JP2021500168A - 血管狭窄の超音波測定 - Google Patents

血管狭窄の超音波測定 Download PDF

Info

Publication number
JP2021500168A
JP2021500168A JP2020523016A JP2020523016A JP2021500168A JP 2021500168 A JP2021500168 A JP 2021500168A JP 2020523016 A JP2020523016 A JP 2020523016A JP 2020523016 A JP2020523016 A JP 2020523016A JP 2021500168 A JP2021500168 A JP 2021500168A
Authority
JP
Japan
Prior art keywords
stenosis
blood vessel
imaging system
velocity
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020523016A
Other languages
English (en)
Other versions
JP7269232B2 (ja
Inventor
ロバートソン ジェイゴ,ジェイムズ
ロバートソン ジェイゴ,ジェイムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2021500168A publication Critical patent/JP2021500168A/ja
Application granted granted Critical
Publication of JP7269232B2 publication Critical patent/JP7269232B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/5206Two-dimensional coordinated display of distance and direction; B-scan display
    • G01S7/52066Time-position or time-motion displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52053Display arrangements
    • G01S7/52057Cathode ray tube displays
    • G01S7/52074Composite displays, e.g. split-screen displays; Combination of multiple images or of images and alphanumeric tabular information
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data

Abstract

超音波システムが、残留している内腔の面積の観点から血管の狭窄度を測定するために使用される。血流量の測定が、狭窄部位の近くの血管の非閉塞のポイントにおいて行われる。時間平均の平均血流速度の測定が、狭窄において行われる。これら2つの値の商が算出され、閉塞部位における残留している内腔の面積及び狭窄度の推定値が生成される。

Description

本発明は、医学診断用超音波システムに関し、特に、血管狭窄、すなわち血管の閉塞率を測定する超音波システムの使用に関する。
プラーク及び他の物質の蓄積による血管の閉塞は、体内の組織及び臓器へ栄養を与える血液の十分な供給の流れを妨げ得る。従って、一般的には狭窄度(percent stenosis)としての血管閉塞、すなわちプラークによって引き起こされる正常の流れる内腔の減少率(percentage reduction)を検出及び測定することができるということが望ましい。超音波を用いて閉塞を可視化及び測定することは、適切な測定に対して正しい画像面を得ることが困難であるため、二次元(2D)超音波では問題がある。三次元(D)超音波は、この問題を取り除くことになるが、それにもかかわらず、プラーク石灰化由来の陰影及び不十分な解像度によって妨害される。血管閉塞を定量化する最も一般的な方法は、超音波によるものではなく、血管造影によるものである。血管造影図は投影画像であるため、血管直径の減少を評価するのに有用であるが、流れる内腔の面積の変化を評価するのに有用ではない。図1は、投影画像を用いて内腔サイズを評価することの難しさを例示している。図1において、血液は、フローベクトルFによって示されているように血管10内を流れている。血管10は、この例において完全に非閉塞であるが、図面に示されているように曲がっている。投影画像が流れの方向Fに対して平行にとられた場合、結果として生じる内腔の画像は、図1aにおける内腔70によって示されるように現れるであろう。従って、この血管10の図は、閉塞した血管のものであるようにみなすことができる。血管造影図は、通常、図1の流れ方向に対して平行にとられることはなく、図1が見られているように血管の長さに対して垂直にとられるが、同じ再構築の原理が適用される。結果として生じる血管造影図は、血管内のプラークの回転方向及び血管の蛇行状の経路によってかなり影響されることになり、これらの理由から、多数の血管造影図が、通常、血管に対する異なる見る方向にて得られる。異なる図を比較することによって、狭窄の程度の評価が行われ、典型的には、狭窄における認知された残留している内腔の直径を、血管内の非閉塞のポイントにおける血管内腔の直径に関連付けるNASCET基準を使用して行われる。しかし、複数の血管の図を用いたとしても、狭窄の程度は、血管造影では過小評価されることが多い。それにもかかわらず、そのような測定は、狭窄におけるピーク血流速度を測定し、次に、この速度を、既知の以前の測定に基づく血管直径の減少に関連付ける、狭窄を評価するための現在の超音波法よりも好まれる。しかし、超音波は簡単で使用しやすく、血管造影のようにX線造影剤の使用を伴わない。従って、正確且つ信頼できる超音波技術が利用可能である場合、超音波を使用して、血管狭窄の初期評価を行うことができるということが望ましい。さらに、そのような評価では、狭窄の血行力学的効果が直径ではなく残留している内腔面積により密接に関連しているということが分かっているため、直径の減少ではなく内腔面積の減少を測定することが望ましい。
米国特許第5,606,972号 米国特許第7,497,830号 米国特許第5,997,479号 米国特許第6,013,032号 米国特許第6,623,432号 米国特許第5,833,613号 米国特許第6,530,885号
本発明の原理によると、内腔面積の減少の点から血管の狭窄度を測定する超音波システム及び超音波測定技術が記載される。血流量の測定が、閉塞の部位に近位の血管の非閉塞のポイントにおいて行われる。血流速度の測定が、狭窄において行われる。これら2つの値の商が算出されて、残留している内腔の面積及び閉塞の部位における狭窄度の推定値が生成される。血流量測定は、好ましくは、3D超音波を使用して行われる。
蛇行状の非閉塞の血管を例示した図である。 血流の方向でとられた図1の血管の内腔の投影画像を例示した図である。 本発明の原理に従って狭窄度が測定されることになる総頸動脈及び内頸動脈内の狭窄領域を有する頸動脈を例示した図である。 血流量が測定されることになる断面積を有する血管を例示した図である。 超音波トランスデューサの前の仮想表面を通る血流量の測定を例示した図である。 図4の体積流量測定技術に対して角度補正が必要ではない理由を例示した図である。 いくつかの心周期にわたるその平均速度の追跡を有するスペクトルドプラディスプレイを例示した図である。 本発明の原理に従って構築された超音波システムのブロック図である。
図2を参照すると、分枝頸動脈の3つの部分、すなわち、総頸動脈10a、外頸動脈10b、及び内頸動脈10cが例示されている。プラークの蓄積が、頸動脈において発生し、脳への血液の流れを制限する恐れがあり、この例は、2つのそのような領域:総頸動脈における閉塞72及び内頸動脈における閉塞74を例示している。これら2つの閉塞によって引き起こされる狭窄度を測定することが望ましい。本発明の原理によると、体積流量測定が、閉塞した動脈の非閉塞のポイントにおいて行われ、流速測定が、狭窄において行われる。次に、これら2つの値を使用して、狭窄によって引き起こされる動脈の面積減少度が計算される。これらの測定は、動脈の断面を通る血液の体積流量Qが、血流の時間平均の速度V及び断面の面積Aを掛けた値に等しいという事実、又は
Figure 2021500168
を前提としている。
総頸動脈閉塞の場合、体積流量測定は、丸で囲まれた「1」によって示された非閉塞のポイントにおいて行われる。動脈内のこのポイントにおいて、
Figure 2021500168
であり、ここで、Aは、血管内のこのポイントにおける非閉塞の断面積である。ポイント1における血管を通って流れる血液の全てが、次に、丸で囲まれた「2」における閉塞を通って流れるため、
Figure 2021500168
が分かる。
次に、時間平均速度の測定が、血管内のポイント2の狭窄において行われる。これは、スペクトルドプラを使用し、狭窄を通る血流の時間平均の平均速度を測定して行われてもよい。ユーザは、図面において「+」アイコンによって示されているように、狭窄の狭い閉塞の上にドプラサンプルボリュームカーソルを置き、次に、ドプラ取得を開始して、血管内のこのポイントにおける速度が測定される。狭窄では、
Figure 2021500168
が知られており、ここで、Qは狭窄のポイント2を通る血液の体積流量であり、Aは狭窄における残留している内腔の面積、すなわち、測定することが望まれた減少した面積である。Q=Q及び狭窄における血流速度vはスペクトルドプラによって測定されていることが知られているため、残留している内腔の面積は、
Figure 2021500168
によって算出され、さらに、血管の内腔の面積の減少度は、
Figure 2021500168
である。
図2における内頸動脈では、閉塞は、丸で囲まれたポイント「1´」である。CCAの血流は分裂し、一部はECA内に入り、残りがICAに流入するため、以前に総頸動脈で行われた体積流量測定値を使用して内頸動脈の狭窄度を測定することはできない。従って、この第2の閉塞に対する体積流量測定が、ポイント1´における閉塞を通って流れる血液の全てが、この例では丸で囲まれた「2´」である測定ポイントにおいても血管を通って流れるICAにおいて行われなければならない。体積流量測定がポイント2において行われ、さらに、時間平均速度の測定が、「+」アイコンによって示されている狭窄において行われる。次に、狭窄における残留している内腔の面積が、先に説明したように算出される。
図3を参照すると、血管10を通る血液の体積流量は、血管を通過するいずれかの任意のサンプル表面14を通る体積流量を測定することによって測定することができる。サンプル表面14を通る体積流量は、第一に、三次元ドプラ走査を行うことによりサンプル表面14を通って流れる血液の速度を決定することによって測定することができる。次に、速度は、サンプル表面14の領域全体にわたって積分される。
サンプル表面14は、いかなる任意の形状又は向きであってもよい。表面14が特に方向づけられる必要がない理由は、どのような体積の血液が血管10を通って流れても、サンプル表面14も通って流れるからである。従って、サンプル表面14は、血管10を通る血液の流れに対していかなる任意の向きも有するいかなる任意の形状であってもよい。本発明の好ましい実施において、球状のサンプル表面20が、図4において示されているように、二次元アレイトランスデューサ112から等距離にある狭いサンプル体積22内の三次元ドプラ画像を得ることによって得られる。このタイプのドプラ走査は、これに関連して、フローモード、又はFモードスキャニングと呼ばれる。3Dの流れの画像は、Fモードスキャンによって得られ、血管10を通る球状の断面20で与えられ、仮想の球状の表面20上の速度値は、以下においてさらに詳細に記載されるように、体積流量測定値を得るために積分される。
仮想の球状の表面20上のポイントにおけるドプラフローは、図5において示されているように、二次元アレイ112の共通の起点Oから導かれたビームBを送ることによってサンプリングされる。各ビームに沿って共通の深さVにてエコー信号が取得され、それによって、血管10と交差する球面上のエコーが取得される。従って、球状の表面は、それぞれのサンプリングポイントVにおいてビームに対して垂直である。二次元が正方形ではないが長方形である例においては、仮想表面は、形状が環状であり得るが、同じ効果に対して使用することができる。ビームBのポイントVにおける取得される信号は、血管の内腔の内側20にあるそれぞれのポイントVに対する血流からのエコーであり、血管壁及び周囲の組織内のポイントにおいて組織から戻されることになる。従って、フロー信号は、当技術分野において知られているドプラウォールフィルタによってセグメント化することができる。血管壁近くのポイントからエコーが戻され、従って、流れの信号と組織の信号との混合物である可能性が高い境界効果を説明するために、戻ってくるエコーは、それぞれのエコーのパワードプラ特性の強度によって重み付けすることができ、それによって、血管内部におけるより多くの信号よりも少ない内腔境界からの信号が重み付けされる。通常、表面上の測定されたドプラ速度値は、角度依存性を有し、入射ドプラ角、すなわち、ドプラビームBと流れの方向Fとの間の角度のコサインの関数としてスケーリングされる必要がある。しかし、ドプラビームBは、サンプリングポイントVにおいて表面20の単位面積に対して垂直であるため、単位面積の平面の境界を定める破線によって示されているように、単位面積に対して垂直な線と流れの方向との間の角度は、ドプラ角θと同じコサイン項を有する。従って、体積流量に対するガウスの法則は、2つのコサイン項の相殺をもたらし、測定された速度値のスケーリングは、内腔における速度値の合計(積分)に先立ち必要とされない。
図6は、超音波システムによって生成された典型的なスペクトルドプラディスプレイを例示している。横座標はcm/secで較正され、縦座標は時間軸である。それぞれの垂直線は、取得時間における、例えば図3の+アイコン等、ドプラ信号が取得される対象内のサンプル体積における速度の広がりの尺度である。ピーク速度値が、1つのスペクトル線から次のスペクトル線までトレース60によって追跡され、平均速度値が、破線62によって接続されている。図6のドプラスペクトルの取得及び表示は、特許文献1(Routh)において詳述されている。本発明の実施においては、狭窄における血流速度値に対して、時間平均の平均速度値を使用することが好ましく、これは、心周期のインターバルにわたって破線62上の平均速度値を平均することによって得られる。
図7を参照すると、本発明に従った狭窄による血管の面積減少を測定するために構築された超音波システムが、ブロック図の形態で示されている。トランスデューサアレイ112が、超音波を送り、体の体積領域にわたるエコー情報を受けるために超音波プローブ100内に提供されている。トランスデューサアレイ112は、図面に示されているように、(3Dにおいて)仰角においても方位角においても二次元又は三次元で電子的に走査する能力を持つトランスデューサ素子の二次元アレイであってもよい。或いは、特許文献2(Li等)に記載されているもの等、トランスデューサは、画像平面を走査する能力を持つ素子の一次元アレイであってもよく、前後に振動されて体積領域を通して画像平面を掃引し、それによって、三次元イメージングのためにその領域が走査される。二次元トランスデューサアレイ112は、アレイ素子によるシグナルの送受信を制御するプローブ内のマイクロビームフォーマ114に結合される。マイクロビームフォーマは、特許文献3(Savord等)、4(Savord)、及び5(Powers等)に記載されているように、トランスデューサ素子のグループ又は「パッチ」によって受信される信号を少なくとも部分的にビームフォーミングする能力を持つ。マイクロビームフォーマは、プローブケーブルによって、送/受信(T/R)スイッチ16に結合され、送/受信(T/R)スイッチ16は、送信と受信とを切り替え、主要なシステムビームフォーマ120を高エネルギー送信信号から保護する。マイクロビームフォーマ114の制御下でのトランスデューサアレイ112からの超音波ビームの送信は、T/Rスイッチに結合された送信コントローラ18及びビームフォーマ120によって方向付けられ、送信コントローラ18は、超音波システムのユーザインターフェース又は制御装置124のユーザの操作から入力を受ける。送信コントローラによって制御される送信特性の中には、送信ビーム及び波形の間隔、振幅、位相、及び極性がある。パルス伝送の方向に形成されたビームは、トランスデューサアレイからまっすぐ前方に、又は、より広いセクタの視野に対して若しくはトランスデューサアレイ112の前にあるもの等、図4における球状の表面20を含む体積領域を走査するために異なる角度で、導かれてもよい。
連続的なトランスデューサ素子のグループによって受信されたエコーは、それらを適切に遅延させ、次に、それらを組み合わせることによってビームフォーミングされる。トランスデューサ素子の各パッチからのマイクロビームフォーマ114によって生成された部分的にビームフォーミングされる信号は、主要なビームフォーマ120に結合され、ここで、トランスデューサ素子の個々のパッチからの部分的にビームフォーミングされた信号は遅延され、組み合わされて、十分にビームフォーミングされたコヒーレントエコー信号になる。例えば、主要なビームフォーマ120は、128のチャンネルを有してもよく、そのそれぞれが、12のトランスデューサ素子のパッチから部分的にビームフォーミングされた信号を受信する。このように、二次元アレイトランスデューサの1500を超えるトランスデューサ素子によって受信された信号は、単一のビームフォーミングされた信号に効率的に寄与することができる。
コヒーレントエコー信号は、デジタルフィルタによるフィルタリングと、空間的コンパウンド又は周波数コンパウンドによるノイズ除去とを含む信号プロセッサ26による信号処理を受ける。信号プロセッサ26のデジタルフィルタは、例えば、特許文献6(Averkiou等)に開示されているタイプのフィルタであってもよい。処理されたエコー信号は、直交復調器28によって復調されて直交(I及びQ)成分になり、直交復調器28は、信号位相情報を提供し、信号情報をベースバンドの周波数レンジにシフトすることもできる。
ビームフォーミング及び処理されたコヒーレントエコー信号は、組織等の体内の構造のBモード画像を生成するBモードプロセッサ52に結合される。Bモードプロセッサは、(I+Q1/2の形でエコー信号振幅を計算することによって、直交復調のI信号成分及びQ信号成分の振幅検出(包絡線検波)を行う。直交エコー信号成分は、ドプラプロセッサ46にも結合され、ドプラプロセッサ46は、画像フィールド内の別々のポイントからのエコー信号のアンサンブルを格納し、エコー信号のアンサンブルは、次に、高速フーリエ変換(FFT)プロセッサを用いて、画像中のポイント、例えば血管と交差する仮想の球状の表面上のポイント等におけるドプラシフトを推定するために使用される。ドプラシフトは、画像フィールド内のポイントにおける運動、例えば血流及び組織の運動等に比例する。体積流量測定のためにその表面を使用することができるカラードプラ画像に対しては、上記のように、血管を通る仮想表面20上のそれぞれのポイントにおける推定ドプラ流量値がウォールフィルタにかけられ、表面ドプラ値が体積流量測定値を生成するために使用される。走査した体積全体にわたる表面ドプラ値及び他の値も、ルックアップテーブルを使用してカラー値に変換して、カラーフロードプラ画像を生成することができる。Bモード画像又はドプラ画像のいずれかが単独で表示されてもよく、又は、解剖学的レジストレーションで2つが共に示されてもよく、解剖学的レジストレーションでは、カラードプラオーバーレイが、画像化された領域における組織内及び血管内の血流を示す。
Bモード画像信号及びドプラフロー値は、3D画像データメモリ32に結合され、3D画像データメモリ32は、走査した対象の体積領域内の空間位置に対応するx、y、及びzのアドレス指定可能メモリ位置に画像データを格納する。この体積画像データはボリュームレンダラー34に結合され、ボリュームレンダラー34は、特許文献7(Entrekin等)に記載されているように、3Dデータセットのエコー信号を、所与の基準点から見られる投影3D画像に変換する。基準点、すなわち、画像化された体積が見られる視点は、制御パネル124上の制御の操作によって変えることができ、走査した領域を異なる視点から観察するために体積が傾けられる又は回転させられるのが可能になる。ボリュームレンダリングされた画像は、ディスプレイ40上での表示のために画像プロセッサ30に結合される。
本発明の原理によると、狭窄におけるサンプル体積+から取得されたドプラ信号サンプルは、スペクトルドプラディスプレイプロセッサ56に結合される。図6において示されている各スペクトル線上の追跡された平均速度値は、平均速度計算器52によって心周期のインターバルにわたって平均され、狭窄における血流の時間平均の平均速度値が生成され、これは、閉塞率計算器50に結合される。3D画像データメモリ32に格納される仮想表面20上のポイントで取得されたドプラ流速値は、体積流量計算器54に結合され、体積流量計算器54は、速度値を合計(積分)して体積流量値を生成し、これは、閉塞率計算器に結合される。閉塞率計算器は、上記の式[5]を使用して、狭窄における時間平均の平均速度値及び血管内の閉塞していないポイントにおける体積流量測定値の商を算出して、狭窄における残留している流れる内腔の面積が算出される。面積減少度(閉塞率)も、閉塞率計算器によって式[6]を使用して算出することができる。閉塞していない内腔の面積A、すなわち、図3における面積14は、超音波画像データが解剖学的に正確であるように較正されるに従い、多断面再構成によって、カラーフローボリューム画像から、流れの方向に垂直な内腔領域をセグメント化し、さらに、既知の技術を使用して面積を測定することによって計算することができる。或いは、Aは、内腔内の閉塞していないポイントにおいて1つ又は複数の速度測定を行ってvを算出し、さらに、式[2]を使用して、体積流量測定値を使用してAを算出することによって計算されてもよい。狭窄における残留している内腔の面積及び/又は狭窄率の値は、画像ディスプレイ40上での表示のために画像プロセッサ又はグラフィックスプロセッサ36に結合される。グラフィックスプロセッサは、ディスプレイ上で仮想表面20を3D超音波画像と位置合わせして例示することが望ましい場合に利用することもできる。
本発明の実施において使用するのに適した超音波システム、特に、図7の超音波システムの構成要素構造は、ハードウェア、ソフトウェア、又はその組み合わせで実装されてもよいということに留意されたい。超音波システムの様々な実施形態及び/又は構成要素、例えば、図7のプロセッサ、計算器、及びボリュームレンダラー、又はその中の構成要素、プロセッサ、及びコントローラ等も、1つ又は複数のコンピュータ又はマイクロプロセッサの一部として実装されてもよい。コンピュータ又はプロセッサは、算出装置、入力装置、ディスプレイユニット、及び、例えば、インターネットにアクセスするためのインターフェースを含んでもよい。コンピュータ又はプロセッサは、マイクロプロセッサを含んでもよい。マイクロプロセッサを通信バスに接続して、例えば、トレーニングイメージをインポートするためにPACSシステム又はデータネットワークにアクセスすることができる。コンピュータ又はプロセッサはまた、メモリを含んでもよい。3D画像データメモリ及びドプラアンサンブルを格納するために使用されるもの等のメモリ素子は、ランダムアクセスメモリ(RAM)及びリードオンリーメモリ(ROM)を含んでもよい。コンピュータ又はプロセッサは、さらに、ハードディスクドライブ、又はフロッピーディスクドライブ、光ディスクドライブ、及びソリッドステートサムドライブ等のリムーバブル記憶ドライブであり得る記憶装置を含んでもよい。記憶装置はまた、コンピュータプログラム又は他の命令をコンピュータ又はプロセッサにロードするための他の類似の手段であってもよい。
本明細書において使用される場合、「コンピュータ」又は「モジュール」又は「プロセッサ」又は「ワークステーション」という用語は、任意のプロセッサベース又はマイクロプロセッサベースのシステムを含んでもよく、マイクロコントローラ、縮小命令セットコンピュータ(RISC)、ASIC、論理回路、及び本明細書において記載される機能を実行する能力を持つ任意の他の回路又はプロセッサを使用するシステムを含み得る。上記の例は単に例証的なものであり、従って、決してこれらの用語の定義及び/又は意味を限定することを意図するものではない。
コンピュータ又はプロセッサは、入力データを処理するために、1つ又は複数の記憶素子に格納された命令のセットを実行する。記憶素子は、要望どおりに又は必要に応じて、データ又は他の情報も格納することができる。記憶素子は、処理マシン内の情報源又は物理メモリ素子の形態であってもよい。
上記の超音波画像の取得、処理、及び送信を制御するものを含む超音波システムの命令のセットは、本発明の様々な実施形態の方法及びプロセス等の特定の操作を行うように、処理マシンとしてのコンピュータ又はプロセッサに命令する様々なコマンドを含んでもよい。命令のセットは、ソフトウェアプログラムの形態であってもよい。ソフトウェアは、システムソフトウェア又はアプリケーションソフトウェア等、様々な形態であってもよく、有形で非一時的なコンピュータ可読媒体として具体化されてもよい。さらに、ソフトウェアは、ニューラルネットワークモデルモジュール、より大きなプログラム内のプログラムモジュール、又はプログラムモジュールの一部等、別個のプログラム又はモジュールのコレクションの形態であり得る。ソフトウェアは、オブジェクト指向プログラミングの形態のモジュラープログラミングも含み得る。処理マシンによる入力データの処理は、オペレータコマンドに応じてもよく、又は以前の処理の結果に応じてもよく、又は別の処理マシンによって行われた要求に応じてもよい。
さらに、添付の特許請求の範囲の限定は、ミーンズ・プラス・ファンクションのフォーマットで記載されておらず、そのような請求項の限定が「ミーンズ・フォー」の語句に続き、さらなる構造を欠いて機能の記述を明確に使用しない限り、使用するまでは、米国特許法第112条第6項(35 U.S.C. 112)に基づき解釈されることは意図されていない。
プラーク及び他の物質の蓄積による血管の閉塞は、体内の組織及び臓器へ栄養を与える血液の十分な供給の流れを妨げ得る。従って、一般的には狭窄度(percent stenosis)としての血管閉塞、すなわちプラークによって引き起こされる正常の流れる内腔の減少率(percentage reduction)を検出及び測定することができるということが望ましい。超音波を用いて閉塞を可視化及び測定することは、適切な測定に対して正しい画像面を得ることが困難であるため、二次元(2D)超音波では問題がある。三次元(D)超音波は、この問題を取り除くことになるが、それにもかかわらず、プラーク石灰化由来の陰影及び不十分な解像度によって妨害される。血管閉塞を定量化する最も一般的な方法は、超音波によるものではなく、血管造影によるものである。血管造影図は投影画像であるため、血管直径の減少を評価するのに有用であるが、流れる内腔の面積の変化を評価するのに有用ではない。図1は、投影画像を用いて内腔サイズを評価することの難しさを例示している。図1において、血液は、フローベクトルFによって示されているように血管10内を流れている。血管10は、この例において完全に非閉塞であるが、図面に示されているように曲がっている。投影画像が流れの方向Fに対して平行にとられた場合、結果として生じる内腔の画像は、図1aにおける内腔70によって示されるように現れるであろう。従って、この血管10の図は、閉塞した血管のものであるようにみなすことができる。血管造影図は、通常、図1の流れ方向に対して平行にとられることはなく、図1が見られているように血管の長さに対して垂直にとられるが、同じ再構築の原理が適用される。結果として生じる血管造影図は、血管内のプラークの回転方向及び血管の蛇行状の経路によってかなり影響されることになり、これらの理由から、多数の血管造影図が、通常、血管に対する異なる見る方向にて得られる。異なる図を比較することによって、狭窄の程度の評価が行われ、典型的には、狭窄における認知された残留している内腔の直径を、血管内の非閉塞のポイントにおける血管内腔の直径に関連付けるNASCET基準を使用して行われる。しかし、複数の血管の図を用いたとしても、狭窄の程度は、血管造影では過小評価されることが多い。それにもかかわらず、そのような測定は、狭窄におけるピーク血流速度を測定し、次に、この速度を、既知の以前の測定に基づく血管直径の減少に関連付ける、狭窄を評価するための現在の超音波法よりも好まれる。しかし、超音波は簡単で使用しやすく、血管造影のようにX線造影剤の使用を伴わない。従って、正確且つ信頼できる超音波技術が利用可能である場合、超音波を使用して、血管狭窄の初期評価を行うことができるということが望ましい。さらに、そのような評価では、狭窄の血行力学的効果が直径ではなく残留している内腔面積により密接に関連しているということが分かっているため、直径の減少ではなく内腔面積の減少を測定することが望ましい。
米国特許出願公開第2017/215838号は、超音波画像を表示する方法及び装置を開示している。超音波画像を表示する方法及び装置は、血管を含む対象に関する超音波データから狭窄の断面を決定し、血管の狭窄に関連する少なくとも2つの断面と、血管の狭窄の程度を表す狭窄指標値を表示する。
米国特許出願公開第2003/114756号は、ビームフォーマに結合された二次元アレイトランスデューサスキャンヘッドを含む超音波イメージング法及びシステムを開示している。ビームフォーマ及びスキャンヘッドは、血管を横切って延びる測定体積から反射された超音波エコーに対応する信号を得る。信号は、ドプラプロセッサによって処理されて、サンプル体積内の血流速度の三次元ドプラ画像に対応するデータが生成される。信号は、Bモードプロセッサによっても処理され、血管を通る断面に対応するデータが生成される。画像プロセッサが、三次元ドプラ画像に対応するデータを、平面上への三次元ドプラ画像の投影に対応するデータに変換する。画像プロセッサはまた、変換されたドプラデータをBモードデータと組み合わせて合成画像を作成する。体積流量は、三次元ドプラ画像の投影内の流速を積分することによっても決定することができる。
米国特許出願公開第2008/287799号は、超音波システムが、超音波プローブ、ユーザインターフェース、及びプロセッサを含むということを開示している。超音波プローブは、患者内に超音波ビームを発するトランスデューサ面を含む。プローブは、血管を含むある体積の超音波データを取得する。ユーザインターフェースは、その体積に基づく画像上の表面を画定する。表面は、血管を二分し、複数のポイントをさらに含み、そのポイントの少なくとも一部は、トランスデューサ面に対して不等な距離に位置している。プロセッサは、90度の角度で表面に交わるように超音波ビームのサブセットを導いて、表面に対応する超音波データに基づき、血管を通る体積流量情報を計算するように構成される。
米国特許第5606792号は、体内のサンプル体積のドップラー尋問によってピーク流速及び平均流速を同定する超音波画像診断システムのためのドプラ信号プロセッサが提供されるということを開示している。アレイトランスデューサの使用から生じるスペクトル拡幅の効果が、アレイアパーチャの寸法及びサンプル体積の位置との関係の関数であるピーク速度値を生成することによって補償される。受信したドプラエコーから計算された平均速度値がアレイ歪みの関数と組み合わされて、正確な平均速度値が生成される。
本発明の原理によると、請求項1に記載の特徴を含む超音波システム及び、請求項13に記載の特徴を含む超音波測定方法提供される。内腔面積の減少の点から血管の狭窄度を測定する超音波システム及び測定技術が記載される。血流量の測定が、閉塞の部位に近位の血管の非閉塞のポイントにおいて行われる。血流速度の測定が、狭窄において行われる。これら2つの値の商が算出されて、残留している内腔の面積及び閉塞の部位における狭窄度の推定値が生成される。血流量測定は、好ましくは、3D超音波を使用して行われる。
仮想の球状の表面20上のポイントにおけるドプラフローは、図5において示されているように、二次元アレイ112の共通の起点Oから導かれたビームBを送ることによってサンプリングされる。各ビームに沿って共通の深さVにてエコー信号が取得され、それによって、血管10と交差する球面上のエコーが取得される。従って、球状の表面は、それぞれのサンプリングポイントVにおいてビームに対して垂直である。二次元が正方形ではないが長方形である例においては、仮想表面は、形状が環状であり得るが、同じ効果に対して使用することができる。ビームBのポイントVにおける取得される信号は、血管10の内腔の内側にあるそれぞれのポイントVに対する血流からのエコーであり、血管壁及び周囲の組織内のポイントにおいて組織から戻されることになる。従って、フロー信号は、当技術分野において知られているドプラウォールフィルタによってセグメント化することができる。血管壁近くのポイントからエコーが戻され、従って、流れの信号と組織の信号との混合物である可能性が高い境界効果を説明するために、戻ってくるエコーは、それぞれのエコーのパワードプラ特性の強度によって重み付けすることができ、それによって、血管内部におけるより多くの信号よりも少ない内腔境界からの信号が重み付けされる。通常、表面上の測定されたドプラ速度値は、角度依存性を有し、入射ドプラ角、すなわち、ドプラビームBと流れの方向Fとの間の角度のコサインの関数としてスケーリングされる必要がある。しかし、ドプラビームBは、サンプリングポイントVにおいて表面20の単位面積に対して垂直であるため、単位面積の平面の境界を定める破線によって示されているように、単位面積に対して垂直な線と流れの方向との間の角度は、ドプラ角θと同じコサイン項を有する。従って、体積流量に対するガウスの法則は、2つのコサイン項の相殺をもたらし、測定された速度値のスケーリングは、内腔における速度値の合計(積分)に先立ち必要とされない。

Claims (15)

  1. 血管の狭窄の程度を評価する超音波画像診断システムであって、
    流れから三次元超音波データを得るように適応した超音波プローブと、
    前記超音波プローブに結合され、流れからの三次元超音波データを格納するように適応した3Dデータメモリと、
    前記3Dデータメモリに結合され、前記狭窄から離れた前記血管内の位置での体積流量測定値を算出するように適応した体積流量計算器と、
    前記超音波プローブに結合され、流れからの超音波データに応答性であり、前記狭窄における速度測定値を生成するように適応したドプラプロセッサと、
    前記体積流量測定値及び前記速度測定値に応答性であり、前記狭窄によって引き起こされる流量減少の測定値を生成するように適応した閉塞計算器と、
    を含む超音波画像診断システム。
  2. 前記閉塞計算器は、前記血管の狭窄の程度の測定値を生成するようにさらに適応している、請求項1に記載の超音波画像診断システム。
  3. 前記閉塞計算器は、前記狭窄によって引き起こされた前記血管の内腔の面積の減少度の測定値を生成するようにさらに適応している、請求項1に記載の超音波画像診断システム。
  4. 前記閉塞計算器は、前記血管の残留している内腔の面積の測定値を生成するようにさらに適応している、請求項1に記載の超音波画像診断システム。
  5. 前記体積流量計算器は、前記血管と交差する仮想表面の速度値の和又は積分を計算するようにさらに適応している、請求項1に記載の超音波画像診断システム。
  6. 前記仮想表面は、球状の仮想表面をさらに含む、請求項5に記載の超音波画像診断システム。
  7. 前記仮想表面は、環状の仮想表面をさらに含む、請求項5に記載の超音波画像診断システム。
  8. 前記体積流量計算器は、前記血管と交差する仮想表面上に位置するドプラの速度値の和又は積分を計算するようにさらに適応している、請求項5に記載の超音波画像診断システム。
  9. 前記速度値は、前記血管内の前記速度値の位置に対応する位置に対して計算されたパワードプラ値に比例して重み付けされている、請求項5に記載の超音波画像診断システム。
  10. 前記ドプラプロセッサは、スペクトルドプラプロセッサをさらに含む、請求項1に記載の超音波画像診断システム。
  11. 前記スペクトルドプラプロセッサは、時間平均の平均速度計算器をさらに含む、請求項10に記載の超音波画像診断システム。
  12. 前記閉塞計算器は、時間平均の平均速度値と体積流量測定値との商を算出するようにさらに適応している、請求項11に記載の超音波画像診断システム。
  13. 血管内のあるポイントにおける狭窄の程度を超音波測定する方法であって、
    前記血管内の閉塞していないポイントにおける体積流量を測定することと、
    前記血管内の閉塞しているポイントにおける流速を測定することと、
    前記体積流量の測定値及び前記流速の測定値を使用して、前記閉塞しているポイントにおける狭窄の面積を算出することと、
    を含む方法。
  14. 体積流量を測定することは、前記血管と交差する仮想表面の速度値を合計する又は積分することをさらに含む、請求項13に記載の方法。
  15. 流速を測定することは、スペクトルドプラ分析によって前記閉塞しているポイントにおける時間平均の平均速度を測定することをさらに含む、請求項13に記載の方法。
JP2020523016A 2017-10-24 2018-10-16 血管狭窄の超音波測定 Active JP7269232B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762576235P 2017-10-24 2017-10-24
US62/576,235 2017-10-24
PCT/EP2018/078130 WO2019081257A1 (en) 2017-10-24 2018-10-16 ULTRASONIC MEASUREMENT OF VASCULAR STENOSIS

Publications (2)

Publication Number Publication Date
JP2021500168A true JP2021500168A (ja) 2021-01-07
JP7269232B2 JP7269232B2 (ja) 2023-05-08

Family

ID=63896149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020523016A Active JP7269232B2 (ja) 2017-10-24 2018-10-16 血管狭窄の超音波測定

Country Status (5)

Country Link
US (2) US20200253579A1 (ja)
EP (1) EP3700428B1 (ja)
JP (1) JP7269232B2 (ja)
CN (1) CN111511286B (ja)
WO (1) WO2019081257A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702981B (zh) * 2021-08-23 2023-10-17 苏州热工研究院有限公司 核电站冷源取水口拦截网状态监测系统和监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216129A (ja) * 1996-11-08 1998-08-18 Atl Ultrasound Inc 超音波診断装置
JP2003220060A (ja) * 2001-12-18 2003-08-05 Koninkl Philips Electronics Nv 超音波血流撮像及び体積流量計算のための方法及びシステム
JP2008284362A (ja) * 2007-05-16 2008-11-27 General Electric Co <Ge> ボリュメトリックフローを計測するための方法及び装置
US20140236011A1 (en) * 2012-08-31 2014-08-21 General Electric Company Methods and systems for simultaneous interventional imaging and functional measurements

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606972A (en) 1995-08-10 1997-03-04 Advanced Technology Laboratories, Inc. Ultrasonic doppler measurement of blood flow velocities by array transducers
US5690115A (en) * 1995-09-21 1997-11-25 Feldman; Charles L. Detecting vascular stenosis in chronic hemodialysis patients
US5833613A (en) 1996-09-27 1998-11-10 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging with contrast agents
EP0839497A1 (en) * 1996-11-01 1998-05-06 EndoSonics Corporation A method for measuring volumetric fluid flow and its velocity profile in a lumen or other body cavity
US6013032A (en) 1998-03-13 2000-01-11 Hewlett-Packard Company Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array
US5997479A (en) 1998-05-28 1999-12-07 Hewlett-Packard Company Phased array acoustic systems with intra-group processors
US6530885B1 (en) 2000-03-17 2003-03-11 Atl Ultrasound, Inc. Spatially compounded three dimensional ultrasonic images
US6468216B1 (en) 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
US7497830B2 (en) 2003-11-21 2009-03-03 Koninklijke Philips Electronics N.V. Three dimensional ultrasonic imaging using mechanical probes with beam scanning reversal
EP3024395B1 (en) * 2013-07-24 2017-10-18 Koninklijke Philips N.V. Non-imaging two dimensional array probe and system for classifying carotid stenosis
KR102205507B1 (ko) * 2013-12-18 2021-01-20 삼성메디슨 주식회사 초음파 영상 표시 방법 및 장치
DE102015218531A1 (de) * 2015-09-28 2017-03-30 Robert Bosch Gmbh Verfahren zum Positionieren eines Handgeräts auf einer Körperoberfläche, Steuergerät, Handgerät und Messsystem
KR20170091438A (ko) * 2016-02-01 2017-08-09 삼성메디슨 주식회사 초음파 영상 표시 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216129A (ja) * 1996-11-08 1998-08-18 Atl Ultrasound Inc 超音波診断装置
JP2003220060A (ja) * 2001-12-18 2003-08-05 Koninkl Philips Electronics Nv 超音波血流撮像及び体積流量計算のための方法及びシステム
JP2008284362A (ja) * 2007-05-16 2008-11-27 General Electric Co <Ge> ボリュメトリックフローを計測するための方法及び装置
US20140236011A1 (en) * 2012-08-31 2014-08-21 General Electric Company Methods and systems for simultaneous interventional imaging and functional measurements

Also Published As

Publication number Publication date
US20230329670A1 (en) 2023-10-19
EP3700428B1 (en) 2024-02-07
US20200253579A1 (en) 2020-08-13
WO2019081257A1 (en) 2019-05-02
JP7269232B2 (ja) 2023-05-08
EP3700428A1 (en) 2020-09-02
CN111511286B (zh) 2024-03-15
CN111511286A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
US6780155B2 (en) Method and system for ultrasound blood flow imaging and volume flow calculations
US11344282B2 (en) Ultrasound system with dynamically automated doppler flow settings as a sample volume is moved
US6099471A (en) Method and apparatus for real-time calculation and display of strain in ultrasound imaging
US9320496B2 (en) Volumetric is quantification for ultrasound diagnostic imaging
US20170258438A1 (en) Medical diagnostic apparatus and medical analysis method
US9028413B2 (en) Prediction-based flow estimation for ultrasound diagnostic imaging
JP2016523167A (ja) エラストグラフィ測定システム及びその方法
RU2569695C2 (ru) Анализ митральной регургитации посредством ультразвукового формирования изображений
EP1021129B1 (en) Ultrasound imaging for displaying strain
US20130296703A1 (en) Wall filter for ultrasonic mitral regurgitation analysis
US20230329670A1 (en) Ultrasonic measurement of vessel stenosis
US10231693B2 (en) Automated identification of the location of a regurgitant orifice of a mitral valve in an ultrasound image
JP5997177B2 (ja) 超音波撮像によるスリット開口部からの僧帽弁逆流の解析
US20230143880A1 (en) Three dimensional color doppler for ultrasonic volume flow measurement
CN109982643A (zh) 用于解剖结构、功能和血液动力学成像的三模式超声成像
Kim et al. Technical essentials of hepatic doppler sonography

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230421

R150 Certificate of patent or registration of utility model

Ref document number: 7269232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150