JP2014504246A - Template crystal grains of sheet-like lithium niobate titanate (Li-Nb-Ti-O), textured lithium niobate titanate (Li-Nb-Ti-O) microwave medium ceramics containing the same, and method for producing the same - Google Patents

Template crystal grains of sheet-like lithium niobate titanate (Li-Nb-Ti-O), textured lithium niobate titanate (Li-Nb-Ti-O) microwave medium ceramics containing the same, and method for producing the same Download PDF

Info

Publication number
JP2014504246A
JP2014504246A JP2013538053A JP2013538053A JP2014504246A JP 2014504246 A JP2014504246 A JP 2014504246A JP 2013538053 A JP2013538053 A JP 2013538053A JP 2013538053 A JP2013538053 A JP 2013538053A JP 2014504246 A JP2014504246 A JP 2014504246A
Authority
JP
Japan
Prior art keywords
sheet
linb
template
crystal grains
template crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013538053A
Other languages
Japanese (ja)
Other versions
JP6097219B2 (en
Inventor
永祥 李
志遠 盧
依琳 王
文駿 呉
Original Assignee
中国科学院上海硅酸塩研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010537668 external-priority patent/CN102211932B/en
Priority claimed from CN 201010537689 external-priority patent/CN102211933B/en
Application filed by 中国科学院上海硅酸塩研究所 filed Critical 中国科学院上海硅酸塩研究所
Publication of JP2014504246A publication Critical patent/JP2014504246A/en
Application granted granted Critical
Publication of JP6097219B2 publication Critical patent/JP6097219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Insulating Materials (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本発明は、シート状ニオブ酸チタン酸リチウム(Li−Nb−Ti−O)のテンプレート結晶粒、及びその製造方法に関し、当該シート状Li−Nb−Ti−Oのテンプレート結晶粒は、化学式がLiNb0.6Ti0.5で、結晶粒の形態がシート状で、組成がM−相のLi−Nb−Ti−Oの粉体である。また、前述結晶粒を含む組織化ニオブ酸チタン酸リチウム(Li−Nb−Ti−O)のマイクロ波媒質セラミックス及びその製造方法を提供した。The present invention relates to a template crystal grain of sheet-like lithium niobate titanate (Li-Nb-Ti-O) and a method for producing the same, and the template crystal grain of the sheet-like Li-Nb-Ti-O has a chemical formula of LiNb. It is a powder of Li—Nb—Ti—O having a composition of 0.6 Ti 0.5 O 3 , crystal grains in a sheet form, and an M-phase composition. Further, the present invention provides an organized lithium niobate titanate (Li—Nb—Ti—O) microwave medium ceramics containing the crystal grains and a method for producing the same.

Description

本発明は、組織化マイクロ波媒質セラミックスのテンプレート結晶粒およびそれを含む組織化マイクロ波媒質セラミックスの製造分野に属し、シート状結晶形態を有するニオブ酸チタン酸リチウム(Li−Nb−Ti−O)の粉体、それを含む組織化ニオブ酸チタン酸リチウム(Li−Nb−Ti−O)のマイクロ波媒質セラミックス及びその製造方法を提供する。   The present invention belongs to the field of manufacturing template crystal grains of organized microwave medium ceramics and organized microwave medium ceramics containing the same, and is a lithium niobate titanate (Li-Nb-Ti-O) having a sheet-like crystal form , A textured lithium niobate titanate (Li—Nb—Ti—O) microwave medium ceramics and a method for producing the same.

低温同時焼成セラミックス(LTCC)のマイクロ波媒質とは、マイクロ波の周波数帯(300〜3000GHz)の回路において媒質材料として用いられて1つ又は複数の機能を果たすセラミックスで、損耗が少ない、周波数温度係数が低い、誘電率が高いなどの特徴があり、媒質共振器、媒質フィルタ、デュプレクサ、マイクロ波媒質アンテナ、媒質共振発振器、媒質導波路などの素子に用いられる。これらの素子は、移動通信、衛星テレビ、放送通信、レーダー、衛星測位ナビゲーションシステムなどの多くの分野に幅広く応用されている。通信、コンピューター及びその周辺製品が高周波数化、デジタル化に発展し続けるにつれ、電子素子は小型化、集積化、そしてモジュール化が日々進んでいる。LTCCは、優れた電気学、機械、熱学及びプロセス特性のため、将来、電子素子の集積化、モジュール化の一番の選択となる。LiO−Nb−TiO系(LNT)のマイクロ波媒質セラミックスは、誘電率可同調性(20〜78)、高いQ値、及び0に近い共振周波数温度係数などの特徴で、研究者に広く注目されている。高機能のマイクロ波媒質セラミックスは、現代の通信、軍事技術などの分野に注目を集め、応用の価値と発展の潜在力がある材料である。 Low-temperature co-fired ceramics (LTCC) microwave medium is a ceramic that is used as a medium material in a microwave frequency band (300 to 3000 GHz) circuit and performs one or more functions. It has characteristics such as a low coefficient and a high dielectric constant, and is used for elements such as a medium resonator, a medium filter, a duplexer, a microwave medium antenna, a medium resonance oscillator, and a medium waveguide. These elements are widely applied in many fields such as mobile communication, satellite television, broadcast communication, radar, and satellite positioning navigation system. As communications, computers, and peripheral products continue to develop into higher frequencies and digitalization, electronic devices are becoming smaller, more integrated, and modularized every day. LTCC will be the best choice for integration and modularization of electronic devices in the future because of its excellent electrical, mechanical, thermal and process properties. Li 2 O—Nb 2 O 5 —TiO 2 -based (LNT) microwave medium ceramics are characterized by dielectric constant tunability (20-78), high Q value, and resonant frequency temperature coefficient close to 0, etc. Has attracted widespread attention by researchers. High-functional microwave medium ceramics attract attention in fields such as modern communication and military technology, and are materials with application value and potential for development.

組織化技術とは、プロセスに対するコントロールによって、単結晶に近い性能を持つように元々ランダム配向のセラミックスを一定方向に配列させることである。現在、最も使われているセラミックス組織化技術として、テンプレート結晶粒成長(TGG)技術と反応性テンプレート結晶粒成長(RTGG)技術があるが、そのキーになる工程はテンプレート結晶粒の製造である。テンプレート結晶粒成長技術(TGG)は、形態異方性の単結晶粒子をテンプレート(Template)として利用し、テンプレート結晶粒成長法、熱処理技術に続いて発展してきたテンプレート結晶粒で配向を誘導する組織化方法である。一般的に、溶融塩法で異方性のテンプレート結晶粒を製造し、さらにキャスト又はプレスの方法を使用し、異方性粒子をせん断力の作用で粒子同士の相互作用によって結晶粒の配向を実現させる。テンプレート結晶粒成長法は、まず異方性のテンプレート結晶粒を製造するが、テンプレート結晶粒の製造は長期の模索過程が必要であるため、時間がかかり、プロセスも煩雑である。   The organization technique is to arrange ceramics originally randomly oriented in a certain direction so as to have a performance close to that of a single crystal by controlling the process. Currently, there are a template grain growth (TGG) technique and a reactive template grain growth (RTGG) technique as the most used ceramic organization techniques. The key process is the production of template grains. Template Grain Growth Technology (TGG) uses morphotropic anisotropic single crystal particles as a template, and a structure that induces orientation in template crystal grains developed following the template grain growth method and heat treatment technology. It is a conversion method. In general, anisotropic template crystal grains are manufactured by the molten salt method, and further, the cast or press method is used. make it happen. In the template crystal grain growth method, anisotropic template crystal grains are first manufactured. However, since the template crystal grain manufacturing requires a long-term searching process, it takes time and the process is complicated.

しかし、今まで、本分野では、強い配向性と大きいアスペクト比を有し、組織化マイクロ波媒質セラミックスの製造に好適に使用できるテンプレート結晶粒も、強い配向性と組織化の特徴を有する組織化マイクロ波媒質セラミックスを製造することができ、且つプロセスが簡単な方法も、まだ開発されていない。   However, until now, in this field, template crystal grains that have strong orientation and a large aspect ratio and can be suitably used for the production of structured microwave medium ceramics are also structured with strong orientation and organization characteristics. A method capable of producing a microwave medium ceramic and having a simple process has not been developed yet.

そのため、本分野では、強い配向性と大きいアスペクト比を有し、組織化マイクロ波媒質セラミックスの製造に好適に使用できるテンプレート結晶粒、及び強い配向性と組織化の特徴を有する組織化マイクロ波媒質セラミックスを製造することができ、且つプロセスが簡単な方法の開発が切望されている。   For this reason, in this field, template crystal grains that have a strong orientation and a large aspect ratio and can be suitably used for the production of structured microwave medium ceramics, and a structured microwave medium having strong orientation and organization characteristics Development of a method that can produce ceramics and that has a simple process is eagerly desired.

本発明は、新規なシート状ニオブ酸チタン酸リチウム(Li−Nb−Ti−O)のテンプレート結晶、それを含む組織化ニオブ酸チタン酸リチウム(Li−Nb−Ti−O)のマイクロ波媒質セラミックス、及びその製造方法を提供することによって、既存技術にある問題を解決した。   The present invention relates to a novel sheet-like lithium niobate titanate (Li-Nb-Ti-O) template crystal, and a structured lithium niobate titanate (Li-Nb-Ti-O) microwave medium ceramics And solving the problems in the existing technology by providing its manufacturing method.

一方、本発明は、化学式がLiNb0.6Ti0.5で、結晶粒の形態がシート状で、組成がM−相のLi−Nb−Ti−Oの粉体である、シート状Li−Nb−Ti−Oのテンプレート結晶粒を提供した。 On the other hand, in the present invention, the chemical formula is LiNb 0.6 Ti 0.5 O 3 , the form of crystal grains is a sheet, and the composition is an M-phase Li—Nb—Ti—O powder. Template crystal grains of Li—Nb—Ti—O were provided.

1つの好適な実施様態において、前述シート状Li−Nb−Ti−Oのテンプレート結晶の結晶粒の形態がシート状の三角形または多角形である。   In one preferred embodiment, the shape of the crystal grains of the template crystal of the sheet-like Li—Nb—Ti—O is a sheet-like triangle or polygon.

もう1つの好適な実施様態において、前述シート状Li−Nb−Ti−Oのテンプレート結晶粒の直径方向の長さが5〜80μmで、平均の長さが40μmで、厚さが0.5〜6.0μmである。   In another preferred embodiment, the above-mentioned sheet-like Li—Nb—Ti—O template crystal grains have a length in the diameter direction of 5 to 80 μm, an average length of 40 μm, and a thickness of 0.5 to 6.0 μm.

一方、本発明は、前述シート状Li−Nb−Ti−Oのテンプレート結晶粒を製造する方法であって、
LiCO、Nb及びTiOを原料とし、LiClの溶融塩系で、シート状のLiNb0.6Ti0.5粉体を合成し、
得られたシート状のLiNb0.6Ti0.5粉体に対して超音波で分散させ、加熱した脱イオン水で洗浄し、吸引ろ過し、純粋なM−相のLi−Nb−Ti−O粉体を得ることで、シート状Li−Nb−Ti−Oのテンプレート結晶粒を得ること、
を含む製造方法を提供した。
On the other hand, the present invention is a method for producing template crystal grains of the sheet-like Li-Nb-Ti-O,
Using Li 2 CO 3 , Nb 2 O 5 and TiO 2 as raw materials, a LiClb molten salt system is used to synthesize sheet-like LiNb 0.6 Ti 0.5 O 3 powder,
The obtained sheet-like LiNb 0.6 Ti 0.5 O 3 powder was dispersed ultrasonically, washed with heated deionized water, suction filtered, and pure M-phase Li-Nb- By obtaining Ti—O powder, obtaining a template crystal grain of sheet-like Li—Nb—Ti—O,
A manufacturing method comprising:

1つの好適な実施様態において、原料であるLiCO、Nb及びTiOは、重量比で0.5:0.3:0.5になるように配合される。 In one preferred embodiment, the raw materials Li 2 CO 3 , Nb 2 O 5 and TiO 2 are blended in a weight ratio of 0.5: 0.3: 0.5.

もう1つの好適な実施様態において、LiClの溶融塩系において、1:1〜1:3の溶融塩の比率を使用する。   In another preferred embodiment, a molten salt ratio of 1: 1 to 1: 3 is used in the LiCl molten salt system.

もう1つの好適な実施様態において、LiClの溶融塩系において、850°C〜1000°Cに3〜9時間保持する。   In another preferred embodiment, in a molten salt system of LiCl, hold at 850 ° C. to 1000 ° C. for 3 to 9 hours.

また、本発明は、前述シート状Li−Nb−Ti−Oのテンプレート結晶粒を含む、組織化Li−Nb−Ti−Oのマイクロ波媒質セラミックスを提供した。   The present invention also provides a structured Li—Nb—Ti—O microwave medium ceramic comprising the sheet-like Li—Nb—Ti—O template crystal grains.

また、本発明は、前述組織化Li−Nb−Ti−Oのマイクロ波媒質セラミックスを製造する方法であって、
前述方法でシート状Li−Nb−Ti−Oのテンプレート結晶粒を製造し、
LiCO、Nb、TiOを基体の粉末原料とし、LiNb0.6Ti0.5の粉末原料を予備合成し、
バインダーと溶媒を加熱して撹拌し、透明な溶液を形成し、
シート状LiNb0.6Ti0.5のテンプレート結晶粒と予備合成したLiNb0.6Ti0.5の粉末原料を前述透明な溶液に入れ、均一に混合してスラリーが得られ、
前述スラリーを基板にスクリーン印刷し、加熱して乾燥させ、得られたスラリー膜を切断、積層、プレスして成形し、600°C〜800°Cで有機物を除去し、さらに冷間等方圧加圧処理を行い、焼結して、組織化Li−Nb−Ti−Oのマイクロ波媒質セラミックスを得ること、
を含む製造方法を提供した。
Further, the present invention is a method for producing the above-described structured Li—Nb—Ti—O microwave medium ceramics,
Producing template crystal grains of sheet-like Li—Nb—Ti—O by the method described above,
Li 2 CO 3 , Nb 2 O 5 , TiO 2 as a powder raw material of the substrate, LiNb 0.6 Ti 0.5 O 3 powder raw material was pre-synthesized,
Heat and stir the binder and solvent to form a clear solution,
The sheet-like LiNb 0.6 Ti 0.5 O 3 template crystal grains and the pre-synthesized LiNb 0.6 Ti 0.5 O 3 powder raw material are put into the transparent solution and uniformly mixed to obtain a slurry. ,
The above slurry is screen-printed on a substrate, heated and dried, and the resulting slurry film is cut, laminated and pressed to remove organic matter at 600 ° C to 800 ° C, and further cold isostatic pressure Performing pressure treatment and sintering to obtain a structured Li—Nb—Ti—O microwave medium ceramic;
A manufacturing method comprising:

1つの好適な実施様態において、850°Cで2時間保持して、LiNb0.6Ti0.5の粉末原料を予備合成する。 In one preferred embodiment, the powder raw material of LiNb 0.6 Ti 0.5 O 3 is pre-synthesized by holding at 850 ° C. for 2 hours.

もう1つの好適な実施様態において、重量で計算すると、バインダー:溶媒:スラリー=1:12〜25:5〜15で、前述スラリーにおけるシート状LiNb0.6Ti0.5のテンプレート結晶粒が占める比率が5〜15%である。 In another preferred embodiment, when calculated by weight, the binder: solvent: slurry = 1: 12-25: 5-15, and the template crystal grains of sheet-like LiNb 0.6 Ti 0.5 O 3 in the slurry. The ratio occupied by is 5-15%.

もう1つの好適な実施様態において、前述バインダーは、エチルセルロース、メチルセルロース及びニトロセルロースから選ばれ、前述溶媒は、テルピネオール及びエチレングリコールから選ばれる。   In another preferred embodiment, the binder is selected from ethyl cellulose, methyl cellulose and nitrocellulose, and the solvent is selected from terpineol and ethylene glycol.

もう1つの好適な実施様態において、前述混合は、ボールミルによる混合で、前述スクリーン印刷は、300メッシュのスクリーンで印刷する。   In another preferred embodiment, the mixing is a ball mill mixing and the screen printing is performed on a 300 mesh screen.

もう1つの好適な実施様態において、前述焼結は、3〜6°C/分間の昇温速度で、1000〜1150°Cで焼結し、そして2〜5時間温度を保持する。   In another preferred embodiment, the sintering is performed at 1000-1150 ° C. with a heating rate of 3-6 ° C./min and held at temperature for 2-5 hours.

図1は、本発明の1つの実施様態による、溶融塩の比率が1:2、保温時間が3時間で、異なる温度で合成されたM−相LiNb0.6Ti0.5のテンプレート結晶粒のXRD(X線回折)スペクトルである。ここで、(a)は850°Cで合成されたテンプレート結晶粒のXRDスペクトルで、(b)は950°Cで合成されたテンプレート結晶粒のXRDスペクトルで、(C)は1000°Cで合成されたテンプレート結晶粒のXRDスペクトルで、(d)は1050°Cで合成されたテンプレート結晶粒のXRDスペクトルである。FIG. 1 shows an M-phase LiNb 0.6 Ti 0.5 O 3 template synthesized at different temperatures with a molten salt ratio of 1: 2, a heat retention time of 3 hours, according to one embodiment of the present invention. It is a XRD (X-ray diffraction) spectrum of a crystal grain. Here, (a) is an XRD spectrum of a template crystal grain synthesized at 850 ° C, (b) is an XRD spectrum of a template crystal grain synthesized at 950 ° C, and (C) is synthesized at 1000 ° C. (D) is an XRD spectrum of the template crystal grain synthesized at 1050 ° C. 図2は、本発明の1つの実施様態による、溶融塩の比率が1:2で、保温時間が3時間で、異なる温度で合成されたM−相LiNb0.6Ti0.5のテンプレート結晶粒のSEM(走査型電子顕微鏡)写真である。ここで、(a)は850°Cで合成されたテンプレート結晶粒のSEM写真で、(b)は950°Cで合成されたテンプレート結晶粒のSEM写真で、(C)は1000°Cで合成されたテンプレート結晶粒のSEM写真で、(d)は1050°Cで合成されたテンプレート結晶粒のSEM写真である。FIG. 2 is a diagram of M-phase LiNb 0.6 Ti 0.5 O 3 synthesized at different temperatures with a molten salt ratio of 1: 2 and a heat retention time of 3 hours according to one embodiment of the present invention. It is a SEM (scanning electron microscope) photograph of a template crystal grain. Here, (a) is an SEM photograph of template crystal grains synthesized at 850 ° C, (b) is an SEM photograph of template crystal grains synthesized at 950 ° C, and (C) is synthesized at 1000 ° C. (D) is an SEM photograph of the template crystal grains synthesized at 1050 ° C. 図3は、本発明の1つの実施様態による、溶融塩の比率が1:2で、1000°Cの温度で、異なる保温時間で合成されたM−相LiNb0.6Ti0.5のテンプレート結晶粒のXRDスペクトルである。ここで、(e)は保温時間3時間で合成されたテンプレート結晶粒のXRDスペクトルで、(f)は保温時間6時間で合成されたテンプレート結晶粒のXRDスペクトルで、(g)は保温時間9時間で合成されたテンプレート結晶粒のXRDスペクトルである。FIG. 3 shows an M-phase LiNb 0.6 Ti 0.5 O 3 synthesized at different incubation times at a temperature of 1000 ° C. with a molten salt ratio of 1: 2 according to one embodiment of the present invention. It is an XRD spectrum of the template crystal grain. Here, (e) is an XRD spectrum of template crystal grains synthesized with a heat retention time of 3 hours, (f) is an XRD spectrum of template crystal grains synthesized with a heat retention time of 6 hours, and (g) is a heat retention time of 9 hours. 3 is an XRD spectrum of template crystal grains synthesized in time. 図4は、本発明の1つの実施様態による、溶融塩の比率が1:2で、1000°Cの温度で、異なる保温時間で合成されたM−相LiNb0.6Ti0.5のテンプレート結晶粒のSEM写真である。ここで、(e)は保温時間3時間で合成されたテンプレート結晶粒のSEM写真で、(f)は保温時間6時間で合成されたテンプレート結晶粒のSEM写真で、(g)は保温時間9時間で合成されたテンプレート結晶粒のSEM写真である。FIG. 4 shows an M-phase LiNb 0.6 Ti 0.5 O 3 synthesized with different incubation times at a temperature of 1000 ° C. with a molten salt ratio of 1: 2 according to one embodiment of the present invention. It is a SEM photograph of the template crystal grain of. Here, (e) is a SEM photograph of template crystal grains synthesized with a heat retention time of 3 hours, (f) is a SEM photograph of template crystal grains synthesized with a heat retention time of 6 hours, and (g) is a heat retention time of 9 hours. It is a SEM photograph of the template crystal grain synthesized with time. 図5は、本発明の1つの実施様態による、1000°Cの温度で、保温時間が6時間で、異なる溶融塩の比率で合成されたM−相LiNb0.6Ti0.5のテンプレート結晶粒のXRDスペクトルである。ここで、(h)は溶融塩の比率が1:1で合成されたテンプレート結晶粒のXRDスペクトルで、(i)は溶融塩の比率が1:2で合成されたテンプレート結晶粒のXRDスペクトルで、(j)は溶融塩の比率が1:3で合成されたテンプレート結晶粒のXRDスペクトルである。FIG. 5 is a diagram of M-phase LiNb 0.6 Ti 0.5 O 3 synthesized at different molten salt ratios at a temperature of 1000 ° C., a heat retention time of 6 hours, according to one embodiment of the present invention. It is an XRD spectrum of a template crystal grain. Here, (h) is an XRD spectrum of a template crystal grain synthesized with a molten salt ratio of 1: 1, and (i) is an XRD spectrum of a template crystal grain synthesized with a molten salt ratio of 1: 2. , (J) are XRD spectra of template crystal grains synthesized at a molten salt ratio of 1: 3. 図6は、本発明の1つの実施様態による、1000°Cの温度で、保温時間が6時間で、異なる溶融塩の比率で合成されたM−相LiNb0.6Ti0.5のテンプレート結晶粒のSEM写真である。ここで、(h)は溶融塩の比率が1:1で合成されたテンプレート結晶粒のSEM写真で、(i)は溶融塩の比率が1:2で合成されたテンプレート結晶粒のSEM写真で、(j)は溶融塩の比率が1:3で合成されたテンプレート結晶粒のSEM写真である。FIG. 6 shows M-phase LiNb 0.6 Ti 0.5 O 3 synthesized at different molten salt ratios at a temperature of 1000 ° C. with a heat retention time of 6 hours according to one embodiment of the present invention. It is a SEM photograph of a template crystal grain. Here, (h) is an SEM photograph of template crystal grains synthesized with a molten salt ratio of 1: 1, and (i) is an SEM photograph of template crystal grains synthesized with a molten salt ratio of 1: 2. , (J) are SEM photographs of template crystal grains synthesized at a molten salt ratio of 1: 3. 図7は、従来の方法で製造されたLNTセラミックスのXRD(X線回折)スペクトルである。FIG. 7 is an XRD (X-ray diffraction) spectrum of LNT ceramics produced by a conventional method. 図8は、本発明の方法で製造された組織化LNTセラミックスのXRDスペクトルである。ここで、bはスクリーン印刷の表面と垂直の組織化LNTセラミックスのXRDスペクトルで、Cはスクリーン印刷の表面と平行の組織化LNTセラミックスのXRDスペクトルである。図8から、組織化LNTセラミックスの平行と垂直の回折ピークは位置が同じであるが、強さが明らかに異なり、スクリーン印刷の表面と平行の(202)ピークが顕著に増強し、強い組織化の特徴があることがわかる。FIG. 8 is an XRD spectrum of the structured LNT ceramic produced by the method of the present invention. Here, b is an XRD spectrum of the structured LNT ceramic perpendicular to the screen printing surface, and C is an XRD spectrum of the structured LNT ceramic parallel to the screen printing surface. From FIG. 8, the parallel and perpendicular diffraction peaks of the structured LNT ceramics have the same position, but the strength is clearly different, and the (202) peak parallel to the surface of the screen print is remarkably enhanced, resulting in strong organization. It can be seen that there is a feature. 図9は、本発明で使用されるテンプレート結晶粒のSEM(走査型電子顕微鏡)図である。図9から、SEM解析したところ、LNT結晶粒がシート状で、直径方向の長さが5〜30μmで、厚さが0.5〜2.0μmで、大きいアスペクト比を持ち、理想的なTGG及び反応性テンプレート結晶粒成長(RTGG)技術の応用に適するテンプレート結晶粒であることがわかる。FIG. 9 is an SEM (scanning electron microscope) diagram of template crystal grains used in the present invention. From the SEM analysis of FIG. 9, the LNT crystal grains are sheet-like, the length in the diameter direction is 5 to 30 μm, the thickness is 0.5 to 2.0 μm, and has a large aspect ratio, which is an ideal TGG. And template crystal grains suitable for application of reactive template grain growth (RTGG) technology. 図10は、本発明の1つの実施様態による、スクリーン印刷の表面と平行の組織化LNTセラミックスのSEM図(1100°C、2時間で焼結)である。図10から、シート状のセラミックスのテンプレートがその方向で顕著に増大し、結晶粒の直径が50〜60μmになることがわかる。FIG. 10 is an SEM view (1100 ° C., 2 hours sintering) of structured LNT ceramic parallel to the screen printed surface, according to one embodiment of the present invention. From FIG. 10, it can be seen that the sheet-like ceramic template increases remarkably in that direction, and the crystal grain diameter becomes 50 to 60 μm. 図11は、本発明の1つの実施様態による、スクリーン印刷の表面と垂直の組織化LNTセラミックスのSEM図(1100°C、2時間で焼結)である。図11から、シート状のセラミックスのテンプレートが直径方向と厚さ方向でともに顕著に増大し、結晶粒の直径が60〜80μmになり、平均の長さが約40μmで、厚さが2〜6.0μmで、且つ配列が揃って、顕著な組織化の特徴があることがわかる。FIG. 11 is a SEM view (1100 ° C., 2 hours sintering) of textured LNT ceramics perpendicular to the screen printed surface, according to one embodiment of the present invention. From FIG. 11, the sheet-like ceramic template is remarkably increased in both the diameter direction and the thickness direction, the crystal grain diameter is 60 to 80 μm, the average length is about 40 μm, and the thickness is 2 to 6 It can be seen that there is a remarkable organization characteristic at 0.0 μm and alignment. 図12は、本発明の1つの実施様態による、焼結したマイクロ波媒質セラミックの垂直及び平行の方向に沿ったスライスを銀メッキ電極で測定した誘電率温度スペクトルである。ここで、aは結晶粒の配列方向と垂直のもので、bは結晶粒の配列方向と平行のものである。図12から、1MHzの周波数で、結晶粒の配列方向と垂直の方向で、誘電率ε=55.75で、正値の誘電率温度係数を持つが、結晶粒の配列方向と平行の方向で、誘電率ε=84.40で、負値の誘電率温度係数を持つことがわかる。共振周波数温度係数τと材料の誘電率温度係数τε及び熱膨張係数αはτ=−1/2τε−α関係が存在し、通常αが6〜9ppm/°Cであるため、結晶粒の配列方向と垂直の方向で負値の0に近い共振周波数温度係数を持ち、結晶粒の配列方向と平行の方向で正値の0に近い共振周波数温度係数を持つことが推測される。FIG. 12 is a dielectric temperature spectrum obtained by measuring a slice along a vertical and parallel direction of a sintered microwave medium ceramic with a silver plated electrode according to one embodiment of the present invention. Here, a is perpendicular to the crystal grain arrangement direction, and b is parallel to the crystal grain arrangement direction. From FIG. 12, at a frequency of 1 MHz, a dielectric constant ε = 55.75 in a direction perpendicular to the crystal grain arrangement direction and a positive dielectric constant temperature coefficient, but in a direction parallel to the crystal grain arrangement direction. It can be seen that the dielectric constant ε = 84.40 and the dielectric constant temperature coefficient is negative. The relationship between the resonance frequency temperature coefficient τ f , the dielectric constant temperature coefficient τ ε and the thermal expansion coefficient α 1 is τ f = −1 / 2τ ε −α 1 , and usually α 1 is 6 to 9 ppm / ° C. Therefore, it is presumed that it has a resonance frequency temperature coefficient close to a negative value of 0 in the direction perpendicular to the crystal grain arrangement direction and a resonance frequency temperature coefficient close to a positive value of 0 in the direction parallel to the crystal grain arrangement direction. Is done.

本発明の発明者は、幅広く深く研究したところ、M−相LiNb0.6Ti0.5(LNT)のマイクロ波媒質セラミックスは、高い誘電率(約70)を持ち、焼結温度が約1100°Cと低く、同時に高いQ値と0に近い共振周波数温度係数(約8ppm/°C)を持つことが見出された。組織化技術によって、セラミックスの結晶粒が一定方向に配列し、優れた異方性を示す。1MHzの周波数で、結晶粒の配列方向と垂直の方向で、誘電率ε=55.8であり、結晶粒の配列方向と平行の方向で、誘電率ε=84.4である。異なる方法の裁断によって、異なる誘電率のセラミックスを得ることができ、そして共振周波数温度係数が0であり、損耗が低く、電気学的機能が優れたマイクロ波媒質セラミックスを得ることが可能である。LNTマイクロ波媒質セラミックスに使用されるテンプレート材料はシート状の形態を持つLNT粉体である。溶融塩法で製造されるM−相LiNb0.6Ti0.5粉体は、LiNbOと類似の構造を持ち、擬三方晶系に属し、その粉体の構造は、n層のLiNbO(LN層)及び層間に介在する成分が[Ti2+に近いコランダム型構造で共に構成され、シート状で三角形または三角形で組合せてなる多角形の結晶粒の形態で、大きいアスペクト比および強い配向性を持ち、理想的なLNTマイクロ波媒質セラミックスに使用するテンプレート結晶粒である。しかも、テンプレート結晶粒の配向生長技術は、セラミックスの顕微構造の改善によって、結晶粒の成長方向を制御し、高い配向度および組織化度を持つセラミックスを形成することができるため、溶融塩マイクロ反応法で構成されたシート状LiNb0.6Ti0.5をテンプレートとして、予備焼結したLiCO、Nb、TiOと混合し、さらに焼結助剤を入れ、スラリーを調製し、スクリーン印刷で得られたセラミックス厚膜を裁断、積層、バインダー除去、焼結することで、組織化したLi−Nb−Ti−Oセラミックスが得られ、且つ組織化マイクロ波媒質セラミックスの緻密度、配向度を向上させることができ、セラミックスの誘電率、誘電率温度係数、共振周波数温度係数のいずれも顕著な異方性を示し、異なる方向の裁断によって、誘電率がシリーズ化になり、機能が優れたマイクロ波媒質セラミックスを得ることができる。以上の知見に基づき、本発明が完成された。 The inventors of the present invention have studied extensively and deeply. As a result, M-phase LiNb 0.6 Ti 0.5 O 3 (LNT) microwave medium ceramics have a high dielectric constant (about 70) and a sintering temperature. It was found to have a low Q value of about 1100 ° C. and at the same time a high Q value and a resonance frequency temperature coefficient close to 0 (about 8 ppm / ° C.). By the organization technique, the crystal grains of ceramics are arranged in a certain direction and show excellent anisotropy. At a frequency of 1 MHz, the dielectric constant ε = 55.8 in the direction perpendicular to the crystal grain arrangement direction, and the dielectric constant ε = 84.4 in the direction parallel to the crystal grain arrangement direction. By different methods of cutting, ceramics having different dielectric constants can be obtained, and microwave medium ceramics having a resonance frequency temperature coefficient of 0, low wear, and excellent electrical functions can be obtained. The template material used for LNT microwave medium ceramics is LNT powder having a sheet-like form. The M-phase LiNb 0.6 Ti 0.5 O 3 powder produced by the molten salt method has a similar structure to LiNbO 3 and belongs to the pseudotrigonal system, and the structure of the powder is an n-layer structure. LiNbO 3 (LN layer) and the intervening component are both composed of a corundum type structure close to [Ti 2 O 3 ] 2+ , and are large in the form of polygonal crystal grains that are sheet-like and combined with triangles or triangles It is a template crystal grain that has an aspect ratio and strong orientation and is used for ideal LNT microwave medium ceramics. Moreover, the orientation growth technology of the template crystal grains can control the growth direction of the crystal grains by improving the microstructure of the ceramics and form ceramics with a high degree of orientation and organization. The sheet-like LiNb 0.6 Ti 0.5 O 3 formed by the above method is used as a template, mixed with pre-sintered Li 2 CO 3 , Nb 2 O 5 , TiO 2, and further added with a sintering aid, By cutting, laminating, removing the binder, and sintering the ceramic thick film obtained by screen printing, an organized Li-Nb-Ti-O ceramic is obtained, and the structured microwave medium ceramics The density and orientation can be improved, and the dielectric constant, dielectric constant temperature coefficient, and resonance frequency temperature coefficient of ceramics are all markedly anisotropic. Shows, the cutting of the different directions, the dielectric constant becomes series of can function to obtain an excellent microwave medium ceramics. Based on the above findings, the present invention has been completed.

本発明の第一は、化学式がLiNb0.6Ti0.5で、結晶粒の形態がシート状で、直径方向の長さが5〜80μmで、厚さが0.5〜6.0μmで、大きいアスペクト比および強い配向性を持ち、理想的なTGGおよびRTGG技術に適するテンプレート結晶粒であるLi−Nb−Ti−O粉体を提供した。 In the first aspect of the present invention, the chemical formula is LiNb 0.6 Ti 0.5 O 3 , the crystal grains are in sheet form, the length in the diameter direction is 5 to 80 μm, and the thickness is 0.5 to 6. At 0 μm, a Li—Nb—Ti—O powder having a large aspect ratio and strong orientation and being a template crystal grain suitable for an ideal TGG and RTGG technology was provided.

本発明の第二は、前述Li−Nb−Ti−O粉体を製造する方法であって、
LiCO、Nb及びTiOを原料粉体とし、以下の反応方程式で配合し、
0.5LiCO+0.3Nb+0.5TiO → LiNb0.6Ti0.5
混合原料:無水エタノール:ZrOボール=1:2:3の比率でボールミルで混合し、加熱乾燥、分粒した後、重量比が1:1〜1:3のLiClを入れ、研磨して均一に混合し、5°C/分の昇温速度で850〜1100°Cに昇温させ、温度を3〜9時間保持することによってシート状のLiNb0.6Ti0.5粉体が得られ、
合成されたLiNb0.6Ti0.5粉体に対して、超音波による分散、加熱した脱イオン水による洗浄、数回の吸引ろ過を行った後、体系におけるLiCl溶融塩をろ過除去し、オーブンで乾燥し、所期のシート状LiNb0.6Ti0.5のテンプレート結晶粒を得ること、
を含む製造方法を提供した。
The second of the present invention is a method for producing the aforementioned Li-Nb-Ti-O powder,
Li 2 CO 3 , Nb 2 O 5 and TiO 2 are used as raw material powders, blended according to the following reaction equation,
0.5Li 2 CO 3 + 0.3Nb 2 O 5 + 0.5TiO 2 → LiNb 0.6 Ti 0.5 O 3
Mixed raw material: absolute ethanol: ZrO 2 balls = 1: 2: 3 mixed in a ball mill, heat-dried and sized, then put LiCl with a weight ratio of 1: 1 to 1: 3, polished and even The mixture is heated to 850 to 1100 ° C. at a rate of 5 ° C./min, and the temperature is maintained for 3 to 9 hours, whereby the sheet-like LiNb 0.6 Ti 0.5 O 3 powder is obtained. Obtained,
The synthesized LiNb 0.6 Ti 0.5 O 3 powder was dispersed by ultrasonic waves, washed with heated deionized water, and filtered several times with suction, and then the LiCl molten salt in the system was removed by filtration. And drying in an oven to obtain the desired sheet-like LiNb 0.6 Ti 0.5 O 3 template crystal grains,
A manufacturing method comprising:

本発明において、XRDで異なる条件下のLiNb0.6Ti0.5テンプレートの結晶相構造を、そしてSEMでこれらの粉体の顕微構造を分析した。その結果、本発明の製造方法によって、シート状の結晶粒という形態特徴を持つLiNb0.6Ti0.5のテンプレート結晶粒の製造に成功したことがわかった。SEM解析によって、LNT結晶粒がシート状で、直径方向の長さが5〜30μmで、厚さが0.5〜2.0μmで、大きいアスペクト比を持ち、理想的なTGG及びRTGG技術の応用に適するテンプレート結晶粒であることがわかった。 In the present invention, the crystal phase structure of LiNb 0.6 Ti 0.5 O 3 template under different conditions by XRD and the microscopic structure of these powders were analyzed by SEM. As a result, it was found that the production method of the present invention succeeded in producing template crystal grains of LiNb 0.6 Ti 0.5 O 3 having morphological characteristics of sheet-like crystal grains. By SEM analysis, LNT crystal grains are in sheet form, length in diameter direction is 5-30 μm, thickness is 0.5-2.0 μm, have a large aspect ratio, and ideal TGG and RTGG application It was found that the template crystal grains are suitable for the above.

本発明の方法で製造されたニオブ酸チタン酸リチウムの粉体は、各種類の組成の組織化Li−Nb−Ti−Oのマイクロ波媒質セラミックスのテンプレート結晶粒にすることができ、マイクロ波媒質セラミックスの密度、機械的強度の向上に積極的な作用があり、顕著な異方性を持ち、損耗が低い誘電性が優れたマイクロ波媒質セラミックスを得ることができる。   The powder of lithium niobate titanate produced by the method of the present invention can be made into template crystal grains of organized Li—Nb—Ti—O microwave medium ceramics of various types of compositions. It is possible to obtain a microwave medium ceramic that has a positive effect on improving the density and mechanical strength of ceramics, has remarkable anisotropy, and has low dielectric properties and excellent dielectric properties.

本発明の第三は、化学式がLiNb0.6Ti0.5で、結晶粒の形態がシート状で、直径方向の長さが最長で80μmに達し、平均の長さが約40μmで、厚さが2〜6.0μmで、強い配向性および組織化の特徴を持つLi−Nb−Ti−Oのマイクロ波媒質セラミックスを提供した。 In the third aspect of the present invention, the chemical formula is LiNb 0.6 Ti 0.5 O 3 , the form of the crystal grains is a sheet, the length in the diameter direction reaches a maximum of 80 μm, and the average length is about 40 μm. The present invention provides a Li—Nb—Ti—O microwave medium ceramics having a thickness of 2 to 6.0 μm and strong orientation and texture characteristics.

本発明では、テンプレートを添加した条件下で、高密度、高配向度のLi−Nb−Ti−Oのマイクロ波媒質セラミックス材料を製造することができるため、このようなセラミックスの組織化の製造プロセスを簡単化した。本発明では、予備合成されたLNT粉体に所定の比率でLiNb0.6Ti0.5のテンプレート結晶粒を添加することで、高配向度および異方性を有する純粋なM−相LiNb0.6Ti0.5マイクロ波媒質セラミックスを製造する。前述LiNb0.6Ti0.5は、n層のLiNbO(LN)及び層間に介在する成分が[Ti2+に近いコランダム型構造で共に構成される。 In the present invention, a microwave medium ceramic material of Li—Nb—Ti—O having a high density and a high degree of orientation can be produced under a condition where a template is added. Simplified. In the present invention, a pure M-phase having a high degree of orientation and anisotropy is obtained by adding template crystal grains of LiNb 0.6 Ti 0.5 O 3 at a predetermined ratio to the pre-synthesized LNT powder. LiNb 0.6 Ti 0.5 O 3 microwave medium ceramics are manufactured. The aforementioned LiNb 0.6 Ti 0.5 O 3 is composed of an n-layer LiNbO 3 (LN) and a corundum structure in which the component interposed between the layers is close to [Ti 2 O 3 ] 2+ .

本発明で得られるLi−Nb−Ti−Oマイクロ波媒質セラミックスは、誘電性が垂直および平行の方向で顕著な異方性を有する。それを垂直および平行の方向でそれぞれスライスに切り、両面に銀ペーストを塗り、700〜750°Cの温度で30分間銀メッキ電極に焼結した。ネットワークアナライザで測定したところ、1MHzの周波数で、結晶粒の配列方向と垂直の方向で、誘電率ε=55.75で、正値の誘電率温度係数を持つが、結晶粒の配列方向と平行の方向で、誘電率ε=84.40で、負値の誘電率温度係数を持つことがわかった。   The Li—Nb—Ti—O microwave medium ceramics obtained by the present invention has a remarkable anisotropy in the directions of dielectric and vertical and parallel. It was cut into slices in the vertical and parallel directions, silver paste was applied on both sides, and sintered at a temperature of 700 to 750 ° C. for 30 minutes on a silver plating electrode. When measured with a network analyzer, it has a dielectric constant ε = 55.75 and a positive dielectric constant temperature coefficient in a direction perpendicular to the crystal grain arrangement direction at a frequency of 1 MHz, but parallel to the crystal grain arrangement direction. It was found that the dielectric constant was ε = 84.40 and had a negative dielectric constant temperature coefficient.

本発明の第四は、前述Li−Nb−Ti−Oマイクロ波媒質セラミックスを製造する方法であって、
LiCO、Nb及びTiOを原料粉体とし、以下の反応方程式で配合し、
0.5LiCO+0.3Nb+0.5TiO →LiNb0.6Ti0.5
混合原料:無水エタノール:ZrOボール=1:2:3の比率でボールミルで混合し、加熱乾燥、分粒した後、700〜900°Cで予備合成し、
LiNb0.6Ti0.5の反応方程式で計算し、モル比がLiCO:Nb:TiO=5:3:5になるように原料を秤量し、LiCl溶融塩の環境で溶融塩法でM−相のシート状LiNb0.6Ti0.5テンプレートを合成し、
バインダーとしてエチルセルロースを、溶媒としてテルピネオールを使用し、透明な溶液になるまで80°Cで加熱して撹拌し、予備合成した粉体を上述溶液に入れ、ボールミルで2〜4時間均一に混合し、最後に所定の比率でテンプレート結晶粒を入れ、2時間ボールミルを続け、所要のスラリーが得られた。該スラリーを300メッシュのスクリーンで直接基板に印刷し、80〜100°Cのオーブンで乾燥した。上述工程を50〜80回繰り返し、厚さが0.5〜1mmの混合原料厚膜(スクリーンのせん断力の作用によって、種結晶が基板と平行の方向に配列)を得てから、最後にセラミックス厚膜を80〜100°Cのオーブンで10〜20時間乾燥した。セラミックス膜を所要の大きさに裁断し、基板から取り、研磨具に重ねてプレス成形し、成形された生地を熱処理炉に置いて600〜800°Cで有機物を除去すること、を含む製造方法を提供した。
A fourth aspect of the present invention is a method for producing the aforementioned Li-Nb-Ti-O microwave medium ceramics,
Li 2 CO 3 , Nb 2 O 5 and TiO 2 are used as raw material powders, blended according to the following reaction equation,
0.5Li 2 CO 3 + 0.3Nb 2 O 5 + 0.5TiO 2 → LiNb 0.6 Ti 0.5 O 3
Mixed raw material: absolute ethanol: ZrO 2 balls = 1: 2: 3 is mixed by a ball mill, heated and dried, sized, and preliminarily synthesized at 700 to 900 ° C.,
Calculated by the reaction equation of LiNb 0.6 Ti 0.5 O 3 , the raw materials were weighed so that the molar ratio was Li 2 CO 3 : Nb 2 O 5 : TiO 2 = 5: 3: 5, and LiCl molten salt M-phase sheet-like LiNb 0.6 Ti 0.5 O 3 template was synthesized by the molten salt method in the environment of
Using ethyl cellulose as a binder and terpineol as a solvent, heating and stirring at 80 ° C. until a transparent solution is obtained, placing the pre-synthesized powder in the above solution, and mixing uniformly for 2 to 4 hours with a ball mill, Finally, template crystal grains were added at a predetermined ratio, and ball milling was continued for 2 hours to obtain a required slurry. The slurry was printed directly on the substrate with a 300 mesh screen and dried in an oven at 80-100 ° C. The above process is repeated 50 to 80 times to obtain a mixed raw material thick film having a thickness of 0.5 to 1 mm (seed crystals are arranged in a direction parallel to the substrate by the action of the shearing force of the screen), and finally ceramics. The thick film was dried in an oven at 80-100 ° C for 10-20 hours. A manufacturing method comprising cutting a ceramic film into a required size, taking it from a substrate, press-molding it over a polishing tool, and placing the formed dough in a heat treatment furnace to remove organic matter at 600 to 800 ° C. Provided.

本発明において、焼結プロセスは、5〜10°C/分の速度で1100〜1140°Cに昇温し、試料を焼結し、そして2〜10時間温度を保持する。   In the present invention, the sintering process raises the temperature to 1100-1140 ° C. at a rate of 5-10 ° C./min, sinters the sample, and holds the temperature for 2-10 hours.

本発明では、組織化Li−Nb−Ti−Oマイクロ波媒質セラミックスの製造に成功したが、セラミックスに対して平行の結晶粒界および垂直方向でXRD解析したところ、セラミックス材料は(202)面(図2を参照)に沿って顕著な組織化現象があることがわかった。また、SEM解析では、結晶粒の形態がシート状で、直径方向の長さが最長で80μmまで達し、平均の長さが約40μmで、厚さが2〜6.0μmで、強い配向性および組織化の特徴を持つことが見られた。   In the present invention, the structured Li—Nb—Ti—O microwave medium ceramics was successfully manufactured. When XRD analysis was performed in a grain boundary parallel to the ceramics and in a vertical direction, the ceramic material was found to have a (202) plane ( It was found that there is a remarkable organization phenomenon along (see FIG. 2). In the SEM analysis, the crystal grains are in sheet form, the length in the diameter direction reaches up to 80 μm, the average length is about 40 μm, the thickness is 2 to 6.0 μm, strong orientation and It was seen that it had the characteristics of organization.

本発明の主な利点は以下の通りである。   The main advantages of the present invention are as follows.

1、本発明は、初めてLiNbO構造と類似のM−相LiNb0.6Ti0.5テンプレート結晶粒を製造したが、その結晶粒は、強い配向性および大きいアスペクト比を持ち、組織化LiNb0.6Ti0.5マイクロ波媒質セラミックスの製造に使用することで、組織化マイクロ波媒質セラミックスの緻密度、配向度を向上させることができ、製造されたセラミックスは、裁断によって、低い損耗、0に近い共振周波数温度係数を持ち、誘電率が一定の範囲内で調整可能なマイクロ波媒質セラミックスを得ることができ、フィルタ、シート型媒質共振器およびアンテナなどの多層マイクロ波周波数素子の製造に適し、幅広い応用の将来性がある。 1. The present invention has produced for the first time M-phase LiNb 0.6 Ti 0.5 O 3 template crystal grains similar to the LiNbO 3 structure, and the crystal grains have a strong orientation and a large aspect ratio. When used in the manufacture of structured LiNb 0.6 Ti 0.5 O 3 microwave medium ceramics, the density and orientation of the structured microwave medium ceramics can be improved. Microwave medium ceramics having low wear and temperature coefficient of resonance frequency close to 0 and adjustable dielectric constant within a certain range can be obtained, and multilayer microwave frequencies such as filters, sheet-type medium resonators and antennas can be obtained. Suitable for device manufacturing and has a wide range of potential applications.

2、本発明に用いられる原料は、低価で、製造方法が簡単で、普及しやすい。   2. The raw materials used in the present invention are low in price, easy to manufacture and easy to spread.

3、本発明で製造されるLi−Nb−Ti−Oマイクロ波セラミックス膜層の厚さは数ミクロンに抑えられ、単一の膜層では、結晶粒が印刷のせん断力の作用で好適に配向することができる。   3. The thickness of the Li—Nb—Ti—O microwave ceramic film layer produced by the present invention is suppressed to several microns, and in a single film layer, the crystal grains are oriented properly by the action of the shearing force of printing. can do.

4、本発明で製造されるLi−Nb−Ti−Oマイクロ波セラミックスは、従来の方法で製造されるLi−Nb−Ti−Oマイクロ波セラミックスと比較すると、結晶粒のサイズが大きくなり、異方性が顕著で、高い配向度を持ち、同時に優れた電気学的性能を有する。   4. The Li—Nb—Ti—O microwave ceramics produced by the present invention has a larger crystal grain size than the Li—Nb—Ti—O microwave ceramics produced by the conventional method. It has remarkable directivity, high degree of orientation, and at the same time excellent electrical performance.

5、キャストのプロセスと比較すると、本発明は、スラリーの調製が簡単で、プロセスも簡単で、コントロールが容易で、コストが低い。   5. Compared with the casting process, the present invention is simple in slurry preparation, simple in process, easy to control and low in cost.

6、本発明の方法は、組織化マイクロ波媒質セラミックスの緻密度、配向度を向上させることができ、セラミックスの誘電率、誘電率温度係数、共振周波数温度係数のいずれも顕著な異方性を示し、異なる方向の裁断によって、誘電率がシリーズ化になり、性能が優れたマイクロ波媒質セラミックスを得ることができ、フィルタ、シート型媒質共振器およびアンテナなどの多層マイクロ波周波数素子の製造に適し、移動通信、衛星測位ナビゲーションシステムなどの多くの分野に応用されることが期待され、幅広い発展の潜在力および応用の将来性がある。   6. The method of the present invention can improve the density and degree of orientation of the structured microwave medium ceramics, and the dielectric constant, dielectric constant temperature coefficient, and resonance frequency temperature coefficient of the ceramics have significant anisotropy. By cutting in different directions, the dielectric constant becomes a series, and microwave medium ceramics with excellent performance can be obtained, suitable for manufacturing multilayer microwave frequency elements such as filters, sheet type medium resonators and antennas It is expected to be applied to many fields such as mobile communication, satellite positioning navigation system, etc., and has the potential for wide development and future of application.

以下、具体的な実施例によって、さらに本発明を説明する。しかし、これらの実施例は本発明の説明のためのもので、本発明の範囲に対する制限にならないことが理解されるべきである。以下の実施例において、具体的な条件が記載されていない試験方法は、通常、通常の条件、或いはメーカーの薦めの条件で行われた。別の説明がない限り、すべての百分率と部は、重量で計算される。   Hereinafter, the present invention will be further described with reference to specific examples. However, it should be understood that these examples are illustrative of the invention and are not a limitation on the scope of the invention. In the following examples, the test methods in which specific conditions are not described were usually performed under normal conditions or conditions recommended by the manufacturer. Unless stated otherwise, all percentages and parts are calculated by weight.

・実施例1
(i)テンプレート結晶粒の合成:LiNb0.6Ti0.5の反応方程式で計算し、モル比がLiCO:Nb:TiO=5:3:5になるように原料を秤量し、エタノール、ZrOボールと1:2:3の比率でボールミルで24時間混合した後、ガラス容器に移して90°Cで加熱乾燥した。乾燥した原料粉体を分粒した後、1:2の比率でLiCl塩を入れ、均一に混合するまで10分間研磨した。混合原料をAl坩堝に入れて蓋をかけ、3°C/分の昇温速度で、850〜1050°Cの高温炉で3時間合成した。
(ii)テンプレート結晶粒のろ過:合成されたLiNb0.6Ti0.5結晶粒を粉砕し、超音波で分散させ、加熱した脱イオン水で10回洗浄し、その中のLiCl溶融塩を除去した。その間、AgNO溶液でろ液におけるCl-イオンの含有量を測定し、ろ過が完全かどうか判断した。図1は、製造されたLiNb0.6Ti0.5のテンプレート結晶粒のXRDスペクトルで、図1から、850°Cの結晶粒XRDスペクトルですこし不純物のピークがある以外、他の温度で合成された結晶粒はいずれも単一のM−相であったことがわかる。そのSEM写真を図2に示したが、図2から、LiNb0.6Ti0.5の結晶粒がシート状で、結晶面が三角形または三角形で組合せてなる多角形の形状で、これもLiNbOの三方晶構造と類似の構造に属するからである。合成温度が高くなるにつれ、結晶粒は直径方向、厚さ方向でいずれもある程度増大した。
Example 1
(I) Synthesis of template crystal grains: calculated by the reaction equation of LiNb 0.6 Ti 0.5 O 3 so that the molar ratio is Li 2 CO 3 : Nb 2 O 5 : TiO 2 = 5: 3: 5 The raw materials were weighed and mixed with ethanol and ZrO 2 balls at a ratio of 1: 2: 3 for 24 hours in a ball mill, then transferred to a glass container and dried by heating at 90 ° C. After the dried raw material powder was sized, LiCl salt was added at a ratio of 1: 2 and polished for 10 minutes until uniformly mixed. The mixed raw material was placed in an Al 2 O 3 crucible, covered, and synthesized in a high temperature furnace at 850 to 1050 ° C. for 3 hours at a temperature rising rate of 3 ° C./min.
(Ii) Filtration of template crystal grains: The synthesized LiNb 0.6 Ti 0.5 O 3 crystal grains are pulverized, dispersed ultrasonically, washed 10 times with heated deionized water, and LiCl melted therein Salt was removed. Meanwhile, the content of Cl ions in the filtrate was measured with an AgNO 3 solution to determine whether filtration was complete. FIG. 1 is an XRD spectrum of the manufactured LiNb 0.6 Ti 0.5 O 3 template crystal grain. From FIG. 1, the crystal grain XRD spectrum at 850 ° C. shows other temperatures except for a slight impurity peak. It can be seen that all of the crystal grains synthesized in (1) were a single M-phase. The SEM photograph is shown in FIG. 2. From FIG. 2, the crystal grains of LiNb 0.6 Ti 0.5 O 3 are in the form of a sheet and the crystal plane is a polygon or a combination of triangles. This is because LiNbO 3 belongs to a structure similar to the trigonal structure of LiNbO 3 . As the synthesis temperature increased, the crystal grains increased to some extent in both the diameter direction and the thickness direction.

・実施例2
LiNb0.6Ti0.5の反応方程式で計算し、モル比がLiCO:Nb:TiO=5:3:5になるように原料を秤量し、エタノール、ZrOボールと1:2:3の比率でボールミルで24時間混合した後、ガラス容器に移して90°Cで加熱乾燥した。乾燥した原料粉体を分粒した後、1:2の比率でLiCl塩を入れ、均一に混合するまで10分間研磨した。混合原料をAl坩堝に入れて蓋をかけ、高温炉で3°C/分の昇温速度で1000°Cに上昇させ、温度をそれぞれ3時間、6時間、9時間保持し、取り出した後、実施例1の方法でろ過した。図3は、異なる保温時間で得られたLiNb0.6Ti0.5のテンプレート結晶粒のXRDスペクトルで、図3から、合成された結晶粒はいずれも単一のM−相であったことがわかる。そのSEM写真を図4に示したが、結晶粒は階段状の成長傾向を示し、保温時間の増加につれ、結晶粒は直径方向、厚さ方向でいずれもある程度増大した。
Example 2
The raw material was weighed so that the molar ratio was Li 2 CO 3 : Nb 2 O 5 : TiO 2 = 5: 3: 5, calculated by the reaction equation of LiNb 0.6 Ti 0.5 O 3 , ethanol, ZrO After mixing for 24 hours with a ball mill at a ratio of 2 balls to 1: 2: 3, the mixture was transferred to a glass container and dried by heating at 90 ° C. After the dried raw material powder was sized, LiCl salt was added at a ratio of 1: 2 and polished for 10 minutes until uniformly mixed. Put the mixed raw material in an Al 2 O 3 crucible, cover it, raise it to 1000 ° C. at a heating rate of 3 ° C./min in a high temperature furnace, hold the temperature for 3 hours, 6 hours and 9 hours, respectively, and take it out Then, it was filtered by the method of Example 1. FIG. 3 is an XRD spectrum of LiNb 0.6 Ti 0.5 O 3 template crystal grains obtained at different incubation times. From FIG. 3, all synthesized grains were single M-phase. I understand that. The SEM photograph is shown in FIG. 4. The crystal grains showed a stepwise growth tendency, and the crystal grains increased to some extent in the diameter direction and the thickness direction as the heat retention time increased.

・実施例3
LiNb0.6Ti0.5の反応方程式で計算し、モル比がLiCO:Nb:TiO=5:3:5になるように原料を秤量し、エタノール、ZrOボールと1:2:3の比率でボールミルで24時間混合した後、ガラス容器に移して90°Cで加熱乾燥した。乾燥した原料粉体を分粒した後、それぞれ1:1、1:2、1:3の比率でLiCl塩を入れ、均一に混合するまで10分間研磨した。混合原料をAl坩堝に入れて蓋をかけ、高温炉で3°C/分の昇温速度で1000°Cに上昇させ、温度を6時間保持し、取り出した後、実施例1の方法でろ過した。図5は、異なる溶融塩の比率で得られたLiNb0.6Ti0.5のテンプレート結晶粒のXRDスペクトルであり、図3から、合成された結晶粒はいずれも単一のM−相であったことがわかる。そのSEM写真を図6に示したが、結晶粒は階段状の成長傾向を示し、溶融塩の比率の増加につれ、結晶粒は直径方向、厚さ方向でいずれもある程度増大し、特に厚さ方向では増大が顕著である。溶融塩の比率が1:3の時、得られたLNTテンプレートの結晶粒が2〜3μmに達した。当該LiNb0.6Ti0.5粉体結晶粒は充分に完成されたが、溶融塩の比率が1:2で、1000°Cで温度を6時間保持して得られた結晶粒は、シート状の多角形の形態で、直径方向の長さが5〜30μmで、厚さが0.5〜2.0μmで、アスペクト比が大きく、理想的なテンプレート結晶粒である。
Example 3
The raw material was weighed so that the molar ratio was Li 2 CO 3 : Nb 2 O 5 : TiO 2 = 5: 3: 5, calculated by the reaction equation of LiNb 0.6 Ti 0.5 O 3 , ethanol, ZrO After mixing for 24 hours with a ball mill at a ratio of 2 balls to 1: 2: 3, the mixture was transferred to a glass container and dried by heating at 90 ° C. After the dried raw material powder was sized, LiCl salts were added at a ratio of 1: 1, 1: 2, and 1: 3, respectively, and polished for 10 minutes until they were uniformly mixed. The mixed raw material was put in an Al 2 O 3 crucible, covered, raised to 1000 ° C. at a temperature rising rate of 3 ° C./min in a high-temperature furnace, held at temperature for 6 hours, and taken out. Filtered by the method. FIG. 5 is an XRD spectrum of LiNb 0.6 Ti 0.5 O 3 template grains obtained at different molten salt ratios. From FIG. 3, all synthesized grains have a single M- It turns out that it was a phase. The SEM photograph is shown in FIG. 6, and the crystal grains show a step-like growth tendency, and the crystal grains increase to some extent in the diameter direction and the thickness direction as the ratio of the molten salt increases. Then, the increase is remarkable. When the ratio of the molten salt was 1: 3, the crystal grains of the obtained LNT template reached 2-3 μm. The LiNb 0.6 Ti 0.5 O 3 powder crystal grains were sufficiently completed, but the crystal grains obtained by maintaining the temperature at 1000 ° C. for 6 hours at a molten salt ratio of 1: 2 It is an ideal template crystal grain in the form of a sheet-like polygon, having a length in the diameter direction of 5 to 30 μm, a thickness of 0.5 to 2.0 μm, and a large aspect ratio.

・実施例4
従来の方法によるLiNb0.6Ti0.5マイクロ波媒質セラミックスの製造:LiNb0.6Ti0.5の反応方程式で計算し、モル比がLiCO:Nb:TiO=5:3:5になるように原料を秤量し、エタノール、ZrOボールと1:2:3の比率でボールミルで24時間混合した後、ガラス容器に移して90°Cで加熱乾燥した。乾燥した原料粉体を分粒した後、坩堝に入れ、700〜1000°Cで5〜7時間予備焼結し、主結晶相を合成した。混合原料とエタノールの重量比が1:2になるようにエタノールを入れ、湿式ボールミルで24時間混合し、100〜120°Cで加熱乾燥し、8−12%PVB(ポリビニルブチラール)で造粒し、100〜200MPaの圧力でφ16×8mmの小さい円柱にプレスし、600〜700°Cでバインダーを除去し、860〜960°Cで1〜3時間焼結し、自然冷却してLiNb0.6Ti0.5マイクロ波媒質セラミックスを得た。Hakki−Coleman円柱媒質共振法でセラミックスサンプルの誘電性を測定したところ、誘電率が71で、共振周波数温度係数が10.5ppm/°Cであった(図7を参照)。
Example 4
Production of LiNb 0.6 Ti 0.5 O 3 microwave medium ceramics by a conventional method: Calculated by the reaction equation of LiNb 0.6 Ti 0.5 O 3 and the molar ratio is Li 2 CO 3 : Nb 2 O 5 : Weighed the raw materials so that TiO 2 = 5: 3: 5, mixed with ethanol and ZrO 2 balls at a ratio of 1: 2: 3 for 24 hours in a ball mill, then transferred to a glass container and heated at 90 ° C. Dried. After the dried raw material powder was sized, it was put in a crucible and pre-sintered at 700 to 1000 ° C. for 5 to 7 hours to synthesize a main crystal phase. Ethanol is added so that the weight ratio of the mixed raw material and ethanol is 1: 2, mixed in a wet ball mill for 24 hours, heated and dried at 100 to 120 ° C., and granulated with 8-12% PVB (polyvinyl butyral). , Pressed into a small cylinder of φ16 × 8 mm at a pressure of 100 to 200 MPa, removed the binder at 600 to 700 ° C., sintered at 860 to 960 ° C. for 1 to 3 hours, naturally cooled, and LiNb 0.6 A Ti 0.5 O 3 microwave medium ceramic was obtained. When the dielectric property of the ceramic sample was measured by the Hakki-Coleman cylindrical medium resonance method, the dielectric constant was 71 and the resonant frequency temperature coefficient was 10.5 ppm / ° C. (see FIG. 7).

・実施例5
スクリーン印刷によるLNT組織化マイクロ波媒質セラミックスの製造:
(1)スラリーの調製:3.43gのエチルセルロースを76.54gのテルピネオールに溶解させ、エチルセルロースが完全に溶解して透明な溶液になるまで、80°Cで加熱して撹拌した。31.59gの850°Cで予備合成したLiNb0.6Ti0.5粉体を秤量し、上述溶液に入れ、ボールミルで4時間均一に混合した。さらに、3.51gのシート状LiNb0.6Ti0.5テンプレート結晶粒をスラリーに入れ、引き続きボールミルで2時間混合した。
(2)スクリーン印刷:調製したスラリーを300メッシュのスクリーンでテリレンフィルムに印刷し、100°Cのオーブンに入れて乾燥し、上述工程を50〜80回繰り返し、最後に約1mmのセラミックス膜が形成された。
(3)成形:得られたセラミックス膜を11mm×11mmの正方形シートに裁断し、基板から膜を取り、約50層重ね、プレス成形した。
(4)バインダー除去と焼結:上述セラミックス生地を熱処理炉に入れて650°Cで有機物を除去した。バインダー除去したサンプルに冷間等方圧加圧処理を行い、高温炉に入れ、10°C/分の速度で1135°Cに昇温させ、温度を2時間保持した。
組織化技術によって、セラミックスの結晶粒が一定方向に配列し、優れた異方性を示した。1MHzの周波数で、配列方向と垂直の方向で、誘電率ε=55.75で、正値の誘電率温度係数および負値の共振周波数温度係数を持ったが、配列方向と平行の方向において、誘電率ε=84.40で、負値の誘電率温度係数および正値の共振周波数温度係数を持った。異なる方法の裁断によって、異なる誘電率のセラミックスを得ることができ、そして共振周波数温度係数が0であり、損耗が低く、電気学的性能が優れたマイクロ波媒質セラミックスを得ることが可能である(図8〜12を参照)。
Example 5
Production of LNT structured microwave medium ceramics by screen printing:
(1) Preparation of slurry: 3.43 g of ethyl cellulose was dissolved in 76.54 g of terpineol, and the mixture was heated and stirred at 80 ° C. until the ethyl cellulose was completely dissolved and became a transparent solution. 31.59 g of LiNb 0.6 Ti 0.5 O 3 powder pre-synthesized at 850 ° C. was weighed, put into the above solution, and uniformly mixed for 4 hours by a ball mill. Further, 3.51 g of sheet-like LiNb 0.6 Ti 0.5 O 3 template crystal grains were put into the slurry and then mixed for 2 hours in a ball mill.
(2) Screen printing: The prepared slurry is printed on a terylene film with a 300-mesh screen, dried in a 100 ° C. oven, the above steps are repeated 50 to 80 times, and finally a ceramic film of about 1 mm is formed. Been formed.
(3) Molding: The obtained ceramic film was cut into a square sheet of 11 mm × 11 mm, the film was removed from the substrate, and about 50 layers were stacked and press molded.
(4) Binder removal and sintering: The ceramic material was placed in a heat treatment furnace and organic substances were removed at 650 ° C. The sample from which the binder was removed was subjected to a cold isostatic pressing treatment, placed in a high temperature furnace, heated to 1135 ° C. at a rate of 10 ° C./min, and maintained at the temperature for 2 hours.
With the organization technique, the crystal grains of ceramics were arranged in a certain direction and showed excellent anisotropy. At a frequency of 1 MHz, with a dielectric constant ε = 55.75 in a direction perpendicular to the arrangement direction, a positive dielectric constant temperature coefficient and a negative resonance frequency temperature coefficient, but in a direction parallel to the arrangement direction, It had a dielectric constant ε = 84.40, a negative dielectric constant temperature coefficient, and a positive resonant frequency temperature coefficient. By different methods of cutting, ceramics having different dielectric constants can be obtained, and microwave medium ceramics having a resonance frequency temperature coefficient of 0, low wear, and excellent electrical performance can be obtained ( See Figures 8-12).

各文献がそれぞれ単独に引用されるように、本発明に係るすべての文献は本出願で参考として引用する。また、本発明の上記の内容を読み終わった後、この分野の技術者が本発明を各種の変動や修正をすることができるが、それらの等価の様態のものは本発明の請求の範囲に含まれることが理解されるべきである。   All documents according to the present invention are cited in this application as a reference, so that each document is individually cited. In addition, after reading the above description of the present invention, engineers in this field can make various changes and modifications to the present invention, but those equivalent aspects are within the scope of the present invention. It should be understood that it is included.

Claims (14)

化学式がLiNb0.6Ti0.5で、結晶粒の形態がシート状で、組成がM−相のLi−Nb−Ti−Oの粉体である、シート状Li−Nb−Ti−Oのテンプレート結晶粒。 Sheet-form Li-Nb-Ti-, which is a Li-Nb-Ti-O powder having a chemical formula of LiNb 0.6 Ti 0.5 O 3 , crystal grains in a sheet form, and an M-phase composition. Template crystal grains of O. 前述シート状Li−Nb−Ti−Oのテンプレート結晶粒の結晶粒の形態がシート状の三角形または多角形であることを特徴とする請求項1に記載のシート状Li−Nb−Ti−Oのテンプレート結晶粒。   2. The sheet-like Li—Nb—Ti—O of the sheet-like Li—Nb—Ti—O has a shape of a crystal grain of a sheet-like triangle or polygon. Template crystal grain. 前述シート状Li−Nb−Ti−Oテンプレート結晶粒の直径方向の長さが5〜80μmで、平均の長さが40μmで、厚さが0.5〜6.0μmであることを特徴とする請求項1又は2に記載のシート状Li−Nb−Ti−Oのテンプレート結晶粒。   The sheet-like Li—Nb—Ti—O template crystal grains have a length in the diameter direction of 5 to 80 μm, an average length of 40 μm, and a thickness of 0.5 to 6.0 μm. The template crystal grain of the sheet-like Li-Nb-Ti-O according to claim 1 or 2. 請求項1〜3のいずれかに記載のシート状Li−Nb−Ti−Oのテンプレート結晶粒を製造する方法であって、
LiCO、Nb及びTiOを原料とし、LiClの溶融塩系で、シート状のLiNb0.6Ti0.5粉体を合成し、
得られたシート状のLiNb0.6Ti0.5粉体に対して超音波で分散させ、加熱した脱イオン水で洗浄し、吸引ろ過し、純粋なM−相のLi−Nb−Ti−O粉体を得ることで、シート状Li−Nb−Ti−Oのテンプレート結晶粒を得ること、
を含む製造方法。
A method for producing a template crystal grain of sheet-like Li-Nb-Ti-O according to any one of claims 1 to 3,
Using Li 2 CO 3 , Nb 2 O 5 and TiO 2 as raw materials, a LiCl molten salt system was used to synthesize sheet-like LiNb 0.6 Ti 0.5 O 3 powder,
The obtained sheet-like LiNb 0.6 Ti 0.5 O 3 powder was dispersed ultrasonically, washed with heated deionized water, suction filtered, and pure M-phase Li-Nb- By obtaining Ti—O powder, obtaining a template crystal grain of sheet-like Li—Nb—Ti—O,
Manufacturing method.
原料であるLiCO、Nb及びTiOは、モル比で5:3:5になるように配合されることを特徴とする請求項4に記載の方法。 The method according to claim 4, wherein the raw materials, Li 2 CO 3 , Nb 2 O 5 and TiO 2, are blended in a molar ratio of 5: 3: 5. LiClの溶融塩系において、1:1〜1:3の溶融塩の比率を使用することを特徴とする請求項4に記載の方法。   5. The method according to claim 4, wherein a ratio of 1: 1 to 1: 3 molten salt is used in the LiCl molten salt system. LiClの溶融塩系において、850°C〜1000°Cに3〜9時間保持することを特徴とする請求項4に記載の方法。   The method according to claim 4, wherein the molten salt system of LiCl is held at 850 ° C to 1000 ° C for 3 to 9 hours. 請求項1〜3のいずれかに記載のシート状Li−Nb−Ti−Oのテンプレート結晶粒を含む、組織化Li−Nb−Ti−Oのマイクロ波媒質セラミックス。   An organized Li-Nb-Ti-O microwave medium ceramic comprising the sheet-like Li-Nb-Ti-O template crystal grain according to any one of claims 1 to 3. 請求項8に記載の組織化Li−Nb−Ti−Oのマイクロ波媒質セラミックスを製造する方法であって、
請求項4〜7のいずれかに記載の方法で、シート状Li−Nb−Ti−Oのテンプレート結晶を製造し、
LiCO、Nb、TiOを基体の粉末原料とし、LiNb0.6Ti0.5の粉末原料を予備合成し、
バインダーと溶媒を加熱し撹拌して、透明な溶液を形成し、
シート状LiNb0.6Ti0.5のテンプレート結晶粒と予備合成したLiNb0.6Ti0.5の粉末原料を前述透明な溶液に入れ、均一に混合してスラリーが得られ、
前述スラリーを基板にスクリーン印刷し、加熱して乾燥させ、得られたスラリー膜を切断、積層、プレスして成形し、600〜800°Cで有機物を除去し、さらに冷間等方圧加圧処理を行い、焼結し、組織化Li−Nb−Ti−Oのマイクロ波媒質セラミックスを得ること、
を含む製造方法。
A method for producing the structured Li-Nb-Ti-O microwave medium ceramic according to claim 8,
A template crystal of sheet-like Li-Nb-Ti-O is produced by the method according to any one of claims 4 to 7,
Li 2 CO 3 , Nb 2 O 5 , TiO 2 as a powder raw material of the substrate, LiNb 0.6 Ti 0.5 O 3 powder raw material was pre-synthesized,
Heat and stir the binder and solvent to form a clear solution,
Sheet-like LiNb 0.6 Ti 0.5 O 3 template crystal grains and pre-synthesized LiNb 0.6 Ti 0.5 O 3 powder raw material are put into the transparent solution and uniformly mixed to obtain a slurry. ,
The above slurry is screen-printed on a substrate, heated and dried, and the resulting slurry film is cut, laminated and pressed to form organic matter, remove organic matter at 600 to 800 ° C, and further cold isostatically pressurized Processing and sintering to obtain a structured Li—Nb—Ti—O microwave medium ceramic;
Manufacturing method.
850°Cで2時間保持して、LiNb0.6Ti0.5の粉末原料を予備合成することを特徴とする請求項9に記載の方法。 The method according to claim 9, wherein the powder raw material of LiNb 0.6 Ti 0.5 O 3 is pre-synthesized by holding at 850 ° C. for 2 hours. 重量で計算すると、バインダー:溶媒:スラリー=1:12〜25:5〜15で、前述スラリーにおけるシート状LiNb0.6Ti0.5のテンプレート結晶粒が占める比率が5〜15%であることを特徴とする請求項9に記載の方法。 When calculated by weight, binder: solvent: slurry = 1: 12-25: 5-15, and the ratio of template crystal grains of sheet-like LiNb 0.6 Ti 0.5 O 3 in the slurry is 5-15%. The method of claim 9, wherein: 前述バインダーは、エチルセルロース、メチルセルロース及びニトロセルロースから選ばれ、前述溶媒は、テルピネオール及びエチレングリコールから選ばれることを特徴とする請求項9〜11のいずれかに記載の方法。   The method according to any one of claims 9 to 11, wherein the binder is selected from ethyl cellulose, methyl cellulose, and nitrocellulose, and the solvent is selected from terpineol and ethylene glycol. 前述混合は、ボールミルによる混合で、前述スクリーン印刷は、300メッシュのスクリーンで印刷することを特徴とする請求項9〜11のいずれかに記載の方法。   12. The method according to claim 9, wherein the mixing is performed by a ball mill, and the screen printing is performed by a 300 mesh screen. 前述焼結は、3〜6°C/分間の昇温速度で、1000〜1150°Cで焼結し、そして2〜5時間温度を保持することを特徴とする請求項9〜11のいずれかに記載の方法。   The said sintering is sintered at 1000-1150 degreeC with the temperature increase rate of 3-6 degreeC / min, and hold | maintains temperature for 2 to 5 hours, It is characterized by the above-mentioned. The method described in 1.
JP2013538053A 2010-11-10 2011-11-10 Template crystal grains of sheet-like lithium niobate titanate (Li-Nb-Ti-O), textured lithium niobate titanate (Li-Nb-Ti-O) microwave medium ceramics containing the same, and method for producing the same Active JP6097219B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN 201010537668 CN102211932B (en) 2010-11-10 2010-11-10 Textured lithium-niobium-titanium (Li-Nb-Ti-O) microwave medium ceramic and preparation method thereof
CN201010537668.1 2010-11-10
CN201010537689.3 2010-11-10
CN 201010537689 CN102211933B (en) 2010-11-10 2010-11-10 Flaky lithium-niobium-titanium (Li-Nb-Ti-O) template grains and preparation method thereof
PCT/CN2011/082014 WO2012062211A1 (en) 2010-11-10 2011-11-10 Sheet-like lithium niobate titanate (li-nb-ti-o) template grain, textured lithium niobate titanate (li-nb-ti-o) microwave medium ceramic comprising the same, and preparation methods thereof

Publications (2)

Publication Number Publication Date
JP2014504246A true JP2014504246A (en) 2014-02-20
JP6097219B2 JP6097219B2 (en) 2017-03-15

Family

ID=46050414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013538053A Active JP6097219B2 (en) 2010-11-10 2011-11-10 Template crystal grains of sheet-like lithium niobate titanate (Li-Nb-Ti-O), textured lithium niobate titanate (Li-Nb-Ti-O) microwave medium ceramics containing the same, and method for producing the same

Country Status (3)

Country Link
JP (1) JP6097219B2 (en)
DE (1) DE112011103734T5 (en)
WO (1) WO2012062211A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2712081C1 (en) * 2019-07-24 2020-01-24 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" High-temperature piezoelectric ceramic material based on lithium metaniobate
CN116768616B (en) * 2023-05-11 2024-04-12 电子科技大学 high-Q value Li 6 Zn 7 Ti 11 O 32 Base microwave dielectric ceramic material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221360A (en) * 1996-02-16 1997-08-26 Ube Ind Ltd Dielectric ceramic composition
JP2000203935A (en) * 1999-01-19 2000-07-25 Toyota Central Res & Dev Lab Inc Production of particle having anisotropic shape and single crystalline particle having anisotropic shape
JP2003026473A (en) * 2001-05-08 2003-01-29 Murata Mfg Co Ltd Method of manufacturing ceramic
US6514476B1 (en) * 1999-04-27 2003-02-04 Penn State Research Foundation Anisotropically shaped SrTiO3 single crystal particles
WO2007080684A1 (en) * 2006-01-12 2007-07-19 Murata Manufacturing Co., Ltd. Anisotropically shaped ceramic particles and process for production of the same
JP2007269603A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Piezoelectric ceramic and its manufacturing method
CN101244933A (en) * 2008-03-18 2008-08-20 中国科学院上海硅酸盐研究所 Sheet bismuth sodium titanate mould plate grain and manufacture method thereof
JP2009185202A (en) * 2008-02-07 2009-08-20 Kri Inc Wavelength conversion phosphor and method of manufacturing the same
CN101654367A (en) * 2009-08-27 2010-02-24 华南师范大学 Low temperature reaction sintering method of lithium niobium titanium microwave dielectric ceramic materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100575301C (en) * 2006-08-29 2009-12-30 中国科学院上海硅酸盐研究所 A kind of low sintering composite microwave medium ceramic in series of lithium, niobium and titanium and preparation method thereof
CN102211932B (en) * 2010-11-10 2013-09-18 中国科学院上海硅酸盐研究所 Textured lithium-niobium-titanium (Li-Nb-Ti-O) microwave medium ceramic and preparation method thereof
CN102211933B (en) * 2010-11-10 2013-07-17 中国科学院上海硅酸盐研究所 Flaky lithium-niobium-titanium (Li-Nb-Ti-O) template grains and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09221360A (en) * 1996-02-16 1997-08-26 Ube Ind Ltd Dielectric ceramic composition
JP2000203935A (en) * 1999-01-19 2000-07-25 Toyota Central Res & Dev Lab Inc Production of particle having anisotropic shape and single crystalline particle having anisotropic shape
US6514476B1 (en) * 1999-04-27 2003-02-04 Penn State Research Foundation Anisotropically shaped SrTiO3 single crystal particles
JP2003026473A (en) * 2001-05-08 2003-01-29 Murata Mfg Co Ltd Method of manufacturing ceramic
WO2007080684A1 (en) * 2006-01-12 2007-07-19 Murata Manufacturing Co., Ltd. Anisotropically shaped ceramic particles and process for production of the same
JP2007269603A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Piezoelectric ceramic and its manufacturing method
JP2009185202A (en) * 2008-02-07 2009-08-20 Kri Inc Wavelength conversion phosphor and method of manufacturing the same
CN101244933A (en) * 2008-03-18 2008-08-20 中国科学院上海硅酸盐研究所 Sheet bismuth sodium titanate mould plate grain and manufacture method thereof
CN101654367A (en) * 2009-08-27 2010-02-24 华南师范大学 Low temperature reaction sintering method of lithium niobium titanium microwave dielectric ceramic materials

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG, X. ET AL: "Synthesus and phase evolution of LiNb0.6Ti0.5O3 powder via a sol-gel method", PARTICUOLOGY, vol. 8, no. 5, JPN6015031738, 7 June 2010 (2010-06-07), pages 463 - 467, XP027423251, ISSN: 0003130468, DOI: 10.1016/j.partic.2010.05.001 *
ZENG, Q. ET AL: "EFFECT OF POWDER MILLING TECHNIQUE ON SINTERING BEHAVIOR AND MICROWAVE DIELECTRIC PROPERTIES OF Li(1", GUISUANYAN XUEBAO, vol. 35, no. 9, JPN6015031742, September 2007 (2007-09-01), pages 1181 - 1185, ISSN: 0003130469 *

Also Published As

Publication number Publication date
JP6097219B2 (en) 2017-03-15
WO2012062211A1 (en) 2012-05-18
DE112011103734T5 (en) 2014-01-09

Similar Documents

Publication Publication Date Title
Jian et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd 2 (Zr 1-x Ti x) 3 (MoO 4) 9 ceramics.
Peng et al. The sintering and dielectric properties modification of Li2MgSiO4 ceramic with Ni2+-ion doping based on calculation and experiment
Wu et al. Design and Fabrication of a Satellite Communication Dielectric Resonator Antenna with Novel Low Loss and Temperature-Stabilized (Sm1–x Ca x)(Nb1–x Mo x) O4 (x= 0.15–0.7) Microwave Ceramics
CN106007703B (en) A kind of low-temperature sintering composite microwave medium ceramic material and preparation method thereof
CN1356967A (en) Low temp sinterable and low loss dielectric ceramic compsns. and method thereof
CN105645958A (en) Preparation method of leadless antiferroelectric sodium niobate piezoelectric ceramic
CN109111229A (en) A kind of high temperature sintering microwave dielectric ceramic materials and preparation method thereof
Sharma et al. Structural, dielectric and reflection analysis of Zn x Mg1− x TiO3 ceramics synthesized using auto-ignition combustion method
CN101486569B (en) Low temperature sintering microwave ceramic material and preparation thereof
JP6097219B2 (en) Template crystal grains of sheet-like lithium niobate titanate (Li-Nb-Ti-O), textured lithium niobate titanate (Li-Nb-Ti-O) microwave medium ceramics containing the same, and method for producing the same
Li et al. Crystal structure, Raman spectra, and microwave dielectric properties of high-Q Li2ZnTi3O8 systems with Nb2O5 addition
CN101654367B (en) Low temperature reaction sintering method of lithium niobium titanium microwave dielectric ceramic materials
Zhou et al. Glass-free Li 2 ZnTi 3 O 8 low temperature cofired ceramics by pretreating raw materials
Jin et al. Improved sinterability and temperature stability in Zn2+/Ti4+-co-substituted CaAl2O4 ceramics and their 5G antenna applications
Wu et al. Ca 3 al 2 o 6: novel low-permittivity microwave dielectric ceramics with abnormally large negative τ f
CN113024249B (en) Microwave dielectric ceramic composite material and preparation method thereof
CN102211932B (en) Textured lithium-niobium-titanium (Li-Nb-Ti-O) microwave medium ceramic and preparation method thereof
CN108455986A (en) A kind of composite microwave medium ceramic material and preparation method thereof
Zhang et al. Effects of Zr substitution on the microstructure and microwave dielectric properties of Li 2 Zn (Ti 1− x Zr x) 3 O 8 ceramics
CN110256088A (en) A kind of microwave-medium ceramics composite sintering agent and preparation method thereof
Peng et al. Novel (1-x) MgCu2Nb2O8− xTiO2 composite ceramics with high Q× f and near-zero τ f
CN112079631B (en) Low-dielectric LTCC material with near-zero temperature coefficient and preparation method thereof
Ma et al. Studies of phase transitions, Raman spectra and microwave dielectric properties of perovskite-structured (Na1− x Li x) 0.5 Nd0. 5TiO3 ceramics
EP1642874A1 (en) High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
Wang et al. Effect of cation occupancy on crystal structure and microwave dielectric characteristics of spinel-structured (1-x) Zn2TiO4-xli2MgTi3O8 ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151211

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170217

R150 Certificate of patent or registration of utility model

Ref document number: 6097219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250