JP2014506626A - Hot-dip galvanized steel sheet with excellent deep drawability and extremely low temperature joint brittleness resistance and method for producing the same - Google Patents

Hot-dip galvanized steel sheet with excellent deep drawability and extremely low temperature joint brittleness resistance and method for producing the same Download PDF

Info

Publication number
JP2014506626A
JP2014506626A JP2013550367A JP2013550367A JP2014506626A JP 2014506626 A JP2014506626 A JP 2014506626A JP 2013550367 A JP2013550367 A JP 2013550367A JP 2013550367 A JP2013550367 A JP 2013550367A JP 2014506626 A JP2014506626 A JP 2014506626A
Authority
JP
Japan
Prior art keywords
dip galvanized
hot
steel sheet
galvanized steel
deep drawability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013550367A
Other languages
Japanese (ja)
Other versions
JP5816703B2 (en
Inventor
スン−ボク イ、
ジュン−ウ パク、
ヒュン−ジュン タク、
ムン−ヒ ホン、
ジュ−ユン イ、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2014506626A publication Critical patent/JP2014506626A/en
Application granted granted Critical
Publication of JP5816703B2 publication Critical patent/JP5816703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Abstract

本発明は、極低温でも優れた耐接合脆性を有するとともに、深絞り性に優れた溶融亜鉛めっき鋼板及びそれを製造する方法に関し、溶融亜鉛めっき鋼板の溶融亜鉛めっき層の結晶粒子の平均直径が150〜400μmで、上記溶融亜鉛めっき層の(0001)面に対する優先配向性の集中度が3,000〜20,000cpsである深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板、及びその製造方法に関する。  The present invention relates to a hot-dip galvanized steel sheet having excellent joint brittleness resistance even at extremely low temperatures and a method for producing the hot-dip galvanized steel sheet, and an average diameter of crystal grains of a hot-dip galvanized layer of the hot-dip galvanized steel sheet. A hot dip galvanized steel sheet excellent in deep drawability and extremely low temperature joint brittleness at 150 to 400 μm and having a preferential orientation concentration of 3,000 to 20,000 cps with respect to the (0001) plane of the hot dip galvanized layer; It relates to the manufacturing method.

Description

本発明は溶融亜鉛めっき鋼板に関し、より詳細には、極低温でも優れた耐接合脆性を有すると共に、深絞り性に優れた溶融亜鉛めっき鋼板及びその製造方法に関する。   The present invention relates to a hot dip galvanized steel sheet, and more particularly to a hot dip galvanized steel sheet having excellent joint brittleness resistance even at extremely low temperatures and excellent deep drawing properties, and a method for producing the same.

通常、亜鉛めっき鋼板は、鋼板を溶融亜鉛めっき浴に通過させ、鋼板に塗布された溶融亜鉛を凝固させて製造する。鋼板に付着された溶融亜鉛が凝固する際、樹枝状のスパングルという粗大結晶粒が溶融亜鉛めっき層の表面に形成される。上記スパングルは、亜鉛の凝固反応特性により形成される。   Usually, a galvanized steel sheet is manufactured by passing a steel sheet through a hot dip galvanizing bath and solidifying the hot dip zinc applied to the steel sheet. When the molten zinc attached to the steel sheet solidifies, coarse crystal grains called dendritic spangles are formed on the surface of the hot dip galvanized layer. The spangle is formed by the solidification reaction characteristics of zinc.

即ち、亜鉛が凝固する際、凝固初期に凝固核を起点として枝状の樹枝状晶(dendrite)が非常に早く成長してめっき組織の骨格を形成した後、その樹枝状晶の間に残っていた未凝固の溶融亜鉛プールが凝固して凝固反応が終了し、これによりスパングルが形成される。上記スパングルの大きさは、亜鉛凝固の初期段階で決まっためっき組織の骨格の大きさに左右されるといえる。   That is, when zinc solidifies, a branch dendrite grows very rapidly from the solidification nucleus at the initial stage of solidification to form a skeleton of the plated structure, and remains between the dendrite. The unsolidified molten zinc pool solidifies to complete the solidification reaction, thereby forming spangles. It can be said that the size of the spangle depends on the size of the skeleton of the plated structure determined in the initial stage of zinc solidification.

上記スパングルのためにめっき層表面に対する塗料の密着性及び鋼板の耐食性が不良となり、塗装後にもスパングルによる表面凹凸が除去されず、塗料を介してスパングルが見えるため、鋼板の表面外観が不良となる。   Due to the spangle, the adhesion of the paint to the surface of the plating layer and the corrosion resistance of the steel sheet are poor, and the surface irregularities due to the spangle are not removed even after painting, and the spangle can be seen through the paint, so the surface appearance of the steel sheet is poor. .

従って、溶融亜鉛めっき鋼板に形成されるスパングルの大きさを最小化するために、鋼板に溶融亜鉛が付着されてから凝固する前までに無機塩の溶液を噴射する。このとき、溶液はノズルの前面に備えられた電極を通じて鋼板側に噴射される。電極を通じて溶液を噴射することで、溶液の液滴が静電気を帯びるようになって電気的な引力により鋼板に付着されるため、付着効率が向上し、めっき組織を小さくすることができる。上記無機塩の溶液としては、一般的にリン酸塩溶液が用いられる。   Therefore, in order to minimize the size of spangles formed on the hot dip galvanized steel sheet, the inorganic salt solution is sprayed after the hot dip zinc is adhered to the steel sheet and before solidification. At this time, the solution is sprayed to the steel plate side through an electrode provided on the front surface of the nozzle. By spraying the solution through the electrode, the droplet of the solution becomes electrostatic and adheres to the steel plate by electrical attraction, so that the adhesion efficiency is improved and the plating structure can be reduced. As the inorganic salt solution, a phosphate solution is generally used.

上記電気帯電によって微細化されたリン酸塩溶液の噴射を通じて、スパングルの大きさが150μm以下のめっき組織を得ることができる。スパングルが150μm以下に微細化された鋼板は、表面外観が美麗で、塗装後の鮮映性、耐食性を向上させ、また、連続プレス時にめっき層の脱落を防止する。   A plated structure having a spangle size of 150 μm or less can be obtained by spraying the phosphate solution refined by the electric charging. The steel plate with spangles refined to 150 μm or less has a beautiful surface appearance, improves the sharpness and corrosion resistance after coating, and prevents the plating layer from falling off during continuous pressing.

一方、溶融亜鉛が凝固する際、結晶学的に亜鉛の六角形結晶構造が鋼板の表面にどのように形成されるかによってスパングルの形状が異なる。これは、亜鉛の六角形結晶構造がめっき層の部位別に異なる角度であることを意味する。   On the other hand, when molten zinc solidifies, the shape of spangles differs depending on how the hexagonal crystal structure of zinc is formed on the surface of the steel sheet. This means that the hexagonal crystal structure of zinc is at a different angle for each part of the plating layer.

スパングルが150μm以下の溶融亜鉛めっき鋼板、及びスパングルが400μm以上の一般的な溶融亜鉛めっき鋼板を図1の(a)、(b)にそれぞれ示す。図1の(b)に示すように、スパングルが400μm以上の一般的な溶融亜鉛めっき鋼板は亜鉛結晶が大きく、方向性がランダムであるため、脆性には有利であるが、表面外観の不良であるという問題がある。   A hot-dip galvanized steel sheet having a spangle of 150 μm or less and a general hot-dip galvanized steel sheet having a spangle of 400 μm or more are shown in FIGS. As shown in FIG. 1 (b), a general hot-dip galvanized steel sheet with spangles of 400 μm or more is advantageous in terms of brittleness because of its large zinc crystals and random orientation, but with poor surface appearance. There is a problem that there is.

しかし、図1の(a)のスパングルが150μm以下の溶融亜鉛めっき鋼板の場合は、スパングルが同じ結晶配向性を有し、その方向は亜鉛の底面である(0001)面が鋼板表面に平行となる方向である。上記亜鉛の底面が鋼板表面に平行となる結晶配向性が耐食性、耐黒変性及び化学安定性の面で最も優れると知られており、最近までこれらの特性を改善するための多くの開発が行われてきた。   However, in the case of a hot-dip galvanized steel sheet having a spangle of 150 μm or less in FIG. 1A, the spangle has the same crystal orientation, and the direction is parallel to the steel sheet surface with the (0001) plane being the bottom surface of zinc. Is the direction. It is known that the crystal orientation in which the bottom surface of zinc is parallel to the steel plate surface is the most excellent in terms of corrosion resistance, blackening resistance and chemical stability, and until recently, many developments have been made to improve these properties. I have been.

一例として、特許文献1にはノズルを用いたミスト噴射によりスパングルの大きさを60〜1000μmに制御する技術内容が開示されており、特許文献2にはスパングルの大きさが50μm以下で、且つ表面粗度が0.4〜1.0μmを満たす技術内容が開示されている。また、特許文献3には電場に液滴を通過させて1000μm以下にスパングルを微細化させる技術内容が開示されている。   As an example, Patent Document 1 discloses the technical content of controlling the size of spangle to 60 to 1000 μm by mist injection using a nozzle, and Patent Document 2 discloses that the size of spangle is 50 μm or less and the surface. The technical content with a roughness satisfying 0.4 to 1.0 μm is disclosed. Patent Document 3 discloses the technical content of making spangles finer to 1000 μm or less by passing droplets through an electric field.

しかし、最近では、自動車製造会社の場合、原価節減、安定性増大、作業時間短縮及び環境に優しい作業のために、自動車鋼板間の継手を汎用的に用いられた従来の溶接方法、特にスポット溶接方法から構造用接着剤を用いる方法に拡大する動きが増えている。   Recently, however, in the case of automobile manufacturers, conventional welding methods, especially spot welding, which have been used universally for joints between automobile steel plates to save costs, increase stability, reduce work time, and work friendly to the environment. There is an increasing movement to expand from methods to methods using structural adhesives.

上記構造用接着剤を用いる場合には、機械的な接合方法であるスポット溶接とは違って、寒い極地方での自動車使用を考慮し、−40℃の極低温でめっき鋼板間の接着性を確認する必要がある。しかし、亜鉛の(0001)面が鋼板表面に平行であるスパングルのない鋼板に接着剤を用いると、めっき層が、深絞りまたは−40℃の極低温でめっき層/素地鉄界面が剥離する現象を誘発するという問題がある。   When using the above structural adhesives, unlike spot welding, which is a mechanical joining method, considering the use of automobiles in cold extreme regions, adhesion between plated steel sheets can be achieved at an extremely low temperature of -40 ° C. It is necessary to confirm. However, when an adhesive is used on a steel sheet without spangles whose zinc (0001) plane is parallel to the steel sheet surface, the plating layer peels off at a deep drawing or at a very low temperature of −40 ° C. There is a problem of triggering.

これは、スパングルの微細化によって脆性が増加し、また亜鉛めっき層の(0001)面が底面であると同時に、スリップ面乃至劈開破壊面であるため、外部衝撃によりめっき層/素地鉄界面から剥離が生じるためであると予想される。   This is because brittleness increases due to refinement of spangles, and since the (0001) surface of the galvanized layer is the bottom surface and at the same time, it is a slip surface or a cleavage fracture surface, it peels from the plating layer / base iron interface due to external impact. Is expected to occur.

従って、最近、構造用接着剤を用いる溶融亜鉛めっき鋼板の接合方法が浮かび上がっていることから、めっき層の外観が美麗で、且つ深絞り性及び極低温でのめっき層耐接合脆性に優れた溶融亜鉛めっき鋼板に対する開発が求められている。   Therefore, recently, since the joining method of hot dip galvanized steel sheets using structural adhesives has emerged, the appearance of the plating layer is beautiful, and it has excellent deep drawing properties and resistance to joint brittleness at extremely low temperatures. Development for hot-dip galvanized steel sheets is required.

日本公開特許1999−100653号公報Japanese Published Patent No. 1999-100635 日本公開特許1996−188863号公報Japanese Published Patent No. 1996-188863 米国特許第4500561号明細書US Patent No. 4500561

本発明の一側面は、溶融亜鉛めっき層の組織と結晶粒子の大きさを制御することで、優れた深絞り性及び極低温耐接合脆性を有する溶融亜鉛めっき鋼板、及びそれを製造する方法を提供することを目的とする。   One aspect of the present invention is to provide a hot dip galvanized steel sheet having excellent deep drawability and cryogenic joint brittleness resistance by controlling the structure of the hot dip galvanized layer and the size of crystal grains, and a method for producing the same. The purpose is to provide.

本発明の一側面は、溶融亜鉛めっき鋼板の溶融亜鉛めっき層の結晶粒子の平均直径が150〜400μmで、上記溶融亜鉛めっき層の(0001)面に対する優先配向性の集中度が3,000〜20,000cps)である深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板を提供する。   One aspect of the present invention is that the average diameter of crystal grains of a hot-dip galvanized layer of a hot-dip galvanized steel sheet is 150 to 400 μm, and the concentration degree of preferential orientation with respect to the (0001) plane of the hot-dip galvanized layer is 3,000 to The present invention provides a hot-dip galvanized steel sheet having excellent deep drawability (20,000 cps) and extremely low temperature joint brittleness resistance.

また、本発明の他の側面は、溶融亜鉛付着段階、溶融亜鉛付着量調節段階、水溶液噴射段階、冷却段階及び調質圧延する段階を含む溶融亜鉛めっき鋼板の製造方法であって、上記水溶液噴射段階は脱塩水を帯電噴射することにより行われる、深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板の製造方法を提供する。   Another aspect of the present invention is a method for producing a hot dip galvanized steel sheet including a molten zinc adhesion step, a molten zinc adhesion amount adjustment step, an aqueous solution injection step, a cooling step, and a temper rolling step, The step provides a method for producing a hot-dip galvanized steel sheet having excellent deep drawability and extremely low temperature joint brittleness resistance, which is performed by electrifying and spraying desalted water.

本発明によれば、脱塩水の帯電噴射及び調質圧延時の圧下率の上向により溶融亜鉛めっき層の結晶粒子の大きさの偏差が減少し、また、亜鉛結晶の(0001)面への結晶配向性が減少し、めっき層の双晶組織分率が増加した溶融亜鉛めっき鋼板が製造される。従って、曲げ加工などの深絞り及び極低温でのめっき層の耐接合脆性に優れた溶融亜鉛めっき鋼板が得られる。   According to the present invention, the deviation of the size of the crystal grains of the hot dip galvanized layer is reduced by electrification jetting of desalted water and the rolling reduction during temper rolling, and the zinc crystal is directed to the (0001) plane. A hot-dip galvanized steel sheet having a reduced crystal orientation and an increased twin structure fraction of the plated layer is produced. Accordingly, a hot-dip galvanized steel sheet having excellent deep drawing resistance such as bending and resistance to joint brittleness of the plated layer at an extremely low temperature can be obtained.

(a)はスパングルが150μm以下の溶融亜鉛めっき鋼板の結晶学的構造を、(b)はスパングルが400μm以上の一般的な溶融亜鉛めっき鋼板の結晶学的構造を示した模式図である。(A) is a schematic diagram showing a crystallographic structure of a hot-dip galvanized steel sheet having a spangle of 150 μm or less, and (b) is a schematic diagram showing a crystallographic structure of a general hot-dip galvanized steel sheet having a spangle of 400 μm or more. (a)はX−rayを用いてスパングルが150μm以下の溶融亜鉛めっき鋼板の(0001)面の結晶配向性の測定結果を、(b)はスパングルが400μm以上の一般的な溶融亜鉛めっき鋼板の(0001)面の結晶配向性の測定結果を示したグラフである。(A) is a measurement result of the crystal orientation of the (0001) plane of a hot-dip galvanized steel sheet with spangles of 150 μm or less using X-ray, and (b) is a general hot-dip galvanized steel sheet with spangles of 400 μm or more. It is the graph which showed the measurement result of the crystal orientation of (0001) plane. (a)、(b)はそれぞれ比較例1と発明例1の極低温耐接合脆性の評価結果を示した写真である。(A), (b) is the photograph which showed the evaluation result of the ultra-low temperature joint brittle resistance of the comparative example 1 and the invention example 1, respectively.

以下では、本発明について詳しく説明する。   Hereinafter, the present invention will be described in detail.

本発明の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の結晶粒子の平均直径は150〜400μmを満たす。   The average diameter of the crystal grains of the hot dip galvanized layer of the hot dip galvanized steel sheet of the present invention satisfies 150 to 400 μm.

上記結晶粒子の平均直径が150μm未満では、スパングルの微細化により表面は美麗であるが、極低温耐接合脆性が悪く、400μmを超えると、極低温耐接合脆性は優れるが、スパングルの大きさが粗大化して表面外観、鮮映性が悪く、また、連続プレス時にめっき層が脱落して性能が悪くなる。   When the average diameter of the crystal particles is less than 150 μm, the surface is beautiful due to the refinement of spangles. However, when the average diameter exceeds 400 μm, the resistance to cryogenic bonding is excellent, but the size of spangles is excellent. It becomes coarse and the surface appearance and sharpness are poor, and the plating layer falls off during continuous pressing, resulting in poor performance.

本発明の溶融亜鉛めっき鋼板は、上記結晶粒子の最小直径が30μmで、上記結晶粒子の直径偏差が結晶粒子の平均直径の40%以下であることが好ましい。   In the hot-dip galvanized steel sheet of the present invention, the minimum diameter of the crystal particles is preferably 30 μm, and the diameter deviation of the crystal particles is preferably 40% or less of the average diameter of the crystal particles.

めっき層の結晶組織が30μm以下では、周辺の結晶組織に比べて脆性が高くなり、亀裂の発生起点として作用することがあり、溶融亜鉛めっき鋼板の曲げ加工時にめっき層の脱落の原因となり、加工性を低下させることがある。   If the crystal structure of the plating layer is 30 μm or less, it becomes more brittle than the surrounding crystal structure, which may act as a starting point of cracking, causing the plating layer to fall off during bending of the hot dip galvanized steel sheet. It may reduce the sex.

また、本発明の溶融亜鉛めっき鋼板の溶融亜鉛めっき層の結晶粒子の結晶偏差は、結晶粒子の平均直径の40%以下の均一なスパングルの大きさを有することが好ましい。上記偏差が40%を超えて亜鉛結晶組織の大きさの差が均一でなければ、塑性変形時に、めっき層が均一な力を受けることができず、局部でめっき層が脱落する問題があり、接合する際に接合部分に脆性が発生しないためには、結晶粒子の結晶偏差が40%以下を満たすことが好ましい。   Moreover, it is preferable that the crystal deviation of the crystal grains of the hot dip galvanized layer of the hot dip galvanized steel sheet of the present invention has a uniform spangle size of 40% or less of the average diameter of the crystal grains. If the deviation exceeds 40% and the difference in size of the zinc crystal structure is not uniform, the plating layer cannot receive a uniform force during plastic deformation, and there is a problem that the plating layer falls off locally, It is preferable that the crystal deviation of the crystal grains satisfy 40% or less so that brittleness does not occur at the joint when joining.

また、本発明の溶融亜鉛めっき鋼板は、上記溶融亜鉛めっき層の(0001)面に対する優先配向性の集中度(intensity)が3,000〜20,000cps(counter per second)であることが好ましい。本発明の溶融亜鉛めっき鋼板は、優先配向性の集中度が、電圧20KV、電流10mAのX−rayを照射したとき、亜鉛結晶(0001)面に対するMax.Intensity(母材の傾斜角5゜を基準に回転角0〜360゜を5゜毎に測定した値の平均)で測定した結果、3,000〜20,000cpsを満たす。   Moreover, it is preferable that the hot dip galvanized steel sheet of the present invention has a concentration degree of priority orientation with respect to the (0001) plane of the hot dip galvanized layer of 3,000 to 20,000 cps (counter per second). The hot dip galvanized steel sheet according to the present invention has a Max. Concentration of preferential orientation of Max. With respect to the zinc crystal (0001) plane when irradiated with X-ray having a voltage of 20 KV and a current of 10 mA. As a result of measurement by Intensity (average value of rotation angles 0 to 360 ° measured every 5 ° with reference to the inclination angle 5 ° of the base material), 3,000 to 20,000 cps is satisfied.

一方、図2の(a)に示すように、従来のスパングルが150μm以下の溶融亜鉛めっき鋼板は、優先配向性の集中度が20,000cpsを超え、図2の(b)に示された従来のスパングルが400μm以上の溶融亜鉛めっき鋼板は3,000cpsに達しない。   On the other hand, as shown in FIG. 2 (a), the conventional hot dip galvanized steel sheet having a spangle of 150 μm or less has a concentration degree of preferential orientation exceeding 20,000 cps, and the conventional galvanized steel sheet shown in FIG. The hot-dip galvanized steel sheet having a spangle of 400 μm or more does not reach 3,000 cps.

本発明において、上記優先配向性の集中度を3,000〜20,000cpsに限定した理由は、上記(0001)面に対する優先配向性の集中度が3,000cps未満では、めっき層の耐脆性の側面では有利であるが、めっき層のスパングルが粗大して表面外観が不良となるためである。また、20,000cpsを超えると、めっき層のスパングルが微細化して表面外観は美麗であるが、深絞り性及び極低温でのめっき層の脆性を誘発するという問題がある。   In the present invention, the reason why the concentration of the preferential orientation is limited to 3,000 to 20,000 cps is that if the concentration of preferential orientation with respect to the (0001) plane is less than 3,000 cps, the brittleness resistance of the plating layer is reduced. Although advantageous in terms of side, it is because the spangle of the plating layer is coarse and the surface appearance is poor. On the other hand, if it exceeds 20,000 cps, spangles of the plating layer become finer and the surface appearance is beautiful, but there is a problem of inducing deep drawability and brittleness of the plating layer at an extremely low temperature.

本発明の溶融亜鉛めっき鋼板は、溶融亜鉛めっき層の双晶組織分率が全体組織の体積分率で30%以上を満たすことが好ましい。調質圧延により発生するめっき層の双晶組織は、稠密六方晶(HCP)である亜鉛結晶の重要な塑性変形機構として作用し、深絞り性及び脆性の改善に役立つ。上記めっき層の双晶組織分率が30%未満では、双晶組織の塑性変形作用が十分でないため、めっき層の亜鉛結晶粒の大きさが150〜400μmの場合に加工性が劣るという問題がある。   In the hot dip galvanized steel sheet of the present invention, it is preferable that the twinned structure fraction of the hot dip galvanized layer satisfies 30% or more in terms of the volume fraction of the entire structure. The twin structure of the plating layer generated by temper rolling acts as an important plastic deformation mechanism of zinc crystals that are dense hexagonal crystals (HCP), and helps to improve deep drawability and brittleness. When the twinning structure fraction of the plating layer is less than 30%, the plastic deformation action of the twinning structure is not sufficient, so that the workability is inferior when the zinc crystal grain size of the plating layer is 150 to 400 μm. is there.

以下、本発明の溶融亜鉛めっき鋼板の製造方法について詳しく説明する。   Hereinafter, the manufacturing method of the hot dip galvanized steel sheet of the present invention will be described in detail.

本発明の製造方法は、溶融亜鉛付着段階、溶融亜鉛付着量調節段階、水溶液噴射段階、冷却段階及び調質圧延する段階を含む溶融亜鉛めっき鋼板の製造方法であって、上記水溶液噴射段階は脱塩水(Demineralized Water)を帯電噴射することにより行われることを特徴とする。   The production method of the present invention is a method for producing a hot dip galvanized steel sheet including a molten zinc adhesion step, a molten zinc adhesion amount adjustment step, an aqueous solution injection step, a cooling step, and a temper rolling step. It is performed by charging and spraying salt water (Demineralized Water).

本発明の溶融亜鉛めっき鋼板の製造過程の溶融亜鉛付着段階では、鋼板を亜鉛めっき液に通過させて鋼板に溶融亜鉛を付着させる。本発明における上記溶融亜鉛付着段階は特に制限されないが、溶融亜鉛めっき鋼板を製造するために、該技術分野で一般的に適用される如何なる組成の亜鉛めっき液及び亜鉛めっき条件を適用して鋼板表面に溶融亜鉛を付着することができる。亜鉛めっき液としては、一般的にアルミニウム(Al)、アンチモン(Sb)及び/または鉛(Pb)を含む亜鉛めっき液を用いてもよく、これにより本発明が限定されるものではない。鋼板も、特に限定されず、溶融亜鉛めっきに一般的に用いられる、知られている如何なる鋼板を用いてもよい。   In the hot dip galvanizing step in the manufacturing process of the hot dip galvanized steel sheet according to the present invention, the hot dip galvanization is attached to the steel sheet by passing the steel sheet through a galvanizing solution. In the present invention, the hot dip galvanizing step is not particularly limited, but in order to produce a hot dip galvanized steel sheet, the surface of the steel sheet is applied by applying any galvanizing solution and galvanizing conditions generally applied in the technical field. Molten zinc can be adhered to. As the zinc plating solution, generally, a zinc plating solution containing aluminum (Al), antimony (Sb) and / or lead (Pb) may be used, and the present invention is not limited thereby. The steel plate is not particularly limited, and any known steel plate generally used for hot dip galvanizing may be used.

亜鉛めっき液に鋼板を浸漬した後、亜鉛付着量調節段階において、亜鉛めっき液をエアーワイピングして鋼板に過剰に付着されためっき液を取り除くことで、めっき付着量を調節する。めっき付着量は、鋼板の用途など、必要に応じて、該技術分野の技術者が該技術分野に一般的に知られている範囲で適切に調節することができ、特に限定されない。   After the steel sheet is immersed in the zinc plating solution, the amount of plating adhesion is adjusted by removing the plating solution excessively adhered to the steel sheet by air wiping the zinc plating solution in the zinc adhesion amount adjusting step. The plating adhesion amount is not particularly limited, and can be appropriately adjusted by a technician in the technical field within a range generally known in the technical field as required, such as the use of the steel sheet.

本発明では、鋼板の溶融亜鉛付着量を調節した後、溶融亜鉛めっき層の凝固のための水溶液噴射時に脱塩水を帯電噴射する。本発明で脱塩水を帯電噴射する理由は、スパングルの大きさの偏差がない均一なめっき層組織を確保するためである。スパングルを微細化するために溶液を帯電噴射する場合、ミスト化された小さい粒子が溶融状態のめっき層と衝突して吸熱反応を起こして凝固を促進させる。このとき、リン酸塩などの無機塩溶液を噴射すると、リン酸塩などの核粒子がめっき層に衝突する部分では吸熱反応がさらに活発となって表面スパングルが小さくなり、そうではない部分では相対的にスパングルの大きさが粗大化してスパングルの大きさの偏差が発生する。   In the present invention, after adjusting the molten zinc adhesion amount of the steel sheet, demineralized water is charged and sprayed at the time of aqueous solution injection for solidification of the hot dip galvanized layer. The reason why the demineralized water is charged and jetted in the present invention is to ensure a uniform plating layer structure with no variation in spangle size. When the solution is charged and sprayed to make spangles fine, the small mist particles collide with the molten plating layer and cause an endothermic reaction to promote solidification. At this time, when an inorganic salt solution such as phosphate is sprayed, the endothermic reaction becomes more active at the part where the core particles such as phosphate collide with the plating layer, and the surface spangle is reduced, and the part where it is not is relatively As a result, the size of the spangle becomes coarse and a deviation of the size of the spangle occurs.

スパングルの大きさの偏差が大きい場合には、深絞り時に応力が均一にめっき層に作用できないため、スパングルの小さい部分が亀裂の発生起点として作用することがあり、溶融亜鉛めっき鋼板の曲げ加工時にもめっき層の脱落の原因となって加工性を低下させる。   When the spangle size deviation is large, the stress cannot uniformly act on the plating layer during deep drawing, so the small spangle portion may act as the starting point of cracking. Also causes the plating layer to fall off and deteriorates workability.

本発明において、脱塩水を帯電噴射するときは、ノズルの脱塩水噴射圧力は0.3〜5.0kgf/cm、空気噴射圧力は0.5〜7.0kgf/cm、脱塩水の圧力/空気圧力の比率は1/10〜8/10にして行うことが好ましい。 In the present invention, when the desalted water is charged and jetted, the desalted water jet pressure of the nozzle is 0.3 to 5.0 kgf / cm 2 , the air jet pressure is 0.5 to 7.0 kgf / cm 2 , and the pressure of the desalted water. The ratio of / air pressure is preferably 1/10 to 8/10.

上記脱塩水の圧力が0.3kgf/cm未満では、スパングルの微細化効果がなく、脱塩水の圧力が5.0kgf/cmを超えると、鋼板表面上で溶液滴が衝突してピットマークが発生してめっき層外観が損なわれるため、好ましくない。 If the pressure of the desalted water is less than 0.3 kgf / cm 2, there is no spangle refinement effect, and if the pressure of the desalted water exceeds 5.0 kgf / cm 2 , the solution droplets collide on the steel sheet surface to cause pit marks. Is generated, and the appearance of the plating layer is impaired.

また、ノズル前端の帯電電極の大きさは−1〜−25KVにすることが好ましい。電極の大きさが−1KV未満では、電気的引力が作用せず、溶液粒子の微細化によるスパングルの微細化効果が得られない。また、電極の大きさが−25KVを超えると、スパングルの微細化効果に優れて150μm未満のめっき層の表面となり、深絞り性及び極低温耐接合脆性が悪くなる。   The size of the charging electrode at the front end of the nozzle is preferably −1 to −25 KV. If the size of the electrode is less than −1 KV, the electric attractive force does not act, and the effect of refining spangles due to the refining of solution particles cannot be obtained. On the other hand, when the size of the electrode exceeds −25 KV, the spangle refinement effect is excellent and the surface of the plating layer is less than 150 μm, and the deep drawability and the cryogenic joint brittleness resistance deteriorate.

本発明では、上記脱塩水を帯電噴射した後、調質圧延を行う。上記調質圧延により溶融亜鉛めっき層に双晶が生成される。このとき、調質圧延は5%以下の伸び率で行うことが好ましい。   In the present invention, temper rolling is performed after electrifying and spraying the desalted water. Twinning is generated in the hot-dip galvanized layer by the temper rolling. At this time, temper rolling is preferably performed at an elongation of 5% or less.

本発明において、調質圧延は5%以下の伸び率で行うことが好ましい。調質圧延を行う際に発生する双晶組織は、変形器具の少ない稠密六方晶(HCP)である亜鉛結晶において重要な加工機構として作用するようになる。また、調質圧延の物理的な変形によって(0001)面への亜鉛優先配向性を分散させる効果をもたらす。従って、調質圧延を行わない場合は、めっき層の素地鉄の密着性が低下して加工性及びめっき密着性が悪く、5%の伸び率を超えると、めっき層の加工性及びめっき密着性には優れるが、素地鉄材質の劣位を誘発するため、好ましくない。   In the present invention, temper rolling is preferably performed at an elongation of 5% or less. The twin structure generated during temper rolling acts as an important processing mechanism in a zinc crystal which is a dense hexagonal crystal (HCP) with few deformation tools. In addition, the effect of dispersing the preferential orientation of zinc to the (0001) plane is brought about by physical deformation of temper rolling. Therefore, when temper rolling is not performed, the adhesion of the base iron of the plating layer is deteriorated and the workability and plating adhesion are poor, and when the elongation rate exceeds 5%, the workability and plating adhesion of the plating layer are exceeded. However, it is not preferable because it induces inferiority of the base iron material.

以下、本発明の実施例について詳しく説明する。但し、本発明は下記実施例に限定されない。   Examples of the present invention will be described in detail below. However, the present invention is not limited to the following examples.

(実施例)
溶融亜鉛めっき後に脱塩水処理を行った場合の接合脆性を観察するために、下記表1の条件でリン酸塩処理と脱塩水処理を行ってスパングルの大きさを調節し、その後、伸び率1.0%、ロール圧下力200〜240tonの条件で調質圧延を行い、接合脆性、表面外観及び鮮映性を測定し、その結果を表1に示した。
(Example)
In order to observe the joint brittleness when desalted water treatment is performed after hot dip galvanizing, the size of spangles is adjusted by performing phosphate treatment and desalted water treatment under the conditions shown in Table 1 below. The temper rolling was performed under the conditions of 0.0% and roll rolling force of 200 to 240 tons, and the joint brittleness, surface appearance and sharpness were measured, and the results are shown in Table 1.

溶融亜鉛めっき鋼板の素材は厚さ0.67mmの軟質材IF鋼であり、溶融亜鉛めっき時のめっき量を70g/mにした。 The material of the hot dip galvanized steel sheet was a soft material IF steel having a thickness of 0.67 mm, and the plating amount during hot dip galvanization was 70 g / m 2 .

下記表1におけるスパングルの大きさと偏差は、調質圧延していないめっき層を光学顕微鏡、及び画像分析機を利用して測定した。接合脆性は、ヘンケルコリア(株)の自動車構造用Sealer Terokal 5089接着剤を利用して2つの溶融亜鉛めっき鋼板を接合し、−40℃に保持し、くさびを用いて2つの溶融亜鉛めっき鋼板の間に衝撃を与え、その亜鉛めっき層の脱落有無で測定した。下記表1において、○は剥離未発生、△は20%以下の剥離発生、×は50%以上の剥離発生を意味する。一方、表面外観と鮮映性は目視で測定し、○は優秀、△は普通、×は不良を示す。   The size and deviation of spangles in Table 1 below were measured using an optical microscope and an image analyzer for a plating layer that was not temper-rolled. Bonding brittleness was achieved by joining two hot-dip galvanized steel sheets using Henkel Korea Co., Ltd.'s Sealer Terokal 5089 adhesive for automobile structure, holding at −40 ° C., and using wedges. An impact was applied in the meantime, and the measurement was made based on whether or not the galvanized layer was removed. In Table 1 below, ◯ means no peeling, Δ means 20% or less peeling, and × means 50% or more peeling. On the other hand, the surface appearance and sharpness were measured by visual observation, where ◯ indicates excellent, Δ indicates normal, and X indicates poor.

Figure 2014506626
Figure 2014506626

上記表1の結果から、本発明の発明例は、脱塩水を利用して本発明のスパングルの大きさを満たし、優先配向性の集中度も3,000〜20,000cpsを満たし、大きさの偏差も本発明の範囲内であり、優れた耐接合脆性と表面外観を有することが分かる。   From the results of Table 1 above, the inventive examples of the present invention satisfy the size of the spangle of the present invention using demineralized water, the concentration degree of preferential orientation also satisfies 3,000 to 20,000 cps, The deviation is also within the scope of the present invention, and it can be seen that it has excellent joint brittleness resistance and surface appearance.

比較例1は脱塩水を利用しており、本発明のスパングルの大きさは満たすが、スパングルの大きさの偏差が非常に大きく、優先配向性の集中度が本発明の範囲から外れるため、接合脆性が悪かった。比較例2〜5のようにリン酸塩を利用する場合には、接合脆性が悪いか、表面外観が悪くなる問題があった。一般的な溶融亜鉛めっきである比較例6は、表面外観が非常に悪かった。   Since Comparative Example 1 uses demineralized water, the size of the spangle of the present invention is satisfied, but the deviation of the size of the spangle is very large, and the concentration of priority orientation is out of the scope of the present invention. The brittleness was bad. When using a phosphate like Comparative Examples 2-5, there existed a problem that joint brittleness was bad or the surface appearance worsened. In Comparative Example 6, which is a general hot dip galvanizing, the surface appearance was very bad.

図3の(a)、(b)には、それぞれ比較例1と発明例1の接合脆性を評価した写真を示す。上記接合脆性の評価は青色の接着剤の残存有無で判断した。図3の(a)に丸で示された比較例1の試片は、めっき層の破断時に接着剤が残存しなかった。図3(b)の発明例1は、接着剤が残存して耐接合脆性に優れることが分かる。   3 (a) and 3 (b) show photographs in which the joint brittleness of Comparative Example 1 and Invention Example 1 was evaluated. The evaluation of the joint brittleness was judged by the presence or absence of the blue adhesive. In the specimen of Comparative Example 1 indicated by a circle in FIG. 3A, no adhesive remained when the plated layer was broken. It can be seen that Invention Example 1 in FIG. 3B has excellent adhesive brittleness resistance with the adhesive remaining.

Claims (7)

溶融亜鉛めっき層を含み、前記溶融亜鉛めっき層の結晶粒子の平均直径が150〜400μmで、前記溶融亜鉛めっき層の(0001)面に対する優先配向性の集中度が3,000〜20,000cpsである、深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板。   Including a hot dip galvanized layer, wherein the average diameter of crystal grains of the hot dip galvanized layer is 150 to 400 μm, and the concentration degree of preferential orientation with respect to the (0001) plane of the hot dip galvanized layer is 3,000 to 20,000 cps. A hot-dip galvanized steel sheet with excellent deep drawability and extremely low temperature joint brittleness resistance. 前記結晶粒子の直径が30μm以上であり、前記結晶粒子の直径偏差が結晶粒子の平均直径の40%以下である、請求項1に記載の深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板。   2. The molten zinc excellent in deep drawability and cryogenic joint brittleness resistance according to claim 1, wherein the diameter of the crystal particles is 30 μm or more and the diameter deviation of the crystal particles is 40% or less of the average diameter of the crystal particles. Plated steel sheet. 前記溶融亜鉛めっき層の双晶組織が体積分率で30%以上である、請求項1に記載の深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板。   The hot-dip galvanized steel sheet excellent in deep drawability and cryogenic joint brittleness resistance according to claim 1, wherein the twinned structure of the hot-dip galvanized layer is 30% or more in volume fraction. 溶融亜鉛付着段階、溶融亜鉛付着量調節段階、水溶液噴射段階、冷却段階及び調質圧延する段階を含む溶融亜鉛めっき鋼板の製造方法であって、
前記水溶液噴射段階は脱塩水を帯電噴射することにより行われる、深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板の製造方法。
A method for producing a hot dip galvanized steel sheet, comprising a hot dip galvanizing step, a hot dip zinc adhering amount adjusting step, an aqueous solution spraying step, a cooling step and a temper rolling step
The aqueous solution spraying step is a method for producing a hot-dip galvanized steel sheet excellent in deep drawability and extremely low temperature joint brittleness resistance, which is performed by electrifying and spraying demineralized water.
前記脱塩水を帯電噴射する段階は、ノズルの脱塩水噴射圧力は0.3〜5.0kgf/cm、空気噴射圧力は0.5〜7.0kgf/cmで行う、請求項4に記載の深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板の製造方法。 5. The step of charging and spraying the desalted water is performed at a nozzle desalted water injection pressure of 0.3 to 5.0 kgf / cm 2 and an air injection pressure of 0.5 to 7.0 kgf / cm 2. Of hot-dip galvanized steel sheet with excellent deep drawability and extremely low temperature joint brittleness resistance. 前記脱塩水を帯電噴射する段階は、脱塩水の圧力/空気圧力の比率が1/10〜8/10の条件で行う、請求項5に記載の深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板の製造方法。   6. The step of electrifying and spraying the desalted water is performed under the condition that the ratio of the pressure of the desalted water / the air pressure is 1/10 to 10/10, and is excellent in deep drawability and cryogenic joint brittleness resistance according to claim 5. Manufacturing method of hot dip galvanized steel sheet. 前記調質圧延する段階は5%以下の伸び率で行う、請求項4に記載の深絞り性及び極低温耐接合脆性に優れた溶融亜鉛めっき鋼板の製造方法。   The method for producing a hot-dip galvanized steel sheet excellent in deep drawability and cryogenic bonding brittleness according to claim 4, wherein the temper rolling step is performed at an elongation of 5% or less.
JP2013550367A 2011-01-20 2011-01-20 Hot-dip galvanized steel sheet with excellent deep drawability and extremely low temperature joint brittleness resistance and method for producing the same Active JP5816703B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/000414 WO2012099284A1 (en) 2011-01-20 2011-01-20 Hot dipped galvanized steel sheet with excellent deep drawing properties and ultra-low temperature adhesive brittleness, and preparation method thereof

Publications (2)

Publication Number Publication Date
JP2014506626A true JP2014506626A (en) 2014-03-17
JP5816703B2 JP5816703B2 (en) 2015-11-18

Family

ID=46515890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013550367A Active JP5816703B2 (en) 2011-01-20 2011-01-20 Hot-dip galvanized steel sheet with excellent deep drawability and extremely low temperature joint brittleness resistance and method for producing the same

Country Status (5)

Country Link
US (1) US20140017516A1 (en)
EP (1) EP2666882B1 (en)
JP (1) JP5816703B2 (en)
CN (1) CN103429781B (en)
WO (1) WO2012099284A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505666A (en) * 2015-12-22 2019-02-28 ポスコPosco Hot-dip galvanized steel sheet with excellent surface quality and low-temperature brittle fracture resistance
JP2022509656A (en) * 2018-11-29 2022-01-21 ポスコ Hot-dip galvanized steel sheet with excellent surface appearance and low-temperature bonding brittleness
WO2024019059A1 (en) * 2022-07-19 2024-01-25 国立大学法人大阪大学 Inorganic structure and method for producing inorganic structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3369838B1 (en) * 2015-10-26 2019-08-21 Posco Zinc alloy plated steel sheet having excellent bending workability and manufacturing method therefor
CN106702101B (en) * 2016-08-30 2018-09-14 重庆万达薄板有限公司 Continuous Heat is coated with the preparation process of colored galvanized steel plain sheet

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055590B2 (en) * 1980-07-18 1985-12-05 新日本製鐵株式会社 Zero-spangle galvanized steel sheet with excellent peeling resistance over time, method for producing the same, and hot-dip galvanizing coating bath
US4500561A (en) * 1983-07-25 1985-02-19 Inland Steel Company Minimization of spangling on hot dip galvanized steel strip
US6861159B2 (en) * 1992-03-27 2005-03-01 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
JP3148542B2 (en) 1995-01-11 2001-03-19 新日本製鐵株式会社 Hot-dip galvanized steel sheet with excellent glare resistance
US5827618A (en) * 1995-03-28 1998-10-27 Nippon Steel Corporation Rust-proofing steel sheet for fuel tanks and production method thereof
JPH101765A (en) * 1996-06-10 1998-01-06 Kobe Steel Ltd Hot dip galvanized steel sheet excellent in surface apparatus
JPH11100653A (en) 1997-09-26 1999-04-13 Nisshin Steel Co Ltd Production of hot dip galvanized steel strip
US7914851B2 (en) * 2004-12-28 2011-03-29 Posco Method of manufacturing hot-dipped galvanized steel sheet
KR100742833B1 (en) * 2005-12-24 2007-07-25 주식회사 포스코 High Mn Steel Sheet for High Corrosion Resistance and Method of Manufacturing Galvanizing the Steel Sheet
KR100742823B1 (en) * 2005-12-26 2007-07-25 주식회사 포스코 High Manganese Steel Strips with Excellent Coatability and Superior Surface Property, Coated Steel Strips Using Steel Strips and Method for Manufacturing the Steel Strips
US7699686B2 (en) * 2006-11-03 2010-04-20 Severstal Sparrows Point, Llc Method for polishing and aluminum-zinc hot-dip coating
KR101079486B1 (en) * 2008-12-26 2011-11-03 주식회사 포스코 Method for Preparing Galvanized Steel Sheet
KR101171449B1 (en) * 2009-12-28 2012-08-06 주식회사 포스코 Galvinized steel sheet having excellent deep drawing quality and ultra-low temperature bonding brittlness and method for manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019505666A (en) * 2015-12-22 2019-02-28 ポスコPosco Hot-dip galvanized steel sheet with excellent surface quality and low-temperature brittle fracture resistance
US11078564B2 (en) 2015-12-22 2021-08-03 Posco Hot-dip galvanized steel sheet with excellent surface quality and resistance to low temperature brittle fracture
JP2022509656A (en) * 2018-11-29 2022-01-21 ポスコ Hot-dip galvanized steel sheet with excellent surface appearance and low-temperature bonding brittleness
JP7244727B2 (en) 2018-11-29 2023-03-23 ポスコ カンパニー リミテッド Hot-dip galvanized steel sheet with excellent surface appearance and low-temperature joining brittleness
US11801665B2 (en) 2018-11-29 2023-10-31 Posco Co., Ltd Hot-dip galvanized steel sheet having excellent surface appearance and low-temperature bonding brittleness
WO2024019059A1 (en) * 2022-07-19 2024-01-25 国立大学法人大阪大学 Inorganic structure and method for producing inorganic structure

Also Published As

Publication number Publication date
EP2666882A4 (en) 2017-04-12
CN103429781A (en) 2013-12-04
EP2666882A1 (en) 2013-11-27
JP5816703B2 (en) 2015-11-18
WO2012099284A1 (en) 2012-07-26
US20140017516A1 (en) 2014-01-16
EP2666882B1 (en) 2021-04-28
CN103429781B (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP4460610B2 (en) Method for producing hot-dip galvanized steel sheet without spangle and apparatus used therefor
JP5764672B2 (en) High corrosion resistant hot dip galvanized steel sheet and method for producing the same
JP6830489B2 (en) Plated steel with excellent abrasion resistance and white rust resistance and its manufacturing method
JP5118782B2 (en) Hot-dip galvanized steel and its manufacturing method
JP5408385B2 (en) Surface-treated hot-dip galvanized steel
EP2794950B1 (en) Hot-dip galvanized steel sheet having excellent adhesiveness at ultra-low temperatures and method of manufacturing the same
JP6983153B2 (en) Zinc alloy plated steel sheet with excellent bendability and its manufacturing method
JP5816703B2 (en) Hot-dip galvanized steel sheet with excellent deep drawability and extremely low temperature joint brittleness resistance and method for producing the same
JP6713932B2 (en) Aluminum foil, electronic device, roll-to-roll aluminum foil, and method for manufacturing aluminum foil
TWI511875B (en) Molten galvanized steel sheet
JP2007284718A (en) Zn-Al ALLOY HOT-DIP PLATED STEEL SHEET SUPERIOR IN CORROSION RESISTANCE AND WORKABILITY, AND PRODUCTION METHOD THEREFOR
JP5600868B2 (en) Method for producing molten Al-Zn plated steel sheet
KR101171449B1 (en) Galvinized steel sheet having excellent deep drawing quality and ultra-low temperature bonding brittlness and method for manufacturing the same
JP6667640B2 (en) Hot-dip galvanized steel sheet with excellent surface quality and low-temperature brittle fracture resistance
JP6509160B2 (en) Molten Al-Zn based plated steel sheet and manufacturing method thereof
JP2004019000A (en) HOT-DIP Zn-Al PLATED STEEL SHEET SUPERIOR IN APPEARANCE, WORKABILITY AND CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP2007314858A (en) Hot dip galvannealed steel sheet and production method therefor
JP4919747B2 (en) Manufacturing method of hot-dip galvanized steel sheet with suppressed spangle pattern
JP3637702B2 (en) Method for producing hot-dip galvanized steel sheet with excellent workability
JP4751206B2 (en) High corrosion resistance plated steel material and method for producing the same
JP7244727B2 (en) Hot-dip galvanized steel sheet with excellent surface appearance and low-temperature joining brittleness
JP5521932B2 (en) Sn-Zn hot-dip galvanized steel sheet excellent in corrosion resistance, solder strength and spot weldability and method for producing the same
KR102453011B1 (en) Plated steel sheet having excellent sealer adhesion and method for manufacturing the same
JP2014148713A (en) HOT-DIP Al-Zn-BASED PLATED STEEL SHEET AND PRODUCTION METHOD THEREOF
JP2007016282A (en) Aluminum-zinc-alloy-plated steel material and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R150 Certificate of patent or registration of utility model

Ref document number: 5816703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250