JP2009185202A - Wavelength conversion phosphor and method of manufacturing the same - Google Patents

Wavelength conversion phosphor and method of manufacturing the same Download PDF

Info

Publication number
JP2009185202A
JP2009185202A JP2008027606A JP2008027606A JP2009185202A JP 2009185202 A JP2009185202 A JP 2009185202A JP 2008027606 A JP2008027606 A JP 2008027606A JP 2008027606 A JP2008027606 A JP 2008027606A JP 2009185202 A JP2009185202 A JP 2009185202A
Authority
JP
Japan
Prior art keywords
represented
phosphor
superstructure
light
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008027606A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hayashi
裕之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2008027606A priority Critical patent/JP2009185202A/en
Publication of JP2009185202A publication Critical patent/JP2009185202A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor by an oxide solid solution having high emission intensity and a superstructure using a solid phase reaction or sol gel reaction which is a general ceramic manufacturing method. <P>SOLUTION: The wavelength conversion phosphor absorbs at least one of near ultra-violet ray, blue light and green light and emits red light by the oxide solid solution forming the superstructure represented by Li<SB>1+x-y</SB>Nb<SB>1-x-3y</SB>Ti<SB>x+4y</SB>O<SB>3</SB>represented as the expression 1 (wherein x and y meet 0.04≤x≤0.333 and 0≤y≤0.09) and the oxide solid solution of a powder or bulk body or thin film activated with europium and is represented by Li<SB>1+x-y</SB>Nb<SB>1-x-3y</SB>Ti<SB>x+4y</SB>O<SB>3</SB>:Eu represented as the expression 2 (wherein x and y meet 0.04≤x≤0.333 and 0≤y≤0.09; and an amount of added Eu<SB>2</SB>O<SB>3</SB>is 0.5-3.0 wt.%) manufactured by the general ceramic manufacturing method. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光通信など波長変換素子及び受光素子に好適な蛍光体に関するものである。   The present invention relates to a phosphor suitable for a wavelength conversion element and a light receiving element such as optical communication.

従来、ニオブ酸リチウムは強誘電体で、その単結晶は主に光学機能材料として研究開発されてきた。ニオブ酸リチウム単結晶にチタンを拡散させた材料は光導波路や、高周波材料としての用途に応用されてきた。   Conventionally, lithium niobate has been a ferroelectric and its single crystal has been mainly researched and developed as an optical functional material. A material in which titanium is diffused in a lithium niobate single crystal has been applied to optical waveguides and high frequency materials.

ニオブ酸リチウムにチタンが固溶した化合物には超構造を有するものが存在することが非特許文献1で述べられている。この超構造はニオブ酸リチウムの単位格子構造のc軸に対し垂直方向に積層欠陥が周期的に導入されたものである。この積層欠陥により結晶全体に歪が導入されることによる特性の向上に期待が寄せられてきたが、その優位性を示す性能を得ることができなかった。   Non-Patent Document 1 states that some compounds in which titanium is dissolved in lithium niobate have a superstructure. In this superstructure, stacking faults are periodically introduced in a direction perpendicular to the c-axis of the unit cell structure of lithium niobate. Although it has been expected to improve the characteristics by introducing strain into the entire crystal due to the stacking fault, it has not been possible to obtain the performance showing the superiority.

ニオブ酸リチウムの薄膜には応力発光特性があり、ユーロピウム等の添加元素を加えると特性が向上すると言われている。また、ニオブ酸リチウムにユーロピウムを付活した粉体は近紫外線励起で波長612nmの赤色発光を示す。薄膜の場合、熱処理工程が必要であり、粉体の場合、組成変動や発光強度が低いという問題があった。   The thin film of lithium niobate has stress luminescence characteristics, and it is said that the characteristics are improved by adding an additive element such as europium. Further, a powder obtained by activating europium to lithium niobate emits red light having a wavelength of 612 nm when excited by near ultraviolet rays. In the case of a thin film, a heat treatment step is required, and in the case of a powder, there are problems that composition variation and light emission intensity are low.

また、Euの添加量が5wt%を超えると、第二相としてニオブ酸ユーロピウムが生成し、発光波長のことなる赤色光を示す問題がある。 Further, the addition amount of Eu 2 O 3, and more than 5 wt%, niobate europium is produced as the second phase, there is a problem that indicates the red light becomes possible emission wavelength.

3価のユーロピウムの発光・励起スペクトルは輝線を示す。輝線を示す赤色発光の発光強度を上げるには母体を変更するか、母体に歪を持たすことが有効とされる。   The emission and excitation spectra of trivalent europium show bright lines. In order to increase the emission intensity of the red light emission indicating the bright line, it is effective to change the matrix or to give distortion to the matrix.

母体となるニオブ酸リチウムの結晶に歪を持たせるには、酸素欠損を大量に導入するか、異種元素を添加する必要がある。   In order to give strain to the crystal of lithium niobate as a base material, it is necessary to introduce a large amount of oxygen deficiency or to add a different element.

しかしながらニオブ酸リチウムに大量の酸素欠損を導入すると母体の体色は黒化し、発光強度を低下させる一因となる。   However, when a large amount of oxygen vacancies are introduced into lithium niobate, the body color of the parent body becomes black, which contributes to a decrease in emission intensity.

ニオブ酸リチウムの基本構造を損なうことなく、歪を持った結晶構造をもつには先に述べた超構造を利用するのが望ましい。この化合物は分子レベルでの構造制御が可能である。   In order to have a strained crystal structure without damaging the basic structure of lithium niobate, it is desirable to use the superstructure described above. This compound can be structurally controlled at the molecular level.

特許文献1においては、半導体薄膜プロセスを活用した原子レベルの設計よる超格子構造薄膜の蛍光体が提案されている。 Patent Document 1 proposes a phosphor having a superlattice structure thin film based on an atomic level design utilizing a semiconductor thin film process.

しかしながら、半導体薄膜プロセスを利用した積層構造の作製には特殊装置が必要とする問題がある。
特開2003−003160号公報 特開2007−314657号公報 H.Hayashi,H.Nakano, K.Suzumura, K.Urabe,and A.R.West, Proc. of 4th Euro Ceramics, 2, 93(1995). L.A.Souza, Y.M.Sidney J.,L.Ribeiro,Quim.Nova.25,1067−1073(2002).
However, there is a problem that a special apparatus is required for manufacturing a laminated structure using a semiconductor thin film process.
JP 2003-003160 A JP 2007-314657 A H. Hayashi, H .; Nakano, K .; Suzuki, K. et al. Urabe, and A.A. R. West, Proc. of 4th Euro Ceramics, 2, 93 (1995). L. A. Souza, Y .; M.M. Sidney J.M. L. Ribeiro, Quim. Nova. 25, 1067-1073 (2002).

本発明の目的は、一般的なセラミックスの製造方法である固相反応やゾルゲル反応を用いて、発光強度が高く、超構造を有する酸化物固溶体による蛍光体を提供することにある。   An object of the present invention is to provide a phosphor using an oxide solid solution having a high light emission intensity and a superstructure by using a solid phase reaction or a sol-gel reaction, which is a general method for producing ceramics.

本願発明者は、上記目的を達成するために鋭意検討した。その結果、ユーロピウムで付活されたニオブ酸リチウムにチタンを固溶した式1
Li1+x−yNb1−x−3yTix+4y(x及びyは0.04≦x≦0.33, 0≦y≦0.09を満たし、Euの添加量は0.5〜3.0wt%である)で表される超構造を形成する酸化物固溶体を作製でき、且つLiNbO:Euより発光強度が高いことを見出し、本発明を完成するに至った。
The inventor of the present application has intensively studied to achieve the above object. As a result, Formula 1 is obtained by dissolving titanium in lithium niobate activated by europium.
Li 1 + xy Nb 1-x-3y Ti x + 4y O 3 (x and y satisfy 0.04 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.09, and the addition amount of Eu 2 O 3 is 0.5 It was found that the oxide solid solution forming the superstructure represented by (-3.0 wt%) was higher in emission intensity than LiNbO 3 : Eu, and the present invention was completed.

また周期的に積層欠陥が導入された超構造を有することを特徴とする。   It also has a superstructure in which stacking faults are periodically introduced.

また、本発明の蛍光体は簡便な固相反応により作製されることを特徴としている。   Further, the phosphor of the present invention is characterized by being produced by a simple solid phase reaction.

また、本発明の蛍光体の積層欠陥の周期性は、式2で表されるLi1+x−yNb
1−x−3yTix+4y:Eu(x及びyは0.04≦x≦0.33, 0≦y≦0.09を満たし、Euの添加量は0.5〜3.0wt%である)のxとyの値を変えることにより周期構造の制御が可能であることを特徴とする。
In addition, the periodicity of the stacking fault of the phosphor of the present invention is expressed by Li 1 + xy Nb represented by Formula 2.
1-x-3y Ti x + 4y O 3 : Eu (x and y satisfy 0.04 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.09, and the amount of Eu 2 O 3 added is 0.5 to 3. The periodic structure can be controlled by changing the values of x and y of 0 wt%.

また、本発明の蛍光体は第2相のない単相であることを特徴とする。   In addition, the phosphor of the present invention is a single phase having no second phase.

また、本発明の蛍光体は近紫外線、青色光、緑色光を吸収して赤色発光を示すことを特徴とする。   The phosphor of the present invention is characterized in that it absorbs near ultraviolet light, blue light, and green light and emits red light.

また、本発明はユーロピウム付活ニオブ酸リチウムの発光特性より大幅に向上していることを特徴とする。     Further, the present invention is characterized in that it is significantly improved from the light emission characteristics of europium activated lithium niobate.

発光中心となるべくアクティベータはCe、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなども有望である。 Activators that can be used as emission centers are also promising, such as Ce, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

本発明に従えば、一般的なセラミックスの製造方法である固相反応やゾルゲル反応を用いて、発光強度が高く、超構造を有する酸化物固溶体による蛍光体を提供することができる。   According to the present invention, a phosphor using an oxide solid solution having a high emission intensity and a superstructure can be provided by using a solid phase reaction or a sol-gel reaction, which is a general method for producing ceramics.

本発明の実施形態について、図面に基づいて説明すれば以下のとおりであるが、本発明は以下の実施例に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the following examples.

式2で表されるLi1+x−yNb1−x−3yTix+4y:Eu(x及び
yは0.04≦x≦0.33, 0≦y≦0.09を満たす)において、x=0.11、y=0の組成になるようLiCO、Nb、TiO、Eu(0.5〜3wt%)を十分に乾式混合し、大気雰囲気中1000℃で3時間、1120℃で10〜15時間保持して焼成することで所望の組成の蛍光体を得た。
Li 1 + xy Nb 1-x-3y Ti x + 4y O 3 : Eu (x and y satisfy 0.04 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.09) represented by Formula 2 = 0.11 and y = 0 so that Li 2 CO 3 , Nb 2 O 5 , TiO 2 and Eu 2 O 3 (0.5 to 3 wt%) are sufficiently dry-mixed, and 1000 ° C. in an air atmosphere. For 3 hours at 1120 ° C. for 10 to 15 hours to obtain a phosphor having a desired composition.

図1に示すように、本発明の蛍光体の励起スペクトルは輝線を示し、398nm、467nm及び540nmにピークが観察された。   As shown in FIG. 1, the excitation spectrum of the phosphor of the present invention showed bright lines, and peaks were observed at 398 nm, 467 nm, and 540 nm.

図2に示すように、波長398nm励起の発光強度を比較したとき、Euの付活濃度は2.5wt%が最適であった。 As shown in FIG. 2, when comparing the emission intensity of excitation at a wavelength of 398 nm, the activation concentration of Eu 2 O 3 was optimally 2.5 wt%.

図3に示すように、本発明の蛍光体の発光スペクトルは近紫外線、青色光および緑色光が赤色に変換されている。波長398nmによる励起が最も高い発光強度を示した。   As shown in FIG. 3, in the emission spectrum of the phosphor of the present invention, near ultraviolet light, blue light and green light are converted to red. Excitation with a wavelength of 398 nm showed the highest emission intensity.

図4に示すように、回折角度23度前後に現れるニオブ酸リチウムの(012)面のX線回折パターンが、本発明の蛍光体ではスプリットしていることが確認され、周期構造を有していることが確認された。   As shown in FIG. 4, it was confirmed that the X-ray diffraction pattern of the (012) plane of lithium niobate appearing around a diffraction angle of about 23 degrees was split in the phosphor of the present invention, and had a periodic structure. It was confirmed that

比較例Comparative example

LiCO、Nb、Eu(0.5〜3wt%)を十分に乾式混合し、大気雰囲気中1000℃で3時間、1120℃で10〜15時間保持して焼成することでLiNbO:Euを作製した。 Li 2 CO 3 , Nb 2 O 5 , Eu 2 O 3 (0.5-3 wt%) is thoroughly dry-mixed and fired in an air atmosphere at 1000 ° C. for 3 hours and 1120 ° C. for 10-15 hours. This produced LiNbO 3 : Eu.

図1に示すように、2.5wt%Eu添加LiNbO:Euの励起スペクトルは輝線を示し、398nm、467nm及び540nmにピークが観察された。 As shown in FIG. 1, the excitation spectrum of 2.5 wt% Eu 2 O 3 -added LiNbO 3 : Eu showed bright lines, and peaks were observed at 398 nm, 467 nm, and 540 nm.

図5に示すように、2.5wt%Eu添加LiNbO:Euの発光スペクトルは近紫外線、青色光および緑色光が赤色に変換されている。波長398nmによる励起が最も高い発光強度を示した。 As shown in FIG. 5, in the emission spectrum of 2.5 wt% Eu 2 O 3 added LiNbO 3 : Eu, near ultraviolet light, blue light and green light are converted to red. Excitation with a wavelength of 398 nm showed the highest emission intensity.

図6に示すように、本発明の蛍光体の発光強度の方がLiNbO:Euより優れていた。 As shown in FIG. 6, the emission intensity of the phosphor of the present invention was superior to LiNbO 3 : Eu.

式2で表されるLi1+x−yNb1−x−3yTix+4y:Eu(x及び
yは0.04≦x≦0.33, 0≦y≦0.09を満たす)において、x=0.176、y=0の組成になるようLiCO、Nb,TiO、Eu(0.5、1.0、1.5、2.0、2.5、3.0wt%)を十分に乾式混合し、大気雰囲気中1000℃で3時間、1120℃で10〜15時間保持して焼成することで所望の組成の蛍光体を得た。
Li 1 + xy Nb 1-x-3y Ti x + 4y O 3 : Eu (x and y satisfy 0.04 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.09) represented by Formula 2 = 0.176, y = 0 so that the composition becomes Li 2 CO 3 , Nb 2 O 5 , TiO 2 , Eu 2 O 3 (0.5, 1.0, 1.5, 2.0, 2.5 , 3.0 wt%) was sufficiently dry-mixed and fired by holding at 1000 ° C. for 3 hours and 1120 ° C. for 10 to 15 hours in an air atmosphere to obtain a phosphor having a desired composition.

実施例1で示したと同様の結果が得られ、本発明の蛍光体の発光強度の方がLiNbO:Euより優れていた。 The same result as that shown in Example 1 was obtained, and the emission intensity of the phosphor of the present invention was superior to LiNbO 3 : Eu.

式2で表されるLi1+x−yNb1−x−3yTix+4y:Eu(x及び
yは0.04≦x≦0.333, 0≦y≦0.09を満たす)において、x=0.250、y=0の組成になるようLiCO、Nb、TiO、Eu(0.5〜3.0wt%)を十分に乾式混合し、大気雰囲気中1000℃で3時間、1120℃で10〜15時間保持して焼成することで所望の組成の蛍光体を得た。
Li 1 + xy Nb 1-x-3y Ti x + 4y O 3 : Eu (x and y satisfy 0.04 ≦ x ≦ 0.333, 0 ≦ y ≦ 0.09) represented by Formula 2 = 0.250, y = 0 Li 2 CO 3 , Nb 2 O 5 , TiO 2 , Eu 2 O 3 (0.5 to 3.0 wt%) were sufficiently dry-mixed in the atmosphere. A phosphor having a desired composition was obtained by baking at 1000C for 3 hours and 1120C for 10 to 15 hours.

実施例1で示したと同様の結果が得られ、本発明の蛍光体の発光強度の方がLiNbO:Euより優れていた。 The same result as that shown in Example 1 was obtained, and the emission intensity of the phosphor of the present invention was superior to LiNbO 3 : Eu.

式2で表されるLi1+x−yNb1−x−3yTix+4y:Eu(x及び
yは0.04≦x≦0.333, 0≦y≦0.09を満たす)において、x=0.333、y=0の組成になるようLiCO、Nb、TiO、Eu(0.5〜3.0wt%)を十分に乾式混合し、大気雰囲気中1000℃で3時間、1120℃で10〜15時間保持して焼成することで所望の組成の蛍光体を得た。
Li 1 + xy Nb 1-x-3y Ti x + 4y O 3 : Eu (x and y satisfy 0.04 ≦ x ≦ 0.333, 0 ≦ y ≦ 0.09) represented by Formula 2 = 0.333, y = 0 Li 2 CO 3 , Nb 2 O 5 , TiO 2 , Eu 2 O 3 (0.5 to 3.0 wt%) are thoroughly dry-mixed in the atmosphere. A phosphor having a desired composition was obtained by baking at 1000C for 3 hours and 1120C for 10 to 15 hours.

実施例1で示したと同様の結果が得られ、本発明の蛍光体の発光強度の方がLiNbO:Euより優れていた。 The same result as that shown in Example 1 was obtained, and the emission intensity of the phosphor of the present invention was superior to LiNbO 3 : Eu.

式2で表されるLi1+x−yNb1−x−3yTix+4y:Eu(x及び
yは0.04≦x≦0.333, 0≦y≦0.09を満たす)において、x=0.04、y=0.08の組成になるようLiCO、Nb、TiO、Eu(0.5〜3.0wt%)を十分に乾式混合し、大気雰囲気中1000℃で3時間、1120℃で10〜15時間保持して焼成することで所望の組成の蛍光体を得た。
Li 1 + xy Nb 1-x-3y Ti x + 4y O 3 : Eu (x and y satisfy 0.04 ≦ x ≦ 0.333, 0 ≦ y ≦ 0.09) represented by Formula 2 = 0.04, y = 0.08 Li 2 CO 3 , Nb 2 O 5 , TiO 2 , Eu 2 O 3 (0.5 to 3.0 wt%) were thoroughly dry-mixed to the atmosphere. A phosphor having a desired composition was obtained by firing in an atmosphere at 1000 ° C. for 3 hours and at 1120 ° C. for 10 to 15 hours.

実施例1で示したと同様の結果が得られ、本発明の蛍光体の発光強度の方がLiNbO:Euより優れていた。 The same result as that shown in Example 1 was obtained, and the emission intensity of the phosphor of the present invention was superior to LiNbO 3 : Eu.

実施例1で示した励起スペクトルを示す図である。2 is a diagram showing an excitation spectrum shown in Example 1. FIG. 実施例1で示したEu付活濃度と波長398nm励起の発光強度の関係を示す図である。Is a diagram showing a relationship between emission intensity of Eu 2 O 3 activated concentration and wavelength 398nm excitation shown in Example 1. 実施例1で示した波長398nm,467nm,541nmのそれぞれで励起した発光スペクトルを示す図である。FIG. 3 is a diagram showing emission spectra excited at wavelengths of 398 nm, 467 nm, and 541 nm shown in Example 1. 実施例1で示したX線回折の2θ=23〜24.5度のプロファイルを示す図である。2 is a diagram showing a profile of 2θ = 23 to 24.5 degrees of X-ray diffraction shown in Example 1. 2.5wt%Eu添加LiNbO:Euの波長398nm,468nm,541nmのそれぞれで励起した発光スペクトルを示す図である。2.5wt% Eu 2 O 3 added LiNbO 3: Eu wavelengths 398 nm, 468 nm, is a graph showing an emission spectrum excited at each 541 nm. 本発明の2.5wt%Eu添加蛍光体および2.5wt%Eu添加LiNbO:Euの波長398nmで励起した発光スペクトルを示す図である。2.5wt% Eu 2 O 3 added phosphor of the present invention and 2.5wt% Eu 2 O 3 added LiNbO 3: is a graph showing an emission spectrum excited at a wavelength 398nm of Eu.

Claims (4)

次式Li1+x−yNb1−x−3yTix+4y
(x及びyは0.04≦x≦0.333, 0≦y≦0.09を満たす)で表される超構造を形成する酸化物固溶体で、ユーロピウムが付活された粉体またはバルク体または薄膜の酸化物固溶体で、近紫外線、青色光および緑色光のうちの少なくとも1つを吸収して赤色に発光することを特徴とする次式
Li1+x−yNb1−x−3yTix+4y:Eu(x及びyは0.04≦x≦0.333, 0≦y≦0.09を満たし、Euの添加量は0.5〜3.0wt%である)で表される蛍光体。
Li 1 + xy Nb 1-x-3y Ti x + 4y O 3
(X and y satisfy 0.04 ≦ x ≦ 0.333, 0 ≦ y ≦ 0.09) The oxide solid solution forming the superstructure represented by europium activated powder or bulk body Or a thin-film oxide solid solution that absorbs at least one of near-ultraviolet light, blue light, and green light and emits red light. Li 1 + xy Nb 1-x-3y Ti x + 4y O 3 : represented by Eu (x and y satisfy 0.04 ≦ x ≦ 0.333, 0 ≦ y ≦ 0.09, and the addition amount of Eu 2 O 3 is 0.5 to 3.0 wt%) Phosphor.
請求項1の超構造は単位格子のc軸に対し垂直方向に周期的に導入された積層欠陥により形成された周期構造を有することを特徴とする蛍光体。 2. The phosphor according to claim 1, wherein the superstructure has a periodic structure formed by stacking faults periodically introduced in a direction perpendicular to the c-axis of the unit cell. 請求項1の超構造は固相反応やゾルゲル反応により作製されることを特徴とする蛍光体。 2. The phosphor according to claim 1, wherein the superstructure is produced by a solid-phase reaction or a sol-gel reaction. 次式
Li1+x−yNb1−x−3yTix+4y
(x及びyは0.04≦x≦0.333, 0≦y≦0.09を満たす。)で表される超構造を形成する酸化物固溶体で、ユーロピウムが付活された粉体またはバルク体または薄膜の酸化物固溶体で、近紫外線、青色光および緑色光のうちの少なくとも1つを吸収して赤色に発光することを特徴とする次式
Li1+x−yNb1−x−3yTix+4y:Eu(x及びyは0.04≦x≦0.333, 0≦y≦0.09を満たし、Euの添加量は2.5wt%である)で表される蛍光体。
Li 1 + xy Nb 1-x-3y Ti x + 4y O 3
(X and y satisfy 0.04 ≦ x ≦ 0.333, 0 ≦ y ≦ 0.09) The oxide solid solution that forms the superstructure represented by The following formula Li 1 + xy Nb 1-x-3y Ti x + 4y , characterized in that it absorbs at least one of near ultraviolet light, blue light and green light and emits red light. Phosphor represented by O 3 : Eu (x and y satisfy 0.04 ≦ x ≦ 0.333, 0 ≦ y ≦ 0.09, and the added amount of Eu 2 O 3 is 2.5 wt%) .
JP2008027606A 2008-02-07 2008-02-07 Wavelength conversion phosphor and method of manufacturing the same Pending JP2009185202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027606A JP2009185202A (en) 2008-02-07 2008-02-07 Wavelength conversion phosphor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027606A JP2009185202A (en) 2008-02-07 2008-02-07 Wavelength conversion phosphor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009185202A true JP2009185202A (en) 2009-08-20

Family

ID=41068762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027606A Pending JP2009185202A (en) 2008-02-07 2008-02-07 Wavelength conversion phosphor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009185202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504246A (en) * 2010-11-10 2014-02-20 中国科学院上海硅酸塩研究所 Template crystal grains of sheet-like lithium niobate titanate (Li-Nb-Ti-O), textured lithium niobate titanate (Li-Nb-Ti-O) microwave medium ceramics containing the same, and method for producing the same
US20150309368A1 (en) * 2014-04-23 2015-10-29 Hon Hai Precision Industry Co., Ltd. Display device having eye protection function
US10040995B2 (en) * 2010-07-09 2018-08-07 Giesecke+Devrient Currency Technology Gmbh Alkali metal and alkaline earth metal niobates and tantalates as security feature substances

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10040995B2 (en) * 2010-07-09 2018-08-07 Giesecke+Devrient Currency Technology Gmbh Alkali metal and alkaline earth metal niobates and tantalates as security feature substances
JP2014504246A (en) * 2010-11-10 2014-02-20 中国科学院上海硅酸塩研究所 Template crystal grains of sheet-like lithium niobate titanate (Li-Nb-Ti-O), textured lithium niobate titanate (Li-Nb-Ti-O) microwave medium ceramics containing the same, and method for producing the same
US20150309368A1 (en) * 2014-04-23 2015-10-29 Hon Hai Precision Industry Co., Ltd. Display device having eye protection function
CN105022189A (en) * 2014-04-23 2015-11-04 鸿富锦精密工业(深圳)有限公司 Display device

Similar Documents

Publication Publication Date Title
Huang et al. Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: towards indoor plant cultivation application
Huang et al. Tunable and white light emission of a single-phased Ba2Y (BO3) 2Cl: Bi3+, Eu3+ phosphor by energy transfer for ultraviolet converted white LEDs
Yeh et al. Origin of thermal degradation of Sr2–x Si5N8: Eu x phosphors in air for light-emitting diodes
Jung et al. Luminescent properties of (Ba, Sr) MgAl10O17: Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation
KR20090082234A (en) Nano-yag:ce phosphor compositions and their methods of preparation
Zhao et al. An efficient charge compensated red phosphor Sr3WO6: K+, Eu3+–For white LEDs
Yang et al. Pr3+-doped Li2SrSiO4 red phosphor for white LEDs
Garbout et al. Structural and photoluminescence characteristics of Sm3+ activated RE2Ti2O7 (RE= Gd, La) as orange-red emitting phosphors
JP5704457B2 (en) Deep red phosphor, illumination light source, and method for producing deep red phosphor
KR20140130098A (en) LED red fluorescent material and lighting device having same
WO2019208562A1 (en) Near-infrared light-emitting phosphor, phosphor mixture, light-emitting element, and light-emitting device
EP2516586B1 (en) Strontium oxyorthosilicate phosphors having improved stability under a radiation load and resistance to atmospheric humidity
Bispo-Jr et al. Tunable blue-green emission and energy transfer properties in Ba2SiO4: Tb3+ obtained from sol-gel method
TW201432026A (en) Yellow-green to yellow-emitting phosphors based on terbium-containing aluminates
Nakano et al. Synthesis and luminescence enhancement of Eu3+, Sm3+ co-doped Li1. 11Ta0. 89Ti0. 11O3 phosphor
KR101420337B1 (en) White-light led red luminescent materials and preparation methods thereof
JP2009185202A (en) Wavelength conversion phosphor and method of manufacturing the same
CN102803438B (en) Luminescent substances having Eu&lt;2+&gt;-doped silicate luminophores
CN101717635B (en) Red fluorescent powder for LED and preparation method thereof
Haidong et al. Luminescent properties of SrSi2N2O2: Ce3+, Tb3+—a potential phosphor for white light emitting diodes
KR20030060697A (en) Green-emitting phosphor for long wavelength ultraviolet and a preparation method thereof
Ai et al. Enhanced luminescence performance in double perovskite Na4/5Gd16/15-xMgWO6: xEu3+ red-emitting phosphors for white LEDs through cation modification
CN102417815A (en) Rare earth tungstate phosphor matrix, its preparation method and application
CN114574204B (en) Near ultraviolet excited red fluorescent powder for LED and preparation method thereof
WO2014067433A1 (en) Nitride red fluorescent powder and preparation method thereof