JP2014240170A - Method of producing resin-made gear - Google Patents

Method of producing resin-made gear Download PDF

Info

Publication number
JP2014240170A
JP2014240170A JP2013123928A JP2013123928A JP2014240170A JP 2014240170 A JP2014240170 A JP 2014240170A JP 2013123928 A JP2013123928 A JP 2013123928A JP 2013123928 A JP2013123928 A JP 2013123928A JP 2014240170 A JP2014240170 A JP 2014240170A
Authority
JP
Japan
Prior art keywords
resin
gear
layer
fiber
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013123928A
Other languages
Japanese (ja)
Other versions
JP6086234B2 (en
Inventor
昌也 小澤
Masaya Ozawa
昌也 小澤
貴博 森川
Takahiro Morikawa
貴博 森川
祐哲 上甫木
Yutetsu Kamihogi
祐哲 上甫木
直樹 古畑
Naoki Furuhata
直樹 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2013123928A priority Critical patent/JP6086234B2/en
Publication of JP2014240170A publication Critical patent/JP2014240170A/en
Application granted granted Critical
Publication of JP6086234B2 publication Critical patent/JP6086234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Gears, Cams (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a resin-made gear composed of dissimilar material layers which suppresses detachment of a dissimilar material layer in the laminate boundary and prevents deterioration of the life of the gear even when changes of teeth occur.SOLUTION: A method of producing a resin-made gear includes a first step of carrying out twice or more, in a wet state, a step of charging a slurry which contains at least a short fiber and a powder resin as constituents and is prepared by mixing the constituents with water, into a preliminarily molding die, and discharging water to accumulate the constituents in the preliminary molding die so as to form an accumulation layer, a second step of compressing, in the thickness direction, a plurality of the accumulation layers obtained by carrying out the step of forming the accumulation layer twice or more to form a molding blank, a third step of molding the molding blank with heating and pressing to form a resin molding, and a fourth step of processing the resin molding into a tooth part of an oblique-tooth gear. The constituent ratio of individual constituents and/or the types of the constituents are modified between both accumulation layers so that the accumulation layer on the side where an asymmetrical contact of the resin-made gear with a counter gear to be engaged in occurs is higher in strength than the accumulation layer on the other side.

Description

本発明は、樹脂製歯車、殊に斜歯の樹脂製歯車の製造法に関する。   The present invention relates to a method of manufacturing a resin gear, and in particular, an oblique-tooth resin gear.

従来、自動車で使用される歯車の多くは、強度及び耐熱性の面より金属部品が多く使用されていたが、近年では、環境対応自動車開発が進み、燃費向上やCO削減に対応する軽量化、更には、金属製歯車同士の噛み合い音の静粛性の観点から、樹脂製歯車を用いることが提言されている。 Conventionally, many gears used in automobiles have used metal parts in terms of strength and heat resistance. However, in recent years, environmentally-friendly automobile development has progressed, and the weight has been reduced to improve fuel economy and reduce CO 2 emissions. Furthermore, from the viewpoint of quietness of the meshing sound between the metal gears, it is suggested to use a resin gear.

樹脂製歯車の具体的構成としては、補強繊維基材としてアラミド繊維を使用するものがあり、図1に示すようにドーナツ状に形成した補強繊維基材1を金属製ブッシュ2にはめ込み、補強繊維基材1に樹脂を含浸・硬化させ、樹脂成形体3を作製する。この樹脂成形体3の周囲に歯切り加工を行い、樹脂製歯車を作製する方法が特許文献1に記載されている。   As a specific configuration of the resin gear, there is one using an aramid fiber as a reinforcing fiber base, and a reinforcing fiber base 1 formed in a donut shape as shown in FIG. A resin molded body 3 is produced by impregnating and curing the base material 1 with a resin. Patent Document 1 discloses a method of cutting gears around the resin molded body 3 to produce a resin gear.

しかしこの従来技術では、ドーナツ状に形成した補強繊維基材1を、金属製ブッシュ2に対して2個用いることで挟み込み、金属製ブッシュ2の抜け止めを行っているが、補強繊維基材の界面では繊維の絡み合いは弱く、使用用途によっては樹脂製歯車の耐久性が不足する場合がある。これらの問題解決のために、短繊維を用いた濾過脱水法による繊維の集積体を作製し、補強繊維基材を作製する方法が特許文献2に記載されている。
また、樹脂製歯車は、静粛性改善のため歯車形態として斜歯歯車を用いることが多く、噛み合い率を向上させることで静粛性を向上させている。
However, in this prior art, two reinforcing fiber bases 1 formed in a donut shape are sandwiched by using two metal bushes 2 to prevent the metal bushes 2 from coming off. The fiber entanglement is weak at the interface, and the durability of the resin gear may be insufficient depending on the intended use. In order to solve these problems, Patent Document 2 discloses a method of producing a fiber aggregate by filtration dehydration using short fibers and producing a reinforcing fiber substrate.
In addition, the resin gear often uses an inclined gear as a gear form for improving the quietness, and the quietness is improved by improving the meshing rate.

特開2001−295913号公報JP 2001-295913 A 特開2009−250364号公報JP 2009-250364 A 特開平11−227061号公報JP-A-11-227061

しかしながら、自動車部品として使用する場合、使用環境下の雰囲気温度は、100℃付近まで上昇することが多くなるため、温度変化による寸法変化が生じる。
より具体的に述べると、図2は、樹脂製の斜歯歯車を歯先から垂直視した側面図を示すが、常温(25℃)域での歯筋4(実線)と、高温域での歯筋5(破線)では変化が生じている。
However, when used as an automobile part, the ambient temperature in the usage environment often increases to around 100 ° C., so that a dimensional change due to a temperature change occurs.
More specifically, FIG. 2 shows a side view of a resin bevel gear viewed vertically from the tooth tip. The tooth trace 4 (solid line) in the normal temperature (25 ° C.) region and the high temperature region There is a change in the tooth trace 5 (broken line).

前述した温度変化による歯筋の変移は、樹脂製歯車単独で見ると、あまり大きな問題とはならないように見える。しかし、歯車は、相手歯車があって始めて機能するものであり、この温度変化による変移は、無視できないものとなっている。   The transition of the tooth trace due to the temperature change described above does not appear to be a significant problem when viewed with the resin gear alone. However, the gear functions only when there is a counter gear, and this change due to temperature change cannot be ignored.

樹脂製歯車と噛み合う相手側歯車は、金属製である場合が多く、樹脂と金属では、線膨張係数が異なり、各歯車の歯の変移量が異なる。
図3に常温(25℃)域での噛み合い概要図を示すが、相手歯車である金属製歯車6と、樹脂製歯車7とを噛み合わせた場合、金属製歯車の歯筋8と、樹脂製歯車の歯筋9は、一致するような噛み合い範囲となるように設計される。
次に、図4に高温域での噛み合い概要図を示すが、温度による寸法変化のため、噛み合いの歯当りが常温(25℃)とは変化し、金属製歯車の歯筋8と樹脂製歯車の歯筋9の片側だけで噛み合う片当りが発生する。そのため噛み合い率が低下し、樹脂製歯車に対しては不利に働き、歯車破損が早期に発生する可能性が生ずる。
The mating gear that meshes with the resin gear is often made of metal, and the resin and metal have different linear expansion coefficients and different amounts of gear teeth.
FIG. 3 shows a schematic diagram of meshing in the normal temperature (25 ° C.) region. When the metal gear 6 that is the counterpart gear and the resin gear 7 are meshed with each other, the tooth trace 8 of the metal gear and the resin gear The tooth trace 9 of the gear is designed to have a meshing range that matches.
Next, FIG. 4 shows a schematic diagram of meshing in a high temperature range. Due to the dimensional change due to temperature, the meshing tooth contact changes from normal temperature (25 ° C.), and the tooth trace 8 of the metal gear and the resin gear. One-sided engagement occurs only on one side of the tooth muscle 9. As a result, the meshing rate is lowered, which is disadvantageous for resin gears, and there is a possibility that gear breakage may occur at an early stage.

ここで、特許文献3には、熱硬化性樹脂と短繊維を主成分とする抄造シートをプレス抜きした抄造シート素形体を複数枚積み重ねて、成形金型内で加熱加圧成形する樹脂製歯車の製造法が記載されている。このとき、異種材料からなる抄造シート素形体を、所定の組合せ構成で積層して、成形金型内で加熱加圧成形することにより、歯幅方向の所定の部位に所望の特性を付与することが考えられる。
しかしながら、上記の樹脂製歯車は、抄造シート素形体の積層界面に、短繊維の絡み合いが殆どなく、使用用途によっては、積層面で剥離が発生しやすいという心配がある。
Here, Patent Document 3 discloses a resin-made gear that is formed by stacking a plurality of paper-making sheet bodies obtained by press-extruding a paper-making sheet mainly composed of a thermosetting resin and short fibers, and heat-press-molding in a molding die. The manufacturing method of is described. At this time, a sheet-forming sheet body made of different materials is laminated in a predetermined combination configuration, and given desired characteristics to a predetermined site in the tooth width direction by heating and pressing in a molding die. Can be considered.
However, the resin gear described above has almost no entanglement of short fibers at the lamination interface of the papermaking sheet body, and there is a concern that peeling is likely to occur on the lamination surface depending on the intended use.

本発明は、異種材料層から構成された樹脂製歯車であっても、異種材料層の積層界面で剥離が発生しにくく、かつ、常温域から高温域への温度変化により、歯筋の変移が生じた場合等、種々の現象に対応して、歯車の寿命を短くすることのない樹脂製歯車を製造することである。   Even if the present invention is a resin gear composed of different material layers, peeling is unlikely to occur at the laminated interface of the different material layers, and the change of tooth traces is caused by the temperature change from the normal temperature range to the high temperature range. Responding to various phenomena, such as when it occurs, is to produce a resin gear that does not shorten the life of the gear.

上記課題を解決するために、本発明に係る樹脂製歯車は、以下の構成を採用する。
(1)構成物として少なくとも短繊維と粉末状樹脂を含み前記構成物と水とを混合して調製したスラリを、予備成形金型に投入して予備成形金型から水を排出することにより、予備成形金型内に前記構成物を集積させて集積層となす工程を湿潤状態で複数回実施する第1のステップと、前記集積層となす工程を複数回実施して得た複数の集積層を厚さ方向に圧縮して成形素材を形成する第2のステップと、前記成形素材を加熱加圧成形して樹脂成形体を形成する第3のステップと、前記樹脂成形体を斜歯歯車の歯部に加工する第4のステップを経る樹脂製歯車の製造法であって、噛み合う相手歯車に対して前記樹脂製歯車の片当りが起こる側の集積層が、他の側の集積層より強度が大きくなるように、両集積層の間で、各構成物の構成比及び/又は構成物の種類を異ならせることを特徴とする。
(2)項(1)において、構成物として相対的に高強度である短繊維と低強度である短繊維の双方を含んでおり、片当りが起こる側の集積層に、他の側の集積層より、高強度の短繊維の構成比を多くしたことを特徴とする。
(3)項(1)において、片当りが起こる側の集積層に、他の側の集積層より、短繊維の含有割合を多くしたことを特徴とする。
In order to solve the above problems, the resin gear according to the present invention employs the following configuration.
(1) A slurry prepared by mixing at least short fibers and a powdered resin as a constituent and mixing the constituent and water is put into a preforming mold, and water is discharged from the preforming mold, A first step of performing a process of accumulating the components in a preform mold to form an integrated layer a plurality of times in a wet state; and a plurality of integrated layers obtained by performing the process of forming the integrated layer a plurality of times A second step of forming a molding material by compressing the molding material in a thickness direction, a third step of forming a resin molding by heating and press-molding the molding material, and forming the resin molding of an inclined gear A method of manufacturing a resin gear that undergoes a fourth step that is processed into a tooth portion, in which an integrated layer on a side where one piece of the resin gear comes into contact with a mating gear is stronger than an integrated layer on the other side. So that the composition ratio of each component between the two integrated layers and Or wherein varying the type of arrangement.
(2) In the item (1), the composition includes both short fibers having relatively high strength and short fibers having low strength. It is characterized in that the composition ratio of high-strength short fibers is increased from that of lamination.
(3) Item (1) is characterized in that the content ratio of the short fibers is increased in the integrated layer on the side where the one-piece contact occurs than in the integrated layer on the other side.

本発明によれば、予備成形金型内に構成物として少なくとも短繊維と粉末状樹脂を含み前記構成物を集積させて集積層となす工程を湿潤状態で複数回実施しており、この複数の集積層を厚さ方向に圧縮して成形素材とする。従って、前記圧縮により、複数の集積層の積層界面に、短繊維の絡み合いを付与することができ、異種材料層から構成された樹脂製歯車であっても、異種材料層の積層界面で剥離が発生しにくくすることができる。
また、噛み合う相手歯車に対して樹脂製歯車の片当りが起こる側の集積層に、他の側の集積層より強度が大きくなるように、各構成物の構成比及び/又は構成物の種類を異ならせることで、例えば、片当りが生ずる層に対し、樹脂、短繊維、樹脂及び短繊維の種類を変化させるか、樹脂、短繊維、樹脂及び短繊維の種類は同じであるが、その割合を変化させることにより、強度を上げることで、片当りによる樹脂製歯車の寿命低下を抑制できる。また、片当りが生ずる層以外の層に、安価なものを用いることができ、全体のコストを下げることができる。
According to the present invention, the process of collecting at least the short fibers and the powdered resin as constituents in the preform mold and accumulating the constituents to form an integrated layer is performed a plurality of times in a wet state. The integrated layer is compressed in the thickness direction to form a molding material. Therefore, the compression can impart entanglement of short fibers to the lamination interface of the plurality of integrated layers, and even a resin gear composed of different material layers can be peeled off at the lamination interface of different material layers. It can be made difficult to occur.
Also, the composition ratio of each component and / or the type of the component is set so that the strength of the integrated layer on the side where the one-sided contact of the resin gear with respect to the meshing gear is larger than that of the other integrated layer. By making it different, for example, the type of resin, short fiber, resin and short fiber is changed or the type of resin, short fiber, resin and short fiber is the same, but the ratio By changing the strength of the resin gear, it is possible to suppress a reduction in the service life of the resin gear due to contact with each other. In addition, inexpensive layers can be used for layers other than the one where contact occurs, and the overall cost can be reduced.

例えば、片当りが起こる側の集積層に、他の側の集積層より、相対的に高強度の短繊維の構成比を多くして、強度を上げることができる。また、片当りが起こる側の集積層に、他の側の集積層より、短繊維の含有割合を多くして、強度を上げることができる。   For example, the strength can be increased by increasing the composition ratio of relatively high-strength short fibers in the integrated layer on the side where one piece strikes, compared to the integrated layer on the other side. Further, the strength can be increased by increasing the content ratio of the short fibers in the integrated layer on the side where the one-piece contact occurs than in the integrated layer on the other side.

従来例である樹脂製歯車の製造工程を示す。The manufacturing process of the resin gear which is a prior art example is shown. 温度変化による歯筋変化を示す。It shows changes in tooth muscles due to temperature changes. 常温域での噛み合い概要図を示す。A schematic diagram of meshing at room temperature is shown. 高温域での噛み合い概要図を示す。The meshing outline figure in a high temperature range is shown. 複数の集積層を持つ成形素材の作製の概要図を示す。The outline figure of manufacture of the molding material which has a plurality of accumulation layers is shown. 二層の集積層を備えた樹脂製歯車の実施例を示す。An example of a resin gear provided with two integrated layers is shown. 成形金型の概要図を示す。A schematic diagram of a molding die is shown. 三層の集積層を備えた樹脂製歯車の実施例を示す。The Example of the resin gear provided with the three layers of accumulation layers is shown. 比較例2の抄造シート素形体の作製の概要図を示す。The schematic diagram of preparation of the papermaking sheet | seat body of the comparative example 2 is shown. へき開強度の測定の概要図を示す。The outline figure of cleavage strength measurement is shown.

本発明においては、集積層の構成物として、少なくとも短繊維と粉末状樹脂を含む。そのほか、無機粉末等を含んでもよい。   In the present invention, at least the short fibers and the powdered resin are included as a constituent of the accumulation layer. In addition, inorganic powder or the like may be included.

<短繊維>
本発明に用いる短繊維は、特に限定されるものではないが、綿や麻等の天然繊維、アラミド繊維(芳香族ポリアミド繊維)、ポリアミド繊維等の有機繊維や、炭素繊維、ガラス繊維、金属繊維等の無機繊維を使用用途により適宜用いることができる。これらの短繊維は、用途により単独及び複数種類を用いても良い。中でも、高強度の短繊維、具体的には、有機繊維ではパラ系アラミド繊維とメタ系アラミド繊維を混合したものを、無機繊維ではガラス短繊維を用いると、加工性及び切削性、耐熱性、歯車強度面で優勢であり、特に好ましい。
<Short fiber>
The short fibers used in the present invention are not particularly limited, but natural fibers such as cotton and hemp, organic fibers such as aramid fibers (aromatic polyamide fibers) and polyamide fibers, carbon fibers, glass fibers, and metal fibers. Inorganic fibers such as can be appropriately used depending on the intended use. These short fibers may be used alone or in a plurality of types depending on the application. Among them, high-strength short fibers, specifically, organic fibers mixed with para-aramid fibers and meta-aramid fibers, and inorganic fibers with short glass fibers, workability and machinability, heat resistance, It is superior in terms of gear strength and is particularly preferable.

本発明に用いる短繊維の繊維長は、特に制限されるものではないが、2〜6mmであることが好ましい。繊維長が短くなると、短繊維同士のからみ合いが弱くなり、樹脂成形体に必要とされる強度の確保が難しくなってくる。繊維長が長くなると、濾過脱水のためのスラリを調製する時に短繊維の分散性が低下してくる。繊維長を前記の範囲にすることにより、樹脂成形体に必要とされる強度を確保することができると共に、濾過脱水のためのスラリ調製時に繊維の分散性が十分となる。   The fiber length of the short fibers used in the present invention is not particularly limited, but is preferably 2 to 6 mm. When the fiber length is shortened, the entanglement between the short fibers becomes weak, and it becomes difficult to secure the strength required for the resin molded body. When the fiber length is increased, the dispersibility of the short fibers is reduced when preparing a slurry for filtration and dehydration. By setting the fiber length within the above range, the strength required for the resin molded body can be ensured, and the dispersibility of the fibers becomes sufficient when preparing a slurry for filtration dehydration.

<粉末状樹脂>
本発明に用いる樹脂は、粉末形態(粒子形態を含む)で提供され、熱硬化性樹脂、熱可塑性樹脂など種々の材質のものを用いることができる。例えば、エポキシ樹脂、ポリアミノアミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂から選ばれた1以上の樹脂を組み合わせたものが使用できる。これらの中でも樹脂硬化物の強度、耐熱性等の点からフェノール樹脂が好ましい。
粉末状樹脂の粒子形状は任意であるが、粒状のものを用いるのが好ましい。また、粒子径は、短繊維の繊維径により異なるが、50μm以下が好ましい。これにより、短繊維の集積体の短繊維同士の間隙に均一に分布させることができる。粒子径が大きい場合、短繊維の集積体の繊維配向を乱すことがあり、また、加熱加圧成形して樹脂成形体を製造する際、樹脂成形体内部の短繊維と樹脂が均一に分布しない原因となることがある。
<Powdered resin>
The resin used in the present invention is provided in a powder form (including a particle form), and various materials such as a thermosetting resin and a thermoplastic resin can be used. For example, epoxy resin, polyaminoamide resin, phenol resin, unsaturated polyester resin, polyimide resin, polyethersulfone resin, polyetheretherketone resin, polyamideimide resin, polyamide resin, polyester resin, polyphenylene sulfide resin, polyethylene resin, polypropylene A combination of one or more resins selected from resins can be used. Among these, a phenol resin is preferable from the viewpoints of the strength and heat resistance of the cured resin.
The particle shape of the powdery resin is arbitrary, but a granular resin is preferably used. Moreover, although a particle diameter changes with fiber diameters of a short fiber, 50 micrometers or less are preferable. Thereby, it can distribute uniformly in the gap | interval of the short fibers of the short fiber accumulation body. When the particle size is large, the fiber orientation of the short fiber aggregate may be disturbed, and when the resin molded body is manufactured by heat and pressure molding, the short fibers and the resin inside the resin molded body are not uniformly distributed. It can be a cause.

少なくとも上記短繊維と粉末状樹脂と水とを混合して調製したスラリを濾過脱水し、短繊維と粉末状樹脂の集積層を複数層形成する。次に、この複数の集積層を厚さ方向に圧縮して成形素材を形成する。そして、この成形素材を加熱加圧成形して樹脂成形体を形成する。
このとき、本発明においては、隣り合う集積層が、樹脂及び充填物の構成比又は構成物を異ならせている。具体的には、樹脂そのものが異なる、短繊維等の充填物が異なる、樹脂そのもの及び充填物の両方が異なる、充填物は同じであるが充填比率が異なる、又は、樹脂そのもの及び充填比率が異なる、ことを意味する。
本発明では、短繊維以外の充填物として、炭素粉末、ガラス粉末、二硫化モリブデン、アルミナ、窒化ホウ素、鉄粉、等を併用してもよい。
A slurry prepared by mixing at least the above-mentioned short fibers, powdered resin and water is filtered and dehydrated to form a plurality of layers of short fibers and powdered resin. Next, the plurality of integrated layers are compressed in the thickness direction to form a molding material. Then, the molding material is heated and pressed to form a resin molded body.
At this time, in the present invention, adjacent stacked layers have different composition ratios or constituents of the resin and the filler. Specifically, the resin itself is different, the fillings such as short fibers are different, both the resin itself and the filling are different, the filling is the same but the filling ratio is different, or the resin itself and the filling ratio are different. , That means.
In the present invention, carbon powder, glass powder, molybdenum disulfide, alumina, boron nitride, iron powder, and the like may be used in combination as fillers other than short fibers.

例えば、隣り合う集積層を、互いに異なる種類の短繊維又は互いに異なる短繊維組成とすることができる。
より詳細に述べると、有機繊維のみを用いる場合は、例えば、少なくとも集積層の一層を有機繊維Aで構成した場合に、他の集積層を有機繊維B又は有機繊維Aと有機繊維Bの混合組成にすることができる。
無機繊維のみを用いる場合には、例えば、少なくとも集積層の一層を無機繊維イで構成した場合に、他の集積層を無機繊維ロ又は無機繊維イと無機繊維ロの混合組成にすることができる。
For example, adjacent stacked layers can be made of different types of short fibers or different short fiber compositions.
More specifically, when only organic fibers are used, for example, when at least one of the integrated layers is composed of organic fibers A, the other integrated layers are organic fibers B or a mixed composition of organic fibers A and organic fibers B. Can be.
When only inorganic fibers are used, for example, when at least one layer of the accumulation layer is composed of inorganic fibers, the other accumulation layer can be composed of inorganic fibers or a mixture of inorganic fibers and inorganic fibers. .

有機繊維と無機繊維とを併用する場合は、例えば、少なくとも集積層の一層を有機繊維又は無機繊維となし、他の集積層を前記有機繊維又は無機繊維とは異なる短繊維とする。複数の集積層のそれぞれに有機繊維と無機繊維とを含有させるのであれば、少なくとも一層を有機繊維Aと無機繊維イの混合組成となし、他の集積層を、「有機繊維Bに、又は有機繊維Aと有機繊維Bに、無機繊維イを配合した混合組成」、「有機繊維Bに、又は有機繊維Aと有機繊維Bに、無機繊維ロを配合した混合組成」、「有機繊維Bに、又は有機繊維Aと有機繊維Bに、無機繊維イと無機繊維ロを配合した混合組成」、又は、「無機繊維ロに、又は無機繊維イと無機繊維ロに、有機繊維Aを配合した混合組成」とすることができる。   When organic fibers and inorganic fibers are used in combination, for example, at least one layer of the accumulation layer is made of organic fibers or inorganic fibers, and the other accumulation layer is made of short fibers different from the organic fibers or inorganic fibers. If each of the plurality of integrated layers contains organic fibers and inorganic fibers, at least one layer is made of a mixed composition of organic fibers A and inorganic fibers A, and the other integrated layers are designated as “organic fibers B or organic. "Mixed composition in which inorganic fiber A is blended with fiber A and organic fiber B", "Mixed composition in which inorganic fiber b is blended in organic fiber B or organic fiber A and organic fiber B", "Organic fiber B, Or the mixed composition which mix | blended the inorganic fiber A and the inorganic fiber B in the organic fiber A and the organic fiber B "or" the mixed composition which mix | blended the organic fiber A in the inorganic fiber B or the inorganic fiber B and the inorganic fiber B ".

前述した「少なくとも一層」と述べる層は、例えば、高温雰囲気下にて片当りする等、好ましくない現象が現れる層であり、強度を高めるために、有機繊維であればパラ系アラミド繊維とメタ系アラミド繊維を混合したものを用いることが好ましく、無機繊維であれば、ガラス短繊維を用いることが好ましい。
なお、これまで、隣り合う集積層が、互いに異なる種類の短繊維又は互いに異なる短繊維組成の場合について詳細に説明したが、隣り合う集積層が、互いに異なる種類の充填物又は互いに異なる充填物組成の場合も同様に実施することができる。
The layer described as “at least one layer” described above is a layer in which an undesired phenomenon occurs, for example, contact with each other in a high-temperature atmosphere. In order to increase the strength, para-aramid fibers and meta-based fibers are used. It is preferable to use a mixture of aramid fibers, and it is preferable to use short glass fibers if they are inorganic fibers.
In the above, the case where adjacent stacked layers have different types of short fibers or different short fiber compositions has been described in detail, but adjacent stacked layers have different types of fillers or different filler compositions. In the case of, the same can be carried out.

<短繊維の含有割合>
短繊維の含有割合は、特に制限されるものではなく、集積層に含有されている短繊維と粉末状樹脂の全質量に占める短繊維の質量比を、各集積層の全てにて同じにしても、異ならせても良い。
<Short fiber content>
The content ratio of the short fibers is not particularly limited, and the mass ratio of the short fibers contained in the accumulation layer and the short fibers in the total mass of the powdered resin is the same in all the accumulation layers. May be different.

質量比を異ならせる場合は、この異なる層が、片当り等の不具合が現れる部位であり、短繊維の割合を増やすようにする。具体的には、異ならせる層の短繊維の質量比を40〜60%とすることが好ましく、他の層の短繊維の質量比を35〜50%とすることが好ましい。
尚、短繊維の質量比が35%未満になると、徐々に強度が低下する傾向があり、60%を超えると、加熱加圧成形時に溶融した樹脂が樹脂成形体全体に流動せずに、樹脂含浸不足部分の発生率が高くなる。短繊維の質量比が前記の範囲であれば、樹脂成形体に必要とされる強度を確保することができると共に、樹脂含浸不足(不良)の発生率を小さくできる。
When different mass ratios are used, this different layer is a part where defects such as per piece appear, and the proportion of short fibers is increased. Specifically, the mass ratio of short fibers in different layers is preferably 40 to 60%, and the mass ratio of short fibers in other layers is preferably 35 to 50%.
In addition, when the mass ratio of the short fibers is less than 35%, the strength tends to gradually decrease, and when it exceeds 60%, the resin melted at the time of heat and pressure molding does not flow to the entire resin molded body, and the resin The incidence of the impregnated portion is increased. If the mass ratio of the short fibers is within the above range, the strength required for the resin molded body can be ensured, and the rate of occurrence of insufficient resin impregnation (defective) can be reduced.

<集積層の厚み>
樹脂成形体における各集積層の厚みは、特に制限されるものではなく、全ての層にて同じ厚みにしても、少なくとも一層の厚みを他の層に比べて変化させても良い。
集積層の厚みを異ならせる場合は、厚みの異なる層が、片当り等の不具合が現れる部位であり、集積層の厚みを他の層に比べ厚くすることができる。
集積層の厚みは、樹脂製歯車の歯幅により、適宜選択される。具体的には、歯幅全体の厚みを100%となし、不具合が現れるであろう集積層の厚みを30〜50%とすることができる。
<Thickness of accumulation layer>
The thickness of each integrated layer in the resin molded body is not particularly limited, and all layers may have the same thickness, or at least one layer thickness may be changed as compared with other layers.
In the case where the thicknesses of the integrated layers are made different, the layers having different thicknesses are portions where defects such as one piece appear, and the thickness of the integrated layer can be made thicker than other layers.
The thickness of the accumulation layer is appropriately selected depending on the tooth width of the resin gear. Specifically, the thickness of the entire tooth width can be set to 100%, and the thickness of the integrated layer where defects may appear can be set to 30 to 50%.

<集積層の構成>
各集積層の構成は、特に制限されるものではないが、奇数層となし、中央の集積層を挟んで対称に同じ集積層を設けることが、樹脂成形体の反りを防止する意味で好ましい。
<Structure of integrated layer>
The configuration of each integrated layer is not particularly limited, but it is preferably an odd layer, and it is preferable to provide the same integrated layer symmetrically across the central integrated layer in order to prevent warping of the resin molded body.

<樹脂成形体の製造>
樹脂成形体の製造は、特に限定するものでは無いが、例えば、図5に示すような機能を有する装置を用いることができる。
<Manufacture of resin molding>
The production of the resin molded body is not particularly limited. For example, an apparatus having a function as shown in FIG. 5 can be used.

先ず、複数の集積層のそれぞれに必要な短繊維と粉末状樹脂を準備し、一層毎に必要な短繊維と粉末状樹脂の質量を測定し、短繊維と粉末状樹脂を準備する。一層分の短繊維と粉末状樹脂を規定量の水に入れて短繊維と粉末状樹脂を攪拌し、スラリを調製する。短繊維と粉末状樹脂の集積層を作製するため、予め金属製ブッシュ2をセットした予備成形金型に調製したスラリを流し込み、短繊維と粉末状樹脂を予備成形金型内に堆積させ、一層目の集積層10を作製する。続いて、前記集積層が湿潤状態で、次の集積層に必要な短繊維と粉末状樹脂を準備し、同様の手順でスラリを調製し、再度先の予備成形金型に流し込んで短繊維と粉末状樹脂を堆積させて二層目の集積層11を作製する。この作業を必要な集積層の層分繰り返して行う。   First, the necessary short fibers and powdered resin are prepared for each of the plurality of integrated layers, and the mass of the necessary short fibers and powdered resin is measured for each layer to prepare the short fibers and the powdered resin. A short fiber and powdered resin for one layer are put in a specified amount of water, and the short fiber and powdered resin are stirred to prepare a slurry. In order to produce an accumulation layer of short fibers and powdered resin, the prepared slurry is poured into a preforming mold in which a metal bush 2 is set in advance, and the short fibers and powdered resin are deposited in the preforming mold. An integrated layer 10 of eyes is produced. Subsequently, when the accumulation layer is in a wet state, short fibers and a powdered resin necessary for the next accumulation layer are prepared, a slurry is prepared in the same procedure, and the short fibers are poured into the preforming mold again. A powdery resin is deposited to produce the second integrated layer 11. This operation is repeated for the necessary integrated layers.

このとき、一層分のスラリを予備成形金型に投入した後、予備成形金型から水を排出させた後に、次の層のスラリを予備成形金型に投入した場合は、次の層のスラリを予備成形金型に投入した際の衝撃を吸収する水が無いために、先の集積層の上層部が次の層のスラリによってかき乱されるため、先の集積層と次の集積層の境界部の繊維配向が乱れた成形素材を得ることができ、その結果、先の集積層と次の集積層の間の層間強度を向上することができる。
また、一層分のスラリを予備成形金型に投入した後、予備成形金型に未だ水が残っている状態で、次の層のスラリを予備成形金型に投入した場合は、予備成形金型内に集積した先の集積層の繊維配向を乱すことなく次の集積層を得ることができるので、先の集積層と次の集積層の境界が分かれた成形素材を得ることができる。
At this time, if the slurry for the next layer is put into the preforming mold after the slurry for one layer is put into the preforming mold and then the water is discharged from the preforming mold, Because there is no water to absorb the impact when the is injected into the preforming mold, the upper layer of the previous layer is disturbed by the slurry of the next layer, so the boundary between the previous layer and the next layer As a result, the interlaminar strength between the previous integrated layer and the next integrated layer can be improved.
In addition, after the slurry for one layer is put into the preforming mold, when the slurry of the next layer is put into the preforming mold with water still remaining in the preforming mold, the preforming mold Since the next integrated layer can be obtained without disturbing the fiber orientation of the previous integrated layer integrated therein, a molding material in which the boundary between the previous integrated layer and the next integrated layer is separated can be obtained.

予備成形金型は、成形素材の外径寸法を決めるための筒状金型12と、筒状金型の内側に金属製ブッシュ2を固定するためのブッシュ支持部13、14及び集積した短繊維と粉末状樹脂を圧縮するための圧縮用金型15、16を有している装置とする。尚、圧縮用金型16には、スラリの水分のみを排水するための貫通穴17を設けておき、圧縮用金型16の上には短繊維と粉末状樹脂が貫通穴17から抜けなくするためのメッシュ18を置いておき、メッシュ18上に短繊維と粉末状樹脂を堆積させながら水分のみを排水していく。
必要な集積層を予備成形金型内に堆積させた後に、予備成形金型に搭載されている圧縮用金型15、16で集積層を圧縮して脱水及び形状形成を行い、複数の集積層を有した成形素材19を作製する。
The preforming mold includes a cylindrical mold 12 for determining the outer diameter of the molding material, bush support portions 13 and 14 for fixing the metal bush 2 inside the cylindrical mold, and accumulated short fibers. And an apparatus having compression molds 15 and 16 for compressing the powdered resin. The compression mold 16 is provided with a through hole 17 for draining only slurry water, and short fibers and powdered resin are prevented from coming out of the through hole 17 on the compression mold 16. A mesh 18 is placed, and only moisture is drained while the short fibers and the powdery resin are deposited on the mesh 18.
After the necessary accumulation layer is deposited in the preforming mold, the accumulation layer is compressed by the compression molds 15 and 16 mounted on the preforming mold to perform dehydration and shape formation, and a plurality of accumulation layers A molding material 19 having

次に、作製した成形素材19を成形用金型にセットし、加熱加圧成形を行い、樹脂成形体を作製する。
また、樹脂製歯車の製造は、上記の樹脂成形体の周囲に切削により加工を行って歯を形成し、樹脂製歯車を作製する。
Next, the produced molding material 19 is set in a molding die and subjected to heat and pressure molding to produce a resin molded body.
In addition, the resin gear is manufactured by cutting the periphery of the resin molded body to form teeth, thereby producing a resin gear.

以下、本発明の実施例について、図面を用いて説明を行う。
(実施例1)
本実施例1においては、図6に示すような同じ厚みの二層の集積層を有する樹脂製歯車を作製する。
即ち、成形素材19を構成する集積層20を、構成物として粉末状樹脂と有機繊維であるメタ系アラミド繊維とパラ系アラミド繊維とを含有したものとする。
集積層20は、短繊維として、メタ系アラミド繊維A(繊維長:3mm、繊維径:10μm)を50質量%、パラ系アラミド繊維B(繊維長:3mm、繊維径:10μm)を45質量%、パラ系アラミド繊維C(繊維長:6mm、繊維径:10μm)を5質量%、混合して用いた。また、粉末状樹脂として、粒子径20μmのフェノール樹脂粉末を用いた。そして、樹脂成形体中の短繊維の繊維総量が49質量%となるように、短繊維と粉末状樹脂を準備した。
集積層20に使用する前記各短繊維と粉末状樹脂を水に入れて攪拌し、スラリAを作製する。このときのスラリ濃度は短繊維と粉末状樹脂の合計質量に対して4g/リットルとなるように水量を調整した。
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
In Example 1, a resin gear having two integrated layers having the same thickness as shown in FIG. 6 is produced.
That is, the accumulation layer 20 constituting the molding material 19 includes a powdery resin, meta-aramid fiber and para-aramid fiber which are organic fibers as constituents.
The accumulation layer 20 is 50% by mass of meta-aramid fiber A (fiber length: 3 mm, fiber diameter: 10 μm) and 45% by mass of para-aramid fiber B (fiber length: 3 mm, fiber diameter: 10 μm) as short fibers. Para-aramid fiber C (fiber length: 6 mm, fiber diameter: 10 μm) was mixed and used in an amount of 5% by mass. Moreover, phenol resin powder having a particle diameter of 20 μm was used as the powdery resin. And the short fiber and powdery resin were prepared so that the fiber total amount of the short fiber in a resin molding might be 49 mass%.
The respective short fibers and powdered resin used for the accumulation layer 20 are put in water and stirred to prepare slurry A. The amount of water was adjusted so that the slurry concentration at this time was 4 g / liter with respect to the total mass of the short fibers and the powdered resin.

また、集積層21(図6参照)として、構成物として粉末状樹脂と有機繊維であるメタ系アラミド繊維とパラ系アラミド繊維及び強度向上のために無機繊維であるガラス繊維とを含有したものとする。
集積層21は、短繊維として、メタ系アラミド繊維Aを50質量%、パラ系アラミド繊維Bを40質量%、パラ系アラミド繊維Cを5質量%、無機繊維としてガラス繊維D(繊維長:0.12mm、繊維径:12μm)を5質量%、混合して用いた。また、粉末状樹脂として、粒子径20μmのフェノール樹脂粉末を用いた。
集積層21に使用する前記各短繊維と粉末状樹脂を水に入れて攪拌し、スラリBを作製する。このときのスラリ濃度は短繊維と粉末状樹脂の合計質量に対して4g/リットルとなるように水量を調整した。
Further, as the accumulation layer 21 (see FIG. 6), as a constituent, a powdered resin, a meta-aramid fiber that is an organic fiber, a para-aramid fiber, and a glass fiber that is an inorganic fiber for strength improvement are included. To do.
The accumulation layer 21 is 50% by mass of meta-aramid fiber A, 40% by mass of para-aramid fiber B, 5% by mass of para-aramid fiber C as short fibers, and glass fiber D (fiber length: 0 as inorganic fiber). .12 mm, fiber diameter: 12 μm) was used by mixing 5% by mass. Moreover, phenol resin powder having a particle diameter of 20 μm was used as the powdery resin.
The respective short fibers and powdered resin used for the accumulation layer 21 are put in water and stirred to prepare slurry B. The amount of water was adjusted so that the slurry concentration at this time was 4 g / liter with respect to the total mass of the short fibers and the powdered resin.

次に、図5に示す予備成形金型のブッシュ支持部14に金属製ブッシュ2をセットし、先ず集積層20に使用するスラリAを予備成形金型内に投入する。予備成形金型を構成している筒状金型12とブッシュ支持部13及び14は、集積層の外径及び内径形状を構成するもので、本実施例においては筒状金型12の内径部を直径:82mm、ブッシュ支持部13及び14の外径を直径:55mmとした。また、貫通穴17の下側から真空吸引を行い、水分を排水して短繊維と粉末状樹脂の集積層20の基となる堆積物を作製する。次に集積層21に使用するスラリBを予備成形金型内に投入する。スラリBを投入するタイミングは、予備成形金型内に投入したスラリAの水が予備成形金型内に未だ残っている状態とした。   Next, the metal bush 2 is set on the bush support 14 of the preforming mold shown in FIG. 5, and the slurry A used for the accumulation layer 20 is first put into the preforming mold. The cylindrical mold 12 and the bush support portions 13 and 14 constituting the preforming mold constitute the outer diameter and inner diameter shape of the integrated layer. In this embodiment, the inner diameter portion of the cylindrical mold 12 is used. The diameter was 82 mm, and the outer diameters of the bush support portions 13 and 14 were 55 mm. Further, vacuum suction is performed from the lower side of the through-hole 17 to drain water, and a deposit that becomes a base of the accumulation layer 20 of short fibers and powdered resin is produced. Next, the slurry B used for the accumulation layer 21 is put into a preforming mold. The timing at which the slurry B was introduced was such that the water of the slurry A introduced into the preforming mold still remained in the preforming mold.

このとき、集積層20、21を同じ厚みにするため、集積層21の堆積物は、集積層20と同等になるように質量調節を行い、集積層20の基となる堆積物の作製手順と同様にして集積層21の基となる堆積物を作製する。   At this time, in order to make the integrated layers 20 and 21 have the same thickness, the mass of the deposit of the integrated layer 21 is adjusted so as to be the same as that of the integrated layer 20, Similarly, a deposit as a basis of the integrated layer 21 is produced.

二層の堆積物を作製後、金属製ブッシュ2の軸方向に、圧縮用金型15、16を、その間隔が35mmとなるまで、上側の圧縮用金型15を下降させる。このとき、ブッシュ支持部13、14は連動して動き、金属製ブッシュ2の中心部が、圧縮用金型15、16の中央となるように維持させる。この状態を1分間継続させることで、集積層20、21で構成された成形素材19(図5参照)を作製する。   After producing the two-layered deposit, the upper compression mold 15 is lowered in the axial direction of the metal bush 2 until the distance between the compression molds 15 and 16 becomes 35 mm. At this time, the bush support portions 13 and 14 move in conjunction with each other, and the center portion of the metal bush 2 is maintained at the center of the compression molds 15 and 16. By continuing this state for 1 minute, the molding material 19 (see FIG. 5) composed of the integrated layers 20 and 21 is produced.

次に、図7(A)に示す200℃に加熱した成形金型22内に、成形素材19を配置し、図7(B)のように成形金型22を閉じ、成形素材19を加熱加圧成形して粉末状樹脂を硬化させ樹脂成形体を得る。樹脂の硬化が不十分な場合は、必要に応じて後加熱工程を付与して、樹脂の硬化を確実に進めるようにしても良い。この樹脂成形体を、ホブ盤を用いて切削加工し、歯を形成することにより樹脂製歯車を得た。   Next, the molding material 19 is placed in the molding die 22 heated to 200 ° C. shown in FIG. 7A, the molding die 22 is closed as shown in FIG. 7B, and the molding material 19 is heated. Press molding to cure the powdered resin to obtain a resin molded body. If the resin is not sufficiently cured, a post-heating step may be applied as necessary to ensure that the resin is cured. The resin molded body was cut using a hobbing machine to form teeth, thereby obtaining a resin gear.

(実施例2)
実施例1において、スラリBを投入するタイミングを、予備成形金型内に投入したスラリAの水が真空吸引で除去された後としたこと以外は、実施例1と同様にして、樹脂製歯車を得た。
(Example 2)
In Example 1, except that the timing of supplying the slurry B was after the water of the slurry A introduced into the preforming mold was removed by vacuum suction, the resin gear was the same as in Example 1. Got.

(実施例3)
実施例1において、集積層21の短繊維配合質量比(短繊維組成)を、A/B/C=55/40/5と変更した集積層23を用いたこと以外は、実施例1と同様にして、樹脂製歯車を得た。
Example 3
In Example 1, the same as Example 1 except that the accumulation layer 23 in which the short fiber blending mass ratio (short fiber composition) of the accumulation layer 21 was changed to A / B / C = 55/40/5 was used. Thus, a resin gear was obtained.

(実施例4)
実施例1において、集積層20に使用する短繊維を、炭素繊維E(繊維長:3mm、繊維径:18μm)のみとした集積層24と、集積層21に使用する短繊維を、炭素繊維Eとガラス繊維Dとの質量配合比を60/40とした混合組成とした集積層25を用いたこと以外は、実施例1と同様にして、樹脂製歯車を得た。
Example 4
In Example 1, the short layer used for the stacking layer 20 is only the carbon fiber E (fiber length: 3 mm, fiber diameter: 18 μm), and the short fiber used for the stacking layer 21 is carbon fiber E. A resin gear was obtained in the same manner as in Example 1 except that the accumulation layer 25 having a mixed composition in which the mass blending ratio of the glass fiber D and the glass fiber D was 60/40 was used.

(実施例5)
本実施例4においては図8に示すような三層の集積層を有し、中央の集積層を挟んで両側の集積層が同じ短繊維組成で構成されている樹脂製歯車を用いて行う。
作製方法は実施例1と同様の手順とし、用いる集積層として、上記に示した実施例1にて用いた有機繊維で構成された集積層20を一層目及び三層目として用い、二層目として実施例3にて用いた無機繊維で構成された集積層25を用いる。
本実施例4においては、集積層20における樹脂成形体中の短繊維の繊維総量が50質量%となるように調整した。また、集積層25における樹脂成形体中の短繊維の繊維総量が40質量%となるように調整した。
(Example 5)
In Example 4, a resin gear having three integrated layers as shown in FIG. 8 and having the same short fiber composition on both sides of the central integrated layer is used.
The manufacturing method is the same as that in Example 1, and the integrated layer 20 composed of the organic fibers used in Example 1 shown above is used as the first and third layers as the integrated layer to be used. As an example, the integrated layer 25 made of inorganic fibers used in Example 3 is used.
In Example 4, the total fiber amount of the short fibers in the resin molded body in the accumulation layer 20 was adjusted to 50 mass%. Moreover, it adjusted so that the fiber total amount of the short fiber in the resin molding in the integration | stacking layer 25 might be 40 mass%.

(比較例1)
実施例1において、スラリAのみを予備成形金型内に投入して、集積層20の単層からなる(集積層の積層構造を有さない)成形素材を作製したこと以外は、実施例1と同様にして、樹脂製歯車を得た。
(Comparative Example 1)
Example 1 is the same as Example 1 except that only the slurry A was put into a preforming mold to produce a molding material composed of a single layer of the integrated layer 20 (without the laminated structure of the integrated layer). In the same manner, a resin gear was obtained.

(比較例2)
図9に示す抄造装置307を用いて抄造シートを作成した。抄造装置307は、底面部313および角筒状の抄造用筒体309を備えている。なお底面部313のみを金網で構成した。使用した金網は、20メッシュのシート状金網であった。そして、実施例1で使用したスラリAを抄造装置307に導入して、脱水を行い、抄造シート310を得た。抄造シート310を、外径φ82mm×内径φ55mmのリング状に打ち抜き、これを乾燥して抄造シート素形体308を得た。また、上記と同様にして、実施例1で使用したスラリBを用いて、抄造シート素形体308’を得た。
上記の工程で得られた抄造シート素形体308、308’を使用し、金属製ブッシュに設けた突出部を挟み込み、加熱した成形金型内に配置して型締めをする。その後の工程は、実施例1と同様にして、樹脂製歯車を得た。
(Comparative Example 2)
The papermaking sheet | seat was created using the papermaking apparatus 307 shown in FIG. The papermaking apparatus 307 includes a bottom surface portion 313 and a rectangular tube-forming cylinder 309. Only the bottom surface portion 313 is made of a wire mesh. The wire mesh used was a 20 mesh sheet wire mesh. And the slurry A used in Example 1 was introduce | transduced into the papermaking apparatus 307, it spin-dry | dehydrated, and the papermaking sheet 310 was obtained. The papermaking sheet 310 was punched into a ring shape having an outer diameter of φ82 mm × an inner diameter of φ55 mm and dried to obtain a papermaking sheet body 308. Further, in the same manner as described above, a paper-making sheet body 308 ′ was obtained using the slurry B used in Example 1.
Using the sheet-forming sheet bodies 308 and 308 ′ obtained in the above-described process, the protrusion provided on the metal bush is sandwiched, placed in a heated molding die, and clamped. Subsequent steps were performed in the same manner as in Example 1 to obtain a resin gear.

(へき開強度評価)
実施例1〜5、比較例1〜2で得た樹脂成形体から、図10に示す形状の試験片を切り出し、試験片の中央(集積層の重ね方向と交差する面)を直径10mmの鋼球で加圧し、試験片がへき開した時の荷重を測定した。
試験結果は、以下の表1のように得られ、集積層の積層構造を有さない比較例1の樹脂成形体の結果を1として相対評価した場合、実施例1では1.0倍、実施例2では1.2倍、実施例3では1.0倍、実施例4では1.0倍、実施例5では1.0倍、比較例2では0.8倍となった。実施例2が優位であるのは、集積層21に使用するスラリを予備成形金型内に投入するタイミングを、予備成形金型から水を排出させた後に湿潤状態で実施したことによって、先の集積層と次の集積層の境界部の繊維配向が乱れ、へき開強度に有利な配向になったからと推測される。また、比較例2では、抄造シート素形体の積層界面に、短繊維の絡み合いが殆どなく、積層面で剥離が発生しやすいものと推測される。
(Cleavage strength evaluation)
A test piece having the shape shown in FIG. 10 was cut out from the resin molded bodies obtained in Examples 1 to 5 and Comparative Examples 1 and 2, and the center of the test piece (surface intersecting with the stacking direction of the accumulation layer) was steel having a diameter of 10 mm. The load was measured when the test piece was cleaved by applying pressure with a ball.
The test results were obtained as shown in Table 1 below, and when the relative evaluation was made assuming that the result of the resin molded body of Comparative Example 1 having no stack structure of the integrated layer is 1, in Example 1, the test was performed 1.0 times. Example 2 was 1.2 times, Example 3 was 1.0 times, Example 4 was 1.0 times, Example 5 was 1.0 times, and Comparative Example 2 was 0.8 times. The advantage of Example 2 is that the timing at which the slurry used for the accumulation layer 21 is put into the preforming mold is performed in a wet state after water is discharged from the preforming mold. It is presumed that the fiber orientation at the boundary between the accumulation layer and the next accumulation layer was disturbed, and the orientation was advantageous for cleavage strength. Moreover, in the comparative example 2, it is estimated that there is almost no short fiber entanglement in the lamination | stacking interface of a papermaking sheet | seat body, and peeling is easy to generate | occur | produce on a lamination surface.


(耐久試験評価)
実施例1〜5、比較例1〜2で得た樹脂製歯車において、耐久試験機を用いて樹脂製歯車の寿命評価を行った。方法として加速評価条件(相手歯車:金属製歯車、油温:130℃、回転数:6000rpm、歯元応力:160MPa)で連続回転試験を行い、樹脂製歯車が破損するまでの時間を評価した。
試験結果は、以下の表2のように得られ、集積層の積層構造を有さない比較例1の樹脂製歯車の結果を1として相対評価した場合、実施例1では1.4倍、実施例2では1.3倍、実施例3では1.1倍、実施例4では1.2倍、実施例5では2.3倍となった。実施例5が優位であるのは、有機繊維の優位点である低弾性(衝撃の吸収)と無機繊維の優位点である強度の保持を両立させているからであると推測される。

(Durability test evaluation)
In the resin gears obtained in Examples 1 to 5 and Comparative Examples 1 and 2, the life of the resin gears was evaluated using a durability tester. As a method, a continuous rotation test was performed under acceleration evaluation conditions (mating gear: metal gear, oil temperature: 130 ° C., rotation speed: 6000 rpm, tooth root stress: 160 MPa), and the time until the resin gear was damaged was evaluated.
The test results were obtained as shown in Table 2 below. When the relative evaluation was made with the result of the resin gear of Comparative Example 1 having no stack structure of the integrated layer as 1, the implementation in Example 1 was 1.4 times. Example 2 was 1.3 times, Example 3 was 1.1 times, Example 4 was 1.2 times, and Example 5 was 2.3 times. It is presumed that the reason why Example 5 is superior is that both low elasticity (impact absorption), which is an advantage of organic fibers, and strength retention, which is an advantage of inorganic fibers, are compatible.


(歯車強度評価)
実施例1〜5、比較例1〜2で得た樹脂製歯車において、歯車強度の確認を行った。方法として、樹脂製歯車を固定された金属製歯車と噛み合わせた状態で、基準ピッチ円上の周速が毎分0.33mmとなるように樹脂製歯車を回転させて、歯部が破壊する荷重を測定した。
試験結果は、以下の表3のように得られ、積層構造を有さない比較例1の樹脂製歯車の結果を1として相対評価した場合、実施例1では1.2倍、実施例2では1.2倍、実施例3では1.1倍、実施例4では1.6倍、実施例5では1.4倍となった。これは強度及び硬度で優位である無機繊維の含有割合が多いことが要因であると推測できる。

(Gear strength evaluation)
In the resin gears obtained in Examples 1 to 5 and Comparative Examples 1 and 2, the gear strength was confirmed. As a method, with the resin gear meshed with a fixed metal gear, the resin gear is rotated so that the peripheral speed on the reference pitch circle is 0.33 mm / min, and the tooth portion is destroyed. The load was measured.
The test results are obtained as shown in Table 3 below, and when the relative evaluation is made assuming that the result of the resin gear of Comparative Example 1 having no laminated structure is 1, it is 1.2 times in Example 1, and in Example 2. 1.2 times, 1.1 times in Example 3, 1.6 times in Example 4, and 1.4 times in Example 5. It can be presumed that this is due to a large content of inorganic fibers that are superior in strength and hardness.

1…補強繊維基材、2…金属製ブッシュ、3…樹脂成形体、4…常温域での歯筋、5…高温域での歯筋、6…金属製歯車、7…樹脂製歯車、8…金属製歯車の歯筋、9…樹脂製歯車の歯筋、10…一層目の集積層、11…二層目の集積層、12…筒状金型、13、14…ブッシュ支持部、15、16…圧縮用金型、17…貫通穴、18…メッシュ、19…成形素材、20…集積層、21…集積層、22…成形金型、23…集積層、24…集積層、25…集積層 DESCRIPTION OF SYMBOLS 1 ... Reinforcement fiber base material, 2 ... Metal bush, 3 ... Resin molded object, 4 ... Tooth trace in normal temperature range, 5 ... Tooth trace in high temperature range, 6 ... Metal gear, 7 ... Resin gear, 8 ... teeth of metal gear, 9 ... teeth of resin gear, 10 ... first layer of accumulation layer, 11 ... second layer of accumulation layer, 12 ... cylindrical mold, 13, 14 ... bush support, 15 , 16 ... compression mold, 17 ... through hole, 18 ... mesh, 19 ... molding material, 20 ... integration layer, 21 ... integration layer, 22 ... molding die, 23 ... integration layer, 24 ... integration layer, 25 ... Integration layer

Claims (3)

構成物として少なくとも短繊維と粉末状樹脂を含み前記構成物と水とを混合して調製したスラリを、予備成形金型に投入して予備成形金型から水を排出することにより、予備成形金型内に前記構成物を集積させて集積層となす工程を湿潤状態で複数回実施する第1のステップと、
前記集積層となす工程を複数回実施して得た複数の集積層を厚さ方向に圧縮して成形素材を形成する第2のステップと、
前記成形素材を加熱加圧成形して樹脂成形体を形成する第3のステップと、
前記樹脂成形体を斜歯歯車の歯部に加工する第4のステップを経る樹脂製歯車の製造法であって、
噛み合う相手歯車に対して前記樹脂製歯車の片当りが起こる側の集積層が、他の側の集積層より強度が大きくなるように、両集積層の間で、各構成物の構成比及び/又は構成物の種類を異ならせることを特徴とする樹脂製歯車の製造法。
A slurry prepared by mixing at least short fibers and a powdered resin as a component and mixing the component and water is put into a preforming mold, and water is discharged from the preforming mold, thereby performing the preforming mold. A first step of performing the process of accumulating the components in a mold to form an accumulation layer a plurality of times in a wet state;
A second step of forming a molding material by compressing a plurality of integrated layers obtained by performing the process of forming the integrated layer a plurality of times in the thickness direction;
A third step in which the molding material is heated and pressed to form a resin molded body;
A method of manufacturing a resin gear that undergoes a fourth step of processing the resin molded body into a tooth portion of an inclined gear,
The constituent ratio of each component and / or between the two integrated layers is such that the integrated layer on the side where the one-sided contact of the resin gear with respect to the mating gear is stronger than the integrated layer on the other side. Or the manufacturing method of the resin gear characterized by making the kind of structure differ.
構成物として相対的に高強度である短繊維と低強度である短繊維の双方を含んでおり、前記片当りが起こる側の集積層に、他の側の集積層より、高強度の短繊維の構成比を多くしたことを特徴とする請求項1記載の樹脂製歯車の製造法。   The composition contains both short fibers having a relatively high strength and short fibers having a low strength, and the high-strength short fibers in the integrated layer on the side where the one-piece contact occurs than in the integrated layer on the other side. The method for producing a resin gear according to claim 1, wherein the composition ratio of the resin gear is increased. 前記片当りが起こる側の集積層に、他の側の集積層より、短繊維の含有割合を多くしたことを特徴とする請求項1記載の樹脂製歯車の製造法。   2. The method of manufacturing a resin gear according to claim 1, wherein a content ratio of the short fibers is increased in the integrated layer on the side where the one-piece contact occurs compared to the integrated layer on the other side.
JP2013123928A 2013-06-12 2013-06-12 Manufacturing method of resin gears Expired - Fee Related JP6086234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123928A JP6086234B2 (en) 2013-06-12 2013-06-12 Manufacturing method of resin gears

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123928A JP6086234B2 (en) 2013-06-12 2013-06-12 Manufacturing method of resin gears

Publications (2)

Publication Number Publication Date
JP2014240170A true JP2014240170A (en) 2014-12-25
JP6086234B2 JP6086234B2 (en) 2017-03-01

Family

ID=52139698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123928A Expired - Fee Related JP6086234B2 (en) 2013-06-12 2013-06-12 Manufacturing method of resin gears

Country Status (1)

Country Link
JP (1) JP6086234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240163A (en) * 2013-06-12 2014-12-25 新神戸電機株式会社 Method of producing resin molding and method of producing resin-made gear

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227061A (en) * 1998-02-13 1999-08-24 Thermo Setta:Kk Manufacture of resin gear
JP2001001413A (en) * 1999-06-17 2001-01-09 Saamosetta:Kk Production of thermosetting molding material
JP2001335644A (en) * 2000-05-26 2001-12-04 Thermoseter:Kk Production method of resin molding
JP2008248907A (en) * 2007-03-29 2008-10-16 Teijin Techno Products Ltd Method of manufacturing fiber reinforcement material for fiber-reinforced resin gear
JP2012052650A (en) * 2010-09-03 2012-03-15 Nippon Gasket Co Ltd Resin gear, and method and apparatus for producing the same
JP2012145161A (en) * 2011-01-12 2012-08-02 Shin Kobe Electric Mach Co Ltd Resin gear
JP2012167682A (en) * 2011-02-09 2012-09-06 Shin Kobe Electric Mach Co Ltd Resin rotor, resin gear, and method of manufacturing resin rotor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227061A (en) * 1998-02-13 1999-08-24 Thermo Setta:Kk Manufacture of resin gear
JP2001001413A (en) * 1999-06-17 2001-01-09 Saamosetta:Kk Production of thermosetting molding material
JP2001335644A (en) * 2000-05-26 2001-12-04 Thermoseter:Kk Production method of resin molding
JP2008248907A (en) * 2007-03-29 2008-10-16 Teijin Techno Products Ltd Method of manufacturing fiber reinforcement material for fiber-reinforced resin gear
JP2012052650A (en) * 2010-09-03 2012-03-15 Nippon Gasket Co Ltd Resin gear, and method and apparatus for producing the same
JP2012145161A (en) * 2011-01-12 2012-08-02 Shin Kobe Electric Mach Co Ltd Resin gear
JP2012167682A (en) * 2011-02-09 2012-09-06 Shin Kobe Electric Mach Co Ltd Resin rotor, resin gear, and method of manufacturing resin rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014240163A (en) * 2013-06-12 2014-12-25 新神戸電機株式会社 Method of producing resin molding and method of producing resin-made gear

Also Published As

Publication number Publication date
JP6086234B2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5062009B2 (en) Method of manufacturing semi-finished product for molding resin rotating body, method of manufacturing resin rotating body, and resin gear
JP2009154338A (en) Manufacturing method of rotary body made of resin and manufacturing method of semi-finished article for molding rotary body made of resin
JP5163105B2 (en) Resin rotating body and manufacturing method thereof, semi-processed product for resin rotating body molding and manufacturing method thereof, and mold for molding fiber base material for reinforcement
US9364976B2 (en) Composite forming material
JP6103299B2 (en) Manufacturing method of resin molded body and manufacturing method of resin gear
JP5315917B2 (en) Manufacturing method of resin rotating body, resin gear, and manufacturing method of semi-processed part for molding resin rotating body
JP6086234B2 (en) Manufacturing method of resin gears
CN101733937B (en) Method for forming internal threads of composite material
JP5794316B2 (en) Method for manufacturing semi-finished product for molding resin rotating body and method for manufacturing resin rotating body
JP5556477B2 (en) Manufacturing method of resin gears
JP5769027B2 (en) Manufacturing method of fiber substrate and manufacturing method of resin rotating body
JP2013127282A (en) Resin gear
JP5540820B2 (en) Resin gear
JP2010115853A (en) Method for manufacturing semi-fabricated product for molding resin-made rotator, method for manufacturing resin-made rotator, and resin-made gear
JP2012167682A (en) Resin rotor, resin gear, and method of manufacturing resin rotor
JP2014213560A (en) Method of producing resin molding and method of producing resin-made gear using the resin molding produced
JP2017061059A (en) Manufacturing method of toothed gear semi-finished body and manufacturing method of toothed gear using the semi-finished body
CN104786575B (en) A kind of asbestos base lamilate, its manufacturing method and its application
JP2018162854A (en) Resin gear
JP2011220463A (en) Resin gear
JP4475190B2 (en) Multilayer structure and manufacturing method thereof
JP5620936B2 (en) Manufacturing method of resin gear
JP2011099171A (en) Fiber base material and resin gear using the fiber base material
US20160107335A1 (en) Method for composite forming material
JP2012145161A (en) Resin gear

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R151 Written notification of patent or utility model registration

Ref document number: 6086234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees