JP2014239815A - 生体検査装置及び超音波診断装置 - Google Patents

生体検査装置及び超音波診断装置 Download PDF

Info

Publication number
JP2014239815A
JP2014239815A JP2013123677A JP2013123677A JP2014239815A JP 2014239815 A JP2014239815 A JP 2014239815A JP 2013123677 A JP2013123677 A JP 2013123677A JP 2013123677 A JP2013123677 A JP 2013123677A JP 2014239815 A JP2014239815 A JP 2014239815A
Authority
JP
Japan
Prior art keywords
light
unit
subject
ultrasonic
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013123677A
Other languages
English (en)
Inventor
浦野 妙子
Taeko Urano
妙子 浦野
高山 暁
Akira Takayama
暁 高山
務 中西
Tsutomu Nakanishi
務 中西
中村 健二
Kenji Nakamura
健二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013123677A priority Critical patent/JP2014239815A/ja
Priority to EP20140171929 priority patent/EP2837333A3/en
Priority to CN201410259702.1A priority patent/CN104224111A/zh
Priority to US14/302,882 priority patent/US20140371590A1/en
Publication of JP2014239815A publication Critical patent/JP2014239815A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】十分な強度の検出光を確保することができ、正確かつ適切かつ迅速な検査を支援するための生体光計測装置等を提供すること。【解決手段】本実施形態に係る生体検査装置は、光照射部と、光検出部と、少なくとも一つの導光部と、を具備する。光照射部は、近赤外光を被検体の表面から内部に向けて照射する。光検出部は、光照射部の周囲の互いに異なる位置に配置され、それぞれ前記光照射部から照射され前記生体内で拡散反射された光の強度を検出する。少なくとも一つの導光部は、複数の光検出部の少なくとも一つと被検体の表面との間に設けられ、被検体の表面側の開口面積が光検出部の検出面側の開口面積に比して大きくなるように形成されている。【選択図】 図1

Description

本発明の実施形態は、例えば超音波画像診断において、特定波長成分を含む光を生体内に照射し、当該照射により生体内部に拡散反射した光を生体表面の複数の位置で検出することで、異常組織の位置等を非侵襲で正確に検知する生体光計測装置、及び当該生体光計測装置の機能を具備する超音波診断装置に関する。
生体内部を非侵襲に測定する技術にはさまざまな手法がある。その一つである光計測は、被爆の問題がなく、波長を選択することにより計測対象である化合物を選択できるという利点を有している。一般の生体光計測装置は光照射部を生体皮膚表面に押し当て経皮で生体内部に照射し、透過または反射してきた光が再び皮膚を透過して生体外に出射したものを計測し、これに基づいて種々の生体情報を計算する。光計測によって生体内部の異常組織の存在を判断する根底に、正常組織との光の吸収係数の違いがある。すなわち、生体内部において異常組織の吸収係数が異なるため、吸収量の差に応じた検出光量の差が生じる。つまり、検出光量から逆問題として解くと異常組織の吸収係数を求めることができ、求めた吸収係数から異常組織の性状を判別できる。また、計測した光により、計測位置、深さを解析する。この解析手法には、光照射部(以後光源と略す)と検出器の距離を調整するという手法(空間分解法)、および強度が時間的に変化する光源を用い、光が到達する時間の違いから深さ情報を得る手法(時間分解法)、さらにはこれらを組み合わせた方法などがある。これらの解析法により、高品質の信号を取得できる生体光計測装置が実現する。しかしながら、生体内の光による情報の画像化には空間分解能の低さに問題がある。さらに、反射光の検出結果から正しい位置情報を得るには数多くのデータを複雑なアルゴリズムで演算する必要があり、リアルタイムで判定できるものではない。
生体光計測において、実現可能性が高いとされる応用に、乳がん検査が挙げられる。しかし、上述したように光計測単独では分解能と解析時間に問題があるため、他のモダリティと併用して検査性能を向上させる方式が望ましい。そこで発明者らは、超音波エコーの形態情報を利用して光の低空間分解能を補うという方式を提案した。この方式により、生体組織の中の形態的特徴と、形態的特徴部分の成分分布が従来よりも短時間で判別できることが期待されるものの、即時判定にはまだ改善の余地がある。
ところで、乳がんは女性の主な死亡原因のひとつである。乳がんのスクリーニングと早期診断は、死亡率を減少させ、健康管理の費用の抑制において非常に大きな価値を持つ。現在の方法では乳房の組織の触診と、疑わしい組織変形を探すためのX線撮影を行う。X線写真に疑わしい箇所があると、超音波撮像を行い、さらに外科的組織検査を行う。これらの一連の検査は最終的な結論に達するまでにかなりの時間を要する。また、閉経前の若年層においては乳腺が多くX線撮影においては感度が得にくいという問題もある。従って、特に若年層においては超音波撮像によるスクリーニングの意義は大きい。
一般に、超音波撮像においては、認定された操作者による超音波静止画像の採取を行い、専門の読影者(複数の場合もある)によって画像上の形態情報から判定が下される。検診においては操作者の疲労と集中力低下による見落としの危険性を鑑み、一人の操作者によるスクリーニングは一日あたり最大でも50名が限度とされる。
超音波撮像において形態的特徴を捉えた静止画像を採取するには操作者の知識と経験が非常に重要となる。的確かつ迅速なスクリーニングには、習熟度も要求される。例えば被験者一人あたりの検査時間は標準的に5分から10分であるが、操作者の技能によってはさらに時間がかかる場合もある。すなわち、現在の超音波撮像によるスクリーニングにおいては、操作者の熟練度によって画像採取の的確性がばらつく懸念がある。さらに画像採取に際しては常時画像の注視が必要な上、操作者単独の判断にゆだねられるため、熟練した操作者であってもその精神的負担は大きい。動画ですべての画像情報を採取する方式もあるが、画像認識を用いて機械検索する技術はまだ完成していない。そのため読影者が動画から静止画を探すことになり、この場合は読影者側の負担が大きくなる。
この様な超音波撮像によるスクリーニング(すなわち、超音波プローブの適切で迅速な位置決め)の課題を解決するために、光学測定で得られた生体の代謝情報により超音波エコーのプローブの測定位置を面方向で誘導して、技師の負担を軽減する方式が提案されている。この方式により、従来よりも短時間かつ比較的容易に異常部位を検出・判別可能になった。
特開2000−023719号公報 特開2005−331292号公報 特開2007−020735号公報 特開2009−077931号公報 国際公開WO2006/132218号公報
しかしながら、超音波画像診断に利用する従来の生体光計測装置には、未だ多くの課題が残っている。特に、従来の生体光計測装置は、十分な強度の検出光を確保することができず、このため、生体内部の疑わしい組織の存在を光計測によって示唆・誘導を、高い精度で実現することができない。
上記事情に鑑み、十分な強度の検出光を確保することができ、正確かつ適切かつ迅速な検査を支援するための生体光計測装置、及び当該生体光計測装置の機能を具備する超音波診断装置を提供することを目的とする。
本実施形態に係る生体光計測装置は、光照射部と、光検出部と、少なくとも一つの導光部と、を具備する。光照射部は、近赤外光を被検体の表面から内部に向けて照射する。光検出部は、光照射部の周囲の互いに異なる位置に配置され、それぞれ前記光照射部から照射され前記生体内で拡散反射された光の強度を検出する。少なくとも一つの導光部は、複数の光検出部の少なくとも一つと被検体の表面との間に設けられ、被検体の表面側の開口面積が光検出部の検出面側の開口面積に比して大きくなるように形成されている。
図1は、光プローブ40、光計測処理ユニット42からなる生体光計測装置4のブロック構成図である。 図2は、本実施形態に係る生体光計測装置4を組み込んだ超音波診断装置1のブロック構成図を示している。 図3は、光照射部400、複数の光検出部401、導光部402の被検体表面における配置例を示した図である。 図4は、プローブPを被検体接触面側から見た図である。 図5は、テーパー構造を用いた導光部402の一例を示した側面図である。 図6は、導光部402をプローブPの被検体接触面側から見た図である。 図7は、導光部402を取り付けた場合の検出光強度と、導光部402を取り付けなかった場合の検出光強度と、を示したグラフである。
本実施形態に係る生体光計測装置は、テーパー構造を用いた導光機能により、光検出部での導光量或いは導光強度を飛躍的に向上させるものである。この様な本実施形態に係る導光機能は、生体光計測装置であれば、どの様なものであっても適用可能である。以下においては、説明を具体的にするため、超音波画像診断において用いられる生体光計測装置を例として説明する。また、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
図1は、光プローブ40、光計測処理ユニット42からなる生体光計測装置4のブロック構成図である。図2は、本実施形態に係る生体光計測装置4を組み込んだ超音波診断装置1のブロック構成図を示している。
生体光計測装置4は、光プローブ40及び光計測処理ユニット42と、超音波プローブ12の配置操作を支援するための支援情報を生成する支援情報生成ユニット44と、を具備している。なお、本実施形態においては、図2に示した様に、超音波診断装置1に組み込まれた(超音波診断装置1と一体構造となっている)生体光計測装置4について説明する。しかしながら、当該例に拘泥されず、生体光計測装置と超音波診断装置とを別体構造としてもよい。
光プローブ40は、少なくとも一つの光照射部400、複数の光検出部401、光検出効率を向上させるための導光部402を有している。光照射部400は、光源420が発生する光(近赤外光)を被検体に向けて照射する。光検出部401は、例えば光ファイバーの端部で構成された検出面を有し、当該検出面から光導波部を介して入力する被検体内からの反射光を光電変換する複数の検出素子からなる。検出素子としては、例えば、フォトダイオードやフォトトランジスタなどの受光素子のほか、CCD、APD、光電子増倍管等を採用することができる。光照射部400の被検体との接触面には、光整合層を設けるようにしてもよい。導光部402は、各光検出部401と被検体表面との間に設けられ、光照射部400からの照射光に基づく被検体からの光を導光(或いは集光)し、各光検出部401における光検出効率を躍的に向上させる。
図3は、光照射部400、複数の光検出部401、導光部402の被検体表面における配置例を示した図である。なお、同図において異常組織部分は、球状の吸収体として例示している。光照射部400から照射された光は被検体内で反射(散乱)を繰り返し、再び被検体外へ出射する。このように被検体外に出射する光は、被検体内において散乱を繰り返すため、その強度は入射光と比較して大幅に減衰し、その方向も分散することになる。
生体光計測において異常組織部分の有無およびその性状を評価するためには、異常組織部分がある場合とない場合で出射した光の強度を比較する必要がある。さらに、超音波画像診断に利用する場合には、超音波撮像すべき位置の接近状態を検知して検者に教え、超音波プローブ(及び光プローブ40)を誘導していくためには、光プローブ40の走査に追随して検出した光強度が演算に耐えるSN比を持っている必要がある。本実施形態に係る生体光計測装置では、後述するように、導光部402により、従来に比してSN比を飛躍的に向上させることができる。
光計測処理ユニット42は、光源420、光信号制御部422、光解析部424、演算回路426を有している。光源420は、生体内吸収が小さい波長の光(例えば、生体の窓と呼ばれる波長帯近傍である600nm〜1800nmの範囲の光)、異常部位で吸収量が増す特定波長の光(例えば、生体の窓と呼ばれる波長帯範囲にあり血液中のヘモグロビンが吸収する750〜850nmの波長範囲の光)を発生する半導体レーザ、発光ダイオード、固体レーザ、ガスレーザなどの発光素子等である。光源420において発生した光は、光ファイバーや薄膜光導波路で構成される光導波部を介して(或いは直接空間の伝播を介して)、光照射部400に供給される。なお、光源420は、光照射部400と一体に構成してもよい。
光信号制御部422は、生体光計測装置4を動的又は静的に制御する。例えば、光信号制御部422は、超音波診断装置1の制御プロセッサ31の制御のもと、所定のタイミング、周波数、強度、強度変動周期Tで光照射部400から光が照射されるように、光源420を制御する。また、光信号制御部422は、所定のタイミングで光解析処理が実行されるように、光解析部424を制御する。
光解析部424は、光検出部401から入力したアナログ信号を増幅した後、ディジタル信号に変換する。さらに、光解析部424は、光検出部401間での検出光の強度変化を解析する。
演算回路426は、光検出部401間での検出光の強度変化に基づいて、超音波プローブ12と被検体表面との密着度、被検体内において所定の光吸収係数を示す異常部位(例えば、特定波長を正常組織に比して多く吸収する部位)の被検体の表面からの深さ、所定の位置(例えば光照射部400、超音波送受信面120の中心等)を基準とする異常部位の三次元的位置及び距離を計算する。演算回路426における計算結果は、支援情報生成ユニット44に送り出される。
支援情報生成ユニット44は、超音波プローブ12の送受信面を被検体に密着させるために、演算回路42の判定結果及び計算結果に基づいて、超音波プローブ12の位置、姿勢、向き等を指示・誘導する支援情報を生成する。生成された支援情報は所定の形態で表示される。
次に、超音波診断装置1について説明する。超音波診断装置1は、図2に示した様に、超音波プローブ12、入力装置13、モニター14、超音波送信ユニット21、超音波受信ユニット22、Bモード処理ユニット23、ドプラ処理ユニット24、RAWデータメモリ25、ボリュームデータ生成ユニット26、画像処理ユニット28、表示処理ユニット30、制御プロセッサ(CPU)31、記憶ユニット32、インターフェースユニット33を具備している。
超音波プローブ12は、光プローブ40と共にプローブPを構成する。超音波プローブ12は、生体を典型例とする被検体に対して超音波を送信し、当該送信した超音波に基づく被検体からの反射波を受信するデバイス(探触子)であり、その先端に複数に配列された圧電振動子、整合層、バッキング材等を有している。当該超音波プローブ12の超音波送受信面の近傍には、例えば図4に例示するように、生体光計測装置4の光照射部400、複数の光検出部401が所定の形態で配列される。入力装置13は、装置本体11に接続され、超音波診断装置1、生体光計測装置を操作するための各種指示をとりこむための各種スイッチ、ボタン、トラックボール、マウス、キーボード等を有している。モニター14は、生体内の形態学的情報や、血流情報、支援情報生成ユニット44において生成された支援情報を、所定の形態で表示する。
超音波送信ユニット21は、所定のレート周波数fr Hz(周期;1/fr秒)で、送信超音波を形成するためのトリガパルスを発生し、所定の遅延時間を与えた後、プローブ12に駆動パルスを印加する。超音波受信ユニット22は、プローブ12を介して取り込まれたエコー信号をチャンネル毎に増幅し、A/D変換器した後、必要な遅延時間を与え加算処理を行う。Bモード処理ユニット23は、受信ユニット22からエコー信号を受け取り、対数増幅、包絡線検波処理などを施し、信号強度が輝度の明るさで表現されるデータを生成する。ドプラ処理ユニット24は、受信ユニット22から受け取ったエコー信号から血流信号を抽出し、血流データ(平均速度、分散、パワー等の血流情報)を生成する。
RAWデータメモリ25は、Bモード処理ユニット23、ドプラ処理ユニット24から受け取った複数のBモードデータを用いてRAWデータを生成する。ボリュームデータ生成ユニット26は、空間的な位置情報を加味した補間処理を含むRAW−ボクセル変換を実行することにより、Bモードボリュームデータ、血流ボリュームデータを生成する。画像処理ユニット28は、ボリュームデータ生成ユニット26から受け取るボリュームデータに対して、ボリュームレンダリング、多断面変換表示(MPR:multi planar reconstruction)、最大値投影表示(MIP:maximum intensity projection)等の所定の画像処理を行う。表示処理ユニット30は、画像処理ユニット28において生成・処理された各種画像データに対し、ダイナミックレンジ、輝度(ブライトネス)、コントラスト、γカーブ補正、RGB変換等の各種を実行する。制御プロセッサ31は、情報処理装置(計算機)としての機能を持ち、各構成要素の動作を制御する。記憶ユニット32は、専用プログラム、撮像されたボリュームデータ、診断情報(患者ID、医師の所見等)、診断プロトコル、送受信条件、撮像画像、その他のデータ群を記憶する。
インターフェースユニット33は、入力装置13、ネットワーク、新たな外部記憶装置(図示せず)に関するインターフェースである。また、インターフェースユニット33を介して、外付けの生体光計測装置を本超音波診断装置本体11に接続することも可能である。当該装置によって得られた超音波画像等のデータや解析結果等は、インターフェースユニット33よって、ネットワークを介して他の装置に転送可能である。
(テーパー構造を用いた導光機能)
次に、本生体光計測装置4が有するテーパー構造を用いた導光機能について説明する。本機能は、被検体表面側の開口面積が光検出部401の検出面側の開口面積に比して大きくなる構造(例えば、テーパー構造)を有する導光部402を、少なくとも一つの光検出部401と被検体表面との間に設けることで実現される。なお、光検出部401の検出面と導光部402との間に、光ファイバーを設けるようにしてもよい。係る場合、光ファイバーの導光部側の開口面積は、導光部の被検体の表面側の開口面積に比して小さくなるように形成される。
図5は、テーパー構造を用いた導光部402の一例を示した側面図である。図5に示す様に、導光部402は、被検体接触面から光検出部401の検出面にかけて先細りになるテーパー構造(光検出部401の検出面の大きさに比して、被検体接触面の開口が次第に大きくなる構造)を有している。このような構造を有する導光部402を各光検出部401の検出面側に設けることで、光検出部401の軸に平行な光のみならず、被検体内において散乱を繰り返し光検出部401の軸に平行でない光を効率的に光検出部401の検出面に導くことができる。
なお、本実施形態では、導光部402を、全ての光検出部401に設ける構成を例示している。しかしながら、当該例に拘泥されず、例えば、当該導光部402による導光効果が特に顕著に得られる所定範囲(例えば、複数の光検出部のうち、光照射部との間の距離が5mm以上)にある光検出部401について、導光部402を設けるようにしてもよい。
また、本導光機能による効果は、例えば同じ開口径の導光部402を各光検出部401に設けることで実現することができるが、さらに導光効果を向上させたい場合には、導光部402の被検体接触面の開口を、受光距離(光の入射位置と出射位置を結ぶ直線距離)が遠くなるに従って大きくすることが好ましい。
図6は、受光距離が遠くなるに従って導光部402の被検体接触面の開口を大きくする場合の例であり、導光部402をプローブPの被検体接触面側から見た図である。同図において、各点線は、光照射部400からの各光検出部401の距離を示している。この様な構成により、光照射位置から離れた位置における導光効率をさらに飛躍的に向上させることができる。
図7は、導光部402を取り付けた場合の検出光強度と、導光部402を取り付けなかった場合の検出光強度と、を示したグラフである。発明者らの検証によれば、同図に示す様に、受光距離が5mmから15mmの場合の光強度は、導光部402によって1.2から1.3倍の増加するのに対して、受光距離25mmでは6.8倍、受光距離35mmでは10倍の増加となることが確認された。また、導光部402の被検体接触面の開口面積は、受光距離が最も小さい5mmの場合に加工可能な略5mmφとした場合に効果が認められた。受光距離35mmにおいて同寸法の導光体と略10mmφの導光体を比較したところ、略10mmφの導光体でより大きな効果が認められた。受光距離が大きくなると被検体内における伝播距離も大きくなるため、散乱回数が増える。従って、検出される光強度は、受光距離が大きくに従って低下すると一般的には考えられる。しかしながら、図7に示した様に、導光部402を設けた場合の検出光の強度は、受光距離が大きくなればなるほど、(光は多くの散乱を繰り返すにも関わらず)飛躍的に向上している。これは、顕著な効果であると言える。
なお、従来の生体光検出装置として、例えば国際公開WO2006/132218号公報に開示されているものがある。この生体光検出装置は、被検体からの光をもれなく受光するために導波路の開口面積を生体側と検出器側で異なった構造とし、生体側を大きくするという機能を有するが、被検体内に光を照射することなく、当該被検体内から自然に発生する光を検出するものである。一方、本実施形態に係る生体光計測装置4は、受光距離(被検体内に照射する光の入射位置と、当該被検体内を伝播し体外に出射する光の出射位置との間の距離)によってこの導光体の効果が異なり、有効な直径も異なるという新しい実験事実に基づくものである。そのため、本実施形態に係る生体光検出装置4は、従来の生体光検出装置が実現できない、著しい技術的効果を達成するものとなっている。
以上述べた生体光計測装置によれば、被検体表面から各光検出部の検出面に向かって先細りとなるテーパー構造を有する導光部により、従来に比して、被検体内において散乱を繰り返し当該被検体外に出射する光を高い効率にて集めることができる。従って、従来に比して高いS/N比で光生体計測を実行し、被検体内部の疑わしい組織の存在を判定し提示することができる。本実施形態に係る生体光計測装置を用いて超音波プローブの位置を誘導する場合には、疑わしい組織の接近状態をより正確に検知し提示することができ、操作者の習熟度による超音波画像診断の質のばらつきを軽減することが可能となる。
また、従来に比して、超音波プローブ(及び光プローブ)を配置すべき位置(疑わしい組織の真上等)に正確に誘導することができ、代謝情報に対応する光学定数の演算時間を大幅に短縮することができる。さらに、超音波画像の読影時においても、光計測による代謝情報で超音波画像を補完することが可能であるため、読影医は、迅速かつ適正な判断を行うことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…超音波診断装置、11…装置本体、12…超音波プローブ、13…入力装置、14…モニター、21…超音波送信ユニット、22…超音波受信ユニット、23…Bモード処理ユニット、24…ドプラ処理ユニット、25…RAWデータメモリ、26…ボリュームデータ生成ユニット、28…画像処理ユニット、30…表示処理ユニット、31…制御プロセッサ(CPU)、32…記憶ユニット、33…インターフェースユニット、40…光プローブ、42…光計測処理ユニット、44…支援情報生成ユニット、400…光照射部、401…光検出部、402…導光部、420…光源420、422…光信号制御部、424…光解析部、426…演算回路、P…プローブ

Claims (7)

  1. 近赤外光を被検体の表面から内部に向けて照射する光照射部と、
    前記光照射部の周囲の互いに異なる位置に配置され、それぞれ前記光照射部から照射され前記生体内で拡散反射された光の強度を検出する複数の光検出部と、
    前記複数の光検出部の少なくとも一つと前記被検体の表面との間に設けられ、前記被検体の表面側の開口面積が前記光検出部の検出面側の開口面積に比して大きくなるように形成された少なくとも一つの導光部と、
    を具備することを特徴とする生体光計測装置。
  2. 前記導光部は、前記複数の光検出部のうち、前記光照射部との間の距離が5mm以上の前記光検出部に設けられることを特徴とする請求項1記載の生体光計測装置。
  3. 前記導光部の前記被検体の表面側の開口径は、前記光照射部からの距離が遠くなるに従って大きくなることを特徴とする請求項1記載の生体光計測装置。
  4. 前記光検出器の検出面と前記導光部との間に設けられた光ファイバーをさらに具備し、
    前記導光部の前記被検体の表面側の開口面積は、前記光ファイバーの前記導光部側の開口面積に比して大きくなるように形成されていること、
    を特徴とする請求項1乃至3のうちいずれか一項記載の生体光計測装置。
  5. 前記導光部は、実質的に円錐台形状をなすテーパー構造であることを特徴とする請求項1乃至4のうちいずれか一項記載の生体光計測装置。
  6. 前記光照射部と前記複数の光検出部とは、超音波プローブの超音波送受信面の周囲に配置され、
    前記各光検出部において検出された光の強度に基づいて、前記超音波送受信面と前記被検体表面との密着度を計算する計算ユニットと、
    前記計算された密着度に基づいて、前記超音波プローブの操作を支援するための支援情報を生成する支援情報生成ユニットと、
    前記支援情報を出力する支援情報出力ユニットと、をさらに具備すること、
    を特徴とする請求項1乃至5のうちいずれか一項記載の生体光計測装置。
  7. 超音波送受信面から被検体に超音波を送信し、前記超音波送受信面を介して、前記被検体内において反射された超音波を受信する超音波プローブと、
    前記超音波送受信面の周囲から前記被検体内に光を照射する少なくとも一つの光照射部と、前記超音波送受信面の周囲に配置され、前記被検体内で反射された光の強度を検出する複数の光検出部と、を有する光プローブと、
    前記超音波プローブによって受信された超音波を用いて超音波画像を生成する画像生成ユニットと、
    前記各光検出部において検出された光の強度に基づいて、前記超音波送受信面と前記被検体表面との密着度を計算する計算ユニットと、
    前記計算された密着度に基づいて、前記超音波プローブの操作を支援するための支援情報を生成する支援情報生成ユニットと、
    前記支援情報を出力する支援情報出力ユニットと、
    を具備する超音波診断装置。
JP2013123677A 2013-06-12 2013-06-12 生体検査装置及び超音波診断装置 Pending JP2014239815A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013123677A JP2014239815A (ja) 2013-06-12 2013-06-12 生体検査装置及び超音波診断装置
EP20140171929 EP2837333A3 (en) 2013-06-12 2014-06-11 Biological optical measurement apparatus and ultrasound diagnostic apparatus
CN201410259702.1A CN104224111A (zh) 2013-06-12 2014-06-12 生物光学测量设备和超声诊断设备
US14/302,882 US20140371590A1 (en) 2013-06-12 2014-06-12 Biological optical measurement apparatus and ultrasound diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123677A JP2014239815A (ja) 2013-06-12 2013-06-12 生体検査装置及び超音波診断装置

Publications (1)

Publication Number Publication Date
JP2014239815A true JP2014239815A (ja) 2014-12-25

Family

ID=52139415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123677A Pending JP2014239815A (ja) 2013-06-12 2013-06-12 生体検査装置及び超音波診断装置

Country Status (1)

Country Link
JP (1) JP2014239815A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110878A (ja) * 2012-10-31 2014-06-19 Toshiba Corp 超音波診断装置
US10251628B2 (en) 2015-03-17 2019-04-09 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus and biometrical examination apparatus
US10603017B2 (en) 2016-03-14 2020-03-31 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus and biomedical examination apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014110878A (ja) * 2012-10-31 2014-06-19 Toshiba Corp 超音波診断装置
US10251628B2 (en) 2015-03-17 2019-04-09 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus and biometrical examination apparatus
US10603017B2 (en) 2016-03-14 2020-03-31 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus and biomedical examination apparatus

Similar Documents

Publication Publication Date Title
JP6339269B2 (ja) 光計測装置
JP6132466B2 (ja) 被検体情報取得装置及び被検体情報取得方法
US20120302866A1 (en) Photoacoustic imaging apparatus and photoacoustic imaging method
JP2016064113A (ja) 超音波診断装置及び生体光計測装置
US20140371590A1 (en) Biological optical measurement apparatus and ultrasound diagnostic apparatus
JP2015205136A (ja) 光音響装置、光音響装置の制御方法、及びプログラム
CN106618489A (zh) 用于获取被检体信息的装置和处理方法
JP2012105903A (ja) 光音響測定装置及び方法
JP5818582B2 (ja) 被検体情報取得装置および被検体情報取得方法
CN103784165A (zh) 超声波诊断装置
KR102192853B1 (ko) 음향파장치 및 그 제어방법
JP2015123252A (ja) 生体光計測装置、超音波診断装置及び生体光計測方法
JP2014239815A (ja) 生体検査装置及び超音波診断装置
JP6704760B2 (ja) 超音波診断装置及び生体検査装置
WO2016051749A1 (en) Object information acquiring apparatus
JP6358573B2 (ja) 乳房計測装置の作動方法及び乳房計測装置
WO2016208647A1 (en) Apparatus and display control method
JP5769652B2 (ja) 光音響計測装置および光音響計測方法
JP2016171910A (ja) 超音波診断装置及び生体検査装置
JP6486733B2 (ja) 超音波診断装置及び生体検査装置
US20190142277A1 (en) Photoacoustic apparatus and object information acquiring method
JP2020000446A (ja) 医用画像診断装置及び圧迫板
JP6513121B2 (ja) 処理装置、被検体情報取得装置、光音響画像の表示方法、及びプログラム
JP2017055886A (ja) 超音波診断装置及び生体検査装置
JP2019136520A (ja) 処理装置、光音響画像の表示方法、及びプログラム