JP2014238383A - Water drop detection sensor - Google Patents

Water drop detection sensor Download PDF

Info

Publication number
JP2014238383A
JP2014238383A JP2013198619A JP2013198619A JP2014238383A JP 2014238383 A JP2014238383 A JP 2014238383A JP 2013198619 A JP2013198619 A JP 2013198619A JP 2013198619 A JP2013198619 A JP 2013198619A JP 2014238383 A JP2014238383 A JP 2014238383A
Authority
JP
Japan
Prior art keywords
light
transparent plate
detection
incident
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013198619A
Other languages
Japanese (ja)
Other versions
JP6167799B2 (en
Inventor
大塚 澄
Kiyoshi Otsuka
澄 大塚
安藤 浩
Hiroshi Ando
浩 安藤
石川 純一
Junichi Ishikawa
純一 石川
真紀子 杉浦
Makiko Sugiura
杉浦  真紀子
一起 牧野
Kazuki Makino
一起 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013198619A priority Critical patent/JP6167799B2/en
Priority to PCT/JP2014/002234 priority patent/WO2014181506A1/en
Publication of JP2014238383A publication Critical patent/JP2014238383A/en
Application granted granted Critical
Publication of JP6167799B2 publication Critical patent/JP6167799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor
    • B60S1/0837Optical rain sensor with a particular arrangement of the optical elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water drop detection sensor which has uniform detection sensitivity and for which an area of a detection region is secured.SOLUTION: A water drop detection sensor (100) comprises; a light-emitting element (10) emitting detection light; a refraction part (30) refracting detection light and causing the detection light to enter a transparent plate; a light receiving element (70) receiving the detection light totally reflected on a boundary face between an outer face of the transparent plate and the air; and a detection part (90) detecting a water droplet attached on an outer face of the transparent plate by detecting an increase and decrease of the detection light entering the light receiving element. The refraction part has a plurality of divided incidence planes (31b, 32b) that are aligned from the light-emitting element toward the light receiving element on an inner surface of the transparent plate. A distance connecting each of the plurality of incidence planes and the light-emitting element is set so as to uniformize the intensity of the detection light entering each of the plurality of incidence planes.

Description

本発明は、検出光を透明板に照射する発光素子と、検出光を屈折する屈折部と、透明板の外面と空気との界面にて反射された検出光を受光する受光素子と、受光素子に入射する検出光の増減を検出することで、透明板の外面に付着した水滴を検出する検出部と、を有する水滴検出センサに関するものである。   The present invention includes a light emitting element that irradiates a transparent plate with detection light, a refracting portion that refracts the detection light, a light receiving element that receives the detection light reflected at the interface between the outer surface of the transparent plate and air, It is related with the water-drop detection sensor which has a detection part which detects the increase / decrease in the detection light which injects into water, and detects the water droplet adhering to the outer surface of a transparent plate.

従来、例えば特許文献1に示されるように、発光素子の光をウインドシールドの内壁側に照射する発光素子と、ウインドシールドで反射した光を計測する受光素子と、を有し、ウインドシールドの外壁面に付着した雨滴の量を検出する雨滴検出装置が提案されている。この雨滴検出装置は、ウインドシールドの内壁側に装着される導光体を有している。導光体は、発光素子の光を透過する複数の入射側傾斜面、および、隣り合う入射側傾斜面の端部同士を結ぶ入射側段差面を有する。   Conventionally, as disclosed in, for example, Patent Document 1, a light emitting element that irradiates light from the light emitting element on the inner wall side of the windshield and a light receiving element that measures light reflected by the windshield, A raindrop detection device that detects the amount of raindrops adhering to a wall surface has been proposed. This raindrop detection device has a light guide mounted on the inner wall side of the windshield. The light guide has a plurality of incident-side inclined surfaces that transmit light from the light-emitting element, and an incident-side step surface that connects ends of adjacent incident-side inclined surfaces.

特許第421553号公報Japanese Patent No. 4215553

ところで、特許文献1に示される雨滴検出装置では、入射した光を平行光とする第1のレンズが入射側傾斜面に形成されている。第1のレンズは、一枚の平凸レンズを複数に分割した入射側分割平凸レンズを有する。入射側分割平凸レンズの分割面は、入射側分割平凸レンズの光軸に沿って配置されている。   By the way, in the raindrop detection apparatus disclosed in Patent Document 1, a first lens that makes incident light parallel light is formed on the incident-side inclined surface. The first lens has an incident-side divided plano-convex lens obtained by dividing one plano-convex lens into a plurality of pieces. The dividing surface of the incident side divided plano-convex lens is disposed along the optical axis of the incident side divided plano-convex lens.

しかしながら、入射側分割平凸レンズの分割面は、自身に入射する発光素子の光の強度が均一となるようには配置されていない。そのため、入射側分割平凸レンズの分割面それぞれに入射する光の強度が不均一になっている。したがって、入射側分割平凸レンズによって屈折され、雨滴の付着するウインドシールドの外面に照射される光の強度も不均一になり、ウインドシールドの外面における光の照射領域(雨滴の検出領域)の検出感度が不均一になる。この結果、特定の領域で検出感度が低くなり、検出領域の面積を十分に確保することができない、という問題があった。   However, the split surface of the incident side split plano-convex lens is not arranged so that the light intensity of the light emitting element incident thereon is uniform. Therefore, the intensity of light incident on each of the split surfaces of the incident side split plano-convex lens is non-uniform. Therefore, the intensity of the light that is refracted by the incident side split plano-convex lens and irradiates the outer surface of the windshield where raindrops adhere is also uneven, and the detection sensitivity of the light irradiation area (raindrop detection area) on the outer surface of the windshield Becomes uneven. As a result, there is a problem that the detection sensitivity is lowered in a specific region, and the area of the detection region cannot be sufficiently secured.

そこで、本発明は上記問題点に鑑み、検出感度が均一となり、検出領域の面積が確保された水滴検出センサを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a water droplet detection sensor in which the detection sensitivity is uniform and the area of the detection region is ensured.

上記した目的を達成するために、本発明は、検出光を透明板(110)の内面(110a)に向けて照射する発光素子(10)と、検出光を屈折させて透明板に入射させ、透明板の外面(110b)と空気との界面にて全反射させる屈折部(30)と、透明板の外面と空気との界面にて全反射され、透明板から出射された検出光を受光する受光素子(70)と、透明板の外面に付着した水滴による、受光素子に入射する検出光の増減を検出することで、透明板の外面に付着した水滴を検出する検出部(90)と、を有する水滴検出センサであって、屈折部は、検出光が主として入射される入射面として、複数に分割された入射面(31b,32b)を有し、分割された複数の入射面は、透明板の内面における、発光素子の投影部位と受光素子の投影部位との間に位置し、発光素子から受光素子へと向かって並んでおり、複数の入射面それぞれに入射する検出光の強度が均一となるように、複数の入射面それぞれと発光素子とを結ぶ距離が設定されている。   In order to achieve the above object, the present invention comprises a light emitting element (10) that irradiates detection light toward the inner surface (110a) of the transparent plate (110), and refracts the detection light so as to enter the transparent plate. The refraction part (30) that totally reflects at the interface between the outer surface (110b) of the transparent plate and the air, and the total reflection at the interface between the outer surface of the transparent plate and the air, and the detection light emitted from the transparent plate is received. A light receiving element (70) and a detection unit (90) for detecting water droplets adhering to the outer surface of the transparent plate by detecting an increase or decrease in detection light incident on the light receiving element due to water droplets adhering to the outer surface of the transparent plate; The refraction part has a plurality of incident surfaces (31b, 32b) as incident surfaces on which detection light is mainly incident, and the plurality of divided incident surfaces are transparent. Projection part of light emitting element and light receiving element on inner surface of plate The plurality of incident surfaces, the light emitting elements, and the light emitting elements are arranged between the light emitting elements and the light receiving elements, and the intensity of the detection light incident on each of the plurality of incident surfaces is uniform. The distance connecting is set.

このように本発明によれば、複数の入射面(31b,32b)それぞれに、均一な強度の検出光が入射される。そのため、入射面(31b,32b)によって屈折され、水滴の付着する透明板(110)の外面(110b)に照射される検出光の強度も均一になる。これにより、透明板(110)の外面(110b)における検出光の照射領域(水滴の検出領域)の検出感度が均一となる。そして、特定の領域で検出感度が低くなることが抑制され、検出領域の面積が狭くなることが抑制される。この結果、検出領域の面積が確保される。   As described above, according to the present invention, detection light having a uniform intensity is incident on each of the plurality of incident surfaces (31b, 32b). Therefore, the intensity of the detection light that is refracted by the incident surfaces (31b, 32b) and irradiates the outer surface (110b) of the transparent plate (110) to which water droplets adhere is uniform. Thereby, the detection sensitivity of the detection light irradiation region (water droplet detection region) on the outer surface (110b) of the transparent plate (110) becomes uniform. And it is suppressed that a detection sensitivity falls in a specific area | region, and it becomes suppressed that the area of a detection area | region becomes narrow. As a result, the area of the detection region is ensured.

第1実施形態に係る水滴検出センサの概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the water droplet detection sensor which concerns on 1st Embodiment. z方向における発光素子からの離間距離を示すための概念図である。It is a conceptual diagram for showing the separation distance from the light emitting element in az direction. 検出光の光強度を示すグラフである。It is a graph which shows the light intensity of detection light. 検出光の光相対強度を示すグラフである。It is a graph which shows the optical relative intensity of detection light. 屈折部を説明するための断面図である。It is sectional drawing for demonstrating a refractive part. 図5に示す白抜き矢印からみた屈折部のx−y平面の形状を示す上面図である。It is a top view which shows the shape of the xy plane of the refractive part seen from the white arrow shown in FIG. 入射面を説明するためのy−z平面における屈折部の断面図である。It is sectional drawing of the refractive part in the yz plane for demonstrating an entrance plane. 入射面の変形例を示すy−z平面における屈折部の断面図である。It is sectional drawing of the refractive part in the yz plane which shows the modification of an entrance plane. 入射面の変形例を示すy−z平面における屈折部の断面図である。It is sectional drawing of the refractive part in the yz plane which shows the modification of an entrance plane. 屈折部の変形例を示す断面図である。It is sectional drawing which shows the modification of a refractive part.

以下、本発明の実施の形態を図に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1〜図7に基づいて、本実施形態に係る水滴検出センサを説明する。なお、図5では、後述する連結部60とフィルム61を省略している。
(First embodiment)
Based on FIGS. 1-7, the water droplet detection sensor which concerns on this embodiment is demonstrated. In addition, in FIG. 5, the connection part 60 and the film 61 which are mentioned later are abbreviate | omitted.

以下においては、互いに直交の関係にある3方向を、x方向、y方向、z方向と示す。そして、x方向とy方向とによって規定される平面をx−y平面、y方向とz方向とによって規定される平面をy−z平面、z方向とx方向とによって規定される平面をz−x平面と示す。x方向は、特許請求の範囲に記載の「発光素子から受光素子へ向かう方向」y方向は「発光素子から受光素子へ向かう方向及び高さ方向の両方向に垂直な方向」、z方向は、「透明板の外面に直交する高さ方向」に相当する。   In the following, the three directions that are orthogonal to each other are referred to as an x direction, a y direction, and a z direction. A plane defined by the x direction and the y direction is an xy plane, a plane defined by the y direction and the z direction is a yz plane, and a plane defined by the z direction and the x direction is z−. Shown as x-plane. The x direction is the “direction from the light emitting element to the light receiving element” and the y direction is “the direction perpendicular to both the direction from the light emitting element to the light receiving element and the height direction” and the z direction is “ This corresponds to the “height direction perpendicular to the outer surface of the transparent plate”.

図1に示すように、水滴検出センサ100は、発光素子10と、屈折部30と、集光部50と、受光素子70と、検出部90と、を有する。発光素子10と受光素子70とがx方向において離間しており、その間に屈折部30と集光部50とが位置している。図1に実線矢印と破線矢印で示すように、発光素子10から透明板110の内面110aに向けて検出光が照射され、その検出光が屈折部30に入射される。検出光は屈折部30にて屈折されて透明板110に入射する。そして検出光は透明板110の外面110bと空気との界面(以下、単に界面と示す)にて反射され、透明板110の内面110aから出射される。内面110aから出射された検出光は集光部50に入射し、集光部50にて集光される。そして集光された検出光が受光素子70に入射する。受光素子70にて検出光はその光量に応じた電気信号に変換され、その電気信号が検出部90に入力される。   As shown in FIG. 1, the water droplet detection sensor 100 includes a light emitting element 10, a refracting unit 30, a light collecting unit 50, a light receiving element 70, and a detecting unit 90. The light emitting element 10 and the light receiving element 70 are separated from each other in the x direction, and the refraction part 30 and the light collecting part 50 are located therebetween. As indicated by solid line arrows and broken line arrows in FIG. 1, detection light is irradiated from the light emitting element 10 toward the inner surface 110 a of the transparent plate 110, and the detection light is incident on the refraction part 30. The detection light is refracted by the refracting unit 30 and enters the transparent plate 110. Then, the detection light is reflected at the interface between the outer surface 110 b of the transparent plate 110 and the air (hereinafter simply referred to as the interface) and is emitted from the inner surface 110 a of the transparent plate 110. The detection light emitted from the inner surface 110 a enters the light collecting unit 50 and is collected by the light collecting unit 50. Then, the collected detection light is incident on the light receiving element 70. The detection light is converted into an electrical signal corresponding to the amount of light by the light receiving element 70, and the electrical signal is input to the detection unit 90.

外面110bに水滴が付着していなければ、界面にて反射される検出光の量は最も多い。そのため受光素子70にて変換される電気信号の出力も最も大きい。しかしながら、外面110bにおける検出光の照射領域(水滴の検出領域)に水滴が付着していると、本来であれば界面にて反射される検出光が界面にて反射されず、外部に透過する。そのため、界面にて反射される検出光の量が少なくなり、受光素子70にて変換される電気信号の出力も小さくなる。このように、外面110bの水滴の付着に応じて受光素子70に入射する検出光が増減し、それに応じて受光素子70から検出部90に出力される電気信号も増減する。そこで検出部90は、自身に入力される電気信号の増減を検出することで、外面110bに付着した水滴の有無、そして、その付着量を検出する。   If no water droplets are attached to the outer surface 110b, the amount of detection light reflected at the interface is the largest. For this reason, the output of the electrical signal converted by the light receiving element 70 is the largest. However, if a water droplet is attached to the detection light irradiation region (water droplet detection region) on the outer surface 110b, the detection light that is normally reflected at the interface is not reflected at the interface but is transmitted to the outside. Therefore, the amount of detection light reflected at the interface is reduced, and the output of the electrical signal converted by the light receiving element 70 is also reduced. As described above, the detection light incident on the light receiving element 70 increases or decreases according to the adhesion of water droplets on the outer surface 110b, and the electrical signal output from the light receiving element 70 to the detection unit 90 increases or decreases accordingly. Therefore, the detection unit 90 detects the presence or absence of water droplets adhering to the outer surface 110b and the amount of adhesion thereof by detecting the increase or decrease of the electrical signal input to itself.

なお、水滴検出センサ100は、上記した構成要素10〜90の他に、ケース91と、固定部材92と、配線基板93と、連結部60と、フィルム61と、を有する。構成要素10〜90は、ケース91内に収納されている。ケース91は、一つの開口部を有する箱状を成し、その開口部が透明板110の内面110aによって閉塞されている。そして、ケース91の内面に、固定部材92を介して、素子10,70および検出部90を搭載する配線基板93が設けられている。また、内面110aにおけるケース91の開口部を閉塞する領域に、屈折部30と集光部50とを一体に連結する連結部60が、フィルム61を介して設けられている。   The water droplet detection sensor 100 includes a case 91, a fixing member 92, a wiring board 93, a connecting portion 60, and a film 61 in addition to the above-described components 10 to 90. The components 10 to 90 are accommodated in the case 91. The case 91 has a box shape having one opening, and the opening is closed by the inner surface 110 a of the transparent plate 110. A wiring substrate 93 on which the elements 10 and 70 and the detection unit 90 are mounted is provided on the inner surface of the case 91 via a fixing member 92. In addition, a connecting portion 60 that integrally connects the refracting portion 30 and the light collecting portion 50 is provided via a film 61 in a region of the inner surface 110 a that closes the opening of the case 91.

連結部60は、板状に設けられ、屈折部30及び集光部50が固定される一面と、一面と反対であって、フィルム61に接触する裏面を有する。また、連結部60は、屈折部30及び集光部50と同様に、ガラスから成る。   The connecting portion 60 is provided in a plate shape, and has one surface to which the refracting portion 30 and the light collecting portion 50 are fixed, and a back surface that is opposite to the one surface and contacts the film 61. Further, the connecting part 60 is made of glass, like the refracting part 30 and the light collecting part 50.

フィルム61は、屈折部30、集光部50、及び連結部60を、透明板110に固定するため、接着性を有しており、透明板110と連結部60との間に介在される。このフィルム61は、透明板110の内面110aに接触する一面と、一面と反対であって、連結部60に接触する裏面を有する。また、フィルム61は、連結部60との界面及び透明板110との界面での反射ロスが少ない屈折率を有するものを採用することができる。具体的には、フィルム61の屈折率が、連結部60及び透明板110の屈折率と近いものを採用する。本実施形態に係るフィルム61は、上記の接着性及び屈折率を有するシリコンシートから成る。   The film 61 has adhesiveness to fix the refraction part 30, the light collecting part 50, and the connecting part 60 to the transparent plate 110, and is interposed between the transparent plate 110 and the connecting part 60. The film 61 has one surface that contacts the inner surface 110 a of the transparent plate 110 and a back surface that is opposite to the one surface and contacts the connecting portion 60. The film 61 may have a refractive index with little reflection loss at the interface with the connecting portion 60 and the interface with the transparent plate 110. Specifically, the film 61 has a refractive index close to that of the connecting portion 60 and the transparent plate 110. The film 61 according to the present embodiment is made of a silicon sheet having the above adhesiveness and refractive index.

発光素子10は、指向特性を有する検出光を発光するものである。本実施形態に係る発光素子10はLEDであり、発光素子10の一面10aが配線基板93における透明板110側に固定され、その裏面が発光面10bとなっている。発光面10bから図1に二点鎖線で示す楕円形状の指向性を有する検出光が照射されるが、その強度は、発光面10bから離れるにしたがって落ちる。より具体的にいえば、検出光の強度は、発光面10bからの距離の2乗に反比例して落ちる。   The light emitting element 10 emits detection light having directivity characteristics. The light emitting element 10 according to this embodiment is an LED, and one surface 10a of the light emitting element 10 is fixed to the transparent plate 110 side of the wiring board 93, and the back surface thereof is a light emitting surface 10b. Detection light having an elliptical directivity indicated by a two-dot chain line in FIG. 1 is emitted from the light emitting surface 10b, but the intensity decreases as the distance from the light emitting surface 10b increases. More specifically, the intensity of the detection light falls in inverse proportion to the square of the distance from the light emitting surface 10b.

図2に示すように、発光素子10からz方向に断続的に離れたx−y平面に沿う面をA面、B面、C面とすると、図3および図4に示すように、発光素子10からの離間強度によって、検出光の強度が変化する。図3および図4それぞれにて実線で示す曲線がA面、破線で示す曲線がB面、一点鎖線で示す曲線がC面に対応する検出光の強度である。図3の縦軸は光強度を示し、その単位は任意単位である。図4に示す縦軸は最も光強度の高い値を基準とした光相対強度を示し、単位は%である。そして、図3および図4それぞれの横軸は発光素子10からのx−y平面に沿う一方向への離間距離を示し、単位はmmである。   As shown in FIGS. 3 and 4, when the planes along the xy plane that are intermittently separated from the light emitting element 10 in the z direction are A, B, and C planes, as shown in FIGS. The intensity of the detection light changes depending on the separation intensity from 10. 3 and 4, the curve indicated by the solid line is the A plane, the curve indicated by the broken line is the B plane, and the curve indicated by the alternate long and short dash line is the intensity of the detection light corresponding to the C plane. The vertical axis in FIG. 3 indicates the light intensity, and the unit is an arbitrary unit. The vertical axis | shaft shown in FIG. 4 shows the light relative intensity | strength on the basis of the value with the highest light intensity, and a unit is%. 3 and 4 indicate the distance from the light emitting element 10 in one direction along the xy plane, and the unit is mm.

図3に示すように、検出光の強度はA面からB面、B面からC面へといくにしたがって落ちる。また、図4に実線矢印で示すように、検出光は、A面からB面、B面からC面へといくにしたがってx−y平面に沿う一方向に広がる。したがって、発光素子10から照射された検出光の強度は、発光素子10から内面110aに近づくにしたがって落ちるとともに、受光素子70側に近づくにしたがって落ちる。   As shown in FIG. 3, the intensity of the detection light decreases from the A surface to the B surface and from the B surface to the C surface. As indicated by solid arrows in FIG. 4, the detection light spreads in one direction along the xy plane from the A plane to the B plane and from the B plane to the C plane. Therefore, the intensity of the detection light emitted from the light emitting element 10 decreases as it approaches the inner surface 110a from the light emitting element 10, and decreases as it approaches the light receiving element 70 side.

屈折部30は、透明板110に入射した検出光が界面にて全反射するように、検出光を屈折させるものである。透明板110はガラスから成り、透明板110から界面への入射角度がおよそ40°以上であると、界面にて検出光が全反射される。そこで、本実施形態にかかる屈折部30は、検出光が界面へ入射角度45°で入射するように、検出光を屈折させる。以下においては、入射角度45°の検出光に沿う方向を、全反射方向と示す。ちなみに入射角度とは、図5に示す図面でいえば、一点鎖線で示すz方向に沿う基準線と破線で示す検出光との成す角度のうち、基準線から検出光に向かって反時計回りの鋭角の角度を示している。   The refracting unit 30 refracts the detection light so that the detection light incident on the transparent plate 110 is totally reflected at the interface. The transparent plate 110 is made of glass. When the incident angle from the transparent plate 110 to the interface is approximately 40 ° or more, the detection light is totally reflected at the interface. Therefore, the refracting unit 30 according to the present embodiment refracts the detection light so that the detection light enters the interface at an incident angle of 45 °. In the following, the direction along the detection light having an incident angle of 45 ° is referred to as a total reflection direction. Incidentally, in the drawing shown in FIG. 5, the incident angle is the counterclockwise direction from the reference line to the detection light among the angles formed by the reference line along the z direction indicated by the alternate long and short dash line and the detection light indicated by the broken line. An acute angle is shown.

図1に示すように、屈折部30は、内面110aにおけるz方向に沿う発光素子10の投影部位と受光素子70の投影部位との間に位置している。また、図5および図6に示すように、屈折部30は複数に分割されており、複数の第1屈折レンズ31と第2屈折レンズ32から成る。複数の屈折レンズ31,32は、複数の第1屈折レンズ31それぞれよりも受光素子70側に第2屈折レンズ32が位置するように、x方向において発光素子10から受光素子70へと向かって並んでいる。   As shown in FIG. 1, the refracting portion 30 is located between the projected portion of the light emitting element 10 and the projected portion of the light receiving element 70 along the z direction on the inner surface 110a. As shown in FIGS. 5 and 6, the refracting section 30 is divided into a plurality of parts, and includes a plurality of first refracting lenses 31 and second refracting lenses 32. The plurality of refractive lenses 31 and 32 are arranged from the light emitting element 10 toward the light receiving element 70 in the x direction so that the second refractive lens 32 is positioned closer to the light receiving element 70 than each of the plurality of first refractive lenses 31. It is out.

また、複数の屈折レンズ31,32それぞれは、全反射方向に沿って傾斜した傾斜面31a,32aと、傾斜面31a,32aと連結された、検出光が主として入射される入射面31b,32bと、を有する。そして、複数の入射面31b,32bそれぞれに入射する検出光の強度が均一となるように、複数の入射面31b,32bそれぞれと発光素子10とを結ぶ距離が設定されている。当該距離は、図3および図4に示す検出光の強度分布に基づいて決定される。具体的には、x方向に並ぶ複数の入射面31b,32bについて考えた場合、該入射面31b,32bから形成される複数の屈折レンズ31,32のz方向におけるそれぞれの高さは、発光素子10から受光素子70へと近づくにしたがって、徐々に高くなっている。これにより、複数の入射面31b,32bそれぞれに入射する検出光の強度が均一になっている。   Each of the plurality of refractive lenses 31 and 32 includes inclined surfaces 31a and 32a that are inclined along the total reflection direction, and incident surfaces 31b and 32b that are connected to the inclined surfaces 31a and 32a and on which detection light is mainly incident. Have. And the distance which connects each of the some incident surfaces 31b and 32b and the light emitting element 10 is set so that the intensity | strength of the detection light which injects into each of the some incident surfaces 31b and 32b may become uniform. The distance is determined based on the intensity distribution of the detection light shown in FIGS. Specifically, when considering a plurality of incident surfaces 31b and 32b arranged in the x direction, the respective heights of the plurality of refractive lenses 31 and 32 formed from the incident surfaces 31b and 32b in the z direction are light emitting elements. As the distance from 10 approaches the light receiving element 70, it gradually increases. Thereby, the intensity | strength of the detection light which injects into each of the several entrance planes 31b and 32b is uniform.

図6に示すように、一点鎖線で示された対称線を介して、複数の屈折レンズ31,32それぞれは対称な形状を成している。複数の屈折レンズ31,32それぞれの幅(y方向の長さ)は、発光素子10との相対的な位置と、図3および図4に示す検出光の強度分布とに基づいて決定しても良い。例えば、発光素子10からx方向に離れるにしたがって、屈折レンズ31,32それぞれの幅を徐々に長くしても良い。   As shown in FIG. 6, each of the plurality of refractive lenses 31 and 32 has a symmetrical shape via a symmetric line indicated by a one-dot chain line. The width (the length in the y direction) of each of the plurality of refractive lenses 31 and 32 may be determined based on the relative position with respect to the light emitting element 10 and the intensity distribution of the detection light shown in FIGS. good. For example, the widths of the refractive lenses 31 and 32 may be gradually increased as the distance from the light emitting element 10 in the x direction is increased.

入射面31b,32bそれぞれは、全反射方向において発光素子10に向かって凸となるように湾曲しており、屈折レンズ31,32に入射した検出光は、傾斜面31a,32aそれぞれと同一の傾斜角度(45°)になるように屈折される。入射面31b,32bそれぞれは、具体的に言えば、双曲面形状を成している。   Each of the incident surfaces 31b and 32b is curved so as to be convex toward the light emitting element 10 in the total reflection direction, and the detection light incident on the refractive lenses 31 and 32 has the same inclination as that of each of the inclined surfaces 31a and 32a. Refracted to an angle (45 °). Specifically, each of the incident surfaces 31b and 32b has a hyperboloid shape.

図1および図5に示すように、互いに隣接する2つの第1屈折レンズ31の内、発光素子10側に位置する第1屈折レンズ31の有する傾斜面31aが、受光素子70側に位置する第1屈折レンズ31の入射面31bと連結されている。そして、第2屈折レンズ32と隣接する第1屈折レンズ31の傾斜面31aが、第2屈折レンズ32の入射面32bと連結されている。また、第2屈折レンズ32と隣接する第1屈折レンズ31の傾斜面31aは、発光素子10と透明板110とを結ぶ軸の内、全反射方向に沿う主軸(図5に破線矢印で示す線)に沿っている。   As shown in FIGS. 1 and 5, the inclined surface 31 a of the first refractive lens 31 located on the light emitting element 10 side among the two first refractive lenses 31 adjacent to each other is located on the light receiving element 70 side. The first refraction lens 31 is connected to the incident surface 31b. The inclined surface 31 a of the first refractive lens 31 adjacent to the second refractive lens 32 is connected to the incident surface 32 b of the second refractive lens 32. In addition, the inclined surface 31a of the first refractive lens 31 adjacent to the second refractive lens 32 is a principal axis along the total reflection direction among the axes connecting the light emitting element 10 and the transparent plate 110 (a line indicated by a broken line arrow in FIG. 5). ).

複数の分割された入射面31b,32bは、x方向に加え、y方向においても並んでいる。具体的に言えば、図7に示すように、入射面31b,32bは、y方向に並んで形成されるように、5つに分割されている。入射面31b,32bにおける中央部位が、自身よりも外側に位置する環状部位と比べてz方向における高さが低くなっている。また、中央部位と隣接する環状部位は、最も外側に位置する環状部位と比べてz方向における高さが低くなっている。これら5つに分割された部位それぞれの曲面形状は、双曲面形状を成している。図7に示す破線は、入射面31b,32bに高低を設けたために生じた切欠き部を示している。   The plurality of divided incident surfaces 31b and 32b are arranged in the y direction in addition to the x direction. Specifically, as shown in FIG. 7, the incident surfaces 31b and 32b are divided into five so as to be formed side by side in the y direction. The central portion of the incident surfaces 31b and 32b has a lower height in the z direction than the annular portion located outside of itself. In addition, the annular part adjacent to the central part has a lower height in the z direction than the annular part located on the outermost side. The curved surface shape of each of these five parts is a hyperboloid shape. The broken line shown in FIG. 7 has shown the notch which arises because height was provided in the entrance planes 31b and 32b.

集光部50は、界面にて反射され、透明板110から出射された検出光を受光素子70に集光するものである。図1に示すように、集光部50は、複数に分割された集光レンズ51から成り、複数の集光レンズ51は、内面110aにおける、z方向に沿う発光素子10の投影部位と受光素子70の投影部位との間に位置している。複数の集光レンズ51それぞれにおけるz方向の高さは同一になっており、複数の屈折レンズ31,32の内、z方向における高さが最も高い第2屈折レンズ32の高さ以下となっている。集光部50と屈折部30は同一材料(ガラス)から成り、連結部60を介して一体に形成されている。そして、集光部50と屈折部30とは、x方向において、水滴検出センサ100の中心軸CA(図1に示す一点鎖線)を介して対称となるように配置されている。   The condensing part 50 condenses the detection light reflected from the interface and emitted from the transparent plate 110 onto the light receiving element 70. As shown in FIG. 1, the condensing unit 50 includes a condensing lens 51 that is divided into a plurality of parts. It is located between 70 projection parts. Each of the plurality of condenser lenses 51 has the same height in the z direction, and is equal to or less than the height of the second refractive lens 32 having the highest height in the z direction among the plurality of refractive lenses 31 and 32. Yes. The condensing unit 50 and the refraction unit 30 are made of the same material (glass), and are integrally formed via the connecting unit 60. And the condensing part 50 and the refraction | bending part 30 are arrange | positioned so that it may become symmetrical via the central axis CA (dot-dash line shown in FIG. 1) of the water droplet detection sensor 100 in the x direction.

受光素子70は、検出光を電気信号に変換するものである。受光素子70にて変換された電気信号は検出部90に入力される。図1に示すように、受光素子70の一面70aが配線基板93における透明板110側の面に固定され、その裏面が受光面70bとなっている。この受光面70bに、界面にて全反射され、集光部50にて集光された検出光が入射される。   The light receiving element 70 converts detection light into an electrical signal. The electrical signal converted by the light receiving element 70 is input to the detection unit 90. As shown in FIG. 1, one surface 70a of the light receiving element 70 is fixed to the surface of the wiring board 93 on the transparent plate 110 side, and the back surface thereof is the light receiving surface 70b. Detection light that is totally reflected at the interface and collected by the light collecting unit 50 is incident on the light receiving surface 70b.

検出部90は、透明板110の外面110bに付着した水滴による、受光素子70に入射する検出光の増減を検出することで、外面110bに付着した水滴を検出するものである。冒頭で記したように、外面110bに水滴が付着していると、それによって検出部90に入力される電気信号の出力が増減する。検出部90は、外面110bに何も付着していない場合に、自身に入力される電気信号の出力値(期待値)を記憶しており、その記憶された期待値よりもどれだけ電気信号の出力が落ちたかを検出する。こうすることで検出部90は、水滴の有無、および、水滴の量を検出する。   The detection unit 90 detects water droplets adhering to the outer surface 110b by detecting increase / decrease of detection light incident on the light receiving element 70 due to water droplets adhering to the outer surface 110b of the transparent plate 110. As described at the beginning, if a water droplet adheres to the outer surface 110b, the output of the electrical signal input to the detection unit 90 increases or decreases accordingly. The detection unit 90 stores the output value (expected value) of the electric signal input to itself when nothing is attached to the outer surface 110b, and how much the electric signal is output from the stored expected value. Detects if has fallen. By doing so, the detection unit 90 detects the presence or absence of water droplets and the amount of water droplets.

次に、本実施形態に係る水滴検出センサ100の作用効果を説明する。上記したように、複数の入射面31b,32bそれぞれに、均一な強度の検出光が入射される。そのため、複数の入射面31b,32bによって屈折され、水滴の付着する透明板110の外面110bに照射される検出光の強度も均一になる。これにより、外面110bにおける検出光の照射領域(水滴の検出領域)の検出感度が均一となる。そして、特定の領域で検出感度が低くなることが抑制され、検出領域の面積が狭くなることが抑制される。この結果、検出領域の面積が確保される。   Next, the effect of the water droplet detection sensor 100 according to the present embodiment will be described. As described above, detection light with uniform intensity is incident on each of the plurality of incident surfaces 31b and 32b. Therefore, the intensity of the detection light that is refracted by the plurality of incident surfaces 31b and 32b and irradiates the outer surface 110b of the transparent plate 110 to which water droplets adhere is uniform. Thereby, the detection sensitivity of the detection light irradiation region (water droplet detection region) on the outer surface 110b becomes uniform. And it is suppressed that a detection sensitivity falls in a specific area | region, and it becomes suppressed that the area of a detection area | region becomes narrow. As a result, the area of the detection region is ensured.

上記の通り、複数の分割された入射面31b,32bは、x方向に加え、y方向においても並んでいる。すなわち、屈折部30の入射面31b,32bは3次元的に分割されている。そして、分割された複数の入射面31b,32bは、自身に入射する検出光の強度が均一となるように、自身と発光素子10とを結ぶ距離が設定されている。これによれば、複数の入射面31b,32bそれぞれに入射する検出光の強度が不均一となることが抑制される。この結果、水滴の検出領域の検出感度が更に均一となり、検出領域の面積が更に確保される。   As described above, the plurality of divided incident surfaces 31b and 32b are arranged in the y direction in addition to the x direction. That is, the incident surfaces 31b and 32b of the refracting unit 30 are three-dimensionally divided. And the distance which connects self and the light emitting element 10 is set so that the intensity | strength of the detection light which injects into several divided entrance surfaces 31b and 32b may become uniform. According to this, it is suppressed that the intensity | strength of the detection light which injects into each of several incident surface 31b and 32b becomes non-uniform | heterogenous. As a result, the detection sensitivity of the water droplet detection region becomes more uniform, and the area of the detection region is further secured.

屈折部30は、複数の第1屈折レンズ31と、複数の第1屈折レンズ31それぞれよりも体格の大きい1つの第2屈折レンズ32と、から成る。複数の屈折レンズ31,32それぞれは、全反射方向に沿って傾斜した傾斜面31a,32aと、傾斜面31a,32aと連結された、検出光が主として入射される入射面31b,32bと、を有する。そして、第2屈折レンズ32と隣接する第1屈折レンズ31の傾斜面31aは、発光素子10と透明板110とを結ぶ軸の内、全反射方向に沿う主軸(図5に一点鎖線で示す線)に沿っている。   The refracting unit 30 includes a plurality of first refracting lenses 31 and one second refracting lens 32 having a larger physique than each of the plurality of first refracting lenses 31. Each of the plurality of refractive lenses 31 and 32 includes inclined surfaces 31a and 32a inclined along the total reflection direction, and incident surfaces 31b and 32b connected to the inclined surfaces 31a and 32a, on which detection light is mainly incident. Have. The inclined surface 31a of the first refractive lens 31 adjacent to the second refractive lens 32 is a principal axis (a line indicated by a one-dot chain line in FIG. 5) along the total reflection direction among the axes connecting the light emitting element 10 and the transparent plate 110. ).

第2屈折レンズ32が複数の場合、複数の第2屈折レンズ32それぞれに入射する検出光の入射角度が、全反射方向よりも広くなる。すなわち、傾斜面32aの傾斜角度よりも広くなる。そのため、発光素子10から第2屈折レンズ32に向かう方向において、互いに隣接し発光素子10側に位置する第2屈折レンズ32の入射面32bと受光素子70側に位置する第2屈折レンズ32の傾斜面32aとが重なり、傾斜面32aに検出光の入射されない死角が生じる。これに対して、本実施形態では、上記したように第2屈折レンズ32を1つ有する。したがって、第2屈折レンズ32に死角が生じることが抑制される。   When there are a plurality of second refraction lenses 32, the incident angle of the detection light incident on each of the plurality of second refraction lenses 32 is wider than the total reflection direction. That is, it becomes wider than the inclination angle of the inclined surface 32a. Therefore, in the direction from the light emitting element 10 to the second refractive lens 32, the incident surface 32b of the second refractive lens 32 adjacent to each other and positioned on the light emitting element 10 side and the inclination of the second refractive lens 32 positioned on the light receiving element 70 side. The surface 32a overlaps, and a blind spot where no detection light is incident on the inclined surface 32a is generated. On the other hand, in the present embodiment, as described above, one second refractive lens 32 is provided. Accordingly, the generation of blind spots in the second refractive lens 32 is suppressed.

複数の集光レンズ51それぞれにおけるz方向の高さは同一になっており、複数の屈折レンズ31,32の内、z方向における高さが最も高い第2屈折レンズ32の高さ以下となっている。これによれば、複数の集光レンズ51それぞれが、第2屈折レンズ32よりも高い構成と比べて水滴検出センサ100の体格の増大が抑制される。   Each of the plurality of condenser lenses 51 has the same height in the z direction, and is equal to or less than the height of the second refractive lens 32 having the highest height in the z direction among the plurality of refractive lenses 31 and 32. Yes. According to this, an increase in the physique of the water droplet detection sensor 100 is suppressed as compared with a configuration in which each of the plurality of condensing lenses 51 is higher than the second refractive lens 32.

集光部50と屈折部30は同一材料から成り、連結部60を介して一体に形成されている。これによれば、集光部50と屈折部30とが別体の構成と比べて、部品点数の増大が抑制されるとともに、透明板110への集光部50と屈折部30の搭載が簡素化される。そのため、製造コストが低減される。   The condensing part 50 and the refracting part 30 are made of the same material and are integrally formed via the connecting part 60. According to this, the increase in the number of parts is suppressed and the mounting of the condensing unit 50 and the refracting unit 30 on the transparent plate 110 is simplified as compared with a configuration in which the condensing unit 50 and the refracting unit 30 are separate. It becomes. Therefore, the manufacturing cost is reduced.

以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態では、発光素子10がLEDである例を示した。しかしながら、発光素子10としては上記例に限定されず、光を発光するものであれば適宜採用することができる。   In this embodiment, the example in which the light emitting element 10 is LED was shown. However, the light emitting element 10 is not limited to the above example, and any light emitting element can be used as long as it emits light.

本実施形態では、屈折部30が、検出光が界面へ入射角度45°で入射するように、検出光を屈折させる例を示した。しかしながら、屈折部30が屈折させる角度としては上記例に限定されず、検出光が界面にて全反射される角度であればよい。例えば、50°を採用することができる。   In the present embodiment, an example has been described in which the refracting unit 30 refracts the detection light so that the detection light enters the interface at an incident angle of 45 °. However, the angle at which the refracting unit 30 refracts is not limited to the above example, and may be an angle at which the detection light is totally reflected at the interface. For example, 50 ° can be employed.

本実施形態では、入射面31b,32bそれぞれが、全反射方向において発光素子10に向かって凸となるように湾曲している例を示した。しかしながら、入射面31b,32bの形状としては上記例に限定されず、例えば、入射面31b,32bそれぞれが、全反射方向に対して面する形状を採用することもできる。   In the present embodiment, an example in which each of the incident surfaces 31b and 32b is curved to be convex toward the light emitting element 10 in the total reflection direction is shown. However, the shapes of the incident surfaces 31b and 32b are not limited to the above example. For example, the shapes of the incident surfaces 31b and 32b facing the total reflection direction may be employed.

本実施形態では、複数の入射面31b,32bそれぞれに入射する検出光の強度が均一となるように、複数の入射面31b,32bそれぞれと発光素子10とを結ぶ距離が設定された例として、図7に示す構成を示した。しかしながら、入射面31b,32bそれぞれと発光素子10とを結ぶ距離が設定された構成としては上記例に限定されない。例えば、図8および図9に示す構成を採用することもできる。図8および図9に示す変形例では、y方向において入射面31b,32bが3つに分割され、入射面31b,32bにおける中央部位が、自身よりも外側に位置する環状部位と比べてz方向における高さが低くなっている。   In the present embodiment, as an example in which the distances between the light incident elements 10 and the plurality of incident surfaces 31b and 32b are set so that the intensity of the detection light incident on the respective incident surfaces 31b and 32b is uniform. The configuration shown in FIG. 7 was shown. However, the configuration in which the distance connecting each of the incident surfaces 31b and 32b and the light emitting element 10 is set is not limited to the above example. For example, the configuration shown in FIGS. 8 and 9 may be employed. In the modification shown in FIGS. 8 and 9, the incident surfaces 31b and 32b are divided into three in the y direction, and the central portion of the incident surfaces 31b and 32b is in the z direction as compared with the annular portion located outside of itself. The height at is low.

図8では、中央部がx−y平面に沿う平坦形状を成し、図9では、中央部が、自身と発光素子10とを結ぶ入射方向において、自身に向かって凹となるように湾曲している。なお、もちろんではあるが、屈折部30の入射面31b,32bは、少なくともx方向において複数に分割されればよい。すなわち、x方向にのみ分割され、y方向には分割されない構成を採用することもできる。   In FIG. 8, the central portion has a flat shape along the xy plane, and in FIG. 9, the central portion is curved so as to be concave toward itself in the incident direction connecting itself and the light emitting element 10. ing. Needless to say, the incident surfaces 31b and 32b of the refracting unit 30 may be divided into a plurality of parts at least in the x direction. That is, it is possible to adopt a configuration that is divided only in the x direction and not divided in the y direction.

本実施形態では、屈折部30が、複数の第1屈折レンズ31と、1つの入射面32bを有するとともに、複数の第1屈折レンズ31それぞれよりも体格の大きい1つの第2屈折レンズ32と、から成る例を示した。しかしながら、図10に示すように、屈折部30は、複数の第1屈折レンズ31と、複数の入射面32bを有する、1つの第2屈折レンズ32から成っても良い。また、図示しないが、屈折部30が、複数の第1屈折レンズ31のみから成っても良い。   In the present embodiment, the refracting unit 30 includes a plurality of first refractive lenses 31 and one incident surface 32b, and one second refractive lens 32 having a larger physique than each of the plurality of first refractive lenses 31; An example consisting of However, as shown in FIG. 10, the refracting unit 30 may include a plurality of first refracting lenses 31 and a single second refracting lens 32 having a plurality of incident surfaces 32 b. Although not shown, the refracting unit 30 may be composed of only the plurality of first refractive lenses 31.

本実施形態では、集光部50は、複数に分割された集光レンズ51から成る例を示した。しかしながら、集光部50は1つの集光レンズ51からなっても良い。   In this embodiment, the condensing part 50 showed the example which consists of the condensing lens 51 divided | segmented into plurality. However, the condensing unit 50 may include one condensing lens 51.

本実施形態では、複数の集光レンズ51それぞれにおけるz方向の高さが同一である例を示した。しかしながら、複数の集光レンズ51それぞれの高さが異なっていても良い。   In the present embodiment, an example in which the height in the z direction of each of the plurality of condenser lenses 51 is the same is shown. However, the height of each of the plurality of condenser lenses 51 may be different.

本実施形態では、複数の集光レンズ51それぞれの高さが、高さが最も高い第2屈折レンズ32の高さ以下となっている例を示した。しかしながら、複数の集光レンズ51それぞれの高さは、第2屈折レンズ32の高さや第1屈折レンズ31の高さに依存せずに決定することができる。   In the present embodiment, an example in which the height of each of the plurality of condenser lenses 51 is equal to or less than the height of the second refractive lens 32 having the highest height has been described. However, the height of each of the plurality of condenser lenses 51 can be determined without depending on the height of the second refractive lens 32 or the height of the first refractive lens 31.

本実施形態では、集光部50と屈折部30は同一材料(ガラス)から成り、連結部60を介して一体に形成されている例を示した。しかしながら、集光部50と屈折部30を別体で形成しても良いし、異なる材料で形成しても良い。   In the present embodiment, the example in which the light collecting unit 50 and the refraction unit 30 are made of the same material (glass) and are integrally formed via the connection unit 60 is shown. However, the condensing part 50 and the refractive part 30 may be formed separately or may be formed of different materials.

本実施形態では、検出部90が配線基板93に搭載され、ケース91内に設けられた例を示した。しかしながら、検出部90は配線基板93に搭載されていなくともよく、ケース91内に設けられていなくともよい。   In the present embodiment, an example in which the detection unit 90 is mounted on the wiring board 93 and provided in the case 91 is shown. However, the detection unit 90 may not be mounted on the wiring board 93 and may not be provided in the case 91.

本実施形態では、屈折部30が、傾斜面31a,32a及び入射面31b,32bを有する複数の屈折レンズ31,32により形成される例を示した。しかしながら、屈折部30は、複数の分割された入射面31b,32bを有するものであれば採用することができる。例えば、屈折レンズ31,32が射出成形により形成され、単一の屈折部30として構成されてもよい。   In the present embodiment, an example in which the refracting portion 30 is formed by a plurality of refracting lenses 31 and 32 having inclined surfaces 31a and 32a and incident surfaces 31b and 32b is shown. However, the refraction part 30 can be adopted as long as it has a plurality of divided incident surfaces 31b and 32b. For example, the refractive lenses 31 and 32 may be formed by injection molding and configured as a single refractive part 30.

10・・・発光素子
30・・・屈折部
31・・・第1屈折レンズ
32・・・第2屈折レンズ
70・・・受光素子
90・・・検出部
100・・・水滴検出センサ
110・・・透明板
110a・・・内面
110b・・・外面
DESCRIPTION OF SYMBOLS 10 ... Light emitting element 30 ... Refraction part 31 ... 1st refraction lens 32 ... 2nd refraction lens 70 ... Light receiving element 90 ... Detection part 100 ... Water drop detection sensor 110 ...・ Transparent plate 110a ... inner surface 110b ... outer surface

Claims (9)

検出光を透明板(110)の内面(110a)に向けて照射する発光素子(10)と、
前記検出光を屈折させて前記透明板に入射させ、前記透明板の外面(110b)と空気との界面にて全反射させる屈折部(30)と、
前記透明板の外面と空気との界面にて全反射され、前記透明板から出射された前記検出光を受光する受光素子(70)と、
前記透明板の外面に付着した水滴による、前記受光素子に入射する前記検出光の増減を検出することで、前記透明板の外面に付着した水滴を検出する検出部(90)と、を有する水滴検出センサであって、
前記屈折部は、前記検出光が主として入射される入射面として、複数に分割された入射面(31b,32b)を有し、
分割された複数の前記入射面(31b,32b)は、前記透明板の内面における、前記発光素子の投影部位と前記受光素子の投影部位との間に位置し、前記発光素子から前記受光素子へと向かって並んでおり、複数の前記入射面それぞれに入射する前記検出光の強度が均一となるように、複数の前記入射面それぞれと前記発光素子とを結ぶ距離が設定されていることを特徴とする水滴検出センサ。
A light emitting element (10) for irradiating detection light toward the inner surface (110a) of the transparent plate (110);
A refracting part (30) that refracts the detection light and makes it incident on the transparent plate and totally reflects it at the interface between the outer surface (110b) of the transparent plate and air;
A light receiving element (70) that receives the detection light that is totally reflected at the interface between the outer surface of the transparent plate and air and emitted from the transparent plate;
A water droplet having a detection unit (90) for detecting water droplets adhering to the outer surface of the transparent plate by detecting increase / decrease of the detection light incident on the light receiving element due to the water droplets adhering to the outer surface of the transparent plate A detection sensor,
The refracting portion has an incident surface (31b, 32b) divided into a plurality as an incident surface on which the detection light is mainly incident,
The plurality of divided incident surfaces (31b, 32b) are located between the projected portion of the light emitting element and the projected portion of the light receiving element on the inner surface of the transparent plate, and from the light emitting element to the light receiving element. The distance between each of the plurality of incident surfaces and the light emitting element is set so that the intensity of the detection light incident on each of the plurality of incident surfaces is uniform. Water drop detection sensor.
分割された複数の前記入射面は、前記発光素子から前記受光素子へ向かう方向及び前記透明板の外面に直交する高さ方向の両方向に垂直な方向に並んでいることを特徴とする請求項1に記載の水滴検出センサ。   The plurality of divided incident surfaces are arranged in a direction perpendicular to both the direction from the light emitting element toward the light receiving element and the height direction orthogonal to the outer surface of the transparent plate. The water droplet detection sensor described in 1. 前記屈折部(30)は、複数に分割された屈折レンズ(31,32)から成ることで、前記入射面が複数に分割されており、
前記透明板の外面に直交する高さ方向における、複数の前記屈折レンズそれぞれの高さは、前記入射面それぞれに入射する前記検出光の強度が均一となるように、前記発光素子から前記受光素子へと向かうにしたがって、徐々に高くなっていることを特徴とする請求項1又は請求項2に記載の水滴検出センサ。
The refraction part (30) is composed of a plurality of refraction lenses (31, 32), so that the incident surface is divided into a plurality of parts,
From the light emitting element to the light receiving element, the height of each of the plurality of refractive lenses in the height direction orthogonal to the outer surface of the transparent plate is uniform so that the intensity of the detection light incident on each of the incident surfaces is uniform. The water drop detection sensor according to claim 1, wherein the water drop detection sensor is gradually higher as it goes to.
複数の前記屈折レンズとして、複数の第1屈折レンズ(31)と、複数の前記第1屈折レンズそれぞれよりも前記受光素子側に位置する1つの第2屈折レンズ(32)と、を有し、
前記第1屈折レンズ、および、前記第2屈折レンズそれぞれは、前記高さ方向との成す角度が、前記検出光が前記透明板の外面と空気との界面にて全反射する角度となる一方向である全反射方向に沿って傾斜した傾斜面(31a,32a)と、該傾斜面と連結された、前記検出光が主として入射される前記入射面と、を有し、
互いに隣接する2つの前記第1屈折レンズの内、前記発光素子側に位置する前記第1屈折レンズの有する前記傾斜面が、前記受光素子側に位置する前記第1屈折レンズの前記入射面と連結され、前記第2屈折レンズと隣接する前記第1屈折レンズの前記傾斜面が、前記第2屈折レンズの前記入射面と連結されており、
前記第2屈折レンズと隣接する前記第1屈折レンズの前記傾斜面は、前記発光素子と前記透明板とを結ぶ軸の内、前記全反射方向に沿う主軸に沿っていることを特徴とする請求項3に記載の水滴検出センサ。
As the plurality of refractive lenses, a plurality of first refractive lenses (31) and one second refractive lens (32) positioned closer to the light receiving element than each of the plurality of first refractive lenses,
In each of the first refractive lens and the second refractive lens, an angle formed with the height direction is a direction in which the detection light is totally reflected at an interface between the outer surface of the transparent plate and air. An inclined surface (31a, 32a) inclined along the total reflection direction, and the incident surface connected to the inclined surface and on which the detection light is mainly incident,
Of the two first refractive lenses adjacent to each other, the inclined surface of the first refractive lens located on the light emitting element side is connected to the incident surface of the first refractive lens located on the light receiving element side. The inclined surface of the first refractive lens adjacent to the second refractive lens is connected to the incident surface of the second refractive lens;
The inclined surface of the first refractive lens adjacent to the second refractive lens is along a main axis along the total reflection direction among the axes connecting the light emitting element and the transparent plate. Item 4. The water droplet detection sensor according to Item 3.
前記透明板の外面と空気との界面にて全反射され、前記透明板から出射された前記検出光を前記受光素子に集光する集光部(50)を有することを特徴とする請求項3又は請求項4に記載の水滴検出センサ。   The light collecting part (50) for condensing the detection light, which is totally reflected at an interface between the outer surface of the transparent plate and air and emitted from the transparent plate, on the light receiving element. Or the water droplet detection sensor of Claim 4. 前記集光部は、複数に分割された集光レンズ(51)から成り、
複数の前記集光レンズは、前記透明板の内面における、前記発光素子の投影部位と前記受光素子の投影部位との間に位置していることを特徴とする請求項5に記載の水滴検出センサ。
The condensing unit comprises a condensing lens (51) divided into a plurality of parts,
6. The water droplet detection sensor according to claim 5, wherein the plurality of condensing lenses are positioned between a projection site of the light emitting element and a projection site of the light receiving element on the inner surface of the transparent plate. .
複数の前記集光レンズそれぞれにおける前記透明板の外面に直交する高さ方向の高さは、複数の前記屈折レンズの内、前記高さ方向における高さが最も高い前記屈折レンズ(32)の高さ以下であることを特徴とする請求項6に記載の水滴検出センサ。   The height in the height direction orthogonal to the outer surface of the transparent plate in each of the plurality of condenser lenses is the height of the refractive lens (32) having the highest height in the height direction among the plurality of refractive lenses. The water droplet detection sensor according to claim 6, wherein 複数の前記集光レンズそれぞれは、前記透明板の外面に直交する高さ方向における高さが同一であることを特徴とする請求項6又は請求項7に記載の水滴検出センサ。   The water droplet detection sensor according to claim 6 or 7, wherein each of the plurality of condensing lenses has the same height in a height direction orthogonal to the outer surface of the transparent plate. 前記集光部と前記屈折部は同一材料から成り、前記集光部と前記屈折部とが一体になっていることを特徴とする請求項5〜8いずれか1項に記載の水滴検出センサ。   The water droplet detection sensor according to any one of claims 5 to 8, wherein the condensing unit and the refracting unit are made of the same material, and the condensing unit and the refracting unit are integrated.
JP2013198619A 2013-05-08 2013-09-25 Water drop detection sensor Expired - Fee Related JP6167799B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013198619A JP6167799B2 (en) 2013-05-08 2013-09-25 Water drop detection sensor
PCT/JP2014/002234 WO2014181506A1 (en) 2013-05-08 2014-04-21 Sensor for detecting water drops

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013098727 2013-05-08
JP2013098727 2013-05-08
JP2013198619A JP6167799B2 (en) 2013-05-08 2013-09-25 Water drop detection sensor

Publications (2)

Publication Number Publication Date
JP2014238383A true JP2014238383A (en) 2014-12-18
JP6167799B2 JP6167799B2 (en) 2017-07-26

Family

ID=51866998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013198619A Expired - Fee Related JP6167799B2 (en) 2013-05-08 2013-09-25 Water drop detection sensor

Country Status (2)

Country Link
JP (1) JP6167799B2 (en)
WO (1) WO2014181506A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806776B1 (en) 2017-08-18 2018-01-18 현대자동차주식회사 Multi area measuring rain sensor
US10955339B2 (en) 2019-03-28 2021-03-23 Mitsumi Electric Co., Ltd. Droplet sensor
JP2021056062A (en) * 2019-09-30 2021-04-08 ミツミ電機株式会社 Droplet sensor
JP2021056063A (en) * 2019-09-30 2021-04-08 ミツミ電機株式会社 Droplet sensor
US11300506B2 (en) 2017-12-28 2022-04-12 Mitsumi Electric Co., Ltd. Droplet sensor
US11525776B2 (en) 2018-07-12 2022-12-13 Mitsumi Electric Co., Ltd. Droplet sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042250A (en) * 2008-11-14 2009-02-26 Denso Corp Raindrop detection device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278711A (en) * 2006-04-03 2007-10-25 Tgk Co Ltd Raindrop sensor
DE102007025987A1 (en) * 2007-06-04 2009-01-08 Trw Automotive Electronics & Components Gmbh Optical sensor device for detecting wetting
JP5846418B2 (en) * 2011-09-07 2016-01-20 株式会社デンソー Rain / snow detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042250A (en) * 2008-11-14 2009-02-26 Denso Corp Raindrop detection device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101806776B1 (en) 2017-08-18 2018-01-18 현대자동차주식회사 Multi area measuring rain sensor
US11300506B2 (en) 2017-12-28 2022-04-12 Mitsumi Electric Co., Ltd. Droplet sensor
US11525776B2 (en) 2018-07-12 2022-12-13 Mitsumi Electric Co., Ltd. Droplet sensor
US10955339B2 (en) 2019-03-28 2021-03-23 Mitsumi Electric Co., Ltd. Droplet sensor
JP2021056062A (en) * 2019-09-30 2021-04-08 ミツミ電機株式会社 Droplet sensor
JP2021056063A (en) * 2019-09-30 2021-04-08 ミツミ電機株式会社 Droplet sensor
US11486827B2 (en) 2019-09-30 2022-11-01 Mitsumi Electric Co., Ltd. Droplet sensor
US11598721B2 (en) 2019-09-30 2023-03-07 Mitsumi Electric Co., Ltd. Droplet sensor
JP7339523B2 (en) 2019-09-30 2023-09-06 ミツミ電機株式会社 droplet sensor
JP7339524B2 (en) 2019-09-30 2023-09-06 ミツミ電機株式会社 droplet sensor

Also Published As

Publication number Publication date
JP6167799B2 (en) 2017-07-26
WO2014181506A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
JP6167799B2 (en) Water drop detection sensor
JP4785033B2 (en) Optical water drop sensor
US8469552B2 (en) Street lighting device
JP4241553B2 (en) Raindrop detector
US6507015B1 (en) Raindrop sensor having plano-convex lens
JP4929308B2 (en) Optical sensor device
US7804055B2 (en) Optical sensor device for the windshield of a motor vehicle having Fresnel lens structures
TWI517054B (en) Fingerprint image capturing device
JP6490329B2 (en) Vehicle lighting device
JP5353556B2 (en) Light source device
JP5867979B2 (en) Optical sensor device for detecting ambient light
JP2007225591A (en) Lighting system
JP6094354B2 (en) Raindrop detector
US20200256990A1 (en) Proximity Sensor and Electronic Device Using the Same
JP6331550B2 (en) Integrated device
US20130051031A1 (en) Reflective street light with wide divergence angle
JP2005031667A (en) Light guide for guiding light on surface
JP6323057B2 (en) Photoelectric sensor
WO2006016504A1 (en) Optical device for photoelectric sensor and photoelectric sensor using the same
JP2009099345A (en) Reflection type photoelectric sensor
JP2007271423A (en) Raindrop sensor
JP2002296363A (en) Raindrop sensor
JP2020041935A (en) Toner deposition amount sensor
JP2021056064A (en) Droplet sensor
JP7528814B2 (en) Optical Sensor Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R151 Written notification of patent or utility model registration

Ref document number: 6167799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees