JP2014239176A - Cooling member and semiconductor device - Google Patents

Cooling member and semiconductor device Download PDF

Info

Publication number
JP2014239176A
JP2014239176A JP2013121645A JP2013121645A JP2014239176A JP 2014239176 A JP2014239176 A JP 2014239176A JP 2013121645 A JP2013121645 A JP 2013121645A JP 2013121645 A JP2013121645 A JP 2013121645A JP 2014239176 A JP2014239176 A JP 2014239176A
Authority
JP
Japan
Prior art keywords
cooling member
pores
metal
metal member
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013121645A
Other languages
Japanese (ja)
Other versions
JP6021745B2 (en
Inventor
岡 誠次
Seiji Oka
誠次 岡
晶子 後藤
Akiko Goto
晶子 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013121645A priority Critical patent/JP6021745B2/en
Publication of JP2014239176A publication Critical patent/JP2014239176A/en
Application granted granted Critical
Publication of JP6021745B2 publication Critical patent/JP6021745B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Abstract

PROBLEM TO BE SOLVED: To provide a cooling member which realizes high heat radiation performance in terms of improvements of heat conductivity and adhesion with the other member, and to provide a semiconductor device using the cooling member.SOLUTION: A cooling member 1 includes: a sheet-like metal member 21 having multiple pores 24; and a resin material 22 infiltrating into the pores 24 of the metal member 21. The multiple pores 24 are disposed so as to communicate with each other in the metal member 21 and lead to one surface of the metal member 21.

Description

本発明は、冷却部材および半導体装置に関し、特に、パワーモジュール用の冷却部材および当該冷却部材が取り付けられた半導体装置に関するものである。   The present invention relates to a cooling member and a semiconductor device, and more particularly to a cooling member for a power module and a semiconductor device to which the cooling member is attached.

パワーモジュールと呼ばれる大電力回路の制御用の装置の発生する熱を高効率に放熱し当該装置を冷却する手段として、従来、パワーモジュールを構成する金属配線(金属ベース板)と熱交換器(ヒートシンク)との間に冷却部材を挟む構成を有する半導体装置が、たとえば特許文献1に開示されている。特許文献1の冷却部材は、樹脂製の接着剤内に、大径表面コートフィラーと小径表面コートフィラーとを複数有する複合接着剤として構成されている。大径表面コートフィラーと小径表面コートフィラーと(以下これらを「表面コートフィラー」と呼ぶ)は、無機絶縁性物質からなるフィラーとフィラーの表面を覆う樹脂被膜からなる。   Conventionally, metal wiring (metal base plate) and heat exchangers (heat sinks) constituting a power module are used as means for efficiently radiating heat generated by a device for controlling a large power circuit called a power module and cooling the device. For example, Patent Document 1 discloses a semiconductor device having a configuration in which a cooling member is sandwiched therebetween. The cooling member of Patent Document 1 is configured as a composite adhesive having a plurality of large-diameter surface coat fillers and small-diameter surface coat fillers in a resin adhesive. The large-diameter surface coat filler and the small-diameter surface coat filler (hereinafter referred to as “surface coat filler”) are composed of a filler made of an inorganic insulating material and a resin film covering the surface of the filler.

表面コートフィラーの外形が球面状であるため、これらが接着剤中に高充填率で混入した時も、粘度の上昇を制御することができ、複合接着剤を形成するのに適したものとなる。特に表面コートフィラーは球面体であるため、表面コートフィラーが複合接着剤中で自由に移動できるので粘度を小さくすることが可能となる。特許文献1では、大径表面コートフィラー同士の間隙に小径表面コートフィラーを入り込ませることにより高充填率が可能となり、高い熱伝導率を有する複合接着剤が得られる。   Since the outer shape of the surface coat filler is spherical, even when they are mixed in the adhesive at a high filling rate, the increase in viscosity can be controlled, and it is suitable for forming a composite adhesive. . In particular, since the surface coat filler is a spherical body, the surface coat filler can freely move in the composite adhesive, so that the viscosity can be reduced. In Patent Document 1, a high filling rate can be achieved by inserting a small-diameter surface coat filler into a gap between large-diameter surface coat fillers, and a composite adhesive having high thermal conductivity can be obtained.

その他、上記の冷却部材と同様の機能を有する、たとえば連続して接触する複数の粒子または繊維と、粒子間に充填された高分子材料とを有する伝熱シートが、たとえば特許文献2に開示されている。この伝熱シートが装置(半導体チップ)下の金属ベース板とヒートシンクとの間に挟まれており、金属ベース板に蓄積された熱は伝熱シート内の粒子または繊維を伝導してヒートシンクに放出される。   In addition, for example, Patent Document 2 discloses a heat transfer sheet having a function similar to that of the above-described cooling member, for example, having a plurality of particles or fibers that are in continuous contact and a polymer material filled between the particles. ing. This heat transfer sheet is sandwiched between the metal base plate under the device (semiconductor chip) and the heat sink, and the heat accumulated on the metal base plate is conducted to particles or fibers in the heat transfer sheet and released to the heat sink. Is done.

さらにその他、上記の冷却部材と同様の機能を有する、たとえば熱伝導率が高い第1金属のマトリックスと、第1金属より熱膨張率の小さい第2金属の粉末とで構成された支持部材が、たとえば特許文献3に開示されている。この支持部材は、高い放熱性を維持したまま、支持部材の熱膨張率を支持部材上に搭載される半導体基体の熱膨張率に近づけることができる。支持部材の熱膨張率が半導体基体の熱膨張率に近づくことにより支持部材の熱歪みが低減されるため、高い放熱性と高い信頼性との双方を有する支持部材を実現することができる。   In addition, a support member having the same function as the above cooling member, for example, a first metal matrix having a high thermal conductivity and a second metal powder having a lower thermal expansion coefficient than the first metal, For example, it is disclosed in Patent Document 3. This support member can bring the thermal expansion coefficient of the support member close to the thermal expansion coefficient of the semiconductor substrate mounted on the support member while maintaining high heat dissipation. Since the thermal distortion of the support member is reduced when the coefficient of thermal expansion of the support member approaches the coefficient of thermal expansion of the semiconductor substrate, a support member having both high heat dissipation and high reliability can be realized.

特開2009−19182号公報JP 2009-19182 A 特開2000−150742号公報JP 2000-150742 A 特開2000−183234号公報JP 2000-183234 A

特許文献1の冷却部材では、一のフィラーと他のフィラーとが接触している部分において一のフィラーから他のフィラーへと熱が伝達され、高い熱伝導性(放熱性)が実現される。複数の表面コートフィラーを高い充填率で充填させることにより、上記のフィラー同士が接触する部位が多くなるため、熱が複数の表面コートフィラー間を効率よく伝達されていく。   In the cooling member of Patent Document 1, heat is transferred from one filler to another filler at a portion where the one filler and the other filler are in contact with each other, and high thermal conductivity (heat dissipation) is realized. By filling a plurality of surface coat fillers at a high filling rate, the number of sites where the fillers come into contact with each other increases, so that heat is efficiently transferred between the plurality of surface coat fillers.

しかし特許文献1のように球面体の表面コートフィラーを有する場合、一のフィラーと他のフィラーとは点のみで接触(いわゆる点接触)しているため、上記フィラー同士が接触する部位での熱の伝達効率すなわち放熱の効率が低下する可能性がある。   However, when a spherical surface coat filler is provided as in Patent Document 1, one filler and another filler are in contact with each other only at points (so-called point contact). There is a possibility that the transmission efficiency, that is, the efficiency of heat dissipation will be reduced.

また特許文献1のように表面コートフィラーの表面を覆う樹脂被膜の熱伝導率は、フィラーの熱伝導率に比べて非常に低い(フィラーの熱伝導率の1%以下)。このことも特許文献1の冷却部材の熱伝導率を低下させる一因となっている。   Moreover, the thermal conductivity of the resin film which covers the surface of a surface coat filler like patent document 1 is very low compared with the thermal conductivity of a filler (1% or less of the thermal conductivity of a filler). This also contributes to lowering the thermal conductivity of the cooling member of Patent Document 1.

特許文献2の伝熱シートは、熱を伝導する主体である複数の粒子または繊維同士は互いに接触しているだけであり、複数の粒子または繊維同士が一体となっているわけではない。複数の粒子または繊維間の熱伝導はほぼ上記接触部のみにてなされることから、放熱による冷却が十分になされない可能性がある。   In the heat transfer sheet of Patent Document 2, a plurality of particles or fibers that are main components for conducting heat are only in contact with each other, and a plurality of particles or fibers are not integrated. Since heat conduction between the plurality of particles or fibers is performed only at the contact portion, cooling by heat radiation may not be sufficiently performed.

特許文献3の支持部材は、金属材料のみから構成されており樹脂材料を含んでいない。このためシート状の当該支持部材が半導体チップなどの装置とヒートシンクとの間に配置された場合、支持部材が直接接触する装置またはヒートシンクの表面が粗い場合、支持部材と装置またはヒートシンクとの密着性が劣化する。これは金属材料のみから構成される支持部材は装置やヒートシンクの表面形状に応じた柔軟な弾性変形をすることができないためである。このことは、支持部材の装置側からヒートシンク側への放熱性を低下させる原因となる。   The support member of Patent Document 3 is made of only a metal material and does not contain a resin material. For this reason, when the sheet-like support member is disposed between a device such as a semiconductor chip and a heat sink, the adhesion between the support member and the device or the heat sink when the surface of the device or the heat sink directly contacting the support member is rough Deteriorates. This is because a support member made of only a metal material cannot be flexibly elastically deformed according to the surface shape of the device or the heat sink. This causes a decrease in heat dissipation from the apparatus side to the heat sink side of the support member.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、熱伝導率を高める観点と、他の部材との密着性を高める観点との双方の観点から、高い放熱性を実現することが可能な冷却部材、および当該冷却部材を用いた半導体装置を提供することである。   The present invention has been made in view of the above problems, and its purpose is to achieve high heat dissipation from both the viewpoint of increasing the thermal conductivity and the viewpoint of increasing the adhesion to other members. A cooling member that can be used, and a semiconductor device using the cooling member.

本発明の冷却部材は、内部に複数の気孔を有するシート状の金属部材と、金属部材の気孔内を含浸する樹脂材料とを備える。上記複数の気孔は、金属部材の一の表面につながるように、金属部材の内部で互いに連続するように配置されている。   The cooling member of the present invention includes a sheet-like metal member having a plurality of pores therein and a resin material that impregnates the pores of the metal member. The plurality of pores are arranged to be continuous with each other inside the metal member so as to be connected to one surface of the metal member.

本発明の冷却部材は、気孔を有する金属部材の気孔以外の部分は一体として連続しているため、当該金属部材を通じた高い熱伝導性(放熱性)を有する。また金属部材の内部の複数の気孔が互いに連続し、かつ金属部材の一の表面につながるように配置されるため、
一の表面から当該気孔内に樹脂材料が高密度に含浸される。この樹脂材料により冷却部材が柔軟に弾性変形可能となるため、他の部材との密着性が良好となり、他の部材の熱を伝導して放熱する機能を高めることができる。
The cooling member of the present invention has high thermal conductivity (heat dissipation) through the metal member since the portions other than the pores of the metal member having pores are continuous as one body. Moreover, since the plurality of pores inside the metal member are arranged so as to be continuous with each other and to one surface of the metal member,
The resin material is impregnated with high density into the pores from one surface. Since the cooling member can be elastically deformed flexibly by this resin material, the adhesion with other members becomes good, and the function of conducting heat of other members to dissipate heat can be enhanced.

本発明の実施の形態1の半導体装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the semiconductor device of Embodiment 1 of this invention. 本実施の形態のパワーモジュールとヒートシンクとの間に介在する冷却部材の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the cooling member interposed between the power module and heat sink of this Embodiment. 図2の冷却部材に形成される金属部材および気孔の態様を示す概略断面図である。It is a schematic sectional drawing which shows the aspect of the metal member and pore formed in the cooling member of FIG. 図3中の点線で囲んだ領域IVにおける金属部材および気孔の態様を示す拡大概略断面図である。It is an expansion schematic sectional drawing which shows the aspect of the metal member and pore in the area | region IV enclosed with the dotted line in FIG. 図3および図4に樹脂材料が含浸された態様を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing an embodiment in which a resin material is impregnated in FIGS. 3 and 4. 冷却部材の表面が、冷却部材に接触する部材の表面の形状に応じて変形する態様を示す概略断面図である。It is a schematic sectional drawing which shows the aspect in which the surface of a cooling member deform | transforms according to the shape of the surface of the member which contacts a cooling member. 本発明の実施の形態2の半導体装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the semiconductor device of Embodiment 2 of this invention.

以下、本発明の実施の形態について図に基づいて説明する。
(実施の形態1)
まず本実施の形態の半導体装置の構成について図1を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
First, the structure of the semiconductor device of this embodiment is described with reference to FIG.

図1を参照して、本実施の形態の半導体装置100は、冷却部材1と、電力用半導体モジュール2と、ヒートシンク3とを備えている。冷却部材1は電力用半導体モジュール2とヒートシンク3との間に挟まれるように設置されており、言い換えれば冷却部材1は電力用半導体モジュール2およびヒートシンク3との一部分の表面に接触するように取り付けられている。ここでは冷却部材1はシート状(平面視において矩形の平板状)を有しており、その上側の表面上に載置するように電力用半導体モジュール2が、その下側の表面に接するようにヒートシンク3が、それぞれ取り付けられている。   With reference to FIG. 1, a semiconductor device 100 of the present embodiment includes a cooling member 1, a power semiconductor module 2, and a heat sink 3. The cooling member 1 is installed so as to be sandwiched between the power semiconductor module 2 and the heat sink 3. In other words, the cooling member 1 is attached so as to contact a part of the surface of the power semiconductor module 2 and the heat sink 3. It has been. Here, the cooling member 1 has a sheet shape (rectangular flat plate shape in plan view), and the power semiconductor module 2 is in contact with the lower surface so as to be placed on the upper surface thereof. Each heat sink 3 is attached.

電力用半導体モジュール2は、金属ベース板4と、セラミック基板5と、電力用半導体チップ6と、ワイヤ7と、封止樹脂8と、ケース9と、蓋10と、電極端子11とを有している。   The power semiconductor module 2 includes a metal base plate 4, a ceramic substrate 5, a power semiconductor chip 6, a wire 7, a sealing resin 8, a case 9, a lid 10, and electrode terminals 11. ing.

金属ベース板4は、電力用半導体モジュール2が発生する熱を効率よく電力用半導体モジュール2の下面に取り付けられる冷却部材1に伝導させることにより電力用半導体モジュール2の熱を放熱する。金属ベース板4は冷却部材1の上側の表面上に載置されるシート状(平面視において矩形状)の部材である。金属ベース板4はたとえば銅または銅合金からなることが好ましいが、これに限定されるものではない。   The metal base plate 4 radiates the heat of the power semiconductor module 2 by efficiently conducting the heat generated by the power semiconductor module 2 to the cooling member 1 attached to the lower surface of the power semiconductor module 2. The metal base plate 4 is a sheet-like (rectangular shape in plan view) placed on the upper surface of the cooling member 1. The metal base plate 4 is preferably made of, for example, copper or a copper alloy, but is not limited thereto.

セラミック基板5は、電力用半導体チップ6と電力用半導体チップ6よりも下側(金属ベース板4およびヒートシンク3)との間を電気的に絶縁するために配置されるシート状(平面視において矩形状)の部材である。セラミック基板5はたとえばアルミナ(Al23)などの熱伝導率および絶縁耐圧の高いセラミック材料からなることが好ましいが、これに限定されるものではない。セラミック基板5は金属ベース板4の上側の表面上に、はんだ等により接合されている。 The ceramic substrate 5 is a sheet shape (rectangular in plan view) arranged to electrically insulate between the power semiconductor chip 6 and the lower side (the metal base plate 4 and the heat sink 3) than the power semiconductor chip 6. Shape). The ceramic substrate 5 is preferably made of a ceramic material having a high thermal conductivity and high withstand voltage, such as alumina (Al 2 O 3 ), but is not limited thereto. The ceramic substrate 5 is joined to the upper surface of the metal base plate 4 by solder or the like.

電力用半導体チップ6は、セラミック基板5の上側の表面上に載置されており、1例として図1では図の左右方向に3つ、互いに間隔をあけて載置されている。電力用半導体チップ6はたとえばシリコンの単結晶からなる半導体ウェハが所望のサイズに切断されたものであることが好ましいが、これに限定されるものではない。   The power semiconductor chips 6 are placed on the upper surface of the ceramic substrate 5. For example, in FIG. 1, three power chips 6 are placed at intervals from each other in the left-right direction of the drawing. The power semiconductor chip 6 is preferably, for example, a semiconductor wafer made of a single crystal of silicon cut to a desired size, but is not limited thereto.

電力用半導体チップ6はたとえばいわゆる縦型MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)またはいわゆるIGBT(Insulated Gate Bipolar Transistor)などの、比較的高電力、すなわち高耐圧および大電流を制御することが可能ないわゆるパワーデバイスを搭載した半導体チップである。このようなパワーデバイスを搭載するため、電力用半導体チップ6を備える電力用半導体モジュール2は、パワーモジュールと呼ばれる大電力回路の制御用の装置(半導体素子)に相当する。   The power semiconductor chip 6 can control a relatively high power, that is, a high breakdown voltage and a large current, such as a so-called vertical MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or a so-called IGBT (Insulated Gate Bipolar Transistor). It is a semiconductor chip equipped with possible so-called power devices. In order to mount such a power device, the power semiconductor module 2 including the power semiconductor chip 6 corresponds to a device (semiconductor element) for controlling a high power circuit called a power module.

ワイヤ7は、たとえばアルミニウムなどの金属材料からなる細線である。1例として図1ではワイヤ7は、図の左右方向に関して隣り合うように並ぶ1対の電力用半導体チップ6の一方に形成されるパワーデバイスと他方に形成されるパワーデバイスとを電気的に接続している。また図1のワイヤ7は、1つの電力用半導体チップ6に形成されるパワーデバイスと、電極端子11とをも電気的に接続している。これにより電力用半導体モジュール2とその外部の回路とが互いに電気的に接続される。   The wire 7 is a thin wire made of a metal material such as aluminum. As an example, in FIG. 1, the wire 7 electrically connects a power device formed on one side of a pair of power semiconductor chips 6 arranged adjacent to each other in the left-right direction in the figure and a power device formed on the other side. doing. Further, the wire 7 in FIG. 1 also electrically connects the power device formed on one power semiconductor chip 6 and the electrode terminal 11. As a result, the power semiconductor module 2 and its external circuit are electrically connected to each other.

封止樹脂8は、樹脂からなるケース9内に収納される、セラミック基板5、電力用半導体チップ6およびワイヤ7からなる組を封止することにより、上記組の各構成部品を保護する。封止樹脂8はたとえばシリコーンゲルにより形成されるがこれに限られない。   The sealing resin 8 protects each component of the above set by sealing a set made of the ceramic substrate 5, the power semiconductor chip 6 and the wire 7 housed in a case 9 made of resin. The sealing resin 8 is formed of, for example, silicone gel, but is not limited thereto.

ケース9は上記のように封止樹脂8により封止される、セラミック基板5、電力用半導体チップ6およびワイヤ7からなる組を収納することにより上記組の各構成部品を保護する。封止樹脂8およびケース9はたとえば直方体状を有することが好ましいがこれに限られない。   The case 9 protects each component of the above-mentioned group by housing the group composed of the ceramic substrate 5, the power semiconductor chip 6 and the wire 7 sealed with the sealing resin 8 as described above. The sealing resin 8 and the case 9 preferably have a rectangular parallelepiped shape, for example, but are not limited thereto.

蓋10は封止樹脂8を上方から覆い、ケース9の上部に嵌挿されるように配置されている。蓋10は封止樹脂8および封止樹脂8内の各構成部品に対する防塵および防水の目的で配置されている。蓋10はケース9と同様に樹脂材料からなることが好ましいがこれに限られない。   The lid 10 covers the sealing resin 8 from above and is disposed so as to be fitted into the upper portion of the case 9. The lid 10 is disposed for the purpose of dust-proofing and waterproofing the sealing resin 8 and each component in the sealing resin 8. The lid 10 is preferably made of a resin material like the case 9, but is not limited thereto.

電極端子11は電力用半導体チップ6に搭載された上記パワーデバイスと、電力用半導体モジュール2の外部の回路とを電気的に接続するための配線構造を有している。電極端子11は銅や銅合金などの金属材料により形成されることが好ましいがこれに限られない。   The electrode terminal 11 has a wiring structure for electrically connecting the power device mounted on the power semiconductor chip 6 and a circuit outside the power semiconductor module 2. The electrode terminal 11 is preferably formed of a metal material such as copper or a copper alloy, but is not limited thereto.

ヒートシンク3はヒートシンクベース板3aと、フィン3bとを有している。ヒートシンクベース板3aはシート状(平面視において矩形状)を有し、その上面は冷却部材1の下側の表面と、たとえばはんだにより接合されている。ヒートシンクベース板3aの下側の表面上に複数のフィン3bが並ぶように接合されている。フィン3bはたとえば上方の冷却部材1および電力用半導体モジュール2から伝搬された熱を大気中に放熱するために広い表面積を有するように設計されている。   The heat sink 3 has a heat sink base plate 3a and fins 3b. The heat sink base plate 3a has a sheet shape (rectangular shape in plan view), and its upper surface is joined to the lower surface of the cooling member 1 by, for example, solder. A plurality of fins 3b are joined to each other on the lower surface of the heat sink base plate 3a. For example, the fin 3b is designed to have a large surface area in order to dissipate the heat propagated from the upper cooling member 1 and the power semiconductor module 2 into the atmosphere.

ヒートシンク3はアルミニウムまたはアルミニウム合金からなり、ダイキャスト、押し出し、鍛造、機械加工等により成形される。   The heat sink 3 is made of aluminum or an aluminum alloy, and is formed by die casting, extrusion, forging, machining, or the like.

次に図2〜図5を参照しながら、本実施の形態の冷却部材1について詳細に説明する。
図2を参照して、冷却部材1は、上記の電力用半導体モジュール2(パワーデバイス)のほか、たとえばLED(Light Emitting Diode)などの素子を冷却および放熱するための部材であり、金属部材21と、樹脂材料22とにより形成されている。金属部材21はアルミニウム、銀、銅、またはアルミニウムと銀と銅との合金のいずれかからなることが好ましい。これらの金属材料は熱伝導率が高いため、金属部材21がこれらの金属材料から形成されることにより、冷却部材1の熱伝導率が高くなり、冷却部材1の熱伝導性(放熱性)が向上する。
Next, the cooling member 1 of the present embodiment will be described in detail with reference to FIGS.
Referring to FIG. 2, the cooling member 1 is a member for cooling and dissipating elements such as an LED (Light Emitting Diode) in addition to the power semiconductor module 2 (power device) described above, and a metal member 21. And the resin material 22. The metal member 21 is preferably made of aluminum, silver, copper, or an alloy of aluminum, silver, and copper. Since these metal materials have high thermal conductivity, the metal member 21 is formed of these metal materials, whereby the thermal conductivity of the cooling member 1 is increased, and the thermal conductivity (heat dissipation) of the cooling member 1 is increased. improves.

金属部材21は冷却部材1の主要部分をなす単一の構造物であり、全体としてシート状(直方体状)を有している。樹脂材料22は金属部材21の内部の一部の、金属部材21が存在しない複数の領域の内部を埋めるように配置されている。樹脂材料22は金属部材21の内部の任意の位置に(たとえばマトリックス状のように規則的に配置されるのではなく不規則な位置に)配置されている。このため図3および図4を参照して、金属部材21は無秩序な曲線状の領域が3次元的に網目状に交錯したような(サンゴのような)形状を有している。   The metal member 21 is a single structure that forms the main part of the cooling member 1 and has a sheet shape (cuboid shape) as a whole. The resin material 22 is arranged so as to fill the inside of a plurality of regions where the metal member 21 does not exist, in a part of the inside of the metal member 21. The resin material 22 is arranged at an arbitrary position inside the metal member 21 (for example, at an irregular position rather than regularly arranged like a matrix). Therefore, referring to FIGS. 3 and 4, the metal member 21 has a shape (coral-like) in which disordered curved regions are three-dimensionally crossed in a mesh shape.

上記のように金属部材21は実際には単一の構造物であるため、図1〜図4に示す細く延びる金属部材21の各部分同士が3次元的に連続して一体となっている。つまり図1〜図4に示す金属部材21の各部分同士は連結または接合することにより連続して一体となっているのではなく、各部分は単一の構造物の一部であるため必然的に連続している。これは元々シート状の単一の構造物としての金属部材21の内部の一部に、樹脂材料22が配置されるための金属部材21の存在しない領域が複数形成されたものであるためである。   As described above, since the metal member 21 is actually a single structure, the portions of the thinly extending metal member 21 shown in FIGS. 1 to 4 are three-dimensionally continuous and integrated. That is, the respective parts of the metal member 21 shown in FIGS. 1 to 4 are not continuously integrated by being connected or joined together, but each part is a part of a single structure. It is continuous. This is because a plurality of regions where the metal member 21 does not exist for the resin material 22 to be disposed are formed in part of the interior of the metal member 21 as a single sheet-like structure. .

金属部材21が(複数の部分同士が連結または接合されたものではなく)一体の構造物であるため、これはたとえば複数の金属部材21が連結または接合により形成されたものに比べて熱伝導率が高くなる。たとえば連結または接合により複数の部材が連続する金属部材21は、連結または接合が途切れた部分において熱伝導率が低下する可能性がある。たとえば冷却部材を構成する球形の粒子同士が点接触する場合は、粒子同士が点接触する部分の面積が小さいため、互いに接触する一の粒子と他の粒子との間の熱伝導率がいっそう低下する可能性がある。しかし上記の金属部材21のように一体の構造物であれば、連結または接合された部分が存在しないため、金属部材21の形成された部分全体の間(3次元的に張りめぐる網目形状の間)において十分に熱を伝導することが可能となるためである。   Since the metal member 21 is an integral structure (not a member in which a plurality of portions are connected or joined), this is, for example, a thermal conductivity as compared with a member in which a plurality of metal members 21 are formed by joining or joining. Becomes higher. For example, in the metal member 21 in which a plurality of members are continuous by connection or joining, there is a possibility that the thermal conductivity is lowered at a portion where the connection or joining is interrupted. For example, when spherical particles constituting the cooling member are in point contact, the area of the portion where the particles are in point contact is small, so the thermal conductivity between one particle and the other particle that are in contact with each other is further reduced. there's a possibility that. However, in the case of an integral structure such as the metal member 21 described above, there is no connected or joined portion, so the entire portion where the metal member 21 is formed (between three-dimensionally stretched mesh shapes). This is because the heat can be sufficiently conducted in (1).

金属部材21は冷却部材1の主要部分をなし、全体としてシート状(直方体状)を有している。たとえば金属部材21がX,Y,Z方向の3次元座標系に置かれた場合、金属部材21をなす直方体の互いに対向する3組の表面のうち1組の表面は、その法線がX方向に延在するように(当該1組の表面がX方向に交差する方向に広がるように)配置される。同様に金属部材21の3組の表面のうち上記1組の表面と異なる他の組の表面は、その法線がY方向に延在するように(当該他の組の表面がY方向に交差する方向に広がるように)配置される。金属部材21の3組の表面のうち上記1組および他の組とは異なるさらに他の組の表面は、その法線がZ方向に延在するように(当該さらに他の組の表面がZ方向に交差する方向に広がるように)配置される。   The metal member 21 is a main part of the cooling member 1 and has a sheet shape (cuboid shape) as a whole. For example, when the metal member 21 is placed in a three-dimensional coordinate system in the X, Y, and Z directions, the normal of one set of the three surfaces facing each other of the rectangular parallelepiped forming the metal member 21 is in the X direction. (The set of surfaces is spread in a direction intersecting the X direction). Similarly, among the three sets of surfaces of the metal member 21, the surfaces of the other sets different from the one set of surfaces are arranged so that their normal lines extend in the Y direction (the surfaces of the other sets intersect in the Y direction). Arranged to spread in the direction of Of the three sets of surfaces of the metal member 21, the other set of surfaces different from the one set and the other set are set so that their normal lines extend in the Z direction (the other set of surfaces are Z Arranged so as to spread in a direction crossing the direction).

図3および図4に示すように、金属部材21の内部には複数の気孔24が形成されている。気孔24は、シート状の金属部材21の塊の内部に存在する、金属部材21が存在しない穴状の領域である。言いかえれば金属部材21は、シート状の金属性の構造物から複数の気孔24を除いた領域である。金属部材21は上記の気孔24を複数有する多孔質金属材料である。気孔24を有する金属部材21は、たとえば金属材料の粉末と発砲助剤とを混合したものを押出成形しながら熱処理することにより形成される。   As shown in FIGS. 3 and 4, a plurality of pores 24 are formed inside the metal member 21. The pores 24 are hole-like regions that exist inside the lump of the sheet-like metal member 21 and do not have the metal member 21. In other words, the metal member 21 is a region obtained by removing the plurality of pores 24 from the sheet-like metallic structure. The metal member 21 is a porous metal material having a plurality of the pores 24 described above. The metal member 21 having the pores 24 is formed by, for example, heat-treating a mixture of a metal material powder and a firing aid while extruding.

気孔24は複数の穴状の領域が、金属部材21の内部で互いに連続するように配置されている。つまり図3の手前側の気孔24とその奥側の気孔24とが金属部材21の内部で互いに連続するように配置されている。冷却部材1の一の表面(たとえば上記の金属部材21を形成する直方体の互いに対向する3組の表面のうちの1組の表面)から(金属部材21の一の表面につながるように)、シート状の金属部材21の内部にて、複数の気孔24が互いに連続するように形成されている。ここで上記一の表面からシート状の金属部材21の内部で互いに連続する気孔24は、上記一の表面とは異なる他の表面(たとえば上記の他の組の表面)まで、複数の気孔24がすべて、シート状の金属部材21の内部で互いに連続するように形成されていてもよい。   The pores 24 are arranged such that a plurality of hole-like regions are continuous with each other inside the metal member 21. That is, the near side pores 24 and the far side pores 24 in FIG. 3 are arranged so as to be continuous with each other inside the metal member 21. From one surface of the cooling member 1 (for example, one surface of the three surfaces facing each other of the rectangular parallelepiped forming the metal member 21) (so as to be connected to one surface of the metal member 21), a sheet A plurality of pores 24 are formed so as to be continuous with each other inside the metal member 21. Here, the pores 24 that are continuous with each other inside the sheet-like metal member 21 from the one surface to the other surface different from the one surface (for example, the other set of surfaces) are formed by a plurality of pores 24. All may be formed so as to be continuous with each other inside the sheet-like metal member 21.

図5を参照して、上記のシート状の金属部材21の気孔24内には、図2に示す樹脂材料22が含浸されている。樹脂材料22は、たとえばシート状の金属部材21の表面に存在する気孔24から、この気孔24に連続する(より内部の)気孔24までのそれぞれの気孔24の内部に供給される。このためそれぞれの気孔24の内部は樹脂材料22で充填される。このようにシート状の金属部材21内の気孔24は金属部材21の表面を起点として金属部材21の内部を連続するため、金属部材21の表面に形成された気孔24の内部に樹脂材料22を供給するだけで、当該樹脂材料22は金属部材21の表面の気孔24から当該気孔24につながる内部の気孔24までの各気孔24内を樹脂材料22で充填することができる。   Referring to FIG. 5, the resin material 22 shown in FIG. 2 is impregnated in the pores 24 of the sheet-like metal member 21. The resin material 22 is supplied into the pores 24 from the pores 24 existing on the surface of the sheet-like metal member 21 to the pores 24 that are continuous (more inside) with the pores 24, for example. For this reason, the inside of each pore 24 is filled with the resin material 22. Thus, since the pores 24 in the sheet-like metal member 21 continue inside the metal member 21 starting from the surface of the metal member 21, the resin material 22 is placed inside the pores 24 formed on the surface of the metal member 21. By simply supplying the resin material 22, the pores 24 from the pores 24 on the surface of the metal member 21 to the internal pores 24 connected to the pores 24 can be filled with the resin material 22.

液相化された樹脂材料22中に、気孔24を有する金属部材21を浸漬させて加圧すれば、金属部材21を形成するいずれかの表面の一部に形成された気孔24の内部に、樹脂材料22が充填される。これにより樹脂材料22を金属部材21(気孔24)の内部に含浸させることができる。   If the metal member 21 having the pores 24 is immersed in the resin material 22 in the liquid phase and pressed, the inside of the pores 24 formed in a part of any surface forming the metal member 21, The resin material 22 is filled. Thereby, the resin material 22 can be impregnated inside the metal member 21 (pore 24).

たとえば冷却部材1が、気孔24を有する金属部材21のみで構成されており気孔24の内部に樹脂材料22を含まない構成であれば、冷却部材1に外部から圧力が加えられても、金属部材21がほとんど変形しない。これは金属部材21はほとんど弾性変形しないためである。すると冷却部材1が電力用半導体モジュール2およびヒートシンク3と接触する部分において冷却部材1と電力用半導体モジュール2またはヒートシンク3との間に隙間が形成され、冷却部材1と電力用半導体モジュール2またはヒートシンク3との熱抵抗が上昇する可能性がある。   For example, if the cooling member 1 is configured only by the metal member 21 having the pores 24 and does not include the resin material 22 inside the pores 24, the metal member can be used even if pressure is applied to the cooling member 1 from the outside. 21 hardly deforms. This is because the metal member 21 hardly elastically deforms. Then, a gap is formed between the cooling member 1 and the power semiconductor module 2 or the heat sink 3 at a portion where the cooling member 1 contacts the power semiconductor module 2 and the heat sink 3, and the cooling member 1 and the power semiconductor module 2 or the heat sink 3 are formed. 3 may increase the thermal resistance.

しかし上記冷却部材1は含浸された樹脂材料22を含む。このため、電力用半導体モジュール2の金属ベース板4とヒートシンク3との間隔が金属ベース板4の温度上昇による熱膨張や金属ベース板4に加えられる圧力などにより変化しそうになっても、樹脂材料22が弾性変形することにより、電力用半導体モジュール2の金属ベース板4とヒートシンク3との隙間が形成されなくなる。これは樹脂材料22は金属部材21に比べて容易に弾性変形する(低弾性である)ためである。   However, the cooling member 1 includes an impregnated resin material 22. Therefore, even if the distance between the metal base plate 4 and the heat sink 3 of the power semiconductor module 2 is likely to change due to thermal expansion due to the temperature rise of the metal base plate 4 or the pressure applied to the metal base plate 4, the resin material When 22 is elastically deformed, a gap between the metal base plate 4 and the heat sink 3 of the power semiconductor module 2 is not formed. This is because the resin material 22 is easily elastically deformed (low elasticity) compared to the metal member 21.

したがって、たとえ金属ベース板4などが変形しても、冷却部材1と金属ベース板4などとが接着された状態を維持することができるため、金属ベース板4などと冷却部材1との間の良好な熱伝導性を維持することができる。   Accordingly, even if the metal base plate 4 or the like is deformed, the state in which the cooling member 1 and the metal base plate 4 or the like are adhered can be maintained, so that the space between the metal base plate 4 and the cooling member 1 is maintained. Good thermal conductivity can be maintained.

以上より本実施の形態の冷却部材1は、3次元的に網目状に交錯したような(サンゴのような)形状を有する(一体構造の)金属部材21により、高い熱伝導率(低い熱抵抗)を実現することができる。また冷却部材1の樹脂材料22は、金属ベース板4などの表面形状に追随するように柔軟に変形することにより、金属ベース板4との接触面積を大きくすることが可能となるため、金属ベース板4などからの熱伝導性を間接的に高める(熱抵抗を間接的に低くする)効果を有している。つまり金属部材21と樹脂材料22との相乗効果により、熱伝導率をいっそう高くすることができる。   As described above, the cooling member 1 of the present embodiment has a high thermal conductivity (low thermal resistance) by the metal member 21 having a shape (such as coral) that is three-dimensionally crossed in a mesh shape (such as coral). ) Can be realized. Further, since the resin material 22 of the cooling member 1 can be flexibly deformed so as to follow the surface shape of the metal base plate 4 or the like, the contact area with the metal base plate 4 can be increased. It has the effect of indirectly increasing the thermal conductivity from the plate 4 or the like (increasing the thermal resistance indirectly). That is, the thermal conductivity can be further increased by the synergistic effect of the metal member 21 and the resin material 22.

また冷却部材1がシート状であるため、容易に電力用半導体モジュール2とヒートシンク3との間に挟まれるように配置することができる。さらに冷却部材1がシート状であるため、半導体装置100において電力用半導体モジュール2とヒートシンク3との間の領域からの取り外しおよび交換が容易に行なえる。   Further, since the cooling member 1 has a sheet shape, the cooling member 1 can be easily disposed between the power semiconductor module 2 and the heat sink 3. Furthermore, since the cooling member 1 has a sheet shape, the semiconductor device 100 can be easily removed and replaced from the region between the power semiconductor module 2 and the heat sink 3.

冷却部材1の全体(冷却部材1を構成するシート状部分の全体)の体積に対する気孔24の体積の割合(気孔率)は20%以上60%以下であることが好ましい。ここで気孔24の体積は、冷却部材1に含まれるすべての気孔24の体積の和を意味する。   The ratio of the volume of the pores 24 (porosity) to the volume of the entire cooling member 1 (the entire sheet-like portion constituting the cooling member 1) is preferably 20% or more and 60% or less. Here, the volume of the pores 24 means the sum of the volumes of all the pores 24 included in the cooling member 1.

気孔率が20%未満の場合、冷却部材1のうち金属部材21が占める体積割合が増加するため、冷却部材1の熱伝導率は上昇する。しかしこの場合、冷却部材1のうち金属部材21が占める体積割合が増加する分、樹脂材料22が占める体積割合が減少する。このため、上記金属ベース板4およびヒートシンク3が冷却部材1に接触する面の凹凸形状または反り形状に従うように冷却部材1が金属ベース板4およびヒートシンク3に接触する面が柔軟に凹凸形状または反り形状に変形することが困難になる。   When the porosity is less than 20%, the volume ratio occupied by the metal member 21 in the cooling member 1 increases, so that the thermal conductivity of the cooling member 1 increases. However, in this case, the volume ratio occupied by the resin material 22 decreases as the volume ratio occupied by the metal member 21 in the cooling member 1 increases. For this reason, the surface where the cooling member 1 contacts the metal base plate 4 and the heat sink 3 flexibly has an uneven shape or warp so that the metal base plate 4 and the heat sink 3 follow the uneven shape or warp shape of the surface contacting the cooling member 1. It becomes difficult to deform into a shape.

一方、気孔率が60%を超えれば、樹脂材料22が占める体積割合は増加して、上記金属ベース板4およびヒートシンク3が冷却部材1に接触する面の凹凸形状または反り形状に従うように冷却部材1が金属ベース板4およびヒートシンク3に接触する面が柔軟に凹凸形状または反り形状に変形することが容易になる。しかし金属部材21の体積割合が減少することにより、(樹脂材料22は金属部材21に比べて熱伝導率が低いため)冷却部材1全体の熱伝導率が低下する(熱抵抗が高くなる)可能性がある。   On the other hand, if the porosity exceeds 60%, the volume ratio occupied by the resin material 22 increases, and the cooling member so that the metal base plate 4 and the heat sink 3 follow the uneven shape or warped shape of the surface in contact with the cooling member 1. It becomes easy for the surface where 1 contacts the metal base plate 4 and the heat sink 3 to be flexibly deformed into an uneven shape or a warped shape. However, when the volume ratio of the metal member 21 is reduced (because the resin material 22 has a lower thermal conductivity than the metal member 21), the overall thermal conductivity of the cooling member 1 can be reduced (the thermal resistance is increased). There is sex.

具体的には、図6を参照して、冷却部材1が金属ベース板4と接触する面1aと、金属ベース板4が冷却部材1と接触する面4aとは、冷却部材1中の樹脂材料22の体積割合が増加して冷却部材1の変形が容易になることにより、良好に接触するようになる。このとき、面1aは、面4aの凹凸形状または反り形状に追随して面4aと同様の形状となるように弾性変形することが容易となる。このように面1aが変形すれば、面1aと面4aとの間に隙間は形成されず、面1aと面4aとが良好に接触される。   Specifically, referring to FIG. 6, the surface 1 a where the cooling member 1 contacts the metal base plate 4 and the surface 4 a where the metal base plate 4 contacts the cooling member 1 are resin materials in the cooling member 1. Since the volume ratio of 22 increases and the deformation of the cooling member 1 becomes easy, it comes into good contact. At this time, the surface 1a can easily be elastically deformed so as to follow the concave-convex shape or warpage shape of the surface 4a and to have the same shape as the surface 4a. If the surface 1a is deformed in this way, no gap is formed between the surface 1a and the surface 4a, and the surface 1a and the surface 4a are in good contact with each other.

同様に、冷却部材1がヒートシンク3と接触する面1bと、ヒートシンク3が冷却部材1と接触する面3bとは、冷却部材1中の樹脂材料22の体積割合が増加して冷却部材1の変形が容易になることにより、良好に接触するようになる。このとき、面1bは、面3bの凹凸形状または反り形状に追随して面3bと同様の形状となるように弾性変形することが容易となる。このように面1bが変形すれば、面1bと面3bとの間に隙間は形成されず、面1bと面3bとが良好に接触される。   Similarly, the surface 1b where the cooling member 1 contacts the heat sink 3 and the surface 3b where the heat sink 3 contacts the cooling member 1 increase the volume ratio of the resin material 22 in the cooling member 1 and deform the cooling member 1. It becomes easy to contact by becoming easy. At this time, the surface 1b can be easily elastically deformed so as to follow the concave-convex shape or warpage shape of the surface 3b and to have the same shape as the surface 3b. If the surface 1b is deformed in this way, no gap is formed between the surface 1b and the surface 3b, and the surface 1b and the surface 3b are in good contact.

以上より、気孔率を20%以上60%以下とすれば、金属部材21による良好な熱伝導性と、樹脂材料22が弾性変形してヒートシンク3などとの密着性が増加することによる熱伝導性との双方の効果を得ることができ、冷却部材1の良好な熱伝導性を実現することができる。   From the above, when the porosity is 20% or more and 60% or less, good thermal conductivity due to the metal member 21 and thermal conductivity due to the elastic deformation of the resin material 22 and increased adhesion to the heat sink 3 and the like. Both effects can be obtained, and good thermal conductivity of the cooling member 1 can be realized.

冷却部材1の内部の気孔24の孔径は25μm以上500μm以下であることが好ましい。ここで気孔24が球形ではない歪んだ形状を有する場合には、上記孔径は、気孔24の最大の径(気孔24の中心を通るように測定した、気孔24のサイズの最大値)として求めることが好ましい。   The pore diameter of the pores 24 inside the cooling member 1 is preferably 25 μm or more and 500 μm or less. When the pores 24 have a distorted shape that is not spherical, the pore diameter is determined as the maximum diameter of the pores 24 (the maximum size of the pores 24 measured through the center of the pores 24). Is preferred.

気孔24の孔径が25μm未満の場合、気孔24の内部に樹脂材料22を含浸させることが困難となるため、冷却部材1の(気孔24の)内部に空気ボイドが形成される可能性がある。この空気ボイドが冷却部材1の温度上昇により気孔24内を移動して冷却部材1の表面に到達すれば、上記の面1aと面4a(面1bと面3b)との間に空気ボイドによる隙間が形成される。この空気ボイドが冷却部材1内における熱伝導を阻害するため、冷却部材1と電力用半導体モジュール2またはヒートシンク3との熱抵抗が上昇する可能性がある。   When the pore diameter of the pores 24 is less than 25 μm, it is difficult to impregnate the pores 24 with the resin material 22, and thus air voids may be formed inside the cooling member 1 (in the pores 24). If the air void moves in the pores 24 due to the temperature rise of the cooling member 1 and reaches the surface of the cooling member 1, a gap due to the air void is formed between the surface 1a and the surface 4a (surface 1b and surface 3b). Is formed. Since this air void hinders heat conduction in the cooling member 1, the thermal resistance between the cooling member 1 and the power semiconductor module 2 or the heat sink 3 may increase.

一方、気孔24の孔径が500μmを超える場合、冷却部材1の表面に形成される気孔24の孔径も大きくなるため、冷却部材1と電力用半導体モジュール2またはヒートシンク3とが接触する面において、冷却部材1は電力用半導体モジュール2などと、樹脂材料22により接触する面積が大きくなる。樹脂材料22は金属部材21に比べて熱伝導率が低いため、上記のように気孔24の孔径が大きくなり樹脂材料22による(ヒートシンク3などとの)接触面積が大きくなれば、冷却部材1と電力用半導体モジュール2またはヒートシンク3との間の熱伝導率が低下する(熱抵抗が上昇する)可能性がある。   On the other hand, when the pore diameter of the pores 24 exceeds 500 μm, the pore diameter of the pores 24 formed on the surface of the cooling member 1 also increases, so that cooling is performed on the surface where the cooling member 1 and the power semiconductor module 2 or the heat sink 3 are in contact. The area where the member 1 is in contact with the power semiconductor module 2 and the like by the resin material 22 is increased. Since the resin material 22 has a lower thermal conductivity than the metal member 21, if the hole diameter of the pores 24 is increased as described above and the contact area (with the heat sink 3 or the like) by the resin material 22 is increased, the cooling member 1 and There is a possibility that the thermal conductivity between the power semiconductor module 2 or the heat sink 3 is reduced (heat resistance is increased).

以上より、気孔24の孔径を25μm以上500μm以下とすることにより、冷却部材1と電力用半導体モジュール2またはヒートシンク3との間の熱伝導率を上昇させる(熱抵抗を減少させる)ことができ、熱の良好な伝導が可能となる。   From the above, by setting the pore diameter of the pores 24 to 25 μm or more and 500 μm or less, the thermal conductivity between the cooling member 1 and the power semiconductor module 2 or the heat sink 3 can be increased (the thermal resistance is reduced), Good conduction of heat is possible.

樹脂材料22は、複素弾性率が1×103N/m2以上1×105N/m2以下であり粘着性を有することが好ましい。なおここで粘着性とは、金属ベース板4やヒートシンク3を構成する金属材料との密着が可能な程度の粘性を意味する。具体的には樹脂材料22は、たとえばシリコーン系の樹脂であることが好ましいがこれに限られない。 The resin material 22 has a complex elastic modulus of 1 × 10 3 N / m 2 or more and 1 × 10 5 N / m 2 or less, and preferably has adhesiveness. In addition, adhesiveness means here the viscosity of the grade which can closely_contact | adhere with the metal material which comprises the metal base board 4 and the heat sink 3. FIG. Specifically, the resin material 22 is preferably, for example, a silicone-based resin, but is not limited thereto.

このようにすれば、樹脂材料22を含む冷却部材1が弾性体として作用するため、冷却部材1は、電力用半導体モジュール2およびヒートシンク3の表面の凹凸形状および反り形状に追随可能となる。また樹脂材料22が粘着性を有することにより、たとえば図6における面1aと面4aとの接着状態、および面1bと面3bとの接着状態を良好にすることができる。したがって冷却部材1と電力用半導体モジュール2またはヒートシンク3との間の熱抵抗を低下(熱伝導率を上昇)させることができる。   In this way, since the cooling member 1 including the resin material 22 acts as an elastic body, the cooling member 1 can follow the concavo-convex shape and warpage shape of the surfaces of the power semiconductor module 2 and the heat sink 3. Further, since the resin material 22 has adhesiveness, for example, the adhesion state between the surface 1a and the surface 4a and the adhesion state between the surface 1b and the surface 3b in FIG. 6 can be improved. Therefore, the thermal resistance between the cooling member 1 and the power semiconductor module 2 or the heat sink 3 can be reduced (heat conductivity is increased).

(実施の形態2)
図7を参照して、本実施の形態の半導体装置200は、図1に示す実施の形態1の構成と比較して、金属ベース板4を有しない点において異なっている。本実施の形態においては、セラミック基板5が冷却部材1の上側の表面上に載置される。電力用半導体モジュール2が発生する熱はセラミック基板5から冷却部材1に伝えられるが、本実施の形態においても基本的に実施の形態1と同様の作用効果を奏する。
(Embodiment 2)
Referring to FIG. 7, semiconductor device 200 of the present embodiment differs from that of the first embodiment shown in FIG. 1 in that it does not have metal base plate 4. In the present embodiment, the ceramic substrate 5 is placed on the upper surface of the cooling member 1. The heat generated by the power semiconductor module 2 is transmitted from the ceramic substrate 5 to the cooling member 1. In the present embodiment, the same effects as those of the first embodiment are basically obtained.

なお、上記以外の本実施の形態の構成は、図1に示す実施の形態1の構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明は繰り返さない。   Since the configuration of the present embodiment other than the above is substantially the same as the configuration of the first embodiment shown in FIG. 1, the same elements are denoted by the same reference numerals, and the description thereof will not be repeated.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 冷却部材、2 電力用半導体モジュール、3 ヒートシンク、3a ヒートシンクベース板、3b フィン、4 金属ベース板、5 セラミック基板、6 電力用半導体チップ、7 ワイヤ、8 封止樹脂、9 ケース、10 蓋、11 電極端子、21 金属部材、22 樹脂材料、24 気孔、100,200 半導体装置。   DESCRIPTION OF SYMBOLS 1 Cooling member, 2 Power semiconductor module, 3 Heat sink, 3a Heat sink base plate, 3b Fin, 4 Metal base plate, 5 Ceramic substrate, 6 Power semiconductor chip, 7 Wire, 8 Sealing resin, 9 Case, 10 Cover, 11 Electrode terminal, 21 Metal member, 22 Resin material, 24 Pore, 100, 200 Semiconductor device.

Claims (6)

内部に複数の気孔を有するシート状の金属部材と、
前記金属部材の前記気孔内を含浸する樹脂材料とを備え、
前記複数の気孔は、前記金属部材の一の表面につながるように、前記金属部材の内部で互いに連続するように配置されている、冷却部材。
A sheet-like metal member having a plurality of pores therein;
A resin material impregnating the pores of the metal member,
The cooling member, wherein the plurality of pores are arranged to be continuous with each other inside the metal member so as to be connected to one surface of the metal member.
前記冷却部材の体積に対する前記気孔の体積の割合は20%以上60%以下である、請求項1に記載の冷却部材。   The cooling member according to claim 1, wherein a ratio of a volume of the pores to a volume of the cooling member is 20% or more and 60% or less. 前記気孔の孔径が25μm以上500μm以下である、請求項1または2に記載の冷却部材。   The cooling member according to claim 1 or 2, wherein a pore diameter of the pores is 25 µm or more and 500 µm or less. 前記金属部材は、アルミニウム、銀、銅、アルミニウムと銀と銅との合金からなる群から選択される1種からなる、請求項1〜3のいずれか1項に記載の冷却部材。   The said metal member is a cooling member of any one of Claims 1-3 which consists of 1 type selected from the group which consists of aluminum, silver, copper, and the alloy which consists of aluminum, silver, and copper. 前記樹脂材料は粘着性を有し、
前記樹脂材料の複素弾性率が1×103N/m2以上1×105N/m2以下である、請求項1〜4のいずれか1項に記載の冷却部材。
The resin material has adhesiveness,
The cooling member according to claim 1, wherein a complex elastic modulus of the resin material is 1 × 10 3 N / m 2 or more and 1 × 10 5 N / m 2 or less.
請求項1〜5のいずれか1項に記載の冷却部材と、
前記冷却部材に取り付けられる半導体素子とを備える、半導体装置。
The cooling member according to any one of claims 1 to 5,
A semiconductor device comprising: a semiconductor element attached to the cooling member.
JP2013121645A 2013-06-10 2013-06-10 Cooling member and semiconductor device Expired - Fee Related JP6021745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121645A JP6021745B2 (en) 2013-06-10 2013-06-10 Cooling member and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121645A JP6021745B2 (en) 2013-06-10 2013-06-10 Cooling member and semiconductor device

Publications (2)

Publication Number Publication Date
JP2014239176A true JP2014239176A (en) 2014-12-18
JP6021745B2 JP6021745B2 (en) 2016-11-09

Family

ID=52136098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121645A Expired - Fee Related JP6021745B2 (en) 2013-06-10 2013-06-10 Cooling member and semiconductor device

Country Status (1)

Country Link
JP (1) JP6021745B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067801A (en) * 2017-09-28 2019-04-25 デンカ株式会社 Power module with heat dissipation component
JP2021103781A (en) * 2016-01-25 2021-07-15 日東シンコー株式会社 Heat dissipation member and semiconductor module
JP7383871B2 (en) 2019-06-17 2023-11-21 エルジー・ケム・リミテッド Composite manufacturing method and composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162336A (en) * 1995-12-11 1997-06-20 Mitsubishi Materials Corp Radiation sheet
JPH11181289A (en) * 1997-10-13 1999-07-06 Dow Corning Toray Silicone Co Ltd Curable silicone composition and electronic part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162336A (en) * 1995-12-11 1997-06-20 Mitsubishi Materials Corp Radiation sheet
JPH11181289A (en) * 1997-10-13 1999-07-06 Dow Corning Toray Silicone Co Ltd Curable silicone composition and electronic part

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103781A (en) * 2016-01-25 2021-07-15 日東シンコー株式会社 Heat dissipation member and semiconductor module
JP7240429B2 (en) 2016-01-25 2023-03-15 日東シンコー株式会社 Heat dissipation materials and semiconductor modules
JP2019067801A (en) * 2017-09-28 2019-04-25 デンカ株式会社 Power module with heat dissipation component
JP7027094B2 (en) 2017-09-28 2022-03-01 デンカ株式会社 Power module with heat dissipation parts
JP7383871B2 (en) 2019-06-17 2023-11-21 エルジー・ケム・リミテッド Composite manufacturing method and composite material

Also Published As

Publication number Publication date
JP6021745B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
CN105742252B (en) A kind of power module and its manufacturing method
JP3740117B2 (en) Power semiconductor device
US20130328200A1 (en) Direct bonded copper substrate and power semiconductor module
CN111261598A (en) Packaging structure and power module applicable to same
JP6021745B2 (en) Cooling member and semiconductor device
JP4146888B2 (en) Semiconductor module and method for manufacturing semiconductor module
CN111615746A (en) Power electronic module and method of manufacturing a power electronic module
JP2008235576A (en) Heat dissipation structure of electronic component and semiconductor device
KR20140092543A (en) Heat dissipating device and package for heat dissipating using the same
JP2009231685A (en) Power semiconductor device
CN111048480B (en) Power electronic module
JP2014120549A (en) Insulation heat radiation substrate and circuit module using the same
CN110676232B (en) Semiconductor device packaging structure, manufacturing method thereof and electronic equipment
JP3818310B2 (en) Multilayer board
JP2011192762A (en) Power module
JP2015122430A (en) Electronic apparatus
TW200421571A (en) Semiconductor device
JP2006013420A (en) Package for electronic component housing, and electronic device
JP2004247514A (en) Semiconductor element housing package, and semiconductor device
KR102007725B1 (en) Electronic device case
JP7249935B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP4492242B2 (en) Semiconductor package
JP5807801B2 (en) Semiconductor module
JP2017220610A (en) Semiconductor device
CN107333386B (en) Heat dissipation structure and method of PCB

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees