JP2014240726A - Refrigerant distributor, chiller having refrigerant distributor, cooling device having chiller, and assembly process of refrigerant distributor - Google Patents

Refrigerant distributor, chiller having refrigerant distributor, cooling device having chiller, and assembly process of refrigerant distributor Download PDF

Info

Publication number
JP2014240726A
JP2014240726A JP2013123575A JP2013123575A JP2014240726A JP 2014240726 A JP2014240726 A JP 2014240726A JP 2013123575 A JP2013123575 A JP 2013123575A JP 2013123575 A JP2013123575 A JP 2013123575A JP 2014240726 A JP2014240726 A JP 2014240726A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe connection
refrigerant distributor
connection port
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013123575A
Other languages
Japanese (ja)
Inventor
卓美 森下
Takumi Morishita
卓美 森下
肇 藤本
Hajime Fujimoto
肇 藤本
達也 ▲雑▼賀
達也 ▲雑▼賀
Tatsuya Saiga
考倫 松浦
Takatomo Matsuura
考倫 松浦
宏彦 藤平
Hirohiko Fujihira
宏彦 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013123575A priority Critical patent/JP2014240726A/en
Publication of JP2014240726A publication Critical patent/JP2014240726A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refrigerant distributor capable of securely executing the anti-corrosion treatment on the connection between a diffluence pipe connection port and a diffluence pipe even when a chiller cannot be immersed in an electro-deposition coating compound in a coating tank.SOLUTION: A refrigerant distributor 10 comprises: an inflow pipe connection port to be connected to a refrigerant inflow pipe 6; an interior space communicated with the inflow pipe connection port so that refrigerant inflows in the interior space from the refrigerant inflow pipe 6; a body part 11 having a plurality of diffluence pipe connection ports 14 communicated with the interior space and to be connected to diffluence pipes 7 so that refrigerant in the interior space is drained into the diffluence pipes 7; and a recess 16 formed by at least one wall part 15 protruding from an outer surface part of the body part 11 and surrounding the plurality of diffluence pipe connection ports 14 so that the recess 16 is filled with a coating material 17 for coating the connection between the plurality of diffluence pipe connection ports 14 and the diffluence pipes 7.

Description

本発明は、冷媒分配器、冷媒分配器を備えた冷却器、冷却器を備えた冷却装置、及び、冷媒分配器の組立方法に関するものである。   The present invention relates to a refrigerant distributor, a cooler including a refrigerant distributor, a cooling device including the cooler, and a method for assembling the refrigerant distributor.

従来より、冷媒流入側に冷媒分配器を設けた冷却器を備え、冷媒分配器によって冷却器内の複数の流路に冷媒を分流して流す冷却装置が提案されている。このような冷却装置に用いられる冷媒分配器は、例えば、冷媒流入管が接続される流入管接続口と、該流入管接続口と連通し、冷媒流入管から冷媒が流入する内部空間と、該内部空間と連通し、該内部空間内の冷媒が流出する分流管が接続される複数の分流管接続口とが形成された本体部を備えている。また、冷媒流入管は、流入管接続口に挿入された後に本体部とろう付けされ、分流管は、分流管接続口に挿入された後に本体部とろう付けされる(例えば、特許文献1参照)。   Conventionally, there has been proposed a cooling device that includes a cooler provided with a refrigerant distributor on the refrigerant inflow side, and that causes the refrigerant to flow through a plurality of flow paths in the cooler by the refrigerant distributor. The refrigerant distributor used in such a cooling device includes, for example, an inflow pipe connection port to which a refrigerant inflow pipe is connected, an internal space that communicates with the inflow pipe connection port and into which refrigerant flows from the refrigerant inflow pipe, A main body is formed which is in communication with the internal space and is formed with a plurality of flow dividing pipe connection ports to which flow dividing pipes through which the refrigerant in the internal space flows are connected. The refrigerant inflow pipe is brazed to the main body after being inserted into the inflow pipe connection port, and the shunt pipe is brazed to the main body after being inserted into the diversion pipe connection port (see, for example, Patent Document 1). ).

また、食品工場を冷却する冷却装置、及び、食品を貯蔵する庫内を冷却する冷却装置(冷蔵庫等)においては、冷却器が腐食性雰囲気に曝されることとなるため、冷却器が腐食してしまうという問題点が発生する。このため、上記冷媒分配器を含めた冷却器を塗料槽内の電着塗料に浸漬し、当該冷却器にカチオン電着塗装等の防食処理を施す技術も、従来より提案されている(例えば、特許文献2参照)。   Further, in a cooling device that cools a food factory and a cooling device (such as a refrigerator) that cools the interior of a food store, the cooler is exposed to a corrosive atmosphere, and the cooler corrodes. The problem of end up occurs. For this reason, a technique for immersing the cooler including the refrigerant distributor in the electrodeposition paint in the paint tank and subjecting the cooler to anticorrosion treatment such as cationic electrodeposition coating has been proposed (for example, Patent Document 2).

特開平5−340649号公報JP-A-5-340649 特開2003−138399号公報JP 2003-138399 A

冷却器が大形になると、塗装槽内の電着塗料に冷却器を浸漬できず、カチオン電着塗装を冷却器に施すことができない場合がある。このような場合、従来は、冷媒分配器の本体部に形成された分流管接続口と分流管とのろう付部(接続部)にエポキシ樹脂系塗料を刷毛塗りして、腐食の進行が早い当該ろう付部の腐食の抑制を図っている。   If the cooler becomes large, the cooler may not be immersed in the electrodeposition paint in the coating tank, and cationic electrodeposition coating may not be applied to the cooler. In such a case, conventionally, the epoxy resin-based paint is brushed on the brazed portion (connecting portion) between the branch pipe connection port and the branch pipe formed in the main body portion of the refrigerant distributor, and corrosion progresses quickly. The brazing part is prevented from being corroded.

しかしながら、刷毛塗りはカチオン電着塗装に比べ密着性が低い。つまり、刷毛塗りによって上記ろう付部に塗装を施した場合、冷却装置の運転中に、冷却器への霜の付着(雰囲気中の水分の氷結)、及び、冷却器の霜取(氷結した水分の融解)が繰り返されることで、塗膜が膨張及び収縮して剥がれ易くなってしまう。このため、剥がれた塗膜と母材との隙間に水が滞留することで、上記ろう付部の腐食が進行してしまうという問題点があった。また、刷毛塗りは塗膜の均一性が悪いため、塗りムラ及び塗り残しが発生し、当該部分から腐食が進行してしまうことも課題であった。   However, brush coating has lower adhesion than cationic electrodeposition. In other words, when the brazing part is painted by brushing, during the operation of the cooling device, frost adheres to the cooler (freezing of moisture in the atmosphere) and the defrosting of the cooler (freezing moisture) ) Is repeated, the coating film expands and contracts and is easily peeled off. For this reason, there has been a problem that the corrosion of the brazed portion proceeds due to water remaining in the gap between the peeled coating film and the base material. Further, since brush coating has poor uniformity of the coating film, coating unevenness and unpainted portions are generated, and corrosion progresses from the portion.

本発明は、上記のような課題を解決するためになされたものであり、塗装槽内の電着塗料に冷却器を浸漬できない場合であっても、分流管接続口と分流管との接続部の防食処理を確実に実施することができる冷媒分配器を得ることを第1の目的とする。
また、本発明は、本発明に係る冷媒分配器を備えた冷却器、当該冷却器を備えた冷却装置、及び、本発明に係る冷媒分配器の組立方法を提供することを第2の目的とする。
The present invention has been made to solve the above-described problems, and even when the cooler cannot be immersed in the electrodeposition paint in the coating tank, the connection portion between the branch pipe connection port and the branch pipe It is a first object of the present invention to obtain a refrigerant distributor that can reliably perform the anticorrosion treatment.
A second object of the present invention is to provide a cooler including the refrigerant distributor according to the present invention, a cooling device including the cooler, and a method for assembling the refrigerant distributor according to the present invention. To do.

本発明に係る冷媒分配器は、冷媒流入管が接続される流入管接続口と、前記流入管接続口と連通し、前記冷媒流入管から冷媒が流入する内部空間と、前記内部空間と連通し、該内部空間内の冷媒が流出する分流管が接続される複数の分流管接続口と、が形成された本体部を備え、前記本体部の外面部に、複数の前記分流管接続口を囲む少なくとも1つの壁部を突設して、前記分流管接続口と前記分流管との接続部をコーティングするコーティング材が充填される凹部を形成したものである。   The refrigerant distributor according to the present invention communicates with an inflow pipe connection port to which a refrigerant inflow pipe is connected, with the inflow pipe connection port, with an internal space into which refrigerant flows from the refrigerant inflow pipe, and with the internal space. A main body part formed with a plurality of shunt pipe connection ports to which a shunt pipe through which the refrigerant in the inner space flows out is connected, and the outer surface part of the main body part surrounds the plurality of shunt pipe connection ports. At least one wall portion is protruded to form a recess filled with a coating material that coats the connection portion between the branch pipe connection port and the branch pipe.

本発明は、冷媒分配器の本体部の外面部に、複数の分流管接続口を囲む少なくとも1つの壁部を突設して、分流管接続口と分流管との接続部をコーティングするコーティング材が充填される凹部を形成している。このため、本発明は、当該凹部にコーティング材を充填することにより、分流管接続口と分流管との接続部を確実にコーティングでき、塗装槽内の電着塗料に冷却器を浸漬できない場合であっても、分流管接続口と分流管との接続部の防食処理を確実に実施することができる。   The present invention provides a coating material for coating a connection portion between a branch pipe connection port and a branch pipe by projecting at least one wall portion surrounding a plurality of branch pipe connection ports on an outer surface portion of a main body portion of a refrigerant distributor Is formed in the recess. For this reason, the present invention can reliably coat the connection portion between the branch pipe connection port and the branch pipe by filling the concave portion with a coating material, and the cooler cannot be immersed in the electrodeposition paint in the coating tank. Even if it exists, the anticorrosion process of the connection part of a shunt pipe connection port and a shunt pipe can be implemented reliably.

本発明の実施の形態1に係る冷却装置の外観斜視図である。It is an external appearance perspective view of the cooling device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷却装置の冷媒回路図である。It is a refrigerant circuit figure of the cooling device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷媒分配器を示す斜視図である。It is a perspective view which shows the refrigerant distributor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷媒分配器を示す断面図である。It is sectional drawing which shows the refrigerant distributor which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷媒分配器を示す分解斜視図である。It is a disassembled perspective view which shows the refrigerant distributor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷媒分配器を示す組立斜視図である。It is an assembly perspective view which shows the refrigerant distributor which concerns on Embodiment 2 of this invention.

実施の形態1.
以下、本発明の実施の形態1に係る冷媒分配器、冷却器及び冷却装置を、図面に基づいて説明する。なお、本実施の形態1では、食品工場等の冷却空間の天面に取り付けられ、該冷却空間内を冷却する冷却装置に本発明を採用した例について説明する。
Embodiment 1 FIG.
Hereinafter, a refrigerant distributor, a cooler, and a cooling device concerning Embodiment 1 of the present invention are explained based on a drawing. In the first embodiment, an example will be described in which the present invention is applied to a cooling device that is attached to the top surface of a cooling space such as a food factory and cools the inside of the cooling space.

図1は、本発明の実施の形態1に係る冷却装置の外観斜視図である。また、図2は、この冷却装置の冷凍サイクル回路を説明するための冷媒回路図である。なお、図1では、冷却装置100内の構造の理解を容易とするため、筐体101の側面部(図1の手前側)を開放して示している。   FIG. 1 is an external perspective view of a cooling device according to Embodiment 1 of the present invention. FIG. 2 is a refrigerant circuit diagram for explaining a refrigeration cycle circuit of the cooling device. In FIG. 1, the side surface (front side in FIG. 1) of the housing 101 is shown open to facilitate understanding of the structure inside the cooling device 100.

本実施の形態1に係る冷却装置100は、例えば略直方体形状の筐体101を備えている。この筐体101の内部には、冷却器4が設けられている。また、筐体101には、一側面部(図1の左側面)に吸込口が形成されている。そして、該吸込口と冷却器4との間となる位置には、冷却空間内の空気を該吸込口から吸い込んで冷却器4に供給する送風機9が設けられている。
なお、筐体101における吸込口が形成された側面部と対向する側面部(図1において右側面部となる位置)には、冷却器4で冷却された空気を冷却空間へ吹き出すための吹出口が形成されている。また、本実施の形態1では、該吸込口に、ファンガード9aが取り付けられている。
The cooling device 100 according to the first embodiment includes a substantially rectangular parallelepiped housing 101, for example. A cooler 4 is provided inside the housing 101. Further, the housing 101 has a suction port formed in one side surface portion (left side surface in FIG. 1). A blower 9 is provided at a position between the suction port and the cooler 4 to suck the air in the cooling space from the suction port and supply the air to the cooler 4.
An air outlet for blowing out the air cooled by the cooler 4 to the cooling space is provided on the side surface portion (position to be the right side surface portion in FIG. 1) facing the side surface portion where the suction port in the housing 101 is formed. Is formed. Moreover, in this Embodiment 1, the fan guard 9a is attached to this suction inlet.

また、冷却装置100の筐体101の内部には、冷媒を膨張する膨張弁3、該膨張弁3で膨張した冷媒を分流する(複数の流路に分ける)冷媒分配器10が設けられている。これら膨張弁3及び冷媒分配器10は、以下の図2に示すように、冷媒配管(後述の冷媒配管5、冷媒流入管6、分流管7及び冷媒配管8等)で接続されて、冷却器4と共に冷凍サイクル回路を構成している。   Further, an expansion valve 3 that expands the refrigerant and a refrigerant distributor 10 that divides the refrigerant expanded by the expansion valve 3 (divides it into a plurality of flow paths) are provided inside the casing 101 of the cooling device 100. . As shown in FIG. 2 below, the expansion valve 3 and the refrigerant distributor 10 are connected by a refrigerant pipe (a refrigerant pipe 5, a refrigerant inflow pipe 6, a branch pipe 7, a refrigerant pipe 8, and the like, which will be described later), and a cooler 4 constitutes a refrigeration cycle circuit.

図2は、本発明の実施の形態1に係る冷却装置の冷媒回路図である。
図2に示すように、圧縮機1、凝縮器2、膨張弁3、冷媒分配器10及び冷却器4が冷媒配管で接続されて、冷凍サイクル回路を構成している。詳しくは、圧縮機1は、筐体101の外部に設けられており、低温低圧のガス冷媒を吸入し、この吸入した冷媒を高温高圧のガス冷媒に圧縮して吐出するものである。凝縮器2は、圧縮機1と同様に筐体101の外部に設けられており、圧縮機1の吐出口と冷媒配管で接続されている。この凝縮器2は、圧縮機1から吐出された高温高圧のガス冷媒を、室外空気等と熱交換させて凝縮させて低温高圧の液状冷媒とするものである。膨張弁3は、図1にも示すように、冷媒配管5を介して凝縮器2の冷媒流出口と接続されており、凝縮器2から流出した低温低圧の冷媒を、膨張させて低温低圧の気液二相冷媒にするものである。
FIG. 2 is a refrigerant circuit diagram of the cooling device according to Embodiment 1 of the present invention.
As shown in FIG. 2, the compressor 1, the condenser 2, the expansion valve 3, the refrigerant distributor 10 and the cooler 4 are connected by a refrigerant pipe to constitute a refrigeration cycle circuit. Specifically, the compressor 1 is provided outside the housing 101, and sucks in a low-temperature and low-pressure gas refrigerant, and compresses and discharges the sucked refrigerant into a high-temperature and high-pressure gas refrigerant. Similarly to the compressor 1, the condenser 2 is provided outside the housing 101, and is connected to the discharge port of the compressor 1 through a refrigerant pipe. The condenser 2 is a high-temperature and high-pressure gas refrigerant discharged from the compressor 1 and heat-condensed with outdoor air or the like to condense it into a low-temperature and high-pressure liquid refrigerant. As shown in FIG. 1, the expansion valve 3 is connected to the refrigerant outlet of the condenser 2 via the refrigerant pipe 5, and expands the low-temperature and low-pressure refrigerant that has flowed out of the condenser 2 to expand the low-temperature and low-pressure refrigerant. It is a gas-liquid two-phase refrigerant.

冷媒分配器10は、図1にも示すように、冷媒流入口(後述の流入管接続口13)が冷媒流入管6と接続されており、複数の冷媒流出口(後述の分流管接続口14)が分流管7と接続されている。この冷媒分配器10は、膨張弁3から流出した低温低圧の気液二相冷媒を、ガス冷媒と液状冷媒との比が略均等となるように複数の分流管7へ分配するものである。
なお、冷媒分配器10の詳細構成については後述する。
As shown in FIG. 1, the refrigerant distributor 10 has a refrigerant inlet (an inlet pipe connection port 13 described later) connected to the refrigerant inlet pipe 6, and a plurality of refrigerant outlets (an outlet pipe connection port 14 described later). ) Is connected to the shunt pipe 7. The refrigerant distributor 10 distributes the low-temperature and low-pressure gas-liquid two-phase refrigerant flowing out from the expansion valve 3 to the plurality of branch pipes 7 so that the ratio of the gas refrigerant to the liquid refrigerant is substantially equal.
The detailed configuration of the refrigerant distributor 10 will be described later.

冷却器4は、例えばフィンチューブ型の熱交換器であり、冷媒が通る流路を複数備えている。そして、これらの各流路には、図1にも示すように前記の分流管7が接続されている。冷却器4は、分流管7のそれぞれから各流路に流入した冷媒によって冷却空間の空気(送風機9から供給された空気)を冷却するものである。冷却空間の空気を冷却した冷媒は、低温低圧のガス冷媒となり、冷媒配管8を通って圧縮機1に吸入される。   The cooler 4 is, for example, a fin tube type heat exchanger, and includes a plurality of flow paths through which the refrigerant passes. The flow dividing pipes 7 are connected to these flow paths as shown in FIG. The cooler 4 cools the air in the cooling space (air supplied from the blower 9) with the refrigerant flowing into each flow path from each of the flow dividing pipes 7. The refrigerant that has cooled the air in the cooling space becomes a low-temperature and low-pressure gas refrigerant, and is sucked into the compressor 1 through the refrigerant pipe 8.

上述のように構成された冷却装置100の筐体101は、例えば、取付金具101aに冷却空間の天面に設けられた取付ボルトを通し、取付ボルトに取付金具101aをナット締めすることで冷却空間の天面に取り付けられる。   The casing 101 of the cooling device 100 configured as described above is provided, for example, by passing a mounting bolt provided on the top surface of the cooling space through the mounting bracket 101a and tightening the mounting bracket 101a on the mounting bolt with a nut. It is attached to the top of the.

(冷媒分配器10の詳細構成)
続いて、本実施の形態1に係る冷媒分配器10の詳細構成について説明する。
(Detailed configuration of refrigerant distributor 10)
Subsequently, a detailed configuration of the refrigerant distributor 10 according to the first embodiment will be described.

図3は、本発明の実施の形態1に係る冷媒分配器を示す斜視図である。また、図4は、この冷媒分配器を示す断面図である。
本実施の形態1に係る冷媒分配器10は、例えば円筒状に形成された本体部11を備えている。この本体部11には、冷媒流入管6が接続される流入管接続口13と、流入管接続口13と連通し、冷媒流入管6から冷媒が流入する内部空間12と、内部空間12と連通し、分流管7が接続される複数の分流管接続口14とが、形成されている。つまり、冷媒流入管6及び流入管接続口13から内部空間12へ流入した気液二相状態の冷媒(膨張弁3から流出した冷媒)は、内部空間12に吐出された際にガス冷媒と液状冷媒とが混合され、ガス冷媒と液状冷媒との比が略均等となって、各分流管接続口14(つまり、各分流管7)へ流出する構成となっている。
FIG. 3 is a perspective view showing the refrigerant distributor according to Embodiment 1 of the present invention. FIG. 4 is a cross-sectional view showing this refrigerant distributor.
The refrigerant distributor 10 according to the first embodiment includes a main body 11 formed in a cylindrical shape, for example. The main body 11 communicates with an inflow pipe connection port 13 to which the refrigerant inflow pipe 6 is connected, an inflow pipe connection port 13, an internal space 12 into which the refrigerant flows from the refrigerant inflow pipe 6, and an internal space 12. In addition, a plurality of branch pipe connection ports 14 to which the branch pipe 7 is connected are formed. That is, the gas-liquid two-phase refrigerant (refrigerant flowing out from the expansion valve 3) that has flowed into the internal space 12 from the refrigerant inflow pipe 6 and the inflow pipe connection port 13 is liquid with the gas refrigerant when discharged into the internal space 12. The refrigerant is mixed, the ratio of the gas refrigerant to the liquid refrigerant becomes substantially equal, and the refrigerant flows out to each branch pipe connection port 14 (that is, each branch pipe 7).

詳しくは、本実施の形態1に係る本体部11は、本体部11の下部を構成する第1本体部11aと、本体部11の上部を構成する第2本体部11bとを備えている。
第1本体部11aは、略円筒形状をしており、軸心方向に貫通する貫通穴が形成されている。この貫通穴の下端部に、流入管接続口13が形成されている。冷媒流入管6は、その一端が流入管接続口13に挿入されて、ろう付け等によって接続される。
Specifically, the main body 11 according to the first embodiment includes a first main body 11 a that forms the lower part of the main body 11 and a second main body 11 b that forms the upper part of the main body 11.
The 1st main-body part 11a is carrying out the substantially cylindrical shape, and the through-hole penetrated to an axial center direction is formed. An inflow pipe connection port 13 is formed at the lower end of the through hole. One end of the refrigerant inflow pipe 6 is inserted into the inflow pipe connection port 13 and connected by brazing or the like.

第2本体部11bは、第1本体部11aよりも外径が若干大きな略円筒形状をしており、下端部には略円筒状の空間が形成されている。また、当該略円筒状の空間の上部は、略円錐状の空間となっている。略円筒状の空間の下部に第1本体部11aが挿入されて、例えばろう付け等によって第1本体部11aと第2本体部11bとが接続されることにより、上記の略円筒形状の空間の一部及び上記の略円錐形状の空間が内部空間12となる。   The second main body portion 11b has a substantially cylindrical shape with an outer diameter slightly larger than that of the first main body portion 11a, and a substantially cylindrical space is formed at the lower end portion. The upper part of the substantially cylindrical space is a substantially conical space. The first main body portion 11a is inserted into the lower portion of the substantially cylindrical space, and the first main body portion 11a and the second main body portion 11b are connected by brazing or the like, for example. A part and the substantially conical space are the internal space 12.

また、第2本体部11bには、上端部から内部空間12に貫通する複数の貫通孔が形成されている。これら貫通孔は、第2本体部11bの軸心を中心とする同心円上に、略等間隔で形成されている。そして、これらの貫通孔のそれぞれの上端部に、分流管接続口14が形成されている。分流管7は、その一端が分流管接続口14に挿入されて、ろう付け等によって接続される。   The second body portion 11b is formed with a plurality of through holes penetrating from the upper end portion to the internal space 12. These through holes are formed at substantially equal intervals on a concentric circle centered on the axis of the second main body portion 11b. And the branch pipe connection port 14 is formed in the upper end part of each of these through-holes. One end of the branch pipe 7 is inserted into the branch pipe connection port 14 and connected by brazing or the like.

さらに、第2本体部11bの上端部(つまり外面部)には、その上端縁上に壁部15が形成されている。つまり、第2本体部11bの上端部には、全ての分流管接続口14を囲むように1つの壁部15が形成されている。この壁部15は、分流管接続口14の上端部、つまり、分流管接続口14と分流管7との接続部よりも高い位置まで延設されている。これにより、壁部15の内側には、凹部16が形成されることとなる。この凹部16には、コーティング材17が充填されている。したがって、分流管接続口14と分流管7とを例えばろう付け等によって接続した後、凹部16にコーティング材17を充填することにより、分流管接続口14と分流管7との接続部は、コーティング材17によってコーティングされることとなる。   Furthermore, a wall portion 15 is formed on the upper end edge of the upper end portion (that is, the outer surface portion) of the second main body portion 11b. That is, one wall portion 15 is formed at the upper end portion of the second main body portion 11b so as to surround all the branch pipe connection ports 14. The wall 15 extends to a position higher than the upper end of the branch pipe connection port 14, that is, the connection part between the branch pipe connection port 14 and the branch pipe 7. As a result, a recess 16 is formed inside the wall portion 15. The recess 16 is filled with a coating material 17. Therefore, after connecting the flow dividing pipe connection port 14 and the flow dividing pipe 7 by brazing or the like, for example, the concave portion 16 is filled with the coating material 17, so that the connection portion between the flow dividing pipe connection port 14 and the flow dividing pipe 7 is coated. It will be coated with the material 17.

また、本実施の形態1では、以下の理由により、コーティング材17としてシリコン系コーティング材を用いている。
シリコン系コーティング材は、吸水性がないため、分流管接続口14と分流管7との接続部(ろう付部)へ酸素、水分及び腐食性成分が到達することを防止できる。このため、分流管接続口14と分流管7との接続部(ろう付部)における防食効果がさらに向上する。冷却装置100の冷媒分配器10(より詳しくは、分流管接続口14と分流管7との接続部)は、冷却運転時には低温の冷媒によって冷却され、除霜運転時には高温の冷媒によって加熱されることとなる。しかしながら、シリコン系コーティング材は、使用温度範囲が「−50℃〜+200℃」と幅広いため、このような冷却装置100に適用するには好適である。さらに、シリコン系コーティング材は、固形になっても弾性があるため、冷却器4への霜の付着(雰囲気中の水分の氷結)、及び、冷却器4の霜取(氷結した水分の融解)が繰り返されることで発生する塗膜の膨張及び収縮に対しても強い。このため、母材、つまり、分流管接続口14及び分流管7とシリコン系コーティング材との間に隙間が発生せず、水や腐食物の浸入をさらに防ぐことができる。
In the first embodiment, a silicon coating material is used as the coating material 17 for the following reason.
Since the silicon-based coating material does not absorb water, oxygen, moisture, and corrosive components can be prevented from reaching the connection portion (brazing portion) between the distribution pipe connection port 14 and the distribution pipe 7. For this reason, the anticorrosion effect in the connection part (brazing part) of the diversion pipe connection port 14 and the diversion pipe 7 further improves. The refrigerant distributor 10 of the cooling device 100 (more specifically, the connection portion between the branch pipe connection port 14 and the branch pipe 7) is cooled by the low-temperature refrigerant during the cooling operation, and is heated by the high-temperature refrigerant during the defrosting operation. It will be. However, since the silicon-based coating material has a wide use temperature range of “−50 ° C. to + 200 ° C.”, it is suitable for application to such a cooling device 100. Further, since the silicon-based coating material is elastic even when it becomes solid, frost adheres to the cooler 4 (freezing of moisture in the atmosphere) and defrosting of the cooler 4 (melting of frozen moisture) It is also strong against the expansion and contraction of the coating film generated by repeating the above. For this reason, a gap does not occur between the base material, that is, the branch pipe connection port 14 and the branch pipe 7 and the silicon-based coating material, and water and corrosive substances can be further prevented from entering.

なお、コーティング材17としてシリコン系コーティング材を用いる場合は、コーティング材17が細部まで行き渡るように、硬化前の粘度が比較的低く、かつ深部硬化性の良い2液縮合型のものが適している。例えば、コーティング材17としてシリコン系コーティング材を用いる場合、信越化学工業社のKE−200F(効果前の粘度(主剤の粘度)が2.0[Pa・s])等が好適である。   In the case where a silicon-based coating material is used as the coating material 17, a two-component condensation type that has a relatively low viscosity before curing and good deep part curability is suitable so that the coating material 17 can be distributed in detail. . For example, when a silicon-based coating material is used as the coating material 17, KE-200F manufactured by Shin-Etsu Chemical Co., Ltd. (viscosity before effect (viscosity of the main agent) is 2.0 [Pa · s]) is suitable.

以上、本実施のように構成された冷媒分配器10を冷却器4に採用することにより、つまり、冷却装置100に採用することにより、凹部16にコーティング材17を充填することで、分流管接続口14と分流管7との接続部を確実にコーティングできる。このため、塗装槽内の電着塗料に冷媒分配器10を含む冷却器4を浸漬できない場合であっても、分流管接続口14と分流管7との接続部の防食処理を確実に実施することができる。   As described above, by adopting the refrigerant distributor 10 configured as in the present embodiment in the cooler 4, that is, by adopting it in the cooling device 100, the recess 16 is filled with the coating material 17, thereby connecting the shunt pipe. The connection portion between the mouth 14 and the branch pipe 7 can be reliably coated. For this reason, even if it is a case where the cooler 4 containing the refrigerant distributor 10 cannot be immersed in the electrodeposition paint in a coating tank, the anticorrosion process of the connection part of the branch pipe connection port 14 and the branch pipe 7 is implemented reliably. be able to.

なお、本実施の形態1では、分流管接続口14と分流管7との接続部を1つの壁部15で覆ったが、これはあくまでも一例である。例えば、分流管接続口14と分流管7との接続部のそれぞれの周りを、それぞれ異なる壁部15で覆い、それぞれの壁部15の内側に形成された凹部16にコーティング材17を充填してもよい。また例えば、分流管接続口14と分流管7との接続部の1つ又は複数を覆う壁部15を設け(例えば、接続部が6つの場合、2つの接続部を覆う壁部15を3つ設け)、これら壁部15の内側に形成された凹部16にコーティング材17を充填してもよい。   In the first embodiment, the connection portion between the branch pipe connection port 14 and the branch pipe 7 is covered with one wall portion 15, but this is merely an example. For example, each of the connection portions of the flow dividing pipe connection port 14 and the flow dividing pipe 7 is covered with a different wall portion 15, and the coating material 17 is filled in the concave portion 16 formed inside each wall portion 15. Also good. Further, for example, a wall 15 that covers one or a plurality of connecting portions between the branch pipe connection port 14 and the branch pipe 7 is provided (for example, when there are six connecting portions, three wall portions 15 that cover two connecting portions are provided. Provided), a coating material 17 may be filled in the recess 16 formed inside these wall portions 15.

また、本実施の形態1では、冷媒分配器10と分流管7とを異なる構成として扱ったが、本体部11に分流管7を接続したものを冷媒分配器10として扱ってもよい。   In the first embodiment, the refrigerant distributor 10 and the diversion pipe 7 are handled as different configurations. However, a structure in which the diversion pipe 7 is connected to the main body 11 may be handled as the refrigerant distributor 10.

また、本実施の形態1では、食品工場等の冷却空間の天面に取り付けられる冷却装置100を例に本発明を実施したが、庫内を冷却する冷蔵庫、居住空間等の空気を冷却する空調装置等、その他の冷却装置に本発明に係る冷媒分配器10を採用しても勿論よい。   Moreover, in this Embodiment 1, although this invention was implemented for the example of the cooling device 100 attached to the top | upper surface of cooling spaces, such as a food factory, the air conditioning which cools air, such as a refrigerator and living space, which cools the inside of a store | warehouse | chamber Of course, the refrigerant distributor 10 according to the present invention may be employed in other cooling devices such as a device.

実施の形態2.
実施の形態1では、冷媒分配器10の本体部11と壁部15とを一体で形成したが、これらを別体で構成してもよい。例えば、冷却装置100の大形化により分流管7の本数が増えてくると、分流管7同士、及び、分流管7と壁部15との間の隙間が狭くなるため、分流管接続口14と分流管7との接続作業(ろう付作業)が困難になってしまう。このような場合、本実施の形態2のように、冷媒分配器10の本体部11と壁部15とを別体で形成すると好適である。
なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
Embodiment 2. FIG.
In Embodiment 1, the main body portion 11 and the wall portion 15 of the refrigerant distributor 10 are integrally formed, but they may be configured separately. For example, when the number of the branch pipes 7 increases due to an increase in the size of the cooling device 100, the gaps between the branch pipes 7 and between the branch pipes 7 and the wall 15 are narrowed. And the connection work (brazing work) with the flow dividing pipe 7 becomes difficult. In such a case, it is preferable to form the main body part 11 and the wall part 15 of the refrigerant distributor 10 separately as in the second embodiment.
In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.

図5は、本発明の実施の形態2に係る冷媒分配器を示す分解斜視図である。また、図6は、この冷媒分配器を示す組立斜視図である。
図5に示すように、本実施の形態2に係る冷媒分配器10は、本体部11の上部(分流管接続口14が形成された側の端部)に、下部(流入管接続口13が形成された側の端部)から上部にかけて拡径した係合部11cが設けられている。また、本実施の形態2に係る冷媒分配器10は、ラッパ状(ベルマウス状)に形成され、両端部が開口した壁部形成部材18も備えている。この壁部形成部材18の内周面は、係合部11cの外周面に対応した形状となっている。壁部形成部材18の内周面を本体部11の外周面に接触させて、両者を接続(例えば、嵌合やろう付け等)することにより、壁部形成部材18における本体部11の上端部から突出した部分が壁部15となる。
FIG. 5 is an exploded perspective view showing a refrigerant distributor according to Embodiment 2 of the present invention. FIG. 6 is an assembled perspective view showing the refrigerant distributor.
As shown in FIG. 5, the refrigerant distributor 10 according to the second embodiment includes an upper portion (an end portion on the side where the branch pipe connection port 14 is formed) of the main body 11 and a lower portion (the inlet pipe connection port 13). An engaging portion 11c having a diameter expanded from an end portion on the formed side to the upper portion is provided. The refrigerant distributor 10 according to the second embodiment also includes a wall forming member 18 that is formed in a trumpet shape (bell mouth shape) and that is open at both ends. The inner peripheral surface of the wall forming member 18 has a shape corresponding to the outer peripheral surface of the engaging portion 11c. By contacting the inner peripheral surface of the wall forming member 18 with the outer peripheral surface of the main body 11 and connecting them (for example, fitting or brazing), the upper end of the main body 11 in the wall forming member 18 The portion protruding from the wall becomes the wall portion 15.

このように構成された冷媒分配器10は、次のように組み立てられる。
まず、本体部11の上端部に形成された分流管接続口14のそれぞれに分流管7の一端を挿入し、分流管接続口14と分流管7とを例えばろう付けにより接続する。その後、図5の破線矢印の方向に壁部形成部材18を移動させ、本体部11の下端部を壁部形成部材18に通す。そして、壁部形成部材18の内周面を本体部11の外周面に接触させて、両者を接続(例えば、嵌合やろう付け等)する。これにより、壁部形成部材18の上端部が本体部11の上端部から突出し、壁部15が形成される。つまり、凹部16が形成される。そして、凹部16が形成された後、当該凹部16にコーティング材17を充填することにより、分流管接続口14と分流管7との接続部をコーティングする。
The refrigerant distributor 10 configured as described above is assembled as follows.
First, one end of the branch pipe 7 is inserted into each of the branch pipe connection ports 14 formed at the upper end of the main body 11, and the branch pipe connection port 14 and the branch pipe 7 are connected by, for example, brazing. Thereafter, the wall forming member 18 is moved in the direction of the broken line arrow in FIG. 5, and the lower end of the main body 11 is passed through the wall forming member 18. And the inner peripheral surface of the wall part formation member 18 is made to contact the outer peripheral surface of the main-body part 11, and both are connected (for example, fitting, brazing, etc.). Thereby, the upper end part of the wall part formation member 18 protrudes from the upper end part of the main-body part 11, and the wall part 15 is formed. That is, the recess 16 is formed. Then, after the concave portion 16 is formed, the concave portion 16 is filled with a coating material 17 to coat the connecting portion between the branch pipe connection port 14 and the branch pipe 7.

なお、壁部形成部材18及び本体部11を嵌合等によって取り外し自在に接続した場合、凹部16に充填されたコーティング材17が硬化した後に、壁部形成部材18を本体部11から取り外してもよい。   When the wall forming member 18 and the main body 11 are detachably connected by fitting or the like, the wall forming member 18 may be removed from the main body 11 after the coating material 17 filled in the recess 16 is cured. Good.

以上、本実施の形態2のように構成された冷媒分配器10においては、実施の形態1で示した効果に加え、分流管7同士、及び、分流管7と壁部15との間の隙間が狭くなるような場合であっても、分流管接続口14と分流管7との接続作業(ろう付作業)が容易になるという効果も得ることができる。   As described above, in the refrigerant distributor 10 configured as in the second embodiment, in addition to the effects shown in the first embodiment, the gaps between the branch pipes 7 and between the branch pipe 7 and the wall portion 15. Even in a case where the distance becomes narrow, an effect of facilitating connection work (brazing work) between the branch pipe connection port 14 and the branch pipe 7 can be obtained.

1 圧縮機、2 凝縮器、3 膨張弁、4 冷却器、5 冷媒配管、6 冷媒流入管、7 分流管、8 冷媒配管、9 送風機、9a ファンガード、10 冷媒分配器、11 本体部、11a 第1本体部、11b 第2本体部、11c 係合部、12 内部空間、13 流入管接続口、14 分流管接続口、15 壁部、16 凹部、17 コーティング材、18 壁部形成部材、100 冷却装置、101 筐体、101a 取付金具。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 Expansion valve, 4 Cooler, 5 Refrigerant piping, 6 Refrigerant inflow tube, 7 Shunt pipe, 8 Refrigerant piping, 9 Blower, 9a Fan guard, 10 Refrigerant distributor, 11 Main body part, 11a 1st main-body part, 11b 2nd main-body part, 11c Engagement part, 12 Internal space, 13 Inflow pipe connection port, 14 Diverging pipe connection port, 15 Wall part, 16 Recessed part, 17 Coating material, 18 Wall part formation member, 100 Cooling device, 101 housing, 101a mounting bracket.

Claims (6)

冷媒流入管が接続される流入管接続口と、
前記流入管接続口と連通し、前記冷媒流入管から冷媒が流入する内部空間と、
前記内部空間と連通し、該内部空間内の冷媒が流出する分流管が接続される複数の分流管接続口と、が形成された本体部を備え、
前記本体部の外面部に、複数の前記分流管接続口を囲む少なくとも1つの壁部を突設して、前記分流管接続口と前記分流管との接続部をコーティングするコーティング材が充填される凹部を形成したことを特徴とする冷媒分配器。
An inlet pipe connection port to which the refrigerant inlet pipe is connected;
An internal space that communicates with the inlet pipe connection port and into which the refrigerant flows from the refrigerant inlet pipe;
A plurality of branch pipe connection ports that communicate with the internal space and to which a branch pipe through which the refrigerant in the internal space flows out are connected;
The outer surface of the main body is filled with a coating material for projecting at least one wall portion surrounding the plurality of branch pipe connection ports and coating the connection portion between the branch pipe connection port and the branch pipe. A refrigerant distributor characterized in that a recess is formed.
前記分流管接続口に接続された複数の前記分流管を備え、
前記凹部にシリコン系コーティング材を充填して、前記分流管接続口と前記分流管との接続部をコーティングしたことを特徴とする請求項1に記載の冷媒分配器。
A plurality of the diversion pipes connected to the diversion pipe connection port;
2. The refrigerant distributor according to claim 1, wherein the concave portion is filled with a silicon-based coating material to coat a connection portion between the distribution pipe connection port and the distribution pipe.
前記壁部は、前記本体部と別体で構成されていることを特徴とする請求項1又は請求項2に記載の冷媒分配器。   The refrigerant distributor according to claim 1, wherein the wall portion is configured separately from the main body portion. 請求項1〜請求項3のいずれか一項に記載の冷媒分配器を備えたことを特徴とする冷却器。   A cooler comprising the refrigerant distributor according to any one of claims 1 to 3. 請求項4に記載の冷却器を備えたことを特徴とする冷却装置。   A cooling device comprising the cooler according to claim 4. 請求項3に記載の冷媒分配器の組立方法であって、
前記分流管接続口と前記分流管とを接続した後、
前記本体部と前記壁部とを接続して、前記凹部を形成することを特徴とする冷媒分配器の組立方法。
A method of assembling the refrigerant distributor according to claim 3,
After connecting the branch pipe connection port and the branch pipe,
A method of assembling a refrigerant distributor, wherein the main body portion and the wall portion are connected to form the concave portion.
JP2013123575A 2013-06-12 2013-06-12 Refrigerant distributor, chiller having refrigerant distributor, cooling device having chiller, and assembly process of refrigerant distributor Pending JP2014240726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123575A JP2014240726A (en) 2013-06-12 2013-06-12 Refrigerant distributor, chiller having refrigerant distributor, cooling device having chiller, and assembly process of refrigerant distributor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123575A JP2014240726A (en) 2013-06-12 2013-06-12 Refrigerant distributor, chiller having refrigerant distributor, cooling device having chiller, and assembly process of refrigerant distributor

Publications (1)

Publication Number Publication Date
JP2014240726A true JP2014240726A (en) 2014-12-25

Family

ID=52140067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123575A Pending JP2014240726A (en) 2013-06-12 2013-06-12 Refrigerant distributor, chiller having refrigerant distributor, cooling device having chiller, and assembly process of refrigerant distributor

Country Status (1)

Country Link
JP (1) JP2014240726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174384A1 (en) * 2017-03-20 2018-09-27 오재윤 Fluid distributor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127969U (en) * 1979-03-07 1980-09-10
JPH109716A (en) * 1996-06-25 1998-01-16 Tensei Kogyo Kk Refrigerant flow deciding or merging device in air condition and the like
JP2004183955A (en) * 2002-12-02 2004-07-02 Sharp Corp Refrigerant divider
JP2004293811A (en) * 2003-03-25 2004-10-21 Kobe Steel Ltd Heat transfer pipe or header pipe for open rack type carburetor
JP2005114214A (en) * 2003-10-06 2005-04-28 Sharp Corp Refrigerant flow divider

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127969U (en) * 1979-03-07 1980-09-10
JPH109716A (en) * 1996-06-25 1998-01-16 Tensei Kogyo Kk Refrigerant flow deciding or merging device in air condition and the like
JP2004183955A (en) * 2002-12-02 2004-07-02 Sharp Corp Refrigerant divider
JP2004293811A (en) * 2003-03-25 2004-10-21 Kobe Steel Ltd Heat transfer pipe or header pipe for open rack type carburetor
JP2005114214A (en) * 2003-10-06 2005-04-28 Sharp Corp Refrigerant flow divider

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018174384A1 (en) * 2017-03-20 2018-09-27 오재윤 Fluid distributor

Similar Documents

Publication Publication Date Title
AU761227B2 (en) Pipeline device and method for its production, and heat exchanger
RU2012134773A (en) HEAT EXCHANGER OF A TURNING BLADE OF AERODYNAMIC PIPE
CN101101163B (en) Heat exchanger for refrigerator and manufacturing method thereof
CN103782126A (en) Heat exchanger for air conditioner
EP3321599B1 (en) Drain pan and refrigeration cycle device
JP2014240726A (en) Refrigerant distributor, chiller having refrigerant distributor, cooling device having chiller, and assembly process of refrigerant distributor
US9126214B2 (en) Showerhead
WO2019151385A1 (en) Refrigerant flow divider and air conditioner
CN113898416B (en) Liquid metal cooling blade system and anti-corrosion method thereof
CN105190219A (en) Shell and tube heat exchanger, end cover and method of manufacturing same
BRPI1103019A2 (en) connector for airtight compressors
US8356843B2 (en) Refrigeration system connection fitting
CN105485542A (en) Phase-change heat-dissipation LED lighting lamp
US11131514B2 (en) Heat exchange device
WO2018021442A1 (en) Compressor for refrigeration machine
JP2011075221A (en) Refrigerating device and method for injecting seal material in the refrigerating device
JP2006125659A (en) Fin and tube type heat exchanger
CN205940255U (en) Heat exchanger
CN207247615U (en) A kind of compound tube, combination tube assembly and evaporative cooling equipment
JP2009162305A (en) Flexible hose
KR20060088145A (en) Gasket
US20030116962A1 (en) Adaptor for forming a branch in a conduit
CN218267701U (en) Thin-wall titanium-silver metal pipe
CN213273287U (en) Ice machine evaporator with high sealing performance
CN210012890U (en) Film coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170411