形態に基づいて、第1の複数の電極106、108、110は、少なくとも1つの火炎の近傍の又はそれを貫通する第2の複数の電界軸を、燃焼容積103を横切って維持することができる。実施例101に基づいて、1つの電界軸は、電極106と電極108間に形成することができる。他の電界軸は、電極108と電極110間に形成することができる。他の電界軸は、電極106と電極110間にも形成することができる。
用途に応じて、図1の具体例は、尺度を大幅に変えることができる。例えば、比較的小さなシステムでは、バーナ102の内径は、約1cmであってもよく、電極106、108、110間の距離は、約1.5cmであってもよい。例えば、幾分大きなシステムでは、バーナ102の内径は、約1.75inであってもよく、電極間の距離は、約3.25inであってもよい。バーナの大きさと電極間隔との間には、他の寸法及び比率が考えられる。
実施の形態に基づいて、アルゴリズムは、連続した電圧を電極106、108、110に供給することができる。アルゴリズムは、連続した略一定の電界状態を形成してもよく、あるいは連続した可変の電界状態を形成してもよく、利用できる電極の可変設定等を用いてもよい。様々な連続した電界状態を形成する様々なアルゴリズムが考えられるが、3つの具体的な電極106、108、110の簡単な連続した電界を図2A〜2Cに示す。
図2Aは、実施の形態に基づき、第1の時刻に、電極106と電極108間に少なくとも一瞬形成される公称電界204の配置202を示す図である。電界204は、電極106が正電位に維持され、電極108が負電位に維持されているように表されており、燃焼容積103内の電子及び他の負荷電化学種は、電極108から離れて電極106の方に流れる傾向がある。同様に、燃焼容積103内の正イオン及び他の正荷電化学種は、電極106から離れて電極108の方に流れる傾向がある。
燃焼容積103内の火炎104は、様々な荷電及び非荷電化学種を含むことができる。例えば、電界に反応する可能性がある荷電化学種は、電子、陽子、負荷電イオン、正荷電イオン、負荷電粒子、正荷電粒子、負荷電燃料蒸気、正荷電燃料蒸気、負荷電燃焼生成物、正荷電燃焼生成物等を含むことができる。このような荷電化学種は、様々な位置に、燃焼プロセスの様々な時点で存在することができる。さらに、燃焼容積103及び/又は火炎は、非電荷燃焼生成物、不燃焼燃料及び空気を含む可能性がある。火炎内に通常存在する荷電化学種は、一般的に、火炎を高導電性にする。火炎104の外側の燃焼容積103の領域は、比較的非導電性である可能性がある。したがって、火炎104の存在下において、公称電界204は、火炎104内の負荷電化学種を、電極106の近傍の火炎104の容積の方に引き付け、火炎104内の正荷電化学種を、電極108の近傍の火炎104の容積の方に引き付けるように表すことができる。
他の影響を無視すると、正化学種を、電極108の近傍の火炎104の部分の方に引き付けることは、電極108の近傍の火炎104の質量密度を高めるのに役立つことができる。また、電界を火炎に印加することにより、燃焼率及び完全燃焼の可能性を高めることが知られている。
図2Bは、実施の形態に基づき、第2の時刻に、電極108と電極110間に少なくとも一瞬形成される公称電界208の配置206を示す図である。電界208は、電極108が正電位に維持され、電極110が負電位に維持されているように表されており、燃焼容積103内の負荷電化学種は、電極110から離れて電極108の方に流れる傾向があり、燃焼容積103内の正化学種は、電極108から離れて電極110の方に流れる傾向がある。
図2Aの説明と同様に、燃焼容積103内の火炎104内の正化学種は、電極110の近傍の火炎の容積の方に引き付けられることになり、火炎204内の負荷電化学種は、電極108の近傍の火炎の容積の方に引き付けられることになる。これは、電極108及び/又は電極110の近傍の火炎104の質量密度を高めるのに役立つことができる。
図2Aの電界配置202を適用した後、直ちに図2Bの電界配置206を適用した場合、高い質量密度の正荷電化学種は、電極108の近傍の火炎104の領域から、電極110の近傍の火炎104の領域に移動し、火炎104内の少なくとも正荷電化学種は、燃焼の加速を伴って、時計回りの回転を起こすのに役立つことができる。正化学種の相対的存在率、相対的質量及び/又は相対的ドリフト速度が、負化学種のそれよりも高い場合、電界配置202、206を比較的速く遷移させることは、火炎104の時計回りの方向の正味の回転又は渦を起こすのに役立つことができる。あるいは、負化学種の相対的存在率、相対的質量及び/又は相対的ドリフト速度が、正化学種のそれよりも高い場合、電界配置202、206を比較的速く遷移させることは、火炎104の反時計回りの方向の正味の回転又は渦を起こすのに役立つことができる。
図2Cは、実施の形態に基づき、第3の時刻に、電極110と電極106間に少なくとも一瞬形成される電界212の配置210を示す図である。電界212は、電極110が正電位に維持され、電極106が負電位に維持されているように表されている。それに応じて、燃焼容積103の負荷電化学種は、電極110から離れて電極108の方に流れる傾向があり、燃焼容積103の正化学種は、電極108から離れて電極110の方に流れる傾向がある。
図2A、2Bの説明と同様に、燃焼容積103内の火炎104内の正化学種は、電極106の近傍の火炎の容積の方に引き付けられることになり、火炎204内の負荷電化学種は、電極110の近傍の火炎の容積の方に引き付けられることになる。これは、電極106及び/又は電極110の近傍の火炎104の質量密度を、正及び負の荷電化学種の相対的存在率、質量及びドリフト速度に従い、高めるのに役立つことができる。図2Bの電界配置206を適用した後、直ちに図2Cの電界配置210を適用した場合、高い質量密度は、電極110の近傍の火炎104の領域から、電極106の近傍の火炎の領域に移動し、火炎104内の正化学種は、燃焼の加速を伴って、時計回りの回転を起こし、負化学種は、反時計回りの回転を起こすのに役立つことができる。正及び負の化学種の相対的質量、相対的存在率及び相対的ドリフト速度に従い、これは、時計回り又は反時計回りの渦を起こすのに役立つことができる。
実施の形態に基づいて、例えば化学種の場反発運動が正荷電化学種によって支配されているとき、公称電界204、208、212の連続した反復印加は、火炎104が火炎内に時計回りの渦、すなわちボルテックス効果を発生するのを促進するのに役立つことができる。さらに、このような連続した電界印加は、相補的反応物質の常流に対して、反応物質を露出するのに役立つことができ、反応物質間の衝突確率を増加させ、反応速度論に対する拡散に関連した限界を下げる。拡散限界を下げることは、反応速度を増加させるのに役立つことができ、さらに、発熱出力を増加させ、したがって、反応速度を更に増加させる。温度を上げ、反応速度を高めることは、炎色反応をより完全なものに推進するのに役立つことができ、燃焼容積103から出る他の一部の反応生成物、例えば一酸化炭素(CO)、未燃焼燃料等に対する二酸化炭素(C0)の相対的割合を高める。したがって、最終的な反応進行度をより高めることにより、熱出力を高め、及び/又は所定の熱出力に対する燃料消費量を低減することができる。
他の実施の形態に基づいて、例えば化学種の場反発運動が負荷電化学種によって支配されているとき、公称電界204、208、212の連続した反復印加は、火炎104が火炎内に反時計回りの渦、すなわちボルテックス効果を発生するのを促進するのに役立つことができる。
図1及び図2A〜2Cに示す電極配置及び電界の順序は、3つの電極106、108、110及び3つの電界軸204、208、212の比較的簡単な配置を用いた実施の形態として示しているが、幾つかの実施の形態及び幾つかの応用に対しては、他の配置が好ましい場合もある。例えば、3つ以上の電極間に、電界が同時に存在してもよい。電極の数は、大幅に増やしてもよい。電界切換のタイミングは、変えることができ、一定でない間隔としてもよく、可変電位としてもよく、フィードバック制御等によって通知されてもよい。電極の配置は、例えば燃焼室の壁に組み込むことによって、燃焼室の壁の後に配置すること等によって、大幅に変更することができる。さらにまた、例えばバーナノズルに対して幾つかの電極を近くに、他の電極を遠くに配置することによって、電極は、電界の角度が複数の面内で変わるように配置することもできる。他の実施の形態において、所定の電極は、1つの状態(例えば正又は負)と無電位とに限定してもよい。他の実施の形態において、全ての電極は、1つの状態(例えば正又は負)と無電位とに限定してもよい。
図3は、実施の形態に基づいて、燃焼容積を横切って時間的に変化する電界を印加するシステム301の構成を示すブロック図である。電子コントローラ302は、複数の電極106、108、110を駆動する複数の時間的に変化する波形を発生する。波形は、コントローラ302の一部を構成するシーケンサ(図示せず)によって、少なくとも部分的に形成されてもよい。シーケンサは、ソフトウェアアルゴリズム、状態機械等から構成することができ、出力ノード306に接続されている。波形は、1つ以上の信号線306によって増幅器304に送られる。増幅器304は、波形を、それぞれの電極リード線112、114、116によって電極106、108、110を励起するそれぞれの電圧に増幅する。
実施の形態に基づいて、波形は、コントローラ302によって、一定の周波数で発生してもよい。実施の形態に基づいて、一定の周波数は、固定されていてもよく、あるいは選択可能であってもよい。他の実施の形態に基づいて、波形は、一定でない周波数で発生してもよい。例えば、一定でない周期又は周期の分割により、スペクトラム拡散場順序を形成するのを促進することができ、共振条件又は他の干渉問題を避けるのに役立つことができる。
具体的な実施の形態に基づいて、電極駆動波形は、約1kHzで発生してもよい。他の実施の形態に基づいて、電極駆動波形は、約10kHzに対応する周期で発生してもよい。他の実施の形態に基づいて、電極駆動波形は、約20kHzで発生してもよい。具体的な実施の形態に基づいて、増幅器304は、電極106、108、110を約900Vで駆動してもよい。他の実施の形態に基づいて、増幅器304は、電極106、108、110を約+450Vと約−450Vで駆動してもよい。どこかで述べたように、周期の一部において、1つ以上の電極106、108、110に対する回路をオープンにして、その電圧を「フローティング」にしてもよい。
幾つかの実施の形態に基づいて、電極106、108、110の電界周波数及び/又は電圧を設定又は変更し、及び/又はセンサフィードバック、例えば火炎関連、電界関連、又は他のパラメータの安全保護装置又は測定装置を備えることが望ましい場合がある。図4は、少なくとも1つの燃焼又は電界のパラメータ及び/又は少なくとも1つのセンサ入力を受信又は送信するシステム401の構成を示すブロック図である。他の実施の形態に基づいて、システム401は、電極106、108、110間に燃焼容積を横切って、時間的に変化する電界を、少なくとも1つの燃焼パラメータ及び/又は少なくとも1つのセンサ入力の関数として応答可能に印加することができる。例えば、電界状態及び/又は電極電圧の変調周波数は、燃料供給量、所望のエネルギ出力率又は他の所望の操作パラメータの関数として変えることができる。
コントローラ302は、例えばデータ通信バス406によって、パラメータ通信モジュール402及びセンサ入力モジュール404のうちの1つ以上に接続することができる。パラメータ通信モジュール402は、コントローラ302によって用いられるソフトウェア、ファームウェア等を更新する機能を備えていてもよい。そのような更新は、ルックアップテーブル及び/又はアルゴリズムの更新を含んでいてもよく、例えば、前のシステム測定等によって学習されたモデリングによって決定することができる。さらに、パラメータ通信モジュール402を用いて、略リアルタイムの動作パラメータをコントローラ302に通信することができる。さらに、パラメータ通信モジュール402を用いて、動作状態、故障状態、ファームウェア又はソフトウェアのバージョン、センサ値等をコントローラ302から外部システム(図示せず)に通信することもできる。
センサ入力モジュール404は、検出値を、データ通信バス406を介してコントローラ302に供給することができる。センサ入力モジュール404から供給された検出値は、外部システムによって検出されない、したがって、パラメータ通信モジュール402によって利用できないパラメータを含んでいてもよい。あるいは、センサ入力モジュール404から供給される検出値は、また、パラメータ通信モジュール402によって外部システムから報告されるパラメータを含んでいてもよい。
パラメータ、例えば燃料流量、煙道ガス温度、煙道ガス光学濃度、燃焼容積温度、燃焼容積輝度、燃焼容積イオン化、1つ以上の電極の近傍のイオン化、燃焼容積オープン、燃焼容積メンテナンスロックアウト、電気故障等は、パラメータ通信モジュール402、センサ入力モジュール404から、及び/又は増幅器304を通してフィードバックにより、コントローラ302に通信することができる。
電極106、108、110に対する電圧駆動は、安全条件状態が生じた場合、及び/又はパラメータ通信モジュール402を介して手動運転停止コマンドが受信された場合、停止することができる。同様に、システム401の故障状態は、外部システムに通信することができ、外部システムは、燃料の停止を強制し、さもなければ安全な状態に入る。
コントローラは、電極106、108、110を駆動する波形を、受信パラメータ、フィードバック及び検出値(まとめて「パラメータ」という)に応じて、決定することができる。例えば、パラメータは、任意に、組み合わせられ、比較され、微分され、積分等されてもよい。パラメータ又はパラメータの組合せは、制御アルゴリズム、例えばアルゴリズム計算、テーブルルックアップ、比例積分微分(PID)制御アルゴリズム、ファジー論理又は波形パラメータを決定する他の機構に入力することができる。決定された波形パラメータは、例えば、電極106、108、110の選択、電極106、108、110の順序、波形の周波数又は周期、電極106、108、110の電圧等を含んでいてもよい。
パラメータは、例えば、燃焼容積からの熱出力を最大にするような、燃焼容積の反応進行度を最大にするような、燃焼容積からの煙道ガスの浄化を最大にするような、燃焼容積からの汚染物質の排出を最少にするような、燃焼容積の温度を最高にするような、燃焼容積のターゲット温度を満たすような、燃焼容積内の火炎からの輝度出力を最小にするような、燃焼容積内の火炎の所望のフリッカを達成するような、燃焼容積内の火炎からの輝度出力を最大にするような、燃費効率を最大にするような、出力を最大にするような、メンテナンス問題を補償するような、システム寿命を最大にするような、燃料のバラツキを補償するような、燃料源を補償するような等の反応変数の最適化に基づいて、決定することができる。
実施の形態に基づいて、コントローラ302によって生成された波形は、1つ以上の専用波形伝送ノード306によって、増幅器304に送信することができる。あるいは、波形は、データバス406によって送信されてもよい。増幅器304は、専用のノード306によって、状態、同期、故障又は他のフィードバックを供給することができ、あるいは、状態を、データバス406によって、コントローラ302及び/又はパラメータ通信モジュール402に通信してもよい。
図3、4のコントローラ302と増幅器304は、個別モジュールとして示しているが、それらは、統合することもできる。同様に、パラメータ通信モジュール402及び/又はセンサ入力モジュール404は、コントローラ302及び/又は増幅器304と統合されてもよい。
図5は、波形の具体的な組をタイミングチャート501の形で示し、実施の形態に基づいて、電極106、108、110の変調をそれぞれ制御する波形502、504、506を示している。それぞれの波形502、504、506は、時刻を示す水平軸に沿って、相互に記載されて示され、それぞれは高電圧V、接地状態0、低電圧V間を変化するように示されている。実施の形態に基づいて、波形502、504、506は、電極106、108、110に供給される通電パターンにそれぞれ対応している。
電圧V、0、Vは、コントローラ302から1つ以上の増幅器駆動線306によって、増幅器304に供給される比較的低い電圧を表してもよい。同様に、電圧V、0、Vは、増幅器304からそれぞれの電極駆動線112、114、116によって、それぞれの電極106、108、110に供給される比較的高い電圧を表してもよい。波形502、504、506は、周期Pを有する周期的パターンで繰り返されてもよい。周期Pの第1の期間508において、波形502は電極106をハイに駆動し、一方、波形504は電極108をローに駆動し、そして、波形506は電極110を中間電圧に駆動する。あるいは、波形506の期間508(及び他の波形502、504の対応する中間状態)は、電極電位がフローティングするように、電極駆動をオープンにすることを表してもよい。
波形の期間508は、図2Aに示す電界状態202に対応する。すなわち、Vが電極106に印加され、一方、Vが電極108に印加されて、電極106と電極108間に理想的な電界204が形成される。電極110は、それと他の電極間の電界は減少され、あるいは実質的に発生されないように、フローティングになるのを許されるか、あるいは中間の電位を維持するかのどちらかである。
周期Pの第2の期間510において、波形502は、電極106がオープン状態に維持されて、「フローティング」となり、あるいは中間電圧に駆動されることを表し、一方、波形504は、電極108をハイ、すなわちVに駆動し、波形506は、電極110を低電圧Vに駆動する。波形の期間510は、図2Bに示す電界状態206に対応する。すなわち、Vが電極108に印加され、一方、Vが電極110に印加されて、電極108と電極110間に理想的な電界208が形成される。電極106は、それと他の電極間の電界は減少され、あるいは実質的に発生されないように、フローティングになるのを許されるか、あるいは中間の電位を維持するかのどちらかである。
周期Pの第3の期間512において、波形504は、電極108がオープン状態に維持されて、「フローティング」となり、あるいは中間電圧に駆動されることを表し、一方、波形506は、電極110をハイ、すなわちVに駆動し、波形502は、電極106を低電圧Vに駆動する。波形の期間512は、図2Bに示す電界状態210に対応する。すなわち、Vは電極110に印加され、一方、Vが電極106に印加されて、電極110と電極106間に理想的な電界212が形成される。電極108は、それと他の電極間の電界は減少され、あるいは実質的に発生されないように、フローティングになるのを許されるか、あるいは中間電圧を維持するかのどちらかである。次の期間508に進み、周期的パターンが繰り返される。
タイミングチャート501の波形502、504、506は、周期Pのそれぞれの期間508、510、512が長さで略等しく表されているが、周期は、例えば共振挙動を低減するために、燃焼容積103の形状の変動に対応するためために、その他のために、多少変化あるいは調整することができる。さらに又はあるいは、周期Pは、長さにおいて変化されてもよい。同様に、電圧レベルV、0、Vは互いに略等しく示されているが、また、それらは、電極毎、周期の期間毎、及び/又は周期毎に異なっていてもよい。
図5の波形501に戻って、周期の期間508における第1の時刻において、波形502に対応する電極と波形504に対応する電極間に電位差及び対応する電界が存在することが確認できる。これは、波形502が対応する電極を比較的高い電位に駆動し、波形504が対応する電極を比較的低い電位に駆動したからである。同時に、波形506が対応する電極の電位を中間の電位に駆動し、あるいは電極をフローティングにするために回路をオープンにしたので、波形502に対応する電極と波形506に対応する電極間の電界は減少され、あるいは実質的に形成されなくなる。同様に、周期の期間512に対応する第2の時刻において、波形502に対応する電極と波形506に対応する電極間に電位差及び対応する電界が存在するが、波形502に対応する電極と波形504に対応する電極間の電位差又は電界は減少され、あるいは実質的に存在しなくなる。
波形502、504、506が理想的な矩形波として示されているが、波形502、504、506の形状は様々であってもよく、例えば、前縁及び後縁は、電圧オーバーシュート又はアンダーシュートを示してもよく、前縁及び後縁は、例えば任意に加速を有する略一定のdl/dt回路を適用することによって、緩やかに変化してもよく、あるいは、波形は、他の方法で、例えばサイン関数等を適用することによって、変更されてもよい。
図6は、他の実施の形態に基づいて、電極変調を制御する波形602、604、606を示すタイミングチャート601である。波形602、604、606は、例えば、図5の対応する波形502、504、506から、矩形波をR/Cフィルタを通すことによって、例えば固有インピーダンスを通すことによって、生成することができる。あるいは、波形602、604、606は、高調波サイン/関数発生器等によって、デジタル的に合成することもできる。
周期の期間508、510、512が正確に図5の対応する期間に対応しても、あるいは対応しなくてもよいが、それらは、通常、図2A〜2Cに示すような状態に対応するように電極106、108、110を駆動するとみなすことができる。図6に示すように、周期Pは、ゼロ交差から適切に決定することができ、あるいは図5に示す時刻に対応させて計算することもできる。
理解されるように、波形、例えば波形602、604、606が対応する電極106、108、110を駆動するとき、図2A〜2Cの理想的な電界204、208、212は、波形、例えば図5の波形502、504、506を用いたときと同じくらい厳密に、実際の電界を表すことができない。例えば、周期の期間508の始まりにおいて、波形602は、中間電圧0から高電圧Vに立ち上がり、一方、波形604は、中間電圧0から低電圧Vに立ち下がり、そして、波形606は、高電圧Vから中間電圧0に向かって立ち下がる。したがって、図2Cの電界212は、周期の期間508の始まりにおいて、図2Aの電界204に「フェードする」。周期の期間508の終わりにおいて、波形604は、高電圧に向かって立ち上がり、一方、波形606は、下がり続け、波形602は、その最大値からその降下を開始する。これは、電界204を配置206に向かってフェードする傾向があり、一方、電極106と電極110間の電位のために、小さな逆符号の電界212が現れる。
図6の波形601に戻って、第1の時刻608において、波形602に対応する電極と波形604に対応する電極間に電位差及び対応する電界が存在することが確認できる。これは、波形602が対応する電極を比較的高い電位に駆動し、波形604が対応する電極を比較的低い電位に駆動したからである。同時に、波形602と波形606が一瞬同じ電位になるので、波形602に対応する電極と波形606に対応する電極間に電界は実質的に形成されない。同様に、第2の時刻610において、波形602に対応する電極と波形606に対応する電極間に電位差及び対応する電界が存在するが、波形602に対応する電極と波形604に対応する電極間に電位差又は電界は存在しない。
図7は、他の実施の形態に基づいて、それぞれの電極106、108、110の変調を制御する波形702、704、706を示すタイミングチャート701である。波形702は、期間708において、電極106での比較的高い電圧に対応する比較的高い電圧Vで、周期Pを開始する。また、期間708において、波形704は、電極108での比較的低い電圧に対応する比較的低い電圧Vで、周期Pを開始し、波形706は、電極110でのオープン状態に対応している。波形の期間708は、第1のパルス期間と称することもできる。
第1のパルス期間708において駆動された燃焼容積103の電界配置は、図2Aに示す配置202に対応することになる。前で説明したように、配置202の公称電界204は、正荷電化学種を電極108の方に引き付けて、負荷電化学種を電極106の方に引き付ける傾向がある。
第1のパルス期間708の後、波形702、704は、それぞれの電極106、108をオープンに駆動し、一方、波形706は、電極110におけるオープン回路状態を維持する。周期Pの期間710において、電極106、108、110は、オープンに維持され、したがって、火炎又は燃焼容積に電界は実質的に印加されない。しかしながら、前の第1のパルス期間708中に荷電化学種に与えられた慣性が、非パルス期間710中にも残っている可能性があり、したがって、荷電化学種は動き続けることができる。このような運動は、第1のパルス期間708の終わりに存在していた軌道に名目上沿うことになり、その後の他の粒子との衝突及び交互作用によって変更される。
周期Pの第1の非パルス期間710の終わりにおいて、第2のパルス期間712が開始する。第2のパルス期間712中、波形702は、オープン電気状態を電極106に与え、一方、波形704は、比較的高い電圧に向かい、電極108を、対応する比較的高い電圧に駆動し、波形706は、比較的低い電圧に向かい、電極110を、対応する比較的低い電圧に駆動する。したがって、第2のパルス期間712中、図2Bの電界配置206が生じる。これに、再び波形の非パルス期間710が続き、この期間中に、慣性効果は、第2のパルス期間712の終わりに存在していた荷電化学種の速度及び軌道を維持する傾向があり、その後の他の粒子との衝突及び交互作用によって変更される。
第2の非パルス期間710の終わりにおいて、第3のパルス期間714が開始し、例えば、図2Cに示す電界配置210と同様の電界配置を形成することができる。第3のパルス期間714が終わった後、システムは、非パルス期間710に再び入ることになる。これは、複数の周期に亘って続けられることになり、例えば周期Pの期間708、710、712、710、714、710等の擬似定常状態を繰り返す。
一実施の形態に基づいて、パルス期間と非パルス期間は、図に示すように、25%のデューティサイクルのパルス列を形成することになり、約25%の時間、2つの電極間に電界が発生され、他の75%の時間、電界は印加されない。デューティサイクルは、燃焼容積103内の条件に基づいて、変えることができ、例えば図3、4に示すように、フィードバック回路及び/又はパラメータ入力回路によって決定することができる。
他の実施の形態に基づいて、パルス期間708、712、714は、それぞれ約10μs秒の長さであってもよく、周期Pは、約1kHzの周波数であってもよく、すなわち1msの周期に等しい。したがって、非パルス期間は、それぞれ約323.333μsであってもよい。
特定の荷電化学種の相対的電荷対質量比は、断続的なパルス期間708、712、714及び介在する非パルス期間710に対するその応答に影響を及ぼす可能性がある。デューティサイクルは、燃焼容積103内の1つ以上の荷電化学種の所望の運動を達成するように、変更することができる。実施の形態に基づいて、正荷電化学種を時計回りに輸送するように最適化された波形702、704、706は、他の正荷電化学種又は負荷電化学種を時計回り又は反時計回りに輸送するように最適化された他の波形(図示せず)に重畳して、化学種を所望のそれぞれの経路に異ならせる転送を達成する第3の組の波形(図示せず)を生成することができる。
例えば、重い正化学種は、選択経路に沿って移動するように比較的長い周期を有する比較的高い50%のデューティサイクルを必要とする可能性がある。軽い負化学種は、選択経路に沿って移動するように比較的短い周期を有する比較的低いデューティサイクルを必要とする可能性がある。2つの波形は、正化学種と負化学種を互いに平行(時計回り又は反時計回り)に、あるいは逆平行(時計回り及び反時計回り)に駆動するように、重畳することができる。
上述の図に示す電極106、108、110は、任意の2つの電極を結ぶ直線が火炎の容積を貫通するように配置されているが、他の配置も本発明の範囲内とすることができる。上述の実施の形態に示す電極106、108、110の数は3つであるが、3つより大きい他の数も本発明の範囲内とすることができる。電極106、108、110は、バーナノズルの長軸に平行に配置された円柱導体として示されているが、他の配置も、本発明の範囲内とすることができる。
例えば、他の実施の形態において、複数の電極は、支持される火炎104に対応する立方体の角に実質的に配置され、立方体の中心に交差する垂直軸を有する有限の大きさの平面を含む。他の実施の形態(図示せず)において、電極は、立方体の面の中心、測地球の面の角又は中心等に配置された表面又は形象的な点を含んでいてもよい。
当業者には明らかなように、上述の特定の具体的な処理及び/又は装置及び/又は技術は、明細書のどこかで、例えば明細書と共に出願された請求の範囲及び/又は本願の他の部分で教示されたより汎用的な処理及び/又は装置及び/又は技術を代表している。
明細書において様々な特徴及び実施の形態を開示したが、他の特徴及び実施の形態が考えられる。明細書に開示した様々な特徴及び実施の形態は、説明の目的のためであって、以下の請求の範囲によって開示する真の範囲及び精神を限定するものではない。

Claims (45)

  1. 燃焼容積の近傍に配置された少なくとも3つの電極と、
    前記少なくとも3つの電極のそれぞれをそれぞれの波形によって駆動して、前記燃焼容積を横切って変化する電界軸を周期的に発生するコントローラとを含む装置。
  2. 前記燃焼容積内に火炎を支持するバーナを更に含む請求項1記載の装置。
  3. 前記バーナは、前記電極の1つである請求項2記載の装置。
  4. 前記少なくとも3つの電極は、前記燃焼容積内に配置されている請求項1記載の装置。
  5. 前記少なくとも3つの電極は、該電極のそれぞれの対間で選択的に電界を発生する請求項1記載の装置。
  6. 前記少なくとも3つの電極は、該電極のそれぞれの対間に軸に沿った、かつ前記燃焼容積内の火炎を貫通する電界を選択的に発生する請求項1記載の装置。
  7. 前記コントローラは、前記電極の対応する1つにそれぞれ接続され、時間的に変化する電圧を供給する少なくとも3つの駆動装置を含む請求項1記載の装置。
  8. 前記コントローラは、前記電極を駆動して、前記燃焼室に配置された火炎を横切る回転電界を発生する請求項1記載の装置。
  9. 前記コントローラに接続され、燃焼室特性に対応するデータ又は信号を該コントローラに供給するパラメータ通信モジュール又はセンサモジュールを更に含む請求項1記載の装置。
  10. 前記燃焼室特性は、燃料流量、煙道ガス温度、煙道ガス光学濃度、燃焼容積温度、燃焼容積輝度、燃焼容積イオン化、1つ以上の電極の近傍のイオン化、燃焼容積オープン、燃焼容積メンテナンスロックアウト、及び電気事故を含むグループから選択される少なくとも1つを含む請求項9記載の装置。
  11. 安全条件、手動運転停止コマンド、燃焼容積オープン状態、燃焼容積メンテナンスロックアウト状態、又は電気事故を含むグループのうちの1つ以上に対応するデータ又は信号が前記コントローラによって受信された場合、該コントローラは、前記電極に対する電圧駆動を停止する請求項9記載の装置。
  12. 安全条件、手動運転停止コマンド、燃焼容積オープン状態、燃焼容積メンテナンスロックアウト状態、又は電気事故を含むグループのうちの1つ以上に対応するデータ又は信号が前記コントローラによって受信された場合、該コントローラは、故障状態を外部システムに送信する請求項9記載の装置。
  13. 前記コントローラは、前記データ又は信号に応じて、それぞれの波形に対応する1つ以上のパラメータを決定する請求項9記載の装置。
  14. 前記コントローラは、前記データ又は信号の値の組合せ、該データ又は信号の値の比較、該データ又は信号の値の微分、該データ又は信号の値の積分、該データ又は信号の値に応じたアルゴリズム計算の実行、該データ又は信号に対応するテーブルルックアップの実行、該データ又は信号を用いた比例積分微分(PID)制御アルゴリズムの実行、及び該データ又は信号を入力として用いたファジー論理の実行を含むグループから選択される少なくとも1つを用いて、前記1つ以上のパラメータを決定請求項13記載の装置。
  15. 前記1つ以上のパラメータは、電極の選択、電極の順序、波形の周波数又は周期、波形のデューティサイクル、及び電極電圧を含むグループから選択される1つ以上を含む請求項13記載の装置。
  16. 前記1つ以上のパラメータは、煙道ガスの浄化、燃費効率、出力、メンテナンス問題の補償、システム寿命の最大化、燃料のバラツキの補償、及び燃料源の補償を含むグループから選択される少なくとも1つの基準に応じて、選択される請求項13記載の装置。
  17. 第1の変調時刻に、燃焼容積内の第1の電極と第2の電極間に少なくとも1つの第1の電界を形成し、
    第2の変調時刻に、前記燃焼容積内の前記第1の電極と第3の電極間に少なくとも1つの第2の電界を形成する方法。
  18. 前記第1、第2及び第3の電極の1つは、バーナからなる請求項17記載の方法。
  19. 前記少なくとも1つの第1の電界及び少なくとも1つの第2の電界を形成することは、反復及び周期的に実行される請求項17記載の方法。
  20. 前記周期は、略一定である請求項19記載の方法。
  21. 前記周期は、変化する請求項19記載の方法。
  22. 前記周期は、約200μs以下である請求項19記載の方法。
  23. 前記周期は、約70μs以下である請求項22記載の方法。
  24. さらに、
    前記第1及び第2の電界の反復及び周期的な形成に対応する1つ以上のパラメータを選択する請求項19記載の方法。
  25. 前記1つ以上のパラメータは、電極電圧、電極選択、前記反復及び周期的な電界成形の周期、前記反復及び周期的な電界成形の周波数、及び区分期間と比較した電界形成のデューティサイクルのうちの少なくとも1つを含む請求項24記載の方法。
  26. 前記1つ以上のパラメータは、前記燃焼容積からの熱出力を最大にすること、該燃焼容積の反応進行度を最大にすること、該燃焼容積からの煙道ガスの浄化を最大にすること、該燃焼容積からの汚染物質の排出を最少にすること、該燃焼容積の温度を最高にすること、該燃焼容積のターゲット温度を満たすこと、該燃焼容積内の火炎からの輝度出力を最小にすること、該燃焼容積内の火炎の所望のフリッカを達成すること、該燃焼容積内の火炎からの輝度出力を最大にすること、燃費効率を最大にすること、出力を最大にすること、メンテナンス問題を補償すること、システム寿命を最大にすること、燃料のバラツキを補償すること、燃料源を補償すること、共振挙動を最小にすること、及び該燃焼容積の形状の変動に対応することを含むグループから選択される少なくとも1つに基づいて、選択される請求項24記載の方法。
  27. さらに、
    少なくとも2つの入力パラメータから、該入力パラメータの組合せ、該入力パラメータの比較、該入力パラメータの微分、該入力パラメータの積分、アルゴリズム計算の実行、ルックアップテーブルの実行、比例積分微分(PID)制御アルゴリズムの実行、及びファジー論理の実行を含むグループから選択される少なくとも1つを用いて、前記周期及び電界強度のうちの少なくも1つを計算する請求項19記載の方法。
  28. 前記少なくとも1つの第2の電界は、前記第1の電極と前記第3の電極間に形成され、一方、該第1の電極と前記第2の電極間の電界は、減少され、あるいは実質的に形成されなくなる請求項17記載の方法。
  29. 前記少なくとも1つの第1の電界と前記少なくとも1つの第2の電界は、互いに0°又は180°以外の1つ以上の角度である請求項17記載の方法。
  30. さらに、
    第3の変調時刻に、前記第2の電極と前記第3の電極間に少なくとも1つの第3の電界を形成する請求項17記載の方法。
  31. 前記第1、第2又は第3の電界のいずれも、該第1、第2及び第3の電界のうちの任意の他に対して平行又は逆平行でない請求項29記載の方法。
  32. 前記燃焼容積は、略連続して燃焼する火炎を含む請求項17記載の方法。
  33. 前記第1及び第2の電界は、前記火炎を少なくとも部分的に貫通するように配置される請求項31記載の方法。
  34. 前記第1及び第2の電界は、前記火炎によって発生されたイオン化学種によって占められる容積を貫通する請求項31記載の方法。
  35. 燃焼容積内の電界を制御する装置において、
    バーナの近傍の少なくとも1つの電極用の電圧変調パターンに対応する少なくとも1つの出力端子に変調波形を出力し、少なくとも1つの第2の端子で安全信号を受信する電子コントローラと、
    前記少なくとも1つの第2の端子上の条件に応じて、前記出力された変調波形を安全な状態に駆動する前記電子コントローラ内の安全回路とを含む装置。
  36. 前記安全な状態は、前記少なくとも1つの第2の端子上の接地電圧に実質的に対応する請求項34記載の装置。
  37. 前記少なくとも1つの出力端子は、低電圧変調信号を増幅器に搬送する請求項34記載の装置。
  38. 前記少なくとも1つの出力端子は、増幅器から高電圧変調信号を搬送する請求項34記載の装置。
  39. さらに、
    前記少なくとも1つの第2の端子に接続され、人間が前記少なくとも1つの電極上の電圧に触れてもよいときを検出する回路を含む請求項34記載の装置。
  40. 前記コントローラは、前記安全回路が起動されたときに、故障信号を監視システムに更に送信する請求項34記載の装置。
  41. 前記コントローラは、前記変調波形を駆動し、前記安全信号を受信する状態機械を更に含む請求項34記載の装置。
  42. 前記安全回路は、コンピュータインストラクションを実行するマイクロコンピュータの少なくとも一部を含む請求項34記載の装置。
  43. 前記少なくとも1つの出力端子及び対応する少なくとも1つの電極は、3つ以上の出力端子及び対応する3つ以上の電極を含む請求項34記載の装置。
  44. 前記電子コントローラは、
    前記燃焼容積内の燃焼の状態に対応する検出値を受信する1つ以上の信号端子、データ端子、又は信号及びデータ端子と、
    前記検出値に応じて、波形に対応する1つ以上のパラメータを決定する波形論理回路とを更に含む請求項34記載の装置。
  45. 前記電子コントローラは、
    入力パラメータを受信する1つ以上の信号端子、データ端子、又は信号及びデータ端子と、
    前記入力パラメータに応じて、波形に対応する1つ以上のパラメータを決定する波形論理回路とを更に含む請求項34記載の装置。
JP2013550460A 2011-01-24 2011-01-24 電界を燃焼容積に印加するシステム及び装置 Pending JP2014506666A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/022269 WO2012102697A1 (en) 2011-01-24 2011-01-24 System and apparatus for applying an electric field to a combustion volume

Publications (1)

Publication Number Publication Date
JP2014506666A true JP2014506666A (ja) 2014-03-17

Family

ID=46581063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013550460A Pending JP2014506666A (ja) 2011-01-24 2011-01-24 電界を燃焼容積に印加するシステム及び装置

Country Status (6)

Country Link
EP (1) EP2668447B1 (ja)
JP (1) JP2014506666A (ja)
KR (1) KR20140066660A (ja)
CN (1) CN103443548B (ja)
CA (1) CA2825585A1 (ja)
WO (1) WO2012102697A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738460A1 (en) * 2012-11-29 2014-06-04 Siemens Aktiengesellschaft Combustion system of a flow engine
WO2015103436A1 (en) * 2013-12-31 2015-07-09 Clearsign Combustion Corporation Method and apparatus for extending flammability limits in a combustion reaction

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515681A (en) * 1993-05-26 1996-05-14 Simmonds Precision Engine Systems Commonly housed electrostatic fuel atomizer and igniter apparatus for combustors
US20040185397A1 (en) * 2001-08-01 2004-09-23 Branston David Walter Method and device for influencing combustion processes involving combustibles
US20050170301A1 (en) * 2004-01-29 2005-08-04 Siemens Westinghouse Power Corporation Electric flame control using corona discharge enhancement
JP2006037727A (ja) * 2004-07-22 2006-02-09 Denso Corp 内燃機関の制御装置
JP2006523297A (ja) * 2003-04-10 2006-10-12 ウッドワード・ガバナー・カンパニー 連続燃焼システムにおける不安定燃焼を検出するための方法および装置
US7559234B1 (en) * 2004-11-24 2009-07-14 The United States Of America As Represented By The United States Department Of Energy Real-time combustion control and diagnostics sensor-pressure oscillation monitor
WO2010011838A1 (en) * 2008-07-23 2010-01-28 Borgwarner, Inc. Igniting combustible mixtures

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1013015A (en) * 1962-08-16 1965-12-15 Axel Bertilsson Kjellstrom Methods and arrangements for the use with combustion processes
US3416870A (en) * 1965-11-01 1968-12-17 Exxon Research Engineering Co Apparatus for the application of an a.c. electrostatic field to combustion flames
US4561841A (en) * 1980-11-21 1985-12-31 Donald Korenyi Combustion apparatus
US4475885A (en) * 1983-07-28 1984-10-09 Bloom Engineering Company, Inc. Adjustable flame burner
US5065273A (en) * 1990-12-04 1991-11-12 International Business Machines Corporation High capacity DRAM trench capacitor and methods of fabricating same
KR200232725Y1 (ko) * 1996-07-31 2001-10-25 이구택 소둔로 메인버너의 파이럿버너
KR20020053502A (ko) * 2000-12-27 2002-07-05 이구택 전극 보호용 캡식 선회기가 장착된 라디안트 복사관의점화관
DE10260709B3 (de) * 2002-12-23 2004-08-12 Siemens Ag Verfahren und Vorrichtung zur Beeinflussung von Verbrennungsvorgängen bei Brennstoffen
US8082725B2 (en) * 2007-04-12 2011-12-27 General Electric Company Electro-dynamic swirler, combustion apparatus and methods using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515681A (en) * 1993-05-26 1996-05-14 Simmonds Precision Engine Systems Commonly housed electrostatic fuel atomizer and igniter apparatus for combustors
US20040185397A1 (en) * 2001-08-01 2004-09-23 Branston David Walter Method and device for influencing combustion processes involving combustibles
JP2006523297A (ja) * 2003-04-10 2006-10-12 ウッドワード・ガバナー・カンパニー 連続燃焼システムにおける不安定燃焼を検出するための方法および装置
US20050170301A1 (en) * 2004-01-29 2005-08-04 Siemens Westinghouse Power Corporation Electric flame control using corona discharge enhancement
JP2006037727A (ja) * 2004-07-22 2006-02-09 Denso Corp 内燃機関の制御装置
US7559234B1 (en) * 2004-11-24 2009-07-14 The United States Of America As Represented By The United States Department Of Energy Real-time combustion control and diagnostics sensor-pressure oscillation monitor
WO2010011838A1 (en) * 2008-07-23 2010-01-28 Borgwarner, Inc. Igniting combustible mixtures

Also Published As

Publication number Publication date
CN103443548B (zh) 2016-04-06
KR20140066660A (ko) 2014-06-02
CN103443548A (zh) 2013-12-11
WO2012102697A1 (en) 2012-08-02
CA2825585A1 (en) 2012-08-02
EP2668447A1 (en) 2013-12-04
EP2668447A4 (en) 2016-11-02
EP2668447B1 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
US20110027734A1 (en) System and apparatus for applying an electric field to a combustion volume
US8881535B2 (en) Electric field control of two or more responses in a combustion system
US20140162197A1 (en) Multijet burner with charge interaction
US9664386B2 (en) Dynamic flame control
US20160161115A1 (en) Burner with electrodynamic flame position control system
US20150362177A1 (en) Flame position control electrodes
US20140162195A1 (en) System for safe power loss for an electrodynamic burner
CN101959357B (zh) 放电灯点亮装置、投影机及放电灯的驱动方法
CN104334970A (zh) 具有火焰位置电极排列的燃烧器
CN105491767A (zh) 放电灯点亮装置、投影机和放电灯的驱动方法
CN102798149A (zh) 发动机等离子体凹腔稳燃器
CN101801149A (zh) 放电灯点亮装置、放电灯的驱动方法及投影仪
JP2014506666A (ja) 電界を燃焼容積に印加するシステム及び装置
WO2006016738A1 (en) A bar type corona discharged electrostatic eliminator equipped with air vessel using pulse ac high voltage power source
JP5266022B2 (ja) イオン化システムのための多軸制御装置
US20070261383A1 (en) Method and Device For Influencing Combustion Processes, In Particular During the Operation of a Gas Turbine
CN103963964B (zh) 漩涡产生装置及漩涡产生方法
TW202215941A (zh) 栽培環境控制裝置
KR101454778B1 (ko) 플라즈마 발생장치
CN113091090B (zh) 一种利用电场控制燃烧区燃烧的航空发动机
JP2010234261A (ja) ガス処理装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150217