JP2014500118A - 僧帽弁の逆流超音波解析用ウォールフィルタ - Google Patents

僧帽弁の逆流超音波解析用ウォールフィルタ Download PDF

Info

Publication number
JP2014500118A
JP2014500118A JP2013545580A JP2013545580A JP2014500118A JP 2014500118 A JP2014500118 A JP 2014500118A JP 2013545580 A JP2013545580 A JP 2013545580A JP 2013545580 A JP2013545580 A JP 2013545580A JP 2014500118 A JP2014500118 A JP 2014500118A
Authority
JP
Japan
Prior art keywords
flow
backflow
ultrasound system
diagnostic ultrasound
wall filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013545580A
Other languages
English (en)
Other versions
JP5990536B2 (ja
Inventor
ウェイ,チフォン
イー シーレ,カール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2014500118A publication Critical patent/JP2014500118A/ja
Application granted granted Critical
Publication of JP5990536B2 publication Critical patent/JP5990536B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • A61B8/065Measuring blood flow to determine blood output from the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52071Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Acoustics & Sound (AREA)
  • Physiology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

僧帽弁の逆流を定量化する超音波診断画像化システムが記載されている。超音波プローブ(10)によって受信されるエコー信号が、逆流領域の画像を生成するのに用いられ、かつ、ゼロとナイキスト限界との間の中間サンプリングレートでピークをとる応答特性を有するウォールフィルタによってさらに処理される。よってこの応答特性は、逆流細孔付近での流速場において予想されうる低下した流量に非常に敏感である。当該ウォールフィルタを通過するエコー信号は、ドップラー処理され、かつ、前記逆流細孔を通過する流れを定量化するのに用いられる。

Description

本発明は、医療診断用超音波システムに関し、より詳細には、僧帽弁からの逆流解析用に診断超音波画像化システムによって用いられるウォールフィルタに関する。
逆流は、解析と適切な処置を必要とする深刻な医療状態である。左心室が収縮して血液を体へ送り出す直前に、僧帽弁は完全に閉じることで、収縮によってすべての血流が大動脈へ排出される。僧帽弁が完全に閉じない場合、左心室中の血液の一部は、その不完全に封止された僧帽弁内の開口部を介して左心房へ戻るように排出される。不完全に閉じた僧帽弁の一片を介して逆方向に噴出する一般的にはわずかな短時間の血液の噴流であるこの血液の逆流は、心臓からの血液の流出、ひいては各心臓収縮の効率を減少させる。よって心臓は、滋養のある血液流を必要なだけ供給するため、より速く送り出さなければならない。心臓は、その効率が良くないために酷使されることになる。その結果心不全となる。
医療者は、長年にわたって血液の逆流を検出しようとして超音波画像化を利用してきた。弁の逆流の超音波検出は最初、心臓の左側の超音波画像での上述の血液噴流を探すことにより行われた。過去20年間、噴流の観察は、2次元(2D)カラードップラー画像化によって容易になってきた。2Dカラードップラー画像化では、わずかな血液噴流の速い速度及び乱流が、漏れている心臓弁付近でのこれらの異常な局所的流速を丁寧に調べることによって検出される。しかし心臓と弁の運動、僧帽弁周辺での血液噴流の乱流、及び血液噴流の瞬間的発生とが結びつけられた、噴流が最も支配的な画像平面を取得することは、この対象となる方法に課題を課すことになる。近年、噴流の位置が超音波によって観察可能な場合、医療者は、血液の逆流を定量化しようとするため、PISA−近位部等流速表面法(Proximal Iso-velocity Surface Area)の頭文字をとっている−と呼ばれる方法を用いてきた。この方法では、疑いのある弁と、LV心房内部で弁に近い領域が、カラードップラー画像化によって画像化される。噴流の発生時に、その領域内での血流速度が瞬時に逆流細孔へ向かって加速されることで、流れの収束領域(FCR)が、近い領域内に生成される。このような流れのパターンは結果として、流速が一瞬カラーフロー画像に用いられる速度範囲を超えることで、カラーフロー画像においてエイリアシングが生じる。この瞬間でのカラーフロー画像は、表示装置の画面上で取り込まれて固定される。その後FCRの第1エイリアシング線での速度vが測定され、そのエイリアシング線から弁の細孔の推定される中央までの距離rが測定される。よってこれら2つの測定は、Qt=2πr2vを用いることによって、その細孔を通り抜ける流量を計算するのに用いられる。
この処理を実行するときには複数の困難な問題が生じる。第1の困難な問題は、噴流が、まさにそのピークでカラーフロー画像中に取り込まれるときに最高の精度が得られることである。心周期中での噴流の期間はわずか300〜450ミリ秒であるが、典型的なカラーフローフレーム速度は10〜20フレーム/秒の範囲である。よってカラーフロー画像フレームの一の取得時間は、噴流がそのピークをとるまさにその瞬間と同時ではない。医療者は、別な心周期にカラーフロー取得手順を繰り返すか、又は、噴流の厳密なピーク以外での測定を行うことによる不正確さの原因を解決することになる。
第2の困難な問題は、弁の細孔の中心をカラーフロー画像中で明らかにすることが容易でないことである。弁の細胞組織は、超音波を大きく反射させ、走査が行われることで迅速に移動し、画像中で大きく、ちらつき、又は不明瞭な物体として現れる恐れがある。よって測定rの精度は、細孔の厳密な位置を推定できないため妥協することになる。
第3の問題は、基本的なPISA方が、1回の1次元測定に過ぎないことである。1回だけ速度が測定され、細孔までの半径rは計算中に1回しか用いられない。その方法は、FCR中での血液流の残りの部分が、1回測定した血液流と同一の挙動を示すと仮定している。1回測定における不正確さが、不正確な結果を与えるのは明らかである。
これらの不正確さの解消を試みる基本PISA法の拡張は、2次元画像中でのFCRの外側境界を囲う弧の周辺で速度の測定を複数回行うことである。各速度測定地点から細孔までの距離rが測定される。複数の測定結果が流量Qtの計算に用いられる。複数の測定は1回の不正確な測定への依拠を防止し得るが、他の問題が生じる恐れがある。1回測定(1D)法は一般的に、心臓の先端部と、推定される逆流細孔を直接的に通るように超音波の中心ビームの照準を定めて、このビームラインに沿って速度vと距離rを測定することによって行われる。よってこの逆流ベクトルと位置合わせされたビームラインによって、測定された速度は、正確となり、かつ、ゼロではないドップラー角度による影響を受けない。周知であるように、超音波ドップラー速度測定は、流れの方向と超音波ビーム方向とのなす角による影響を受ける。ビーム方向と直接一致する流れは、正確に測定される。他方ビーム方向に対してゼロではない角度の流れは、その角度の余弦で減少する。ビーム方向に対して直交する(90°の角度をなす)流れは、ドップラー応答を発生させない。従って超音波によって測定されるドップラー速度は、より正確な速度の測定を行うため、流れのベクトルとビーム方向のなす角の関数として補正されなければならない。2DのPISA法の場合、FCRの弧に沿った別の速度測定は、その流れベクトルと速度が測定される各点でのビーム方向とのなす角のばらつきのために不正確になる。複数の測定が1回の速度測定においてなされる誤りを補償できる一方で、集団的測定は、各測定点でのドップラー角度のばらつきのため、流量を小さく評価してしまう。
PISA法に固有な第4の困難な問題は、弁の逆流細孔の厳密な位置を知る上での不正確さである。上述したように、細孔へ向かってその細孔を通り抜ける血液流の突然の加速に起因して、カラーフロー画像中でのエイリアシングが、弁の漏れる領域付近では支配的になる。よってカラーフロー画像は、細孔付近でのドップラー画像中でのエイリアシングの点滅によって乱される。それに加えて僧帽弁の面は、心臓の収縮中は動いている。PISA法の精度は、距離rを測定するための細孔の位置を知ることに依拠しているので、細孔の位置を厳密に知ろうとするこれらの障害の結果、rの測定、ひいては流量の計算が不正確になる恐れがある。実験は、細孔の位置における1mm程度の小さな誤差も、漏れによる流量の計算においては重大な誤差となる恐れがあることを示している。さらに多くの逆流弁は、1つの針穴を有するのではなく、弁が厳密に閉じない状態で生じるスリットに沿った漏れを有する。よって弁を貫通する1つの針穴によって生じる漏れという推定は有効ではない。
米国特許第5997479号明細書 米国特許第6013032号明細書 米国特許第6623432号明細書 米国特許第6283919号明細書 米国特許第6458083号明細書 米国特許第6443896号明細書 米国特許第6530885号明細書 米国特許第5606972号明細書 米国特許第6719697号明細書
従って上述したPISA法の限界を解決する僧帽弁の逆流の流量と体積流を定量化する方法及び装置を提供することが望ましい。本発明の目的は、弁の逆流を起こす細孔の厳密な位置を正確に特定することである。本発明の他の目的は、各測定位置でのドップラー角による影響を受けない範囲の測定を行うことである。本発明のさらに他の目的は、1つの針穴ではなく、弁を閉じた際に生じるスリットに沿った僧帽弁の逆流の特定と定量化を可能にすることである。
本発明の原理によると、逆流する血液流を定量化する超音波診断画像化システム及び方法が記載されている。血液流の弧状(2次元)領域又は半球(3次元)領域が、逆流弁の超音波画像中での僧帽弁の漏れの推定位置の付近で描画される。前記領域の内側境界は、漏れの細孔に隣接するエイリアシング領域(を超えた場所)に位置する。前記領域の外側境界は、前記内側領域の外側に位置して、かつ、前記内側領域に対して同心円状である。前記逆流細孔の位置を含む前記逆流について最初の推定が行われる。これらの推定は、前記逆流の速度場のモデルを計算するのに用いられる。前記モデルのパラメータは、前記の描画された領域内での超音波システムによって観測される予想速度ベクトルVOBSを決定するため、超音波の物理及び/又は前記超音波システムの設定に従って調節される。速度の測定は、前記の描画された領域内で前記超音波システムによって行われる。前記の測定された速度は、前記予想速度と比較される。測定値と予想値との差異が計算される。非線形曲線フィッティングによって、前記モデル値のうちの1つ以上が調節される。処理は、前記予想値と測定値が許容可能な程度に収束するまで反復的に繰り返される。前記の反復により調節されるモデルパラメータは、前記流量又は前記弁内の漏れる細孔の位置の定量化された測定を行うのに用いられて良い。
本発明の第2の態様によると、前記超音波画像中での逆流細孔の最初に推定された位置は、前述の処理によって自動的に更新されることで、前記画像中での前記細孔の実際の位置が表示される。よって医療者には、前記僧帽弁付近での画像の乱れの存在にもかかわらず前記逆流細孔の厳密な位置が示される。
本発明の第3の態様によると、前述の方法は、僧帽弁に沿った複数の空間位置にて繰り返される。前記空間位置で測定される集団的な逆流は、1つの漏れを生じさせる針穴ではなく僧帽弁が閉じた際に生じるスリットである逆流の漏れに起因する逆流の指標を与える。
本発明の第4の態様によると、本発明による逆流測定の実施にとって好ましい複数のウォールフィルタの特性が記載されている。そのようなウォールフィルタには、逆流を生じさせる細孔付近での流れの領域において通常見いだされる中間の流れの速度でピークをとる特性を備えるウォールフィルタが含まれる。
本発明の原理によって構築される超音波診断画像化システムをブロック図で表している。 図1の流れの定量化処理装置の機能をブロック図で表している。 逆流する噴流の超音波ドップラー画像を表している。 本発明によって最初に推定される細孔の位置及び自動的に表示される細孔の位置を示す超音波画像を表している。 本発明による弁に沿ったスリットの逆流を定量化する方法を表している。 本発明の超音波システムでの使用に適したウォールフィルタの応答特性を表している。
最初に図1を参照すると、本発明の原理によって構築される超音波診断画像化システムをブロック図で表されている。図1では、超音波を送信してエコー情報を受信する超音波プローブ10内にトランスデューサアレイ10’が供されている。好適にはトランスデューサアレイ10’は、3D画像化のため、僧帽弁の位置について3次元−たとえば高さと方位角−に走査することの可能なトランスデューサ素子の2次元アレイである。トランスデューサアレイは、アレイ素子による信号の送受信を制御するプローブ内のマイクロビームフォーマ12と結合される。マイクロビームフォーマは、特許文献1〜3に記載されているようにトランスデューサ素子の群すなわち「パッチ」によって受信される信号の少なくとも部分的なビーム生成が可能である。マイクロビームフォーマは、プローブケーブルによって、送受信を切り換え、かつ、高エネルギー送信信号から主ビームフォーマ20を保護する送信/受信(T/R)スイッチ16と結合される。マイクロビームフォーマ12の制御下でのトランスデューサアレイ10からの超音波ビームの送信は、T/Rスイッチ及びビームフォーマ20と結合される送信制御装置18によって導かれる。送信制御装置18は、ユーザーインターフェースすなわち制御パネル38のユーザーの操作からの入力を受ける。送信制御装置によって制御される機能の1つは、ビームが導かれる方向である。ビームは、トランスデューサアレイ(に対して直交する方向)から前方に直進するように導かれて良いし、又は、視野をより広くするため様々な角度で導かれても良い。
マイクロビームフォーマ12によって部分的にビーム生成された信号は、主ビームフォーマ20に結合される。ここで複数の素子からなる個々のパッチから部分的にビーム生成された信号は結合されて、完全にビーム生成された信号となる。たとえば主ビームフォーマ20は128のチャネルを有して良い。前記128のチャネルの各々は、12のトランスデューサ素子からなるパッチからの部分的にビーム生成された信号を受信する。このようにして、2次元アレイの1500超のトランスデューサ素子によって受信される信号は、効率的にビーム生成された信号に寄与することができる。
ビーム生成された信号は信号処理装置22に結合される。信号処理装置22は、様々な方法で受信したエコー信号を処理して良い。様々な方法とはたとえば、帯域通過フィルタリング、デシメーション、I成分とQ成分の分離、及び、細胞組織と微小気泡から戻される非線形エコー信号の特定を可能にするように線形信号と非線形信号とを分離する調和信号分離である。信号処理装置はまた、別な信号の改善を実行して良い。別な信号の改善とはたとえば、スペックル減少、信号の合成、及びノイズ除去である。
処理された信号は、Bモード処理装置26とドップラー処理装置28に結合される。Bモード処理装置26は、体内での構造−たとえば心臓壁の組織、僧帽弁の組織、及び血球−を画像化するために振幅検出を用いる。体の構造のBモード画像は、特許文献4,5に記載されているように調和モード若しくは基本モードのいずれか又は調和モードと基本モードの両方で生成されて良い。ドップラー処理装置28は、画像領域中での血球の流れのような物体の運動を検出するため、組織と血流からの時間的に明瞭な信号を処理する。ドップラー処理装置典型的には、体内の選ばれた種類の物質から戻されるエコーを通過及び/又は拒否するように設定することの可能なパラメータを有するウォールフィルタを備える。たとえば、ウォールフィルタは、高速の物質からの低振幅信号を通過させる一方で、低速又は静止した物質からの強い信号を拒否する通過帯域特性を有するように設定されて良い。この通過帯域特性は、ほぼ静止した物体又はゆっくりと移動する物体−たとえば心臓壁−からの信号を拒否する一方で流れる血液からの信号を通過させる。逆の特性は、組織ドップラー画像化と呼ばれ、心臓の動く組織からの信号を通過させる一方で血流信号を拒否させ、組織の運動を検出して描画する。ドップラー処理装置は、画像領域内での様々な点からの時間的に離散的な一連のエコー信号と、集団(ensemble)と呼ばれる特定の地点からの複数のエコー信号からなる一連のエコー信号を受信及び処理する。相対的に短い期間にわたって迅速に順次受信されるエコーの集団は、流れる血液のドップラーシフト周波数を推定するのに用いられて良い。ここで速度に対応するドップラー周波数は、血流の速度を示す。長い期間にわたって受信されたエコーの集団は、ゆっくり流れる血液又はゆっくり移動する物体の速度を推定するのに用いられる。急速に生じる噴流の僧帽弁の逆流の評価については、高い取得フレーム速度を実現することができるように、短い集団長さ(少ない標本)が一般的に用いられる。ドップラーシフトΔfは、式Δf =2νf0cosθ/cによって推定されて良い。ここで、f0は送信周波数で、cは超音波の伝播速度で、vは速度で、θはビーム方向と血液流の方向とがなす角である。
Bモード処理装置とドップラー処理装置によって生成される構造信号と運動信号は、走査変換装置32と多断面再構成装置44に結合される。走査変換装置は、特定の空間関係を満たすように受信されたエコー信号を、所望の画像形式となるように整える。たとえば走査変換装置は、エコー信号を、2次元(2D)の扇形形式又はピラミッド状の3次元(3D)画像に整える。走査変換装置は、ドップラー推定された速度に対応する画像領域内での複数の点での運動に対応する色を有するBモードの構造画像を重ね合わせることで、その画像領域内で組織の運動の血流を描画するカラードップラー画像を生成する。多断面再構成装置は、特許文献6に記載されているように、体の体積領域内の共通の面に属する複数の点から受信されるエコーを、その面の超音波画像に変換する。体積描画装置42は、特許文献7に記載されているように、3Dデータセットのエコー信号を、所与の参照地点から見た投影3D画像に変換する。2D又は3D画像は、画像表示装置40上での表示のさらなる向上、バッファリング、及び一時的な記憶のため、走査変換装置32、多断面再構成装置44、及び体積描画装置42から画像処理装置30に結合される。
本発明の原理によると、ドップラー処理装置28によって生成される血流速度の値は、流れの定量化処理装置34に結合される。流れの定量化処理装置は、後述するように、逆流細孔を通り抜ける流量、その細孔を通り抜ける体積流、及び、その細孔の空間位置の指標を生成するように動作する。流れの定量化処理装置は、ユーザー制御パネル38からの入力−たとえば後述するように細孔の位置の最初の推定−を受信して良い。流れの定量化処理装置からの出力データは、表示装置40上に画像と共に処理装置からの出力データを再現するグラフィック処理装置36に結合される。グラフィック処理装置36はまた、表示のために超音波画像の重ね合わせを生成して良い。これらの画像の重ね合わせは、標準的な識別情報−たとえば患者名、画像の日時、画像化パラメータ等−を含んで良い。これらの目的のため、グラフィック処理装置36は、ユーザーインターフェース38からの入力−たとえばキーボードにより打ち込まれた患者名−を受信する。ユーザーインターフェースはまた、トランスデューサアレイ10’からの超音波信号、ひいてはトランスデューサアレイと超音波システムにより生成される像の生成を制御するように、送信制御装置18にも結合される。ユーザーインターフェースはまた、複数の多断面再構成された(MPR)画像の表示を選択及び制御する多断面再構成装置44にも結合される。多断面再構成装置44は、後述するように、本発明によるMPR画像中での逆流を定量化するのに用いられて良い。
図2は、図1の流れの定量化処理装置の動作を表している。処理装置は、後述するように、包含領域内の標本地点での流速場の数学的モデルに基づく。2D画像の実施例では、包含領域は、逆流細孔の位置{x0,y0,z0}を中心とする2つの弧によって表される曲率を有する細片であることが好ましい。3D画像の実施例では、曲率を有する細片は、以降の図3で説明するように、半球状の殻である。好適実施例では、そのモデルは、以下の式で表されるベクトル速度モデルである。
Figure 2014500118
又は
Figure 2014500118
ここで、流れのベクトルがF(ベクトル)のとき、|V(r)|=F(ベクトル)/2πr2で、rは包含領域内の3次元座標における点(x,y,z)から逆流細孔までの距離で、その細孔は3次元空間において座標{x0,y0,z0}に位置する。このことは、距離r−細孔への方向を示すためベクトル表記されている−は次式で表される。
Figure 2014500118
図2の四角50では、包含領域内のどの点の流れの速度も、このようにしてモデル化される。最初そのモデルは、未知のパラメータの推定又は仮定された値−逆流細孔の流れF(ベクトル)と位置{x0,y0,z0}を含む−で開始して良い。たとえばそのモデルは、逆流の名目上の特性であるパラメータで開始して良い。ユーザーは、たとえば超音波画像中の逆流細孔の推定された位置を示すことによってパラメータを入力して良い。又はPISAのような既知の方法が、流れの速度場の開始パラメータとして用いられる値を計算するのに利用されて良い。
流れの速度場モデルは、真の生理学上の速度ベクトルが既知である場合に、正確な速度ベクトルを近似する。そのモデルによって近似される速度ベクトルは、四角50の出力で、〜VTRUEとして表示される。続いて四角52は、実際の因子−たとえば超音波の物理的性質及び使用される超音波システムの動作パラメータ−によって、〜VTRUEへの制限及び調節を行う。続いて流れの速度場モデルは、超音波システムによって観測される実際の速度値を検討する際にこれらの実際の因子を考慮するように調節すなわち一定の率縮尺又は拡大される。調節を行うことのできる実際の因子の1つはドップラー角である。上述したように、超音波システムによって実行されるドップラー測定は、流れの方向が超音波ビームの方向と一致するとき、つまりドップラー角がゼロのときにのみ厳密に正しい。ビーム方向と流れの方向のなす角が他の値である場合、速度は低く見積もられる。上述したドップラーシフトの式では、ドップラー角はcosθ(θはドップラー角)によって重み付けされる。超音波システムの他の実際の因子はフィルタバイアスである。ドップラーウォールフィルタは一般的に、血流の検出に関して、DCにてゼロ応答(運動しない)を有し、かつ、±fの選択された高周波にて最大応答となる非線形特性を示す。あるいはその代わりに、ウォールフィルタは、後述するように、集団のサンプリングレートのナイキスト限界によって支配される周波数未満の周波数で最大応答を示して良い。ドップラーシフトが測定される体内の標本体積は、その体内の1点ではなく、有限サイズを有する。その結果ある範囲の速度を示すドップラー信号が戻される。ウォールフィルタの不均一応答によって、広範囲な速度の広がりは、様々な位置での応答特性の大きな利得を受ける。たとえば速い速度が、遅い速度よりも強調される。この不均一応答は、ウォールフィルタバイアスと呼ばれる速度の広がりの知覚された中心でのシフトを生じさせる。ウォールフィルタバイアスもまた、モデルを調節する際に考慮されて良い。考慮されうる他の関連因子は、スペクトル広がりである。ドップラースペクトル広がりの効果は、標本体積からアレイトランスデューサのアクティブアパーチャの各受信素子までの経路及び角度が各異なる結果として生じる(特許文献8を参照のこと)。考慮することのできるさらに他の因子はエイリアシング効果である。エイリアシング効果とはつまり、血流の運動が、エコー集団のサンプリングレートのナイキスト限界によって明確に検出されうる速度を超えた速度で運動するときに、ドップラー周波数と速度が誤って報告されることである。四角52では、これらのような因子が、前述したモデルについての次式で表され得る流れの速度場モデルへのドット積調節によって考慮される。
Figure 2014500118
ここで、nscan(ベクトル)は、調節が行われている物理因子及び超音波システムに係る因子のベクトル表現である。図2に図示されているように結果は、VOBS、予想された効果によって調節されるモデル、及び超音波システムによって測定される信号において予想されることである。
コンパレータ54は、流れの速度場モデルからの予想される速度値VOBSと、ドップラー処理装置28によって生成される、その場での地点(標本体積)からの実際の速度の測定値VMEASとを比較する。四角56内では、予想値と受信値との差異は、各地点の誤差の項を生成するように2乗される。誤差の項は、全包含領域にわたって積分される。前記全包含領域は、全領域を構成する2乗平均誤差を生成する1次元(たとえば1Dの線)、2次元(たとえば2Dの弧状の線からなる領域)、又は3次元(たとえば3D半球殻)の包含領域であって良い。よって誤差の項は、場のモデルのパラメータ−たとえばr及び流量−を調節することで、続いて測定される誤差の項を減少させるのに用いられる。好適な調節方法は、非線形曲線フィッティングを利用して、誤差を減少させるようにモデルを適合させることである。利用可能な係る非線形曲線フィッティングの一は、レーベンバーグ・マーカート(Levenberg-Marquardt)アルゴリズムである。これは、逆流細孔の位置の座標と、その細孔へ向かう又は通り抜ける場の流れ(F(ベクトル))又は流量(Qt)を精緻化する。
図2のループは、誤差の項を減少させるように反復的に繰り返される。ループを一巡する毎に、より厳密に適合される場のモデルは調節され、かつ、許容可能領域からの超音波速度測定と比較され、誤差の項は反復的に減少する。誤差の項が許容可能な程度に低い値にまで減少したとき、モデルは、必要とされてきた細孔の位置の実際の位置とその細孔を通り抜ける血流の測定結果を示す。これらの項及び必要な場合には他の項は、流れの定量化処理装置34によって出力として生成され、かつ、表示装置上でユーザーに与えられる。
図3は、僧帽弁の逆流を測定する本発明の実施を表す概略的2D超音波画像である。直線100は、逆流の漏れが細孔Oを貫通した状態で存在する僧帽弁の面を表す。左心室が収縮するとき、血液の噴流102は、右心房へ戻るように飛び出す。PISA法では、この噴流は、細孔Oを貫通して延びるドップラービーム110に応答する。特許文献9は、PISA法を改良している。特許文献9の改良では、カラーMモードの表示が、ドップラービーム110の位置から心周期にわたって生成される。カラードップラー表示処理装置には、画像の右側のカラーバー120によって示される表示限界が設定される。カラーバー120は、ゼロ速度の中心参照位置(BK=黒)から、互いに反対の方向である+V及び-Vの最大速度まで延びる。ある範囲の色(Y=黄色、DR=暗い赤等)が、この範囲の速度に従って表示される。エイリアシングは、測定される速度が+Vと-Vのナイキスト限界を超えるときに生じる。細孔は、流れ収束領域(FCR)104にすぐ隣接する。流れ収束領域を超えると、本発明の実施の際に用いられる許容可能領域112(S)である。
PISA法も本発明も、細孔付近の左心室内での逆流が、細孔の位置Oに向かって収束するように流れることを前提としている。これは、許容可能領域S内の流れベクトルV1,V2,V3によって表される。しかしドップラービーム110の方向が表すように、たとえ位相アレイセンサプローブで様々な角度が用いられるときでさえ、実質的にすべての流れベクトルは、ビーム方向と一致しない。従ってそれぞれ異なる流れベクトルについてそれぞれ異なる大きさのドップラー角が存在する。これは、上述したように、図2の四角52内での流れ速度場モデルへのドップラー角の調節の際に考慮される。
FCR104のカラードップラー画像は乱れていて不安定である。この理由は、心臓収縮期中、血流が、方向を変化させ、かつ、瞬時に細孔Oへ向かって加速することで、血球の空間配置と血流速度が、この領域では非常に急速に変化するからである。この期間中に取得される集団標本は通常、互いに相関しない。これは、通常のドップラー推定処理装置が依拠する集団内での相関に打ち勝つ。その結果、たとえFCR内での流れが一般的に層流であっても、カラーフロー表示は、高乱流でエイリアシングを生じる表示となり得る。許容可能な領域Sの内側境界108は、FCRからの誤った速度の推定を利用しないように、流れの収束領域104を超えて設定されることが好ましい。境界108を設定する一の方法は、内側境界108を速度剪断境界に又はそれを超えて設定することである。これは、カラーフロー表示を参照しながら視覚的に行われて良いし、又は、速度剪断閾値を参照しながら自動的に行われても良い。
許容可能な外側領域106は、測定可能な速度に関して設定されて良い。逆流の速度が細孔付近で相対的に高い一方で、その速度は、細孔からの距離の増大と共に徐々に低下する。外側境界106は、低ドップラー速度が依然として高い信頼性で測定可能な細孔Oからの距離で設定されて良い。これは、ナイキスト限界の割合に関して、又は、低い流れ速度−たとえば5mm/sec−に関して決定されて良い。よって外側境界106は、低い流れに対する許容可能な感度が依然としてドップラー処理装置によって実現できる距離に設定されて良い。
図3の例の許容可能な領域112は、細孔Oに回転中心を有する2次元の弧状領域Sのように見える。本発明は、1次元、2次元、又は3次元において利用されて良い。1次元の実施及びモデルはたとえば、弧108と106との間のビームライン110の一部だけを考慮すればよい。2次元の実施は、たとえば図3の許容可能な領域112のような平面の許容可能な領域をサンプリングする。3次元の実施は、たとえば112のような弧状の許容可能な領域だが、その領域は、細孔を中心とする完全な半球である。2次元の実施例及び3次元の実施例では精度が向上することが予想される。好適な実施例は、図1に図示された2次元トランスデューサアレイを備える3D画像化プローブを用いる。取得とモデル化は、細孔に対して半球の体積の殻内で行われる。高いフレーム速度は、2次元画像化によって実現されて良い。その場合、MPRが細孔を介して進行し、かつ、噴流は、多断面再構成装置44を用いた3Dプローブによって走査された体積から選択されうる。所望の面は、高い取得フレーム速度で繰り返し走査されて良い。速度の測定と流れの計算は、2DのMPR画像において示される2次元の許容可能な領域によって行われる。流れが環状のパターンで細孔に向かって収束する許容可能な領域が、図3に示されているように存在しうる一方で、場合によっては他の非環状パターンが存在するのが見いだされる。つまり、細孔へ向かう流れのベクトルは、純粋な円の弧以外のパターンで配置されて良い。図3の環状形状の代わりに、許容可能な領域は、放物状又は平坦な環状形状を有して良い。3次元の実施例においては、許容可能な領域は、放物面状又は偏球状の球殻であって良い。許容可能な領域の形状、つまり速度がモデルとの比較によって測定される面積又は体積は、図2の処理ループを反復的に経ることによって動的に変化して良い。それにより処理は、最初のモデルにおいて用いられる形状から変更された形状を有する許容可能な領域へ適合及び収束する。
前述したように、医療者が、超音波画像上での小さな逆流細孔の位置を正確に特定することは大抵困難である。心臓が収縮しないとき、細孔は存在しない。細孔が存在するときには、その位置は、結果として生じた−たとえば流れの収束領域付近での−乱流の画像化アーティファクトによって見つけられなくなる。本発明の第1態様によると、本発明の実施は自動的に、超音波画像上での漏れ細孔の位置を表示することができる。図4は超音波画像を表している。図中、図3で述べた素子は、同一の参照番号を有する。この画像もまた、診断開始時に逆流細孔の推定された位置を示すため、医療者によって画像の上に設けられた小さな四角130をも有する。制御パネル38の制御−たとえばトラックボール−は、医療者が、細孔が位置すると信じている画像中の場所にアイコン130を設けるように、その医療者によって操作される。表示された細孔のアイコン130の座標は、図2で示された流れの定量化処理装置の処理を実現するのに用いられる。座標は、四角50の数学的モデルにおける細孔の最初の座標として用いられる。処理装置34は、測定された速度値VMEASを受け取るのに応答して、細孔一に向かう流れの速度ベクトルのモデル化された値を精緻化する。細孔の位置の垂直方向の設定は、測定された速度値を有するモデル化された速度ベクトルの収束に対して最大の効果を有するように探索された。心臓が心臓収縮期の間に収縮する一方で、収縮運動は、僧帽弁を、左心室の中心へ向かうように画像中で垂直方向に動かす。よって自然な心臓の収縮運動は、逆流の評価において最大の誤差源となりうる。処理装置34は、境界106と境界108との間の流れ速度場(許容可能な領域S)内での測定された速度値と推定された速度値との誤差の不一致を減少させるように、細孔の位置を反復的に精緻化する。流れの定量化処理装置が、細孔の真の座標を収束させるように反復することで、最終的に決定される座標は、流れの定量化処理装置34とグラフィック処理装置36によって用いられることで、細孔のアイコン130は画像中での計算された座標へ自動的に移動する。あるいはその代わりに、グラフィック処理装置は、反復的なモデルの調節によって決定される真の座標位置で表示装置上に別な(計算された)細孔のアイコン132を設ける。前述したように、1mm程度の小さな細孔の位置のずれも、細孔の流量と体積流の計算に顕著に影響しうる。体積流は、心臓が収縮する期間(心周期の約1/3)での流量の積分である。流れの体積は、心収縮期の略中間でピークをとる。図4では、システムが、画像領域の真の位置に計算された細孔のアイコン132を設けたのが分かる。これは、医療者による細孔の位置の推定とは異なる。超音波による調査が2D画像化により実行されるとき、細孔の座標は一般に(x,y,z)の直交座標である。3D画像化が用いられるとき、極座標(r,θ,φ)が一般に用いられる。それに加えて図4の超音波画像が示しているように、許容可能な領域Sは、表示された超音波画像中に描画され、上述した許容可能な領域の形状の修正は、表示装置上の許容可能な領域の表示された形状とその領域の描画に取り入れられる。
上述したように、逆流細孔は必ずしも、閉じられた弁内での1つの針穴として存在する訳ではない。漏れは、スリット開口部又は複数の小さな漏れによって生成されうる。図5は、流量、スリットの体積流、及び弁が閉じられた状態での複数の漏れを評価するために本発明の実施例を利用する様子を表している。図5が図示しているように、漏れている僧帽弁100’に沿って並ぶ一連の細孔位置に対して本発明の方法が実行される。これらの離散的な針穴の細孔位置は、閉じた弁内での複雑なスリット状の細孔又は複数の細孔をモデル化するのに用いられて良い。図5は、そのような3つの決定例を表している。各々は、外側領域境界106,106’,106’’によって表される独自の許容可能な領域と、弁100’に沿った各異なる位置で収束するように導かれる流れベクトル(小さな矢印で表されている)を有する。各針穴細孔に係るベクトル速度場は、他の細孔とベクトル合成される。その結果、1つの合成された許容可能な領域が、1つの合成されたベクトル速度場に沿って定められる。複数の細孔については、合成されたベクトル速度場は、真の生理学上の速度ベクトルを近似する(Vtrue、図2の四角50の出力)。合成されたベクトル速度場を処理することで、弁の閉口部に沿ったスリット全体に対応するすべての針穴細孔の流量又は体積流が決定される。図5は、3つの針穴細孔から生成されるベクトル速度場の例を表しているが、任意の数の細孔が、スリットを適切にモデル化するのに用いられて良い。合成された細孔について決定される流れは、独自の細孔又は位置に向かうようにスリットに沿って導かれるベクトル流であるので、各測定に利用される許容可能な領域は図5に図示されているように合成されて良い。3次元の実施例では、測定線は、面内の直線に制約されず、僧帽弁の一部が閉口部の非線形の経路に従って良い。
図6は、本発明の実施例において用いられ得る2つのドップラーウォールフィルタの応答特性を表している。図6のプロットの座標の横軸の単位は、ウォールフィルタのサンプリングされたデータのナイキスト限界である。ここで+1と-1は、血流速度に対応するフィルタの規格化されたナイキスト限界である。ゼロ(DCすなわち流れのない)条件は中心に位置する。座標の縦軸は、フィルタ特性の相対振幅応答を表す。応答曲線140は、血流を測定する典型的なウォールフィルタ応答曲線で、かつ、本発明の実施例において用いられて良い。この特性は、中心でゼロ応答を有する。その結果、静止した血管の内壁のような静止した対象物に応答しない。その応答は、曲線がゼロから拡大するにつれて、徐々に増大して見える。このとき最高の速度流でのナイキスト限界での最大応答は、選ばれたサンプリング間隔でのエイリアシングを起こすことなく検出可能である。その結果、この応答特性は、最高流速での流れにもっとも敏感となる。
応答曲線150は、本発明の実施例のウォールフィルタにとって通常好ましい曲線である。この曲線150の応答は、相対的に高いが、±0.5ナイキストの絶対値よりも少し大きな−好適にはナイキストの1/2〜2/3の範囲で−サンプリングレートでピークをとるのが分かり、かつ、ナイキスト限界でゼロ応答にまで減少する。このフィルタ応答は、低い流速に対してより敏感になるように設計される。低い流速は、許容可能な領域Sの外側境界106周辺で予想されうる。これは、逆流のカラーフロー画像化に一般的に用いられる小さな集合から得られる低い流速に対する感度の低さを補償するのに有用である。これは、プロットの中心付近での低い速度についての曲線150の応答が大きくなっていることから分かる。曲線150がナイキスト限界でゼロにまで減少する一方で、このような高い速度の感度が失われることは、低い速度流に対する感度が大きくなることのトレードオフとなるときには、許容可能である。

Claims (12)

  1. 逆流を測定する診断用超音波システムであって:
    体内での逆流位置へ超音波エネルギーを送信して、前記逆流位置からの超音波エコーを受信するトランスデューサアレイを有する超音波プローブ;
    受信したエコーに応答して前記逆流位置の超音波画像を生成する画像処理装置;
    受信したエコーに応答して、上側サンプリングレートと下側サンプリングレートとの間に及び、かつ前記上側サンプリングレートと下側サンプリングレートとの間のサンプリングレートでピークをとる応答特性を有するウォールフィルタ;
    前記ウォールフィルタが通過させるエコー信号に応答して前記逆流位置の付近での血液流速度のドップラー超音波測定を行うドップラー処理装置;
    前記逆流位置の付近での流速場の測定を行う流れの定量化装置;並びに、
    前記画像処理装置と流れの定量化装置に結合して、前記逆流位置の超音波画像及び前記流れの定量化装置から得られる流れの測定結果を表示する表示装置;
    を有する診断用超音波システム。
  2. 前記ウォールフィルタの特性が、ゼロから±1のナイキスト限界にまで及ぶ、請求項1に記載の診断用超音波システム。
  3. 前記ウォールフィルタの特性が、0.5ナイキスト付近でピークをとる、請求項2に記載の診断用超音波システム。
  4. 前記ウォールフィルタの特性が、前記ナイキスト限界でのゼロの応答にまで減少する、請求項3に記載の診断用超音波システム。
  5. 前記ウォールフィルタの特性が、1/2ナイキスト乃至2/3ナイキストの範囲内でピークをとる、請求項2に記載の診断用超音波システム。
  6. 前記ウォールフィルタの特性が、前記ナイキスト限界でのゼロの応答にまで減少する、請求項5に記載の診断用超音波システム。
  7. 前記ウォールフィルタの特性が、0.5ナイキストのサンプリングレートよりも大きな値でピークをとる、請求項2に記載の診断用超音波システム。
  8. 前記ドップラー処理装置がさらに、逆流細孔付近での流速場から受信されるエコー信号に応答し、かつ、
    前記ウォールフィルタの特性は、前記流速場での流速に対して高い感度を示すように調節される、
    請求項1に記載の診断用超音波システム。
  9. 前記流速場は、前記逆流細孔付近に2次元の許容可能な領域をさらに有する、請求項8に記載の診断用超音波システム。
  10. 前記2次元の許容可能な領域が、前記逆流位置で実質的に曲率の中心を有する弧形状である、請求項8に記載の診断用超音波システム。
  11. 前記流速場が、前記逆流細孔付近に3次元の許容可能な領域をさらに有する、請求項8に記載の診断用超音波システム。
  12. 前記3次元の許容可能な領域が、前記逆流位置で実質的に曲率の中心を有する半球形状である、請求項11に記載の診断用超音波システム。
JP2013545580A 2010-12-23 2011-12-15 僧帽弁の逆流超音波解析用ウォールフィルタ Active JP5990536B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201061426669P 2010-12-23 2010-12-23
US61/426,669 2010-12-23
US201161466053P 2011-03-22 2011-03-22
US61/466,053 2011-03-22
PCT/IB2011/055704 WO2012085779A1 (en) 2010-12-23 2011-12-15 Wall filter for ultrasonic mitral regurgitation analysis

Publications (2)

Publication Number Publication Date
JP2014500118A true JP2014500118A (ja) 2014-01-09
JP5990536B2 JP5990536B2 (ja) 2016-09-14

Family

ID=45524891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013545580A Active JP5990536B2 (ja) 2010-12-23 2011-12-15 僧帽弁の逆流超音波解析用ウォールフィルタ

Country Status (7)

Country Link
US (1) US10398407B2 (ja)
EP (1) EP2654569B1 (ja)
JP (1) JP5990536B2 (ja)
CN (1) CN103379864B (ja)
BR (1) BR112013015820A2 (ja)
RU (1) RU2605417C2 (ja)
WO (1) WO2012085779A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210014081A (ko) * 2019-07-29 2021-02-08 수퍼소닉 이매진 환경에서 유체 흐름을 감지하기 위한 초음파 시스템

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11684346B2 (en) * 2015-05-29 2023-06-27 Siemens Medical Solutions Usa, Inc. Ultrasound beamformer-based channel data compression
KR102551252B1 (ko) 2015-11-11 2023-07-05 삼성메디슨 주식회사 초음파 진단 장치 및 그 동작방법
DE112019001425T5 (de) * 2018-03-21 2020-12-03 Koninklijke Philips N.V. Ultraschallsystem zur dreidimensionalen darstellung von scherwellen
JP7084342B2 (ja) * 2019-03-08 2022-06-14 富士フイルムヘルスケア株式会社 二次流れ検出装置、二次流れ検出プログラム、及び超音波信号処理装置
EP4137061A1 (en) 2021-08-17 2023-02-22 Koninklijke Philips N.V. Ultrasound imaging for visualization and quantification of mitral regurgitation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352951A (ja) * 1991-05-31 1992-12-08 Yokogawa Medical Syst Ltd 超音波血流イメージング装置
US20020151794A1 (en) * 2001-02-27 2002-10-17 Xiang-Ning Li Ultrasonic quantification of valvular regurgitant blood flow
WO2005051203A1 (ja) * 2003-11-27 2005-06-09 Hitachi Medical Corporation ドプラ速度検出装置及びそれを用いた超音波診断装置
JP2008154891A (ja) * 2006-12-26 2008-07-10 Ge Medical Systems Global Technology Co Llc カラードップラ装置および超音波撮像装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1178411A1 (ru) * 1984-02-10 1985-09-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Ультразвуковой импульсно-допплеровский измеритель скорости кровотока
US5373847A (en) * 1992-11-12 1994-12-20 University Of Pittsburgh Of The Commonwealth System Of Higher Education Method of color doppler mapping of blood flow in a patient
US5606972A (en) 1995-08-10 1997-03-04 Advanced Technology Laboratories, Inc. Ultrasonic doppler measurement of blood flow velocities by array transducers
US6383139B1 (en) * 1996-06-28 2002-05-07 Sonosite, Inc. Ultrasonic signal processor for power doppler imaging in a hand held ultrasonic diagnostic instrument
US5846202A (en) 1996-07-30 1998-12-08 Acuson Corporation Ultrasound method and system for imaging
US6283919B1 (en) * 1996-11-26 2001-09-04 Atl Ultrasound Ultrasonic diagnostic imaging with blended tissue harmonic signals
US6458083B1 (en) 1996-11-26 2002-10-01 Koninklijke Philips Electronics N.V. Ultrasonic harmonic imaging with adaptive image formation
US6095980A (en) * 1997-10-02 2000-08-01 Sunnybrook Health Science Centre Pulse inversion doppler ultrasonic diagnostic imaging
US6013032A (en) 1998-03-13 2000-01-11 Hewlett-Packard Company Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array
US5997479A (en) 1998-05-28 1999-12-07 Hewlett-Packard Company Phased array acoustic systems with intra-group processors
US6530885B1 (en) 2000-03-17 2003-03-11 Atl Ultrasound, Inc. Spatially compounded three dimensional ultrasonic images
US6443896B1 (en) 2000-08-17 2002-09-03 Koninklijke Philips Electronics N.V. Method for creating multiplanar ultrasonic images of a three dimensional object
US6468216B1 (en) 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
JP2005514997A (ja) * 2001-12-28 2005-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 体器官内の流動の定量的な算出を実行するための超音波画像シーケンスを処理する手段を有する観察システム
US6620103B1 (en) * 2002-06-11 2003-09-16 Koninklijke Philips Electronics N.V. Ultrasonic diagnostic imaging system for low flow rate contrast agents
US9612142B2 (en) * 2006-04-27 2017-04-04 General Electric Company Method and system for measuring flow through a heart valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04352951A (ja) * 1991-05-31 1992-12-08 Yokogawa Medical Syst Ltd 超音波血流イメージング装置
US20020151794A1 (en) * 2001-02-27 2002-10-17 Xiang-Ning Li Ultrasonic quantification of valvular regurgitant blood flow
WO2005051203A1 (ja) * 2003-11-27 2005-06-09 Hitachi Medical Corporation ドプラ速度検出装置及びそれを用いた超音波診断装置
JP2008154891A (ja) * 2006-12-26 2008-07-10 Ge Medical Systems Global Technology Co Llc カラードップラ装置および超音波撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210014081A (ko) * 2019-07-29 2021-02-08 수퍼소닉 이매진 환경에서 유체 흐름을 감지하기 위한 초음파 시스템
KR102459053B1 (ko) 2019-07-29 2022-10-26 수퍼소닉 이매진 환경에서 유체 흐름을 감지하기 위한 초음파 시스템

Also Published As

Publication number Publication date
BR112013015820A2 (pt) 2018-05-15
CN103379864A (zh) 2013-10-30
JP5990536B2 (ja) 2016-09-14
RU2605417C2 (ru) 2016-12-20
CN103379864B (zh) 2015-10-07
US10398407B2 (en) 2019-09-03
RU2013134267A (ru) 2015-01-27
US20130296703A1 (en) 2013-11-07
EP2654569A1 (en) 2013-10-30
WO2012085779A1 (en) 2012-06-28
EP2654569B1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP6060089B2 (ja) 超音波撮像による僧帽弁逆流の解析
JP5990536B2 (ja) 僧帽弁の逆流超音波解析用ウォールフィルタ
WO2010116965A1 (ja) 医用画像診断装置、関心領域設定方法、医用画像処理装置、及び関心領域設定プログラム
US10512444B2 (en) Ultrasonic color flow map for analysis of mitral regurgitation
JP2013188478A (ja) 医学診断用超音波イメージングを用いた圧容積
US6719697B2 (en) Ultrasonic quantification of valvular regurgitant blood flow
US11278259B2 (en) Thrombus detection during scanning
JP6078475B2 (ja) 超音波画像中の僧帽弁の逆流開口部の位置の自動同定
JP3443189B2 (ja) 超音波診断装置
JP5997177B2 (ja) 超音波撮像によるスリット開口部からの僧帽弁逆流の解析
JP2021500168A (ja) 血管狭窄の超音波測定
WO2017119301A1 (ja) 超音波撮像装置
JP2009273908A (ja) 医用画像装置および超音波診断装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5990536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250