JP2014239362A - 光増幅システム - Google Patents

光増幅システム Download PDF

Info

Publication number
JP2014239362A
JP2014239362A JP2013121464A JP2013121464A JP2014239362A JP 2014239362 A JP2014239362 A JP 2014239362A JP 2013121464 A JP2013121464 A JP 2013121464A JP 2013121464 A JP2013121464 A JP 2013121464A JP 2014239362 A JP2014239362 A JP 2014239362A
Authority
JP
Japan
Prior art keywords
optical
signal
light intensity
value
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013121464A
Other languages
English (en)
Other versions
JP5663629B2 (ja
Inventor
藤原 正満
Masamitsu Fujiwara
正満 藤原
遼 胡間
Ryo Koma
遼 胡間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2013121464A priority Critical patent/JP5663629B2/ja
Publication of JP2014239362A publication Critical patent/JP2014239362A/ja
Application granted granted Critical
Publication of JP5663629B2 publication Critical patent/JP5663629B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

【課題】本発明は、WDM/TDM−PONにおける上り信号を増幅するための、比較的安価なフィードフォワード制御機能を有する光増幅システムを提供することを目的とする。【解決手段】本願発明の光増幅システムは、上り送信波長が可変である加入者装置92からの上り信号が光集線器82の複数の入力ポートに入力され、光集線器82の複数の出力ポートから出力された上り信号が波長ごとに異なる光受信器73で受信される光通信システムに用いられる光増幅システムであって、入力ポートとONU92の間に各々接続され、複数波長の上り信号を増幅する光増幅器83と、出力ポートと光受信器73の間に各々接続され、出力ポートから出力された光受信器73の受信波長の上り信号を光受信器73の受信光強度の上限値未満又は上限値以下となる予め定められた強度に制御する光強度制御回路84と、を備える。【選択図】図1

Description

本発明は、加入者装置から送信された光信号であって局側装置の光受信器に入力される光信号の光信号強度を調整するための光増幅システムに関する。
アクセスネットワークでは、IEEEやITU−Tで標準化されたPON(Passive Optical Network)システムが広く採用されている。PONシステムは、収容局と複数の加入者が、収容局外に配置された光スプリッタを介して、一本の光ファイバで結合される構成であり、上り信号と下り信号が異なる波長により、同一光ファイバ上を双方向に伝送される。下り信号は、加入者ごとの信号が、時分割多重(TDM:Time Division Multiplexing)技術を用いて多重された連続信号であり、加入者宅に配置される加入者装置(ONU:Optical Network Unit)は、光スプリッタにおいて分岐された連続信号から、自身に割り当てられた時間位置にあるデータを受信する。また上り信号は、ONUから間欠的に送信されるバースト信号であり、光スプリッタで合流してTDM信号となり、収容局に送られる。本システムでは、収容局から光スプリッタまでの光ファイバ、および収容局に配置される局側装置(OLT:Optical Line Terminal)を、複数の加入者で共用化できることから、ギガを超える高速の光アクセスサービスを、経済的に提供することができる。
今後の更なるトラヒックの増大に応えるため、TDM技術を用いてラインレートの高速化を押し進めるとすると、より高速な電気回路が必要となり、その実現は困難を極めるものと予想される。また仮に実現できたとしても、装置コストや消費電力の増加を招くことは必至である。それに対して、波長多重(WDM:Wavelength Division Multiplexing)技術をTDM技術と併用したWDM/TDM−PONシステムが提案されている。これによれば、ラインレート10Gb/sのTDM信号を4波長(上下信号を考慮すると8波長)束ねることにより、10Gb/sを超える速度の電気回路を用いることなく、総容量40Gb/sのアクセスシステムを構築することができる。
図8に、WDM/TDM−PONシステムの構成例を示す。収容局95外には光スプリッタ93が配置され、複数のONU92を1本の光ファイバで接続して収容するために用いられる。一方、収容局95には、光集線器82、およびOLT内に搭載されるN台の局側送受信器(OSU:Optical Subscriber Unit)81が配置される。図では、OSU81のみを記載し、OLTは省略している。通常Nは、システムが使用する上り信号、および下り信号の波長数と同一である。
光集線器82は、任意のOSU81が任意のONU92を収容可能とするために用いられる。これにより、輻輳が少ない場合には、ONU92が接続するOSU81を片寄せすることでOLTの消費電力を低減し、また輻輳するOSU81がある場合には、当該OSU81が収容するONU92の一部を、輻輳が少ないOSU81に収容替えして負荷を分散することができる。図では、光集線器82として、上り信号が入力さるM個の入力ポート、および上り信号が出力されるN個の出力ポートを有する光スプリッタを用いる場合を示している。出力ポートが複数ある点において、収容局95外に配置される光スプリッタ93と異なる。
図9に、光集線器82に光スプリッタを用いた場合の上り信号の通過波長を示す。M=3、N=3の場合を例示し、入力ポート#pに入力された信号波長#qを、λpqと記述する。図示の通り、上り信号の或る入力ポートに3波長が入力されると、出力ポートすべてに同一の3波長が出力される。ONU92に備わる波長可変光送信器71の送信波長は、波長可変光源を用いることにより可変とする。OSU81の光受信器73は、通過波長固定のバンドパスフィルタ(BPF:Band Pass Filter)72を用いて特定の信号波長を受信する。ONU92は、波長ごとにTDMされる上り信号を送信し、送信波長を変えることで任意のOSU81により受信される。図示はしないが、光集線器82の下り信号の通過波長の関係は、上り信号と同様である。OSU81は、収容するONU92ごとにTDMされた下り信号を送信し、当該ONUは、受信波長を選択して自身に割り当てられた時間位置にあるデータを受信する。或るONU92宛ての下り信号が、いずれのOSU81により送信されるかは、その上位に配置される振り分け器(図示せず)により割り振られるが、いずれのOSU81に割り振られた場合であっても、受信波長を変えることで任意のONU92により受信される。
以上のように、波長可変性を有するONU92やOSU81を、光集線器82を経由するアクセスネットワークに結合することで、任意のONU92が任意のOSU81で収容されるため、上述の消費電力低減、負荷分散等の機能を有する高速のアクセスシステムを構築することが可能となる。
図10に、光集線器82としてアレイ導路回折格子(AWG:Arrayed Waveguide Grating)を用いた場合の通過波長の一例を示す。本アレイ導路回折格子は、例えば、隣接ポート間の透過波長間隔(Δw)とFSR(F)(Free Spectral Range)が、F=N×Δwの関係を有する周回性AWGである。上り信号の或る入力ポートに3波長が入力されると、各出力ポートに1波長ずつが出力される。他の入力ポートにも同じ3波長が入力されると、AWGの周回性により、各出力ポートに入力ポートの異なる3波長が出力される。各ONU92は、この出力された3波長に対してTDMされるバースト信号を送信する。また、下り波長を合波する場合は、光スプリッタ93と本周回性AWGの間に、上り波長と下り波長を合分波するWDMフィルタを挿入し、波長合波用の周回性AWAGをそれに結合することにより対応する。もしくは、上り下りの波長帯を本周回性AWGの異なるFSRに対応させ、上り下りの合分波における入出力ポートを共用化することもできる。
一方、GE−PON、B−PON、G−PONは、商用システムであるが、システムに許容される伝送路損失の拡大が課題の一つとなっている。これが実現できれば、光スプリッタ93の分岐数を増やして収容する加入者の数を増したり、伝送距離を長延化して収容エリアを拡げたりして、数的又は面的に、収容効率を向上させることが期待できる。これを解決するために、光増幅器を用いて、多分岐スプリッタや、長延化された伝送路の損失を補償する手法が提案されている。
図11に、WDM/TDM−PONに光増幅器を適用したシステム構成の一例を示す。図に示される通り、光増幅器83は、光集線器82と収容局95外の光スプリッタ93を結合する光ファイバ上に配置される。光増幅器83は収容局95外に配置しても、収容局95内に配置してもよい。使用する光増幅器83として、希土類を添加した光ファイバ増幅器、集中増幅型の光ファイバラマン増幅器、半導体光増幅器(SOA:Semiconductor Optical Amplifier)等を用いることができる。
光増幅器83を用いたPONシステムにおける大きな課題の一つが、上り信号を増幅する光増幅器の実現である。上り信号は、ONU92から光スプリッタ93までの距離の違い、ONU92内の送信器出力の個体差等により、光増幅器83に入力されるバースト光信号の強度にばらつきが生じる。ここで問題となるのが、光強度の大きいバースト光信号の増幅である。光増幅器83に強バースト光信号が入力されると、光増幅器83からより大きな強度の信号が出力される。したがって、光増幅後の伝送路損失が大きくない場合、OLT内の受信器に受信感度の上限を超える上り信号が入力されて、信号が受信できなくなる。
この問題を解決するために、光増幅器83に出力値を一定に制御することのできるフィードフォワード制御機能を付与した光増幅装置が提案されている(特許文献1及び非特許文献1参照。)。図12に、特許文献1による基本構成を示す。特許文献1では、光増幅器83の後段に光強度制御回路84を備える。光強度制御回路84は、分岐器11、光電気変換器12、制御回路13、駆動回路14、光強度減衰器15−1から構成される。光増幅器83は、入力されたバースト光信号を増幅する。分岐器11は、増幅されたバースト光信号の一部を分岐する。光電気変換器12は、分岐されたバースト光信号を電気信号に変換する。制御回路13には、予め取得した光強度減衰器15−1の駆動信号変化に対する減衰量の関係式が格納され、電気信号から読み取った入力光強度に対して光強度減衰器15−1から出力される光強度が予め設定した目標値となる駆動信号を算出する。駆動回路14は、算出された駆動信号を送出する。光強度減衰器15−1は、駆動信号により駆動され、入力バースト光信号の光強度に応じて減衰量が調整される。図示はしないが、入力光強度を検出された光信号が光強度減衰器15−1に入力されるタイミングと、光強度減衰器15−1が駆動信号により駆動されるタイミングを一致させるために、特許文献1に記載のように、必要に応じて分岐器と光強度減衰器15−1の間に遅延線を配置する。以上、フィードフォワード制御方式を利用した構成により、入力バースト光信号の強度を、出力において一定の目標値となるよう制御することができる。
図13に、非特許文献1による光増幅装置の基本構成を示す。特許文献1では、光増幅機能を有する光増幅器83と光強度減衰器15−1を分けた構成であるのに対し、本構成では、両機能を単一のSOA15−2で実現していることから、用いる光部品の点数を削減することができる。
図14に、特許文献1に記載の光増幅装置をWDM/TDM−PONに適用した場合の構成を示す。図9の構成のWDM/TDM−PONでは、図15に示すように、波長ごとに時間的に重なりのある光信号が光増幅器83に入力される。このため、分岐器11、光電気変換器12、制御回路13、駆動回路14、光強度減衰器15−1から成る光強度制御回路84を、全波長で共通化することはできず、波長分波器85によって分波された波長ごとに配置する必要がある。これにより、図16に示すように、波長ごとに時間的に重なりのある光信号の光強度を一定に制御することができる。
図8および図11に示すWDM/TDM−PONシステムを例にすると、1つのシステム当り、M×N個の光強度制御回路84を用意する必要があり、使用する波長数に比例して装置コストが上昇することになる。また、図10の構成のWDM−TDM−PONシステムでは、そもそも上り信号が波長ごとにTDMされないので、図14の構成では光強度の制御はできない。
特開2010−226685号公報
N. Cheng, S.−H. Yen, J. Cho, Z. Xu, Y. Tang, and L. G. Kazovsky, "Long Reach Passive Optical Networks with Adaptive Power Equalization Using Semiconductor Optical Amplifiers," ACP’2009, FS4, 2009.
本発明は、WDM/TDM−PONにおける上り信号を増幅するための、比較的安価なフィードフォワード制御機能を有する光増幅システムを提供することを目的とする。
本願発明の光増幅システムは、
上り送信波長が可変である加入者装置からの上り信号が光集線器の複数の入力ポートに入力され、前記光集線器の複数の出力ポートから出力された上り信号が波長ごとに異なる局側光受信器で受信される光通信システムに用いられる光増幅システムであって、
前記入力ポートと前記加入者装置の間に各々接続され、複数波長の上り信号を増幅する光増幅器と、
前記出力ポートと前記局側光受信器の間に各々接続され、前記出力ポートから出力された前記局側光受信器の受信波長の上り信号を前記局側光受信器の受信光強度の上限値未満又は上限値以下となる予め定められた強度に制御する光強度制御回路と、
を備える。
本願発明の光増幅システムでは、
前記光強度制御回路は、
前記出力ポートから出力された前記局側光受信器の受信波長の上り信号を主信号とモニタ光に分岐する分岐器と、
前記主信号の光強度を、供給された駆動電流を用いて調整する光強度調整部と、
前記モニタ光を電気信号に変換する光電気変換器と、
前記光電気変換器からの電気信号の振幅値を用いて前記上り信号の光強度を算出し、算出した光強度の上り信号が前記局側光受信器の受信光強度の上限値未満又は上限値以下となる駆動信号を算出する制御回路と、
前記制御回路の算出した駆動信号を前記光強度調整部へ送出する駆動回路と、
を備えてもよい。
本願発明の光増幅システムでは、前記光強度調整器は、半導体光増幅器であり、前記制御回路は、前記電気信号の振幅値と予め設定した識別値との上下関係を判定し、前記識別値を超える又は前記識別値以上と判定した場合、前記電気信号の振幅値から入力された上り信号の光強度を検出し、検出された入力光強度に対して前記半導体光増幅器から出力されるバースト光信号の光強度が予め設定した目標値となる駆動電流を算出し、前記駆動回路は、前記電気信号の振幅値が前記識別値を超える又は前記識別値以上と判定された場合、前記制御回路の算出した駆動電流を前記半導体光増幅器へ送出し、前記電気信号の振幅値が前記識別値以下又は前記識別値未満と判定された場合、予め定められた一定値の駆動電流を送出してもよい。
本願発明の光増幅システムでは、前記光強度調整器は、半導体光増幅器であり、前記制御回路は、1以上の識別値を有し、前記電気信号の振幅値と各識別値との上下関係を判定し、前記電気信号の振幅値が各識別値を超える又は各識別値以上になる毎に当該識別値における駆動電流よりも少ない一定値の駆動電流を算出してもよい。
本願発明の光受信システムは、
本発明に係る光増幅システムと、
前記光増幅システムから出力された上り信号を電気信号に変換する光受信フロントエンドと、
前記光受信フロントエンドの出力した電気信号を用いて、前記光増幅システムに入力された上り信号を受信する信号処理部と、
を備える。
なお、上記各発明は、可能な限り組み合わせることができる。
本発明によれば、WDM/TDM−PONにおける上り信号を増幅するための、比較的安価なフィードフォワード制御機能を有する光増幅装置システムを提供することができる。
第一実施形態に係る光増幅システムの一例を示す。 第二実施形態の光増幅システムにおける第1の制御例を用いた場合の入力光強度と出力光強度の関係の一例を示す。 第二実施形態の光増幅システムにおける第2の制御例を用いた場合の入力光強度と出力光強度の関係の一例を示す。 第二実施形態の光増幅システムにおける第3の制御例を用いた場合の入力光強度と出力光強度の関係の一例を示す。 第三実施形態に係る光増幅システムの一例を示す。 偏波ダイバーシティを利用して光ヘテロダイン検波を行う場合の光受信フロントエンドの構成例を示す。 偏波ダイバーシティと位相ダイバーシティを利用して光ホモダイン検波を行う場合の光受信フロントエンドの構成例を示す。 WDM/TDM−PONシステムの構成例を示す。 光集線器82に光スプリッタを用いた場合の上り信号の通過波長を示す。 光集線器82としてアレイ導路回折格子(AWG:Arrayed Waveguide Grating)を用いた場合の上り信号の通過波長の一例を示す。 WDM/TDM−PONに光増幅器を適用したシステム構成を示す。 特許文献1による基本構成を示す。 非特許文献1による出力値を一定に制御するための基本構成を示す。 光強度制御回路をWDM/TDM−PONシステムに適用した場合の構成の一例を示す。 図14に示すWDM/TDM−PONシステムにおいて光増幅器83に入力されるバースト信号の一例であり、(a)は波長λ13の光強度を示し、(b)は波長λ12の光強度を示し、(c)は波長λ11の光強度を示す。 図14に示すWDM/TDM−PONシステムにおいて各光強度制御回路84から出力されるバースト信号の一例であり、(a)は波長λ13の光強度を示し、(b)は波長λ12の光強度を示し、(c)は波長λ11の光強度を示す。
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(第一実施形態)
図1に、本発明による光増幅システムの第一実施形態を示す。本実施形態に係る光増幅システムは、WDM/TDM−PONにおける上り信号を増幅するための装置であり、想定するアクセスネットワークは上記の通りである。具体的には、本実施形態に係る光増幅システムは、上り送信波長が可変であるONU92からの上り信号が光集線器82の複数の入力ポートに入力され、光集線器82の複数の出力ポートから出力された上り信号が波長ごとに異なる局側光受信器として機能する光受信器73で受信される光通信システムに用いられる。本実施形態では、光集線器82が光スプリッタであり、光強度調整器15が光強度減衰器である場合を例示する。
本実施形態に係る光増幅システムは、光集線器82の入力ポートとONU92の間に各々配置されるM台の光増幅器83、および光集線器82の出力ポートとOSU81の間に配置されるN台の光強度制御回路84を備える。光増幅器83及び光強度制御回路84は、共通の装置内に搭載されていてもよいし、個別の装置に搭載されていてもよい。各光増幅器83は、入力されたTDM信号を波長に依らず一括して増幅し、光集線器82に入力する。光集線器82の出力には、BPF72を経由して光強度制御回路84が接続される。これにより、光強度制御回路84には光受信器73の受信波長の上り信号が入力される。
光強度制御回路84は、分岐器11、光電気変換器12、制御回路13、駆動回路14、光強度調整器15を備える。分岐器11は、入力されたバースト光信号の一部を分岐し、モニタ光として光電気変換器12に入力する。もう一方の分岐光は、主信号として光強度調整器15に送られる。光電気変換器12は、分岐されたバースト光信号を電気信号に変換し、制御回路13に送る。
制御回路13は、電気信号の振幅値から入力されたバースト光信号の光強度を判定し、判定された入力光強度に対して、OSU81に入力される受信波長のバースト光信号の光強度が、光受信器73の受信光強度の上限値未満又は上限値以下となる駆動信号を算出する。駆動信号の算出に際して、予め取得した駆動信号と光強度減衰器15−1の減衰量の関係式を利用する。駆動回路14は、算出された駆動信号に対応した駆動信号を送出する。光強度減衰器15−1は、駆動回路14からの駆動信号により駆動される。
本実施形態に係る光増幅システムによれば、OSU81の受信波長は、BPF72により選択した1波長であるため、各OSU81に光強度制御回路84を配置することにより、光受信器73への過負荷を防ぐことができる。つまり、必要となる光強度制御回路84の台数は、N台であり、M×N台必要である図14で説明した構成に比べて、装置コストを大幅に削減することが可能となる。
なお本実施形態では、光集線器82が光スプリッタの場合を例示したが、光スプリッタと波長分波器を結合した構成や、周回性AWGを用いた場合でも同様の効果を得ることができる。ただし、光集線器82にこれらを用いた場合、光集線器82が波長選択機能を同時に有するため、OSU81にBPF72を配置する必要はない。また本実施形態では入力される光信号がバースト光信号である場合について説明するが、本発明はバースト信号に限らず任意の光信号に適用することができる。
また光強度調整器15として、光強度減衰器15−1を用いる場合を示したが、SOA15−2を用いることもできる。その場合、制御回路13における駆動電流の算出は、予め取得したSOA15−2の駆動電流変化に対する入力光強度と出力光強度のデータを基に算出した関係式により行う。光強度減衰器15−1は、入力光信号の強度を減衰させる光デバイスであるため、前段の光増幅器83と光強度制御回路84の間の損失が小さく、強バースト光信号入力に対して光受信器73に過負荷が掛かり易いシステム構成に対して有効であるのに対し、SOA15−2は、入力光信号の強度を増幅させる光デバイスであるため、前段の光増幅器83と光強度制御回路84の間の損失が大きく、弱バースト光信号入力に対して受信光強度が不足するシステム構成に対して有効である。
(第二実施形態)
図2、図3及び図4に、本光増幅システムの制御方式を説明する第二実施形態を示す。光増幅システムの構成は、第一実施形態と同様である。
第一の制御方式では、制御回路13は、電気信号の振幅値から入力されたバースト光信号の光強度を検出し、検出された入力光強度に対して、光強度調整器15から出力される光強度が、予め設定した目標値となる駆動信号を算出する。
図2に、第一の制御方式による、入出力光強度の関係を示す。図2に図示されるように、光強度制御回路84からは、光強度が一定値OCに制御されたバースト光信号が出力される。この値を、光受信器73の受信感度の上限値OM以下に設定することにより、光受信器73の過負荷を防ぐことができる。ただし、本制御方式では、動作入力範囲の拡大(広ダイナミックレンジ化)のため、弱バースト光信号入力に対しても、入力バースト光信号の光強度を正確に検出する必要がある。
第二の制御方式では、光強度調整器15としてSOA15−2を用いる。制御回路13は、電気信号の振幅値と予め設定した識別値THとの上下関係を判定し、識別値THを超える又は識別値TH以上と判定した場合、電気信号の振幅値から入力されたバースト光信号の光強度を検出し、検出された入力光強度に対してSOA15−2から出力されるバースト光信号の光強度が、予め設定した目標値OCとなる駆動電流を算出する。また駆動回路14は、電気信号の振幅値が識別値THを超える又は識別値TH以上と判定された場合、算出された駆動電流を送出し、電気信号の振幅値が識別値TH以下又は識別値TH未満と判定された場合、定められた一定値の駆動電流を送出する。ここで、定められた一定値の駆動電流は、例えば、SOA15−2から出力されるバースト光信号の光強度が目標値OCとなる駆動電流に連続する電流である。
図3に、第二の制御方式による、入出力光強度の関係を示す。本制御方式では、識別値TH以下又は識別値TH未満の光信号入力に対して光信号強度の検出は行わず、一定値の駆動電流によりSOA15−2を駆動するため、弱バースト光信号入力への対応が容易となり、広ダイナミックレンジ化の実現が可能となる。
第三の制御方式においても、光強度調整器15としてSOA15−2を用いる。制御回路13は、1以上の識別値TH1及びTH2を有し、電気信号の振幅値と各識別値との上下関係を判定する。また駆動回路14は、電気信号の振幅値が各識別値を超える又は識別値以上と判定される毎に減少する一定値の駆動電流を送出する。
図4に、第三の制御方式による、入出力光強度の関係を示す。SOA15−2は、入力光強度がIL以上IT1未満である場合、入力光強度がIT1以上IT2未満である場合及び入力光強度がIT2以上IH未満である場合のいずれのときも、制御回路13は、入力光強度に応じてOLからOC1へ線形的に増加する出力光強度を出力する。本制御方式においても、最少識別値IL以下又は最少識別値IL未満の光信号入力に対して光信号強度の検出は行わず、一定値の駆動電流によりSOA15−2を駆動するため、弱バースト光信号入力への対応が容易となり、広ダイナミックレンジ化の実現が可能となる。
(第三実施形態)
図5に、本発明による光増幅システムを用いた光受信システムについての第三実施形態を示す。本実施形態において用いられる光増幅システムの構成および制御機構は、第一および第二の実施形態と同様である。バースト光信号を受信するために、光受信フロントエンド74、アナログ/デジタル変換器(ADC:Analog−to−Digital Converter)75、デジタル信号処理回路(DSP:Digital Signal Processor)76が付加されている。本実施形態は、PONにおいて通常用いられる強度変調信号はもとより、振幅に限らず、位相や周波数に情報が重畳された、いわゆる光コヒーレント通信において用いられる2値以上の変調信号も想定する。
光受信フロントエンド74は、光信号を電気信号に変換する役割を果たすものである。光受信フロントエンド74は、強度変調信号を受信する場合、通常の光電気変換器を用いる。光受信フロントエンド74は、光コヒーレント通信において用いられる変調信号を受信する場合、偏波ダイバーシティや、位相ダイバーシティを行うため、光電気変換器の前に当該機能を実現する光回路が付与される。図6に、偏波ダイバーシティを利用して光ヘテロダイン検波を行う場合の光受信フロントエンド74の回路構成の一例を示す。図7に、偏波ダイバーシティと位相ダイバーシティを利用して光ホモダイン検波を行う場合の光受信フロントエンドの回路構成の一例を示す。光コヒーレント検波を行う場合、受信感度の向上や、多値変調信号の復調を行うために、局発光を利用する。
図6に示す光ヘテロダイン検波では、信号光の光周波数に対して、少なくともシンボルレート分だけ光周波数のずれた局発光を用いるのに対し、図7に示す光ホモダイン検波では、信号光の光周波数とほぼ同じ光周波数の局発光を用いる。偏波ダイバーシティは、光ヘテロダイン検波、光ホモダイン検波を行う際に用いられ、偏波分離器33において、光信号を互いに直交する偏波成分に分離し、各々に同一偏波の局発光を結合することで、光信号と局発光の偏波状態の違いにより、信号が受信できなくなることを防ぐ役割を果たす。
偏波回転器34は、偏波分離された光信号と局発光の偏波を一致させるためのものであり、図6では、局発光の偏波を90度回転させている。一方、位相ダイバーシティは、光ホモダイン検波を行う際に用いられ、光信号と局発光の光位相の違いにより、信号が受信できなくなることを防ぐ役割を果たす。位相遅延器39X及び39Yは、分岐した局発光の位相を互いにずらすためのものであり、図では、局発光の光位相を90度遅延させている。
なお、図5では、強度変調信号を受信する場合を想定し、光受信フロントエンド(光電気変換器)74の出力が1つの場合を示しているが、偏波ダイバーシティや、位相ダイバーシティを行う場合には、図6及び図7に示すように、用いる光電気変換器は複数個必要となり、それと同数のアナログ電気信号が出力される。なお、図6及び図7に示す回路構成はあくまでも一例であり、様々な回路構成が提案されている。
出力されたアナログ電気信号は、ADC75によりサンプリングされてデジタル信号に変換され、DSP76により処理されて受信される。偏波ダイバーシティや、位相ダイバーシティを用いる場合、光受信フロントエンド74に備わる各光電気変換器の後ろにADC75が接続され、DSP76には各ADC75から出力されたデジタル信号が送られる。信号受信に際して、DSP76を用いる利点として、多変調信号の復調や、伝送路の波長分散等により劣化した波形の回復を容易に実現できることを挙げることができる。しかし、バースト光信号を受信する場合、異なる光強度に対応したアナログ電気信号がADC75に入力される。このため、ADC75の振幅方向の量子化を強バースト光信号に最適化すると弱バースト光信号の検出ができなくなり、逆に、弱バースト信号に最適化すると強バースト光信号の検出ができなくなるという問題が生じる。このため、光受信フロントエンド74において光信号を電気信号に変換する前に、本発明による光増幅システムを配置することにより、一定値の光強度に制御されたバースト光信号が光受信フロントエンド74に入力されるため、この問題を回避することが可能となる。また、本光増幅システムは、弱バースト信号入力に対しても動作可能であることから、前置増幅器として用いれば、信号を高感度に受信することもできる。
本発明は情報通信産業に適用することができる。
11:分岐器
12:光電気変換器
13:制御回路
14:駆動回路
15−1:光強度減衰器
15−2:SOA
31:局発光源
32、37、38X、38Y:分岐器
33:偏波分離器
34:偏波回転器
35X、35Y:結合器
36X、36Y:光電気変換器
39X、39Y:位相遅延器
71:波長可変光送信器
72:BPF
73:光受信器
74:光受信フロントエンド
75:ADC
76:DSP
81:OSU
82:光集線器
83:光増幅器
84:光強度制御回路
85、86:波長分波器
92:ONU
93:光スプリッタ
95:収容局
本願発明の光増幅システムは、
上り送信波長が可変である加入者装置からの上り信号が光集線器の複数の入力ポートに入力され、前記光集線器の複数の出力ポートから出力された上り信号が波長ごとに異なる局側光受信器で受信される光通信システムに用いられる光増幅システムであって、
前記光集線器は、任意の前記局側光受信器が任意の前記加入者装置を収容可能とし、
前記入力ポートと前記加入者装置の間に各々接続され、複数波長の上り信号を波長に依らず一括して増幅する光増幅器と、
前記出力ポートと前記局側光受信器の間に各々接続され、前記出力ポートから出力された前記局側光受信器の受信波長の上り信号を前記局側光受信器の受信光強度の上限値未満又は上限値以下となる予め定められた強度に制御する光強度制御回路と、
を備える。

Claims (5)

  1. 上り送信波長が可変である加入者装置からの上り信号が光集線器の複数の入力ポートに入力され、前記光集線器の複数の出力ポートから出力された上り信号が波長ごとに異なる局側光受信器で受信される光通信システムに用いられる光増幅システムであって、
    前記入力ポートと前記加入者装置の間に各々接続され、複数波長の上り信号を増幅する光増幅器と、
    前記出力ポートと前記局側光受信器の間に各々接続され、前記出力ポートから出力された前記局側光受信器の受信波長の上り信号を前記局側光受信器の受信光強度の上限値未満又は上限値以下となる予め定められた強度に制御する光強度制御回路と、
    を備える光増幅システム。
  2. 前記光強度制御回路は、
    前記出力ポートから出力された前記局側光受信器の受信波長の上り信号を主信号とモニタ光に分岐する分岐器と、
    前記主信号の光強度を、供給された駆動電流を用いて調整する光強度調整部と、
    前記モニタ光を電気信号に変換する光電気変換器と、
    前記光電気変換器からの電気信号の振幅値を用いて前記上り信号の光強度を算出し、算出した光強度の上り信号が前記局側光受信器の受信光強度の上限値未満又は上限値以下となる駆動信号を算出する制御回路と、
    前記制御回路の算出した駆動信号を前記光強度調整部へ送出する駆動回路と、
    を備えることを特徴とする請求項1に記載の光増幅システム。
  3. 前記光強度調整器は、半導体光増幅器であり、
    前記制御回路は、前記電気信号の振幅値と予め設定した識別値との上下関係を判定し、前記識別値を超える又は前記識別値以上と判定した場合、前記電気信号の振幅値から入力された上り信号の光強度を検出し、検出された入力光強度に対して前記半導体光増幅器から出力されるバースト光信号の光強度が予め設定した目標値となる駆動電流を算出し、
    前記駆動回路は、前記電気信号の振幅値が前記識別値を超える又は前記識別値以上と判定された場合、前記制御回路の算出した駆動電流を前記半導体光増幅器へ送出し、前記電気信号の振幅値が前記識別値以下又は前記識別値未満と判定された場合、予め定められた一定値の駆動電流を送出する、
    ことを特徴とする請求項1又は2に記載の光増幅システム。
  4. 前記光強度調整器は、半導体光増幅器であり、
    前記制御回路は、1以上の識別値を有し、前記電気信号の振幅値と各識別値との上下関係を判定し、前記電気信号の振幅値が各識別値を超える又は各識別値以上になる毎に当該識別値における駆動電流よりも少ない一定値の駆動電流を算出する、
    ことを特徴とする請求項1から3のいずれかに記載の光増幅システム。
  5. 請求項1から4のいずれかに記載の光増幅システムと、
    前記光増幅システムから出力された上り信号を電気信号に変換する光受信フロントエンドと、
    前記光受信フロントエンドの出力した電気信号を用いて、前記光増幅システムに入力された上り信号を受信する信号処理部と、
    を備える光受信システム。
JP2013121464A 2013-06-10 2013-06-10 光増幅システム Active JP5663629B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121464A JP5663629B2 (ja) 2013-06-10 2013-06-10 光増幅システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121464A JP5663629B2 (ja) 2013-06-10 2013-06-10 光増幅システム

Publications (2)

Publication Number Publication Date
JP2014239362A true JP2014239362A (ja) 2014-12-18
JP5663629B2 JP5663629B2 (ja) 2015-02-04

Family

ID=52136189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121464A Active JP5663629B2 (ja) 2013-06-10 2013-06-10 光増幅システム

Country Status (1)

Country Link
JP (1) JP5663629B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226685A (ja) * 2009-03-19 2010-10-07 Trimatiz:Kk 光強度コントローラ
JP2011135280A (ja) * 2009-12-24 2011-07-07 Nippon Telegr & Teleph Corp <Ntt> 光通信システム、光通信方法およびolt
JP2011234244A (ja) * 2010-04-28 2011-11-17 Nippon Telegr & Teleph Corp <Ntt> 光通信システム及び光通信方法
JP2012120136A (ja) * 2010-12-03 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> 光通信システム及び光通信システムの送受信方法
JP2013038525A (ja) * 2011-08-05 2013-02-21 Nippon Telegr & Teleph Corp <Ntt> 光強度制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226685A (ja) * 2009-03-19 2010-10-07 Trimatiz:Kk 光強度コントローラ
JP2011135280A (ja) * 2009-12-24 2011-07-07 Nippon Telegr & Teleph Corp <Ntt> 光通信システム、光通信方法およびolt
JP2011234244A (ja) * 2010-04-28 2011-11-17 Nippon Telegr & Teleph Corp <Ntt> 光通信システム及び光通信方法
JP2012120136A (ja) * 2010-12-03 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> 光通信システム及び光通信システムの送受信方法
JP2013038525A (ja) * 2011-08-05 2013-02-21 Nippon Telegr & Teleph Corp <Ntt> 光強度制御装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014022682; G.Das, et al.: 'A hybrid WDM/TDM PON architecture using wavelength selective switches' 2010 IEEE 4th International Symposium on Advanced Networks and Telecommunication Systems (ANTS) , 20101216, pages.52-54, IEEE *
JPN6014022683; Jun-ichi Kani: 'Enabling Technologies for Future Scalable and Flexible WDM-PON and WDM/TDM-PON Systems' IEEE Journal of Selected Topics in Quantum Electronics Vol.16, Issue.5, 201209, pages.1290-1297, IEEE *

Also Published As

Publication number Publication date
JP5663629B2 (ja) 2015-02-04

Similar Documents

Publication Publication Date Title
US9967033B2 (en) Flexible TWDM PON with load balancing and power saving
US9853763B2 (en) Optical line terminal for a passive optical wavelength division multiplex network
US20140161446A1 (en) Optical amplifier (oa)-based reach extender and passive optical network system including the same
KR100975882B1 (ko) 시간분할 다중화 수동형 광전송 방식에 파장분할 다중화기술을 적용한 광가입자망 시스템 및 서비스 제공 방법
US8995836B2 (en) Passive optical network with adaptive filters for upstream transmission management
US10243658B2 (en) Method of receiving a wavelength division multiplexed optical upstream signal in an optical access network
WO2012113447A1 (en) Coherent transceiver for an optical network
JP2010283644A (ja) 光アクセス網、光通信方法および光加入者装置
JP2014168176A (ja) 光受信器
RU2009114694A (ru) Устройство и способ для терминала оптической линии (olt) и модуля оптической сети (onu) в независимых от длины волны пассивных оптических сетях с мультиплексированием с разделением по длине волны
Cano et al. Field-trial of low-cost coherent UDWDM-PON with real-time processing, λ-monitoring and EPON coexistence
JP5663629B2 (ja) 光増幅システム
EP1953941B1 (en) WDM laser sources for PON
JP6034749B2 (ja) 光増幅器およびそれを用いた光受信器
EP2693664B1 (en) Self coherent colorless architecture for flexible WDM access network
EP2503712B1 (en) Hybrid electrical/optical splitting oeo pon
JP5492118B2 (ja) Wdm信号一括コヒーレント受信器及び方法
US10250331B2 (en) Subscriber device and light receiving method
US20080267625A1 (en) Multi-Rate Multi-Wavelength Optical Burst Detector
El-Sahn et al. A novel FBG-based self-seeded RSOA transmitter with noise mitigation for dense SS-WDM PONs
JP5980730B2 (ja) 光通信システム
JP5699678B2 (ja) 光受信装置および通信システム
KR101231927B1 (ko) 단일 채널을 이용하여 상·하향 신호의 전송이 가능하도록해주는 wdm-pon 시스템 및 그 신호 전송 방법
Salleh et al. Flexible broadcasting and multicasting in 4λ× 10 Gb/s AOPR TWDM PON system
Ke et al. Burst-mode wavelength upconversion using gain-clamped SOA for applying WDM technique to TDM-PON

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141208

R150 Certificate of patent or registration of utility model

Ref document number: 5663629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150