JP2014238186A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2014238186A
JP2014238186A JP2013119495A JP2013119495A JP2014238186A JP 2014238186 A JP2014238186 A JP 2014238186A JP 2013119495 A JP2013119495 A JP 2013119495A JP 2013119495 A JP2013119495 A JP 2013119495A JP 2014238186 A JP2014238186 A JP 2014238186A
Authority
JP
Japan
Prior art keywords
cooler
temperature
suction port
cold air
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013119495A
Other languages
Japanese (ja)
Other versions
JP6145643B2 (en
Inventor
堀尾 好正
Yoshimasa Horio
好正 堀尾
亜有子 宮坂
Ayuko Miyasaka
亜有子 宮坂
克則 堀井
Katsunori Horii
克則 堀井
平井 剛樹
Tsuyoki Hirai
剛樹 平井
中西 和也
Kazuya Nakanishi
和也 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013119495A priority Critical patent/JP6145643B2/en
Priority to DE212014000135.8U priority patent/DE212014000135U1/en
Priority to PCT/JP2014/003031 priority patent/WO2014196210A1/en
Priority to CN201490000783.7U priority patent/CN205482060U/en
Publication of JP2014238186A publication Critical patent/JP2014238186A/en
Application granted granted Critical
Publication of JP6145643B2 publication Critical patent/JP6145643B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator capable of suppressing mutual intervention of a plurality of return cold air flows in a cooling chamber to increase a volume of the air circulating in the refrigerator, and improving cooling capability by efficiently passing the cold air through a cooler to implement heat exchange.SOLUTION: A freezing room intake port 56 for introducing air into a cooling chamber 43 is provided in a front surface of the cooling chamber 43, a high-temperature intake port 58 is provided in a back surface of the cooling chamber 43, the freezing room intake port 56 is located below the high-temperature intake port 58, a cooler lower end 44b is arranged between a high-temperature intake port upper end 58a and a high-temperature intake port lower end 58b, and a glass tube heater 59 serving as defrosting means and a heater cover 60 are arranged below the high-temperature intake port upper end 58a. It is thereby possible to suppress mutual intervention of a plurality of return cold air flows during a cooling operation, and increase a volume of the air circulating in a refrigerator, so that a cooling capability can be improved. In addition, since an area range of frost adhering to the cooler 44 can be extended, it is possible to ensure excellent frost resistance and frost adhesion performance and inhibit degradation in a cooling capability during frosting.

Description

本発明は省エネ効果の高い冷蔵庫の構造に関するものである。   The present invention relates to a refrigerator structure having a high energy saving effect.

図7は従来の冷蔵庫の冷却室の断面図である。   FIG. 7 is a sectional view of a cooling chamber of a conventional refrigerator.

図7に示すように、冷蔵庫10には複数の貯蔵室があり、最下部に冷凍室11が配置されている。冷凍室11の背面には内部に冷却器12と送風機13を有し冷気を生成、送風する冷却室14が設けられている。冷却器12で生成された冷気は、送風機13により強制的に各貯蔵室へ送られる。一部は冷気吐出口15を通り冷凍室11へ送られ、一部は高温吐出風路16を通り、冷凍室11上方に設けられた野菜室17や冷蔵室(図示せず)へ送られる。冷凍室11を冷却した冷気は冷凍室戻り口18から、冷蔵室、野菜室17を冷却した冷気は順に戻り口19と高温戻り風路20とを通過し高温吸込み口21から、冷却室14へ帰還し再び冷却器12により冷却される。このとき、冷却器12から冷気生成に使われず背面へ漏れ出た冷気は、高温戻り風路20を流れる比較的温かい戻り冷気に吸収されるため、冷蔵庫10の背面から外気へ熱リークさせることなく冷却器12の冷気を強制的に冷却室14へ返還させることで消費電力量を低減することができる。(例えば、特許文献1参照)。   As shown in FIG. 7, the refrigerator 10 has a plurality of storage rooms, and a freezing room 11 is arranged at the bottom. On the back surface of the freezer compartment 11, there is provided a cooler compartment 14 that has a cooler 12 and a blower 13 inside to generate and blow cool air. The cold air generated by the cooler 12 is forcibly sent to each storage room by the blower 13. A part is sent to the freezer compartment 11 through the cold discharge port 15, and a part is sent to the vegetable compartment 17 and the refrigerator compartment (not shown) provided above the freezer compartment 11 through the high temperature discharge air passage 16. The cold air that has cooled the freezer compartment 11 passes from the freezer compartment return port 18, and the cold air that has cooled the refrigerator compartment and the vegetable compartment 17 sequentially passes through the return port 19 and the high temperature return air passage 20, and then passes from the high temperature suction port 21 to the cooling chamber 14. It returns and is cooled again by the cooler 12. At this time, the cool air leaked from the cooler 12 to the back without being used to generate cool air is absorbed by the relatively warm return cold flowing through the high-temperature return air passage 20, so that heat does not leak from the back of the refrigerator 10 to the outside air. Power consumption can be reduced by forcibly returning the cool air of the cooler 12 to the cooling chamber 14. (For example, refer to Patent Document 1).

特開2012−159239号公報JP 2012-159239 A

しかしながら、上記従来の構成には改善の余地がある。冷却運転時において、冷却器12下方において冷凍室11からの戻り冷気は後向きの風速が大きく、野菜室17や冷蔵室からの戻り冷気は前向きの風速が大きいため、お互いの流れを阻害し合い庫内を循環する風量を減少させることにより、冷却能力を低下させていた。   However, there is room for improvement in the conventional configuration. During the cooling operation, the return cold air from the freezer compartment 11 below the cooler 12 has a large backward wind speed, and the return cold air from the vegetable compartment 17 and the refrigerator compartment has a large forward wind speed, so that the flow of each other is inhibited. The cooling capacity was reduced by reducing the amount of air circulating inside.

本発明は、従来の課題を解決するもので、複数の戻り冷気の相互干渉を抑制することで庫内を循環する風量を増やし冷却能力の高い冷蔵庫を提供することを目的とする。   This invention solves the conventional subject, and it aims at providing the refrigerator with high cooling capacity by increasing the air volume which circulates the inside of a store | warehouse | chamber by suppressing the mutual interference of several return cold air.

上記従来の課題を解決するために、本発明の冷蔵庫は、冷気を生成する冷却器と、冷却器で生成された冷気を強制的に循環させる送風機と、冷却器の下方に配置される除霜手段と、冷却器と送風機と除霜手段とを収める冷却室と、冷却室を背面に備える低温貯蔵室と、低温貯蔵室と温度帯の異なる少なくとも一つの高温貯蔵室と、低温貯蔵室からの低温戻り冷気を冷却室へ導入する低温吸込み口と、高温貯蔵室からの高温戻り冷気を冷却室へ導入する高温吸込み口とを備え、低温吸込み口は冷却室前面に、高温吸込み口は冷却室背面に設けられ、低温吸込み口の下端は冷却器の下端より下方に配置し、高温吸込み口の上端は冷却器の下端より上方に配置するとともに、高温吸込み口の上端は除霜手段より上方に配置したことを特徴とする。   In order to solve the above-described conventional problems, the refrigerator of the present invention includes a cooler that generates cold air, a blower that forcibly circulates the cold air generated by the cooler, and a defrost placed below the cooler. Means, a cooling chamber containing a cooler, a blower, and a defrosting means, a low-temperature storage room provided with a cooling chamber on the back surface, at least one high-temperature storage room having a different temperature range from the low-temperature storage room, and a low-temperature storage room Equipped with a low-temperature intake port for introducing low-temperature return cold air into the cooling chamber and a high-temperature intake port for introducing high-temperature return cold air from the high-temperature storage chamber into the cooling chamber, with the low-temperature intake port in front of the cooling chamber and the high-temperature intake port in the cooling chamber Provided on the back, the lower end of the low temperature inlet is located below the lower end of the cooler, the upper end of the high temperature inlet is located above the lower end of the cooler, and the upper end of the high temperature inlet is above the defrosting means. It is arranged.

これにより、前向きの速度が大きい冷蔵室および野菜室からの高温戻り冷気は、冷却器側へ流れやすくなるため、冷凍室からの冷凍室戻り冷気とは、上下方向にずれる。よって、高温戻り冷気と冷凍室戻り冷気の相互干渉を抑制し庫内を循環する風量を大きくするこ
とができるため、より冷却能力を向上することができる。さらに、高温吸込み口の上端と下端の間に冷却器の下端を設け、且つ、高温吸込み口の上端は除霜手段より上方であるため、ドア開閉時等で侵入した空気中の水分や、庫内に投入された食品に付着している水分、さらに野菜室に保存されている野菜からの水分等で冷却器には、霜が付着するが、水分量の多い高温戻り冷気によって冷却器背面下部に付着した霜が成長しても冷却器底面側へと高温戻り冷気が流れるため耐着霜性能としても優れている。よって、着霜時の冷却能力の劣化も抑制することができる。
Thereby, since the high temperature return cold air from the refrigerator compartment and vegetable room where the forward speed is large easily flows to the cooler side, the freezer return cold air from the freezer compartment is shifted in the vertical direction. Therefore, the mutual interference between the high-temperature return cold air and the freezer compartment return cold air can be suppressed and the air volume circulating in the warehouse can be increased, so that the cooling capacity can be further improved. Furthermore, the lower end of the cooler is provided between the upper end and the lower end of the high temperature inlet, and the upper end of the high temperature inlet is above the defrosting means. The chiller adheres to the cooler due to moisture adhering to the food that has been put in, and moisture from the vegetables stored in the vegetable compartment, but the lower part of the back of the cooler is heated by high-temperature return cold air that contains a large amount of water. Even if the frost attached to the frost grows, the high temperature return cold air flows to the bottom surface side of the cooler, so that the frost resistance is excellent. Therefore, the deterioration of the cooling capacity at the time of frost formation can also be suppressed.

なお、最も大きな冷却効果が必要となる低温貯蔵室からの冷気を、より下方から冷却室へ戻すことで、低温戻り冷気が冷却器を通過する距離が長くなり熱交換量を増やすことで更に冷却能力を向上させることができる。   In addition, by returning the cool air from the low temperature storage room where the greatest cooling effect is required from the lower part to the cooling room, the distance that the low temperature return cold air passes through the cooler becomes longer, and the heat exchange amount is increased to further cool the air. Ability can be improved.

本発明は、従来の課題を解決するもので、複数の戻り冷気の相互干渉を抑制することで庫内を循環する風量を増やし冷却能力が高く、かつ除霜運転時の戻り風路への自然対流の分流量を低減することで除霜効率の低下を抑制した冷蔵庫を提供することを目的とする。   The present invention solves the conventional problem, and suppresses mutual interference of a plurality of return cold airs, thereby increasing the air volume circulating in the warehouse, increasing the cooling capacity, and naturally returning to the return air path during the defrosting operation. It aims at providing the refrigerator which suppressed the fall of the defrost efficiency by reducing the partial flow volume of a convection.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の冷却室の縦断面図Vertical sectional view of the cooling chamber of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫の冷却室の詳細縦断面図Detailed longitudinal cross-sectional view of the cooling chamber of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態2における冷蔵庫の縦断面図Longitudinal sectional view of the refrigerator in the second embodiment of the present invention 本発明の実施の形態2における冷蔵庫の冷却室の正面風路図Front air path diagram of cooling room of refrigerator in embodiment 2 of the present invention 本発明の実施の形態3における冷蔵庫の冷却室の詳細縦断面図Detailed longitudinal cross-sectional view of the cooling chamber of the refrigerator in Embodiment 3 of this invention 従来の冷蔵庫の冷却室の縦断面図Longitudinal sectional view of the cooling chamber of a conventional refrigerator

第1の発明は、冷気を生成する冷却器と、冷却器で生成された冷気を強制的に循環させる送風機と、冷却器の下方に配置される除霜手段と、冷却器と送風機と除霜手段とを収める冷却室と、冷却室を背面に備える低温貯蔵室と、低温貯蔵室と温度帯の異なる少なくとも一つの高温貯蔵室と、低温貯蔵室からの低温戻り冷気を冷却室へ導入する低温吸込み口と、高温貯蔵室からの高温戻り冷気を冷却室へ導入する高温吸込み口とを備え、低温吸込み口は冷却室前面に、高温吸込み口は冷却室背面に設けられ、低温吸込み口の下端は冷却器の下端より下方に配置し、高温吸込み口の上端は冷却器の下端より上方に配置するとともに、高温吸込み口の上端は除霜手段より上方に配置したものである。   1st invention is the cooler which produces | generates cool air, the air blower which forcibly circulates the cold air produced | generated by the cooler, the defrosting means arrange | positioned under the cooler, the cooler, the air blower, and the defrost A cooling chamber containing the means, a low-temperature storage chamber provided with a cooling chamber on the back surface, at least one high-temperature storage chamber having a temperature zone different from that of the low-temperature storage chamber, and a low temperature for introducing low-temperature return cold air from the low-temperature storage chamber into the cooling chamber It has a suction port and a high temperature suction port for introducing the high temperature return cold air from the high temperature storage chamber into the cooling chamber, the low temperature suction port is provided at the front of the cooling chamber, the high temperature suction port is provided at the back of the cooling chamber, and the lower end of the low temperature suction port Is disposed below the lower end of the cooler, the upper end of the high-temperature suction port is disposed above the lower end of the cooler, and the upper end of the high-temperature suction port is disposed above the defrosting means.

これにより、前向きの速度が大きい冷蔵室および野菜室からの高温戻り冷気は、冷却器側へ流れやすくなるため、冷凍室からの冷凍室戻り冷気とは、上下方向にずれる。よって、高温戻り冷気と冷凍室戻り冷気の相互干渉を抑制し庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。さらに、高温吸込み口の上端と下端の間に冷却器の下端を設け、且つ、高温吸込み口の上端は除霜手段より上方であるため、ドア開閉時等で侵入した空気中の水分や、庫内に投入された食品に付着している水分、さらに野菜室に保存されている野菜からの水分等で冷却器には、霜が付着するが、水分量の多い高温戻り冷気によって冷却器背面下部に付着した霜が成長しても冷却器底面側へと高温戻り冷気が流れるため耐着霜性能としても優れている。よって、着霜時の冷却能力の劣化も抑制することができる。   Thereby, since the high temperature return cold air from the refrigerator compartment and vegetable room where the forward speed is large easily flows to the cooler side, the freezer return cold air from the freezer compartment is shifted in the vertical direction. Therefore, the mutual interference between the high-temperature return cold air and the freezer compartment return cold air can be suppressed and the air volume circulating in the warehouse can be increased, so that the cooling capacity can be further improved. Furthermore, the lower end of the cooler is provided between the upper end and the lower end of the high temperature inlet, and the upper end of the high temperature inlet is above the defrosting means. The chiller adheres to the cooler due to moisture adhering to the food that has been put in, and moisture from the vegetables stored in the vegetable compartment, but the lower part of the back of the cooler is heated by high-temperature return cold air that contains a large amount of water. Even if the frost attached to the frost grows, the high temperature return cold air flows to the bottom surface side of the cooler, so that the frost resistance is excellent. Therefore, the deterioration of the cooling capacity at the time of frost formation can also be suppressed.

なお、最も大きな冷却効果が必要となる低温貯蔵室からの冷気を、より下方から冷却室へ戻すことで、低温戻り冷気が冷却器を通過する距離が長くなり熱交換量を増やすことで更に冷却能力を向上させることができる。   In addition, by returning the cool air from the low temperature storage room where the greatest cooling effect is required from the lower part to the cooling room, the distance that the low temperature return cold air passes through the cooler becomes longer, and the heat exchange amount is increased to further cool the air. Ability can be improved.

第2の発明は、第1の発明において、低温吸込み口を高温吸込み口よりも下方に位置したものである。   According to a second invention, in the first invention, the low temperature suction port is positioned below the high temperature suction port.

これによって、冷却運転時において、後向きの速度が大きい低温戻り冷気と前向きの速度が大きい高温戻り冷気は、上下方向にずれることで相互干渉を抑制し庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。また、最も大きな冷却効果が必要となる低温貯蔵室からの冷気をより下方から冷却室へ戻すことで、低温戻り冷気が冷却器を通過する距離が長くなり熱交換量を増やすことで更に冷却能力を向上させることができる。   As a result, during cooling operation, the low-temperature return cold air having a large backward speed and the high-temperature return cold air having a large forward speed can be shifted in the vertical direction, thereby suppressing mutual interference and increasing the amount of air circulating in the warehouse. Therefore, the cooling capacity can be further improved. In addition, by returning the cool air from the low temperature storage room, which requires the greatest cooling effect, from the lower part to the cooling room, the distance that the low temperature return cold air passes through the cooler becomes longer and the heat exchange amount is increased to further increase the cooling capacity. Can be improved.

第3の発明は、第1または第2の発明において、高温吸込み口を、冷却器の幅寸法と略同一に配置したものである。   According to a third invention, in the first or second invention, the high-temperature suction port is arranged substantially the same as the width dimension of the cooler.

これによって、冷蔵庫内を循環する戻り冷気の中で、冷却器と温度差の最も大きい高温戻り冷気は、冷却器との熱交換を冷却器幅と略同一寸法で行えるため、冷却器での熱交換面積を大きく取ることができると共に、冷凍サイクル効率の向上によって省エネを図ることができる。   As a result, of the return cold air circulating in the refrigerator, the high temperature return cold air having the largest temperature difference from the cooler can exchange heat with the cooler with the same dimensions as the cooler width. The exchange area can be increased, and energy can be saved by improving the efficiency of the refrigeration cycle.

また、冷蔵庫を使用する中で扉の開閉頻度の高い高温貯蔵室を循環する高温戻り冷気と冷却器との熱交換量が大きくなることは、庫内を冷却する時間を減らすことができるため、冷却運転時間の短縮による冷却器への着霜量も減らすことができる。特に、高温貯蔵室は扉開閉回数が多いことで外気の水分が侵入し易いだけで無く、温度が高いため空気中に保持する絶対湿度も高いため冷却器への霜の付着量も多くなる。冷却器への着霜量を減らすことで、冷却器の除霜周期を延ばす事が可能となり、ガラス管ヒータの入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。   In addition, since the amount of heat exchange between the high-temperature return cold air that circulates in the high-temperature storage chamber that frequently opens and closes the door while using the refrigerator and the cooler can be reduced, the time for cooling the interior can be reduced. The amount of frost formation on the cooler due to the shortening of the cooling operation time can also be reduced. In particular, the high temperature storage chamber is not only easily opened and closed by the number of times the door is opened and closed, but also because the temperature is high and the absolute humidity held in the air is high, the amount of frost attached to the cooler increases. By reducing the amount of frost formation on the cooler, it is possible to extend the defrost cycle of the cooler, reducing the number of inputs to the glass tube heater and reducing the input required for cooling the chamber after the chamber temperature rises due to defrosting. This can save energy.

また、風路の改善により冷却器の熱交換面積を大きく取れることは、冷却器に着霜させる面積を大きくすることであるため、着霜時の冷却能力の劣化も抑制することができる。これによって、冷蔵庫を運転し除霜を必要とするまでの時間を延ばす事が可能となり、ガラス管ヒータの入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。   Moreover, since the heat exchange area of the cooler can be increased by improving the air path is to increase the area to be frosted on the cooler, it is possible to suppress deterioration of the cooling capacity during frosting. This makes it possible to extend the time required to operate the refrigerator and require defrosting, to reduce the number of times the glass tube heater is input and to reduce the input required for cooling the interior after the internal temperature rise due to defrosting, Further energy saving can be performed.

第4の発明は、第1から第3のいずれかの発明において、除霜手段は、ガラス管ヒータとガラス管ヒータの上方に配置されたヒータカバーとを備え、高温吸込み口の下端はガラス管ヒータおよびヒータカバーより上方に位置したものである。   In a fourth invention according to any one of the first to third inventions, the defrosting means includes a glass tube heater and a heater cover disposed above the glass tube heater, and the lower end of the high-temperature suction port is a glass tube It is located above the heater and the heater cover.

これによって、冷蔵庫内を循環する戻り冷気の中で、冷却器と温度差の最も大きい高温戻り冷気は、ガラス管ヒータおよびヒータカバーに循環を邪魔されること無く冷却器へと導かれる。更に、高温吸込み口の下端がガラス管ヒータおよびヒータカバーより上方に位置しているため、温度が高く高湿で絶対湿度の高い高温戻り冷気が、冷却室内で低温となっているガラス管ヒータおよびヒータカバーに着霜し、霜によって風路阻害になることも無い。また、高温戻り冷気は上方に、低温戻り冷気は下方に、上下方向にずれやすくなるため更に、相互干渉が抑制され、庫内を循環する風量を大きくすることができ、より冷却能力を向上することができる。   As a result, of the return cool air circulating in the refrigerator, the high temperature return cool air having the largest temperature difference from the cooler is guided to the cooler without being interrupted by the glass tube heater and the heater cover. Furthermore, since the lower end of the high temperature suction port is located above the glass tube heater and the heater cover, the high temperature return cold air having a high temperature, high humidity and high absolute humidity is low in the cooling chamber, and The heater cover is frosted and the air path is not obstructed by the frost. In addition, high-temperature return cold air tends to be displaced upward and downward, and low-temperature return cold air tends to shift vertically, and further, mutual interference is suppressed, and the amount of air circulating in the warehouse can be increased, thereby further improving the cooling capacity. be able to.

第5の発明は、第1から第3のいずれかの発明において、除霜手段は、ガラス管ヒータとガラス管ヒータの上方に配置されたヒータカバーとを備え、低温吸込み口の上端はガラス管ヒータおよびヒータカバーより下方に位置したものである。   According to a fifth invention, in any one of the first to third inventions, the defrosting means includes a glass tube heater and a heater cover disposed above the glass tube heater, and the upper end of the low temperature suction port is a glass tube. It is located below the heater and the heater cover.

これによって、低温戻り風路を通り低温吸込み口を通過した冷気は、下向きに傾斜している風路に従って流れてくるため、低温吸込み口の上端よりも下方のガラス管ヒータおよびヒータカバーの下を通過し易い。故に、後向きの速度を持った低温戻り冷気の速度を落とすことなく冷却器背面より流入する高温戻り冷気と、よりスムーズに合流できる。その結果、
より風量を増やし冷却能力を向上させることができる。
As a result, the cold air that has passed through the low-temperature return air passage and passed through the low-temperature intake port flows along the downwardly inclined air passage, so that it is below the glass tube heater and heater cover below the upper end of the low-temperature intake port. Easy to pass. Therefore, it is possible to more smoothly merge with the high-temperature return cold air flowing from the back of the cooler without reducing the speed of the low-temperature return cold air having a backward speed. as a result,
The air volume can be increased and the cooling capacity can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の縦断面図、図2は、本発明の実施の形態1における冷却室の縦断面図、図3は本発明の実施の形態1における冷蔵庫の冷却室の詳細縦断面図である。
(Embodiment 1)
1 is a longitudinal sectional view of a refrigerator according to Embodiment 1 of the present invention, FIG. 2 is a longitudinal sectional view of a cooling chamber according to Embodiment 1 of the present invention, and FIG. 3 is a perspective view of the refrigerator according to Embodiment 1 of the present invention. It is a detailed longitudinal cross-sectional view of a cooling chamber.

図1から図3において、冷蔵庫30の断熱箱体31は主に鋼板を用いた外箱32とABSなどの樹脂で成型された内箱33とで構成され、その内部には断熱材として例えば硬質発泡ウレタンなどの発泡断熱材34が充填、周囲と断熱され、複数の貯蔵室に区分されている。   1 to 3, a heat insulating box 31 of a refrigerator 30 is mainly composed of an outer box 32 using a steel plate and an inner box 33 formed of a resin such as ABS. A foam insulation material 34 such as urethane foam is filled and insulated from the surroundings, and is divided into a plurality of storage rooms.

冷蔵庫30の複数の貯蔵室は、最上部に冷蔵室35、その冷蔵室35の下部に野菜室36、そして最下部に冷凍室37が配置されている。   The plurality of storage rooms of the refrigerator 30 has a refrigeration room 35 at the top, a vegetable room 36 at the bottom of the refrigeration room 35, and a freezing room 37 at the bottom.

冷蔵室35の前面開口部には冷蔵室ドア38、野菜室36の前面開口部には野菜室ドア39、冷凍室37の前面開口部には冷凍室ドア40が、それぞれの前面開口部を開閉自在に支持されている。   A refrigerator compartment door 38 is opened at the front opening of the refrigerator compartment 35, a vegetable compartment door 39 is opened at the front opening of the vegetable compartment 36, and a freezer compartment door 40 is opened and closed at the front opening of the freezer compartment 37. It is supported freely.

冷蔵室35は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、野菜室36は、3〜8℃まで設定することができる。冷凍室37は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   The refrigerator compartment 35 is normally set to 1 ° C to 5 ° C at the lower limit of the temperature at which it is not frozen for refrigerated storage, and the vegetable compartment 36 can be set to 3 to 8 ° C. The freezer compartment 37 is set in a freezing temperature zone and is usually set at −22 ° C. to −15 ° C. for frozen storage, but for example, −30 ° C. or −25 ° C. to improve the frozen storage state. It may be set at a low temperature.

また、仕切壁である第一区画壁41によって野菜室36と冷凍室37とは上下に区画され、仕切壁である第二区画壁42によって冷蔵室35と野菜室36とは上下に区画されている。   Moreover, the vegetable compartment 36 and the freezer compartment 37 are divided up and down by the 1st division wall 41 which is a partition wall, and the refrigerator compartment 35 and the vegetable compartment 36 are divided up and down by the 2nd division wall 42 which is a partition wall. Yes.

次に冷却室の構成について説明する。   Next, the configuration of the cooling chamber will be described.

冷却室43は縦区画壁45によって冷凍室37と断熱区画されている。冷凍室37の背面には冷気を生成する冷却室43が設けられ、内部には代表的なものとしてフィンアンドチューブ式の冷気を生成する、材質としては、アルミや銅が用いられる冷却器44が配設されている。   The cooling chamber 43 is insulated from the freezing chamber 37 by a vertical partition wall 45. A cooling chamber 43 for generating cold air is provided on the back surface of the freezing chamber 37, and a fin and tube type cold air is generated inside as a typical one. As a material, a cooler 44 using aluminum or copper is provided. It is arranged.

冷却器44は、内部を冷媒が流動する冷媒チューブ201と、所定間隔毎に配置された複数のプレートフィン202を備えている。   The cooler 44 includes a refrigerant tube 201 in which a refrigerant flows and a plurality of plate fins 202 arranged at predetermined intervals.

冷媒チューブ201は、アルミニウム製あるいはアルミニウム合金製の一本の管体を、直管部と曲管部が連続し、列(左右)方向Xおよび段(上下)方向Yにおいて複数となる
ように蛇行状に曲げ加工されたサーペンタインチューブであり、曲管部を形成する接続管を用いることなく一本の冷媒流路を形成している。そして、プレートフィン202に形成された長孔203を冷媒チューブ201の曲管部が貫通することにより、冷媒チューブ201の直管部がプレートフィン202と密着した構成となっている。
The refrigerant tube 201 is a single tube made of aluminum or aluminum alloy, and the straight pipe portion and the curved pipe portion are continuous, and meandering in a row (left / right) direction X and a step (up / down) direction Y. It is a serpentine tube bent into a shape, and forms a single refrigerant flow path without using a connecting pipe that forms a curved pipe portion. And the straight pipe part of the refrigerant | coolant tube 201 becomes the structure closely_contact | adhered to the plate fin 202, when the curved pipe part of the refrigerant | coolant tube 201 penetrates the long hole 203 formed in the plate fin 202. FIG.

長孔203は、矩形部と円弧部とを有し、該矩形部の両側短辺に前記円弧部がそれぞれ連続して形成された長穴状に形成されている。また、円弧部には、冷媒チューブ201の直管部と密着固定するための縁立成形された円弧部カラーが設けられており、矩形部長手方向の両端にも、略垂直に縁立成形された矩形部カラーが設けられている。この矩形部カラーは、冷蔵庫背面に向かって下方に傾斜するように冷却器44が設置されている。   The long hole 203 has a rectangular portion and a circular arc portion, and is formed in a long hole shape in which the circular arc portions are continuously formed on both short sides of the rectangular portion. Further, the arc part is provided with an edge-shaped arc part collar for tightly fixing with the straight pipe part of the refrigerant tube 201, and the edge part is also formed substantially vertically at both ends in the longitudinal direction of the rectangular part. A rectangular color is provided. The rectangular portion collar is provided with a cooler 44 so as to incline downward toward the back of the refrigerator.

冷却器44の上方には、生成された冷気を強制的に送風する送風機46が配置され、冷却器44の下方には、冷却器44に付着した霜や氷を除霜するガラス管ヒータ47が設けられている。さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン48、その最深部から庫外に貫通したドレンチューブ49が構成され、その下流側の庫外に蒸発皿50が構成されている。   A blower 46 that forcibly blows the generated cold air is disposed above the cooler 44, and a glass tube heater 47 that defrosts frost and ice adhering to the cooler 44 is disposed below the cooler 44. Is provided. Furthermore, a drain pan 48 for receiving defrosted water generated at the time of defrosting, a drain tube 49 penetrating from the deepest part to the outside of the cabinet are configured at the lower part, and an evaporating dish 50 is configured outside the warehouse on the downstream side. .

ガラス管ヒータ47は、具体的にはガラス製のガラス管ヒータ59であり、特に冷媒が炭化水素系冷媒ガスである場合、防爆対応としてガラス管が2重に形成された2重ガラス管ヒータが採用されている。ガラス管ヒータ59の上方には、ガラス管ヒータ59を覆うヒータカバー60が配置され、除霜時に冷却器44から滴下した水滴が除霜によって高温になったガラス管表面に直接落ちることで、ジュージューといった音が発生しないようにガラス管径および幅と同等以上の寸法としている。   The glass tube heater 47 is specifically a glass tube heater 59 made of glass, and in particular, when the refrigerant is a hydrocarbon-based refrigerant gas, a double glass tube heater in which glass tubes are formed in a double manner for explosion protection is used. It has been adopted. A heater cover 60 that covers the glass tube heater 59 is disposed above the glass tube heater 59, and water drops dripped from the cooler 44 during defrosting directly fall on the surface of the glass tube that has become hot due to defrosting. The size is equal to or greater than the glass tube diameter and width so that no sound is generated.

ここで、近年の冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。この炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(2.04、300Kにおいて)。これにより従来に比して冷媒充填量を低減でき、低コストであると共に、可燃性冷媒が万が一に漏洩した場合の漏洩量が少なくなり安全性をより向上できる。   Here, isobutane, which is a flammable refrigerant having a low global warming potential, is used as a refrigerant in recent refrigeration cycles from the viewpoint of global environmental conservation. This hydrocarbon, isobutane, has a specific gravity of about twice that at normal temperature and atmospheric pressure (at 2.04 and 300K) compared to air. As a result, the refrigerant charge amount can be reduced as compared with the conventional case, the cost is low, and the leakage amount when the flammable refrigerant leaks is reduced, thereby improving the safety.

本実施の形態では、冷媒にイソブタンを用いており、防爆対応として除霜時のガラス管ヒータ59の外郭であるガラス管表面の最大温度を規制している。そのため、ガラス管表面の温度を低減させるため、ガラス管を2重に形成された2重ガラス管ヒータを採用しているのである。このほか、ガラス管表面の温度を低減させる手段としては、ガラス管表面に放熱性の高い部材(例えばアルミフィン)を巻きつけることも出来る。このとき、ガラス管を1重とすることで、ガラス管ヒータ59の外形寸法を小さく出来る。   In the present embodiment, isobutane is used as the refrigerant, and the maximum temperature on the surface of the glass tube, which is the outline of the glass tube heater 59 at the time of defrosting, is regulated as an explosion-proof measure. Therefore, in order to reduce the temperature of the glass tube surface, a double glass tube heater in which the glass tube is formed in a double manner is employed. In addition, as a means for reducing the temperature on the surface of the glass tube, a member (for example, an aluminum fin) having high heat dissipation can be wound around the surface of the glass tube. At this time, the outer dimensions of the glass tube heater 59 can be reduced by using a single glass tube.

また、除霜時の効率を向上させる手段としては、ガラス管ヒータ59に加えて、冷却器44に密着したパイプヒータを併用しても良い。この場合、パイプヒータからの直接の伝熱によって冷却器44の除霜は効率的に行われると共に、冷却器44の周囲のドレンパン48や送風機46に付着した霜をガラス管ヒータ59で溶かすことが出来るため、除霜時間の短縮が図れ、省エネや除霜時間における庫内温度の上昇を抑制することが出来る。   In addition to the glass tube heater 59, a pipe heater that is in close contact with the cooler 44 may be used as a means for improving the efficiency during defrosting. In this case, the defrosting of the cooler 44 is efficiently performed by direct heat transfer from the pipe heater, and the frost adhering to the drain pan 48 and the blower 46 around the cooler 44 can be melted by the glass tube heater 59. Therefore, the defrosting time can be shortened, and an increase in the internal temperature during energy saving and defrosting time can be suppressed.

なお、ガラス管ヒータ59とパイプヒータを組み合わせた場合、お互いのヒータ容量を適正化することで、ガラス管ヒータ59の容量を低くすることが可能となる。ヒータ容量を低くすると除霜時のガラス管ヒータ59の外郭の温度も低くすることが出来るため、除霜時の赤熱も抑制できる。   When the glass tube heater 59 and the pipe heater are combined, the capacity of the glass tube heater 59 can be reduced by optimizing the heater capacities of each other. If the heater capacity is lowered, the outer temperature of the glass tube heater 59 at the time of defrosting can also be lowered, so that red heat at the time of defrosting can also be suppressed.

ドレンパン48は冷却室43の底面および背面の一部を構成している。底面は、除霜水をドレンチューブ49に集めるためにドレンチューブ49との接続部が最も低くなるよう
構成されており、ドレンチューブ49との接続部においてガラス管ヒータ47から最も離れる(距離L)ことになる。背面はドレンパン48の貯水量が確保できる高さを超える高さまで立ち上がっており、底面と背面とのなす角は緩やかな曲面で構成される。
The drain pan 48 constitutes a part of the bottom surface and the back surface of the cooling chamber 43. The bottom surface is configured to have the lowest connection portion with the drain tube 49 in order to collect the defrosted water in the drain tube 49, and is farthest from the glass tube heater 47 at the connection portion with the drain tube 49 (distance L). It will be. The back surface rises to a height that exceeds the height at which the amount of water stored in the drain pan 48 can be secured, and the angle formed between the bottom surface and the back surface is a gently curved surface.

次に、風路構成について説明する。   Next, the air path configuration will be described.

縦区画壁45は、冷凍室37の外殻をなす前区画壁45aと冷却室43の外殻をなす後区画壁45bとから構成される。前区画壁45aと後区画壁45bとの間の空間は各貯蔵室に向けて冷気を分岐させる分配風路51である。   The vertical partition wall 45 includes a front partition wall 45 a that forms the outer shell of the freezing chamber 37 and a rear partition wall 45 b that forms the outer shell of the cooling chamber 43. A space between the front partition wall 45a and the rear partition wall 45b is a distribution air passage 51 that branches cold air toward each storage chamber.

前区画壁45aは、上方に冷凍室吐出口52を有し、分配風路51と冷凍室37とを連通している。下方には冷凍室37側へ突出した冷凍室戻り風路53を有し、冷凍室戻り風路53前面に設けられた入り口53aから冷却室43へ冷凍室37の戻り冷気を導入する。   The front partition wall 45 a has a freezer compartment discharge port 52 on the upper side, and communicates the distribution air passage 51 and the freezer compartment 37. There is a freezer return air passage 53 protruding downward from the freezer compartment 37 side, and the return cold air from the freezer compartment 37 is introduced into the cooling chamber 43 through an inlet 53a provided in front of the freezer return air passage 53.

分配風路51はまた、第一区画壁41内に設けられた高温吐出風路54に接続している。さらに高温吐出風路54は冷蔵室35および野菜室36と接続している。   The distribution air passage 51 is also connected to a high temperature discharge air passage 54 provided in the first partition wall 41. Further, the high temperature discharge air passage 54 is connected to the refrigerator compartment 35 and the vegetable compartment 36.

後区画壁45bは上方に送風機46を備え、下方には冷凍室戻り風路53と冷却室43とを区画するリブ55を有する。冷凍室戻り風路53をリブ55とドレンパン48とにより囲まれた領域が冷凍室吸込み口56であり、冷凍室戻り風路53と冷却室43とを連通する。   The rear partition wall 45 b includes a blower 46 on the upper side, and has a rib 55 that partitions the freezer return air passage 53 and the cooling chamber 43 on the lower side. A region surrounded by the freezing chamber return air passage 53 by the rib 55 and the drain pan 48 is a freezing chamber suction port 56, and the freezer compartment return air passage 53 and the cooling chamber 43 communicate with each other.

なお、冷凍室吸込み口56の面積は、入り口53aの面積よりも大きくなるように構成される。また、ドレンチューブ49の中心を通る縦断面において、ガラス管ヒータ47とドレンチューブ49との距離Lは、同じ縦断面での冷凍室吸込み口56の高さHよりも大きくなるように構成される。また、冷却室43背面とガラス管ヒータ47との距離Bも、冷凍室吸込み口56の高さHより大きくなるように構成される。   The area of the freezer compartment inlet 56 is configured to be larger than the area of the inlet 53a. Further, in the longitudinal section passing through the center of the drain tube 49, the distance L between the glass tube heater 47 and the drain tube 49 is configured to be larger than the height H of the freezer compartment suction port 56 in the same longitudinal section. . Further, the distance B between the back surface of the cooling chamber 43 and the glass tube heater 47 is also configured to be larger than the height H of the freezer compartment suction port 56.

冷凍室戻り風路53の底面は、ドレンパン48の一部により冷却室43の底面と続きで構成される。ドレンパン48は入り口53aの下端より始まり冷凍室吸込み口56下端を通りドレンチューブ49まで下向きに傾斜し、その後緩やかに上向きに転じ冷却室43の背面へと繋がる形状を有する。   The bottom surface of the freezing chamber return air passage 53 is constituted by a part of the drain pan 48 and the bottom surface of the cooling chamber 43. The drain pan 48 starts from the lower end of the inlet 53a, passes through the lower end of the freezing chamber suction port 56, inclines downward to the drain tube 49, and then gradually turns upward to connect to the back surface of the cooling chamber 43.

冷却器44の背面に高温戻り風路57が配置されている。第一区画壁41および第二区画壁42を通り、野菜室36と冷蔵室35とにそれぞれ連通しており、冷蔵室35と野菜室36を冷却した冷気が高温戻り風路57内で合流する。高温戻り風路57は下方に冷却室43と連通する高温吸込み口58を備える。   A high-temperature return air passage 57 is disposed on the back surface of the cooler 44. It passes through the first partition wall 41 and the second partition wall 42 and communicates with the vegetable compartment 36 and the refrigeration compartment 35, respectively, and the cold air that has cooled the refrigeration compartment 35 and the vegetable compartment 36 merges in the high-temperature return air passage 57. . The high temperature return air passage 57 includes a high temperature suction port 58 that communicates with the cooling chamber 43 below.

そして、冷凍室吸込み口56は冷却室43の前面に、高温吸込み口58は冷却室43の背面に設けられ、冷凍室吸込み口56の下端は冷却器44の下端より下方に配置し、高温吸込み口58の上端は冷却器44の下端より上方に配置するとともに、高温吸込み口58の上端はガラス管ヒータ47より上方に配置している。   The freezer compartment suction port 56 is provided on the front surface of the cooling chamber 43, and the high temperature suction port 58 is provided on the back surface of the cooling chamber 43. The freezer compartment suction port 56 is disposed below the lower end of the cooler 44. The upper end of the port 58 is disposed above the lower end of the cooler 44, and the upper end of the high temperature suction port 58 is disposed above the glass tube heater 47.

また、冷凍室吸込み口56は、高温吸込み口58よりも下方に位置して構成されている。   Further, the freezer compartment suction port 56 is configured to be positioned below the high temperature suction port 58.

また、冷蔵室35および野菜室36からの戻り冷気の流入部分である、冷却器背面の高温吸込み口58を、冷却器の幅寸法と略同一に配置している。   Further, a high-temperature suction port 58 on the back side of the cooler, which is an inflow portion of the return cold air from the refrigerator compartment 35 and the vegetable compartment 36, is arranged substantially the same as the width dimension of the cooler.

また、ガラス管ヒータ47は、ガラス管ヒータ59とガラス管ヒータ59の上方に配置されたヒータカバー60とを備え、高温吸込み口58の下端はガラス管ヒータ59およびヒータカバー60より上方に位置している。   The glass tube heater 47 includes a glass tube heater 59 and a heater cover 60 disposed above the glass tube heater 59, and the lower end of the high temperature suction port 58 is located above the glass tube heater 59 and the heater cover 60. ing.

また、ガラス管ヒータ47は、ガラス管ヒータ59とガラス管ヒータ59の上方に配置されたヒータカバー60とを備え、冷凍室吸込み口56の上端はガラス管ヒータ59およびヒータカバー60より下方に位置している。   The glass tube heater 47 includes a glass tube heater 59 and a heater cover 60 disposed above the glass tube heater 59, and the upper end of the freezer compartment inlet 56 is positioned below the glass tube heater 59 and the heater cover 60. doing.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、冷却運転時について説明する。   First, the cooling operation will be described.

冷却室43の冷却器44で生成された冷気の一部は送風機46によって分配風路51内前方へ強制的に送風される。冷凍室37は冷凍室吐出口52から吐出された冷気によって冷却され、冷気は縦区画壁45の下部に設けられた冷凍室戻り風路53を介して冷凍室吸込み口56より冷却器44の下部に導かれ、冷却器44で熱交換されて、再び新鮮な冷気が送風機46によって循環を繰返す。これによって冷凍室37は冷凍室センサー(図示しない)の制御で適温に冷却される。   A part of the cold air generated by the cooler 44 in the cooling chamber 43 is forcibly blown forward by the blower 46 in the distribution air passage 51. The freezer compartment 37 is cooled by the cold air discharged from the freezer compartment discharge port 52, and the cold air is below the cooler 44 from the freezer compartment suction port 56 via the freezer return air passage 53 provided at the lower part of the vertical partition wall 45. Then, heat is exchanged in the cooler 44, and fresh cold air is circulated again by the blower 46. As a result, the freezer compartment 37 is cooled to an appropriate temperature under the control of a freezer sensor (not shown).

また分配風路51内上方に吐出された冷気は第一区画壁41内の高温吐出風路54を経て冷蔵室35や野菜室36に吐出される。循環した冷気は冷蔵室35や野菜室36内の空気や貯蔵物に含まれる湿気を帯びた空気となって、高温戻り風路57を通り高温吸込み口58から冷却器44の下部に導かれて冷却器44と熱交換して、新鮮な冷気が再び送風機によって強制的に送風される。   Further, the cold air discharged upward in the distribution air passage 51 is discharged to the refrigerator compartment 35 and the vegetable compartment 36 through the high temperature discharge air passage 54 in the first partition wall 41. The circulated cold air becomes the air in the refrigerator compartment 35 and the vegetable compartment 36 and the humid air contained in the stored product, passes through the high temperature return air passage 57 and is led to the lower part of the cooler 44 through the high temperature suction port 58. Heat is exchanged with the cooler 44, and fresh cool air is forcibly blown again by the blower.

これによって、冷蔵室35や野菜室36は、冷却器44から離れた位置にあっても、送風機46によって冷気を強制的に循環させることで室内を設定温度に冷却することができる。   Thereby, even if the refrigerator compartment 35 and the vegetable compartment 36 are in the position away from the cooler 44, the room can be cooled to the set temperature by forcibly circulating the cool air by the blower 46.

ここで、野菜室36へ冷気を導入する野菜室吐出風路(図示せず)の風路内に、冷気量を調整する開閉弁(図示せず)を設けても良い。この場合、開閉弁によって、野菜室36内の温度を緻密に制御できるため、例えば、夏場や買い物後の食品収納時の過度な扉開閉時においても庫内の温度変動を抑制し、庫内を適温に維持することが出来る。   Here, an open / close valve (not shown) for adjusting the amount of cold air may be provided in the air passage of the vegetable compartment discharge air passage (not shown) for introducing cold air into the vegetable compartment 36. In this case, since the temperature in the vegetable compartment 36 can be precisely controlled by the opening / closing valve, for example, the temperature fluctuation in the warehouse is suppressed even during the summer or when the door is excessively opened and closed during food storage. It can be maintained at an appropriate temperature.

またガラス管ヒータ47は、除霜時に、ヒータ熱で冷却室43内および高温戻り風路57内を加熱できるので、結露や凍結を改善し防止することができ信頼性を高めることができる。   Further, since the glass tube heater 47 can heat the inside of the cooling chamber 43 and the inside of the high temperature return air passage 57 with the heater heat at the time of defrosting, it can improve and prevent condensation and freezing, and can improve reliability.

ここで、吸込み風路構成について説明する。   Here, the suction air passage configuration will be described.

送風機46から吐出された冷気が、冷蔵室35、野菜室36、冷凍室37の全ての貯蔵室を循環しているとき、冷却室43には冷凍室37からの戻り冷気と、冷蔵室35および野菜室36からの高温戻り冷気の2つの流れが同時に流れ込むことになる。   When the cold air discharged from the blower 46 circulates through all the storage rooms of the refrigerating room 35, the vegetable room 36, and the freezing room 37, the cooling room 43 includes the return cold air from the freezing room 37, the refrigerating room 35, and Two flows of hot return cold air from the vegetable compartment 36 will flow in simultaneously.

冷凍室37からの戻り冷気は、入り口53aから冷凍室戻り風路53を通り、冷凍室吸込み口56から冷却室43へ入る。冷蔵室35および野菜室36からの高温戻り冷気は、高温戻り風路57を通り、高温吸込み口58から冷却室43へ入る。   The return cold air from the freezer compartment 37 passes through the freezer compartment return air passage 53 from the entrance 53 a and enters the cooling compartment 43 from the freezer compartment suction port 56. The high temperature return cold air from the refrigerator compartment 35 and the vegetable room 36 passes through the high temperature return air passage 57 and enters the cooling chamber 43 from the high temperature suction port 58.

本実施の形態では、冷凍室吸込み口56は冷却室43前面に、高温吸込み口58は冷却室43背面に設けられ、高温吸込み口下端58bは冷却器44の下端である冷却器下端4
4bよりも下方に位置し、高温吸込み口上端58aは冷却器44の下端である冷却器下端44bよりも上方に位置し、高温吸込み口上端58aは除霜用のガラス管ヒータ59および、ガラス管ヒータ59を覆い上方のヒータカバー60よりも上方に位置している。
In the present embodiment, the freezer compartment suction port 56 is provided on the front surface of the cooling chamber 43, the high temperature suction port 58 is provided on the rear surface of the cooling chamber 43, and the high temperature suction port lower end 58 b is the lower end of the cooler 44.
4b, the high temperature suction port upper end 58a is located above the cooler lower end 44b, which is the lower end of the cooler 44, and the high temperature suction port upper end 58a is a glass tube heater 59 and a glass tube for defrosting. It covers the heater 59 and is positioned above the upper heater cover 60.

これにより、冷却室43内において、高温吸込み口上端58aと、高温吸込み口下端58bの間に、冷却器下端44bを配設し、高温吸込み口上端58aは除霜用のガラス管ヒータ59およびヒータカバー60よりも上方に位置されているため、前向きの速度が大きい冷蔵室35および野菜室36からの高温戻り冷気は、冷却器44側へ流れやすくなるため、冷凍室37からの冷凍室戻り冷気とは、上下方向にずれる。よって、高温戻り冷気と冷凍室戻り冷気の相互干渉を抑制し庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。   Thereby, in the cooling chamber 43, the cooler lower end 44b is disposed between the high temperature suction port upper end 58a and the high temperature suction port lower end 58b, and the high temperature suction port upper end 58a is a glass tube heater 59 and a heater for defrosting. Since it is positioned above the cover 60, the high-temperature return cold air from the refrigerating room 35 and the vegetable room 36, which has a large forward speed, easily flows to the cooler 44 side. Is shifted vertically. Therefore, the mutual interference between the high-temperature return cold air and the freezer compartment return cold air can be suppressed and the air volume circulating in the warehouse can be increased, so that the cooling capacity can be further improved.

なお、最も大きな冷却効果が必要となる低温貯蔵室からの冷気を、より下方から冷却室へ戻すことで、低温戻り冷気が冷却器を通過する距離が長くなり熱交換量を増やすことで更に冷却能力を向上させることができる。   In addition, by returning the cool air from the low temperature storage room where the greatest cooling effect is required from the lower part to the cooling room, the distance that the low temperature return cold air passes through the cooler becomes longer, and the heat exchange amount is increased to further cool the air. Ability can be improved.

なお、高温吸込み口上端58aと、高温吸込み口下端58bを冷却器44の下方とした場合、高温戻り風路57の風路抵抗が増加し循環風量が低下するため冷却能力が低下する。一方、高温吸込み口上端58aと、高温吸込み口下端58bを冷却器44の上方とした場合、風路抵抗が減少し循環風量が増加するが、冷却器44へ戻り冷気が流れやすくなり付着する霜によって、高温戻り風路57が閉塞する可能性があるため、本実施の形態では、高温吸込み口上端58aと、高温吸込み口下端58bの間に、冷却器下端44bを配設させることで、冷却能力と着霜耐力の両方を満足する構成としている。特に、冷却器44の最下段のパイプと最下段よりも1段上のパイプの間に高温吸込み口上端58aを配置することで冷却能力と着霜耐力の両方で最適化を図っている。   When the high temperature suction port upper end 58a and the high temperature suction port lower end 58b are located below the cooler 44, the air flow resistance of the high temperature return air channel 57 increases and the circulating air volume decreases, so that the cooling capacity decreases. On the other hand, when the high-temperature suction port upper end 58a and the high-temperature suction port lower end 58b are located above the cooler 44, the air path resistance decreases and the circulation air volume increases, but the frost is attached to the cooler 44 because the cool air easily flows. In this embodiment, the cooler lower end 44b is disposed between the high temperature suction port upper end 58a and the high temperature suction port lower end 58b, thereby cooling the high temperature return air passage 57. It is configured to satisfy both capacity and frost resistance. In particular, optimization of both the cooling capacity and the frosting resistance is achieved by disposing the high temperature suction port upper end 58a between the lowermost pipe of the cooler 44 and the pipe one stage higher than the lowermost stage.

また、ドア開閉時に侵入した空気中の水分や、庫内に投入された食品に付着している水分、さらに庫内に保存されている野菜からの水分等で冷却器44には、霜が付着する。この霜が成長を遂げると冷却器44と循環冷気との間で熱交換効率が低下し庫内を十分に冷却できず、最終的に不冷もしくは鈍冷状態となる。よって、冷蔵庫では、冷却器44に付着した霜を定期的に除霜する必要があるが、本実施の形態のように、高温吸込み口上端58aと、高温吸込み口下端58bの間に、冷却器下端44bを配設することで、水分量の大きい高温戻り冷気によって冷却器背面下部に付着した霜が成長しても冷却器底面側へと高温戻り冷気が流れるため耐着霜性能として向上する。よって、着霜時の冷却能力の劣化も抑制することができる。   In addition, frost adheres to the cooler 44 due to moisture in the air that has entered when the door is opened, moisture adhering to food put in the cabinet, moisture from vegetables stored in the cabinet, and the like. To do. When this frost grows, the heat exchange efficiency is lowered between the cooler 44 and the circulating cold air, and the inside of the cabinet cannot be cooled sufficiently, and finally becomes uncooled or slowly cooled. Therefore, in the refrigerator, it is necessary to periodically defrost the frost adhering to the cooler 44. However, as in the present embodiment, the cooler is disposed between the high temperature inlet upper end 58a and the high temperature inlet lower end 58b. By providing the lower end 44b, even if frost attached to the lower part of the back of the cooler grows due to the high temperature return cold air having a large moisture content, the high temperature return cold air flows to the cooler bottom surface side, so that the anti-frosting performance is improved. Therefore, the deterioration of the cooling capacity at the time of frost formation can also be suppressed.

なお、冷却室43において、プレートフィン202の長孔203および矩形部カラー203bが冷蔵庫背面に向かって下方に傾斜するように冷却器44に設置されることで、合流した冷気は、冷却器44の背面側より鉛直上向き成分を主として突入し、突入した冷気の一部は、冷却器44のプレートフィン202および矩形部カラー203bに沿って流れ、冷却器44の前面へと誘導される。これにより、冷気が冷却器44全体を通過することで熱交換量を増加させることができるため、冷却能力を向上することができる。   In the cooling chamber 43, the long holes 203 of the plate fins 202 and the rectangular collar 203b are installed in the cooler 44 so as to incline downward toward the back of the refrigerator. A vertically upward component mainly enters from the back side, and a part of the entering cool air flows along the plate fins 202 and the rectangular collar 203 b of the cooler 44 and is guided to the front of the cooler 44. Thereby, since the amount of heat exchange can be increased by passing the cool air through the entire cooler 44, the cooling capacity can be improved.

また、冷却室43の底面を構成するドレンパン48の形状を、冷凍室吸込み口56からドレンチューブ49にかけて下方に傾斜した形状を有することにより、冷凍室戻り冷気は、ドレンパン48沿って下方へ流れた後背面に沿って上昇させることができるため、高温吸込み口58前方において冷凍室戻り冷気の速度が上向きとなり、高温戻り冷気とスムーズに合流でき、より風量を増やし冷却能力を向上させることができる。   Further, the shape of the drain pan 48 constituting the bottom surface of the cooling chamber 43 has a shape inclined downward from the freezing chamber suction port 56 to the drain tube 49, so that the freezing chamber return cold air flows downward along the drain pan 48. Since it can be raised along the rear rear surface, the speed of the freezer compartment return cold air is directed upward in front of the high temperature suction port 58, and can smoothly merge with the high temperature return cold air, and the air capacity can be further increased and the cooling capacity can be improved.

また、冷凍室吸込み口56は上流側に冷凍室戻り風路53を備え、冷凍室戻り風路53
の入り口53aは冷凍室吸込み口56よりも上方に位置させているため、冷凍室吸込み口56での冷凍室戻り冷気は下向きに冷却室43に流れ込むため、よりドレンパン48に沿って流れ易くなり、より圧力損失を小さくしたまま低温戻り冷気との干渉を抑制することができる。さらに、冷凍室戻り風路53の入り口53aの面積は冷凍室吸込み口56の面積よりも小さいことにより、さらに冷凍室吸込み口56での圧力損失を低減することができる。
The freezer compartment suction port 56 includes a freezer compartment return air passage 53 on the upstream side, and the freezer compartment return air passage 53.
The inlet 53a is positioned above the freezer compartment suction port 56, so that the freezer return cold air at the freezer compartment suction port 56 flows downward into the cooler chamber 43, so that it easily flows along the drain pan 48. Interference with low-temperature return cold air can be suppressed while further reducing pressure loss. Furthermore, since the area of the inlet 53a of the freezer return air passage 53 is smaller than the area of the freezer compartment inlet 56, pressure loss at the freezer compartment inlet 56 can be further reduced.

また、冷蔵室35および野菜室36からの戻り冷気の流入部分である、冷却器背面の高温吸込み口58を、冷却器の幅寸法と略同一に配置している。   Further, a high-temperature suction port 58 on the back side of the cooler, which is an inflow portion of the return cold air from the refrigerator compartment 35 and the vegetable compartment 36, is arranged substantially the same as the width dimension of the cooler.

これによって、冷蔵庫内を循環する戻り冷気の中で、冷却器44と温度差の大きい冷蔵室戻り冷気と野菜室戻り冷気が合流した高温戻り冷気は、冷却器44との熱交換を冷却器幅と略同一寸法で行えるため、冷却器44での熱交換面積を大きく取ることができると共に、冷凍サイクル効率の向上によって省エネを図ることができる。   As a result, in the return cold air circulating in the refrigerator, the high temperature return cool air in which the cooler room return cold air and the vegetable room return cold air having a large temperature difference with the cooler 44 is combined with the cooler 44 for heat exchange with the cooler width. Therefore, it is possible to increase the heat exchange area in the cooler 44 and to save energy by improving the refrigeration cycle efficiency.

更に、冷蔵庫の使用状態の中で、冷蔵室35と野菜室36の扉開閉回数は多い。特に近年では野菜室36に、野菜以外のペットボトルを冷却保存する実態もあり、1日の内で冷蔵室35や野菜室36の扉開閉回数は10年前に対して上昇傾向にある。よって、前述のように冷蔵室35や野菜室36の高温貯蔵室を循環する高温戻り冷気と冷却器との熱交換量が大きくなることは、庫内を冷却する時間を減らすことができるため、冷却運転時間の短縮による冷却器44への着霜量も減らすことができる。特に、高温貯蔵室は扉開閉回数が多いことで外気の水分が侵入し易いだけで無く、温度が高いため空気中に保持する絶対湿度も高いため冷却器44への霜の付着量も多くなる。冷却器44への着霜量を減らすことで、冷却器44の除霜周期を延ばす事が可能となり、ガラス管ヒータ47の入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。   Furthermore, in the use state of the refrigerator, the number of times of opening and closing the doors of the refrigerator compartment 35 and the vegetable compartment 36 is large. In particular, in recent years, the vegetable room 36 is also actually storing cold plastic bottles other than vegetables, and the number of times of opening and closing the doors of the refrigerated room 35 and the vegetable room 36 within a day is increasing compared to 10 years ago. Therefore, since the amount of heat exchange between the high-temperature return cold air circulating through the high-temperature storage chambers of the refrigerator compartment 35 and the vegetable compartment 36 and the cooler as described above increases the time for cooling the inside of the refrigerator, The amount of frost formation on the cooler 44 due to the shortening of the cooling operation time can also be reduced. In particular, the high temperature storage chamber is not only easy to infiltrate the moisture of the outside air due to the large number of times of opening and closing the door, but also because the temperature is high and the absolute humidity held in the air is high, the amount of frost adhering to the cooler 44 also increases. . By reducing the amount of frost formation on the cooler 44, it is possible to extend the defrost cycle of the cooler 44, and it is necessary for reducing the number of input times of the glass tube heater 47 and cooling the interior after the interior temperature rise due to defrosting. Input can be reduced and further energy saving can be achieved.

更に、冷却器44での熱交換面積を大きく取ることができることは、冷却器44に着霜させる面積を大きくすることであるため、着霜時の冷却能力の劣化も抑制することができる。これによって、冷蔵庫を運転した後、除霜を必要とするまでの時間(除霜周期)を延ばす事が可能となり、ガラス管ヒータ47の入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する入力低減が図れ、更なる省エネを行うことができる。   Further, the fact that the heat exchange area in the cooler 44 can be increased is that the area to be frosted on the cooler 44 is increased, so that deterioration of the cooling capacity during frost formation can also be suppressed. As a result, it is possible to extend the time (defrost cycle) until defrosting is required after the refrigerator is operated, and the inside of the cabinet after the number of times of input of the glass tube heater 47 and the rise in the inside temperature due to defrosting. The input required for cooling can be reduced, and further energy saving can be performed.

また、高温吸込み口58の下端である高温吸込み口下端58bは除霜用のガラス管ヒータ59およびヒータカバー60よりも上方に位置してある。   The high temperature suction port lower end 58b, which is the lower end of the high temperature suction port 58, is located above the glass tube heater 59 and the heater cover 60 for defrosting.

これによって、冷蔵庫内を循環する戻り冷気の中で、冷却器と温度差の最も大きい高温戻り冷気は、ガラス管ヒータ59およびヒータカバー60に循環を邪魔されること無く冷却器44へと導かれる。更に、高温吸込み口下端58bがガラス管ヒータ59およびヒータカバー60の上方に位置していることは、冷蔵温度で且つ、外気や野菜から蒸散する水分により高湿で絶対湿度の高い高温戻り冷気が、冷却室内で低温となっているガラス管ヒータ59およびヒータカバー60に着霜し、霜によって風路阻害になることも無い。また、高温戻り冷気は上方に、低温戻り冷気は下方に、上下方向にずれやすくなるため更に、相互干渉が抑制され、庫内を循環する風量を大きくすることができ、より冷却能力を向上することができる。   As a result, of the return cool air circulating in the refrigerator, the high temperature return cool air having the largest temperature difference from the cooler is guided to the cooler 44 without being interrupted by the glass tube heater 59 and the heater cover 60. . Further, the fact that the lower end 58b of the high temperature suction port is located above the glass tube heater 59 and the heater cover 60 means that the high temperature return cold air having a high humidity and a high absolute humidity is caused by the refrigeration temperature and the moisture evaporated from the outside air and vegetables. The glass tube heater 59 and the heater cover 60 that are at a low temperature in the cooling chamber are frosted, and the air path is not obstructed by the frost. In addition, high-temperature return cold air tends to be displaced upward and downward, and low-temperature return cold air tends to shift vertically, and further, mutual interference is suppressed, and the amount of air circulating in the warehouse can be increased, thereby further improving the cooling capacity. be able to.

また、冷凍室吸込み口56の上端である、冷凍室吸込み口上端56aは除霜用のガラス管ヒータ59およびヒータカバー60よりも下方に位置してある。   In addition, the freezer compartment suction port upper end 56 a, which is the upper end of the freezer compartment suction port 56, is located below the glass tube heater 59 and the heater cover 60 for defrosting.

これによって、冷凍室戻り風路53を通り冷凍室吸込み口56を通過した冷気は、下向
きに傾斜している風路に従って流れてくるため、冷凍室吸込み口上端56aよりも下方のガラス管ヒータ59およびヒータカバー60の下を通過し易い。故に、後向きの速度を持った冷凍室戻り冷気の速度を落とすことなく冷却器44の背面より流入する高温戻り冷気と、よりスムーズに合流できる。その結果、より風量を増やし冷却能力を向上させることができる。
As a result, the cold air that has passed through the freezer return air passage 53 and passed through the freezer inlet 56 flows along a downwardly inclined air passage, so that the glass tube heater 59 below the freezer compartment inlet upper end 56a. And easily passes under the heater cover 60. Therefore, it is possible to more smoothly merge with the high-temperature return cold air flowing from the back of the cooler 44 without reducing the speed of the freezer return cold air having a backward speed. As a result, the air volume can be increased and the cooling capacity can be improved.

冷蔵庫30は3つの貯蔵室の中で外気温との温度差が大きい冷凍室37を最も冷やす必要があるため、高温吐出風路54を開閉弁(図示せず)で閉じるなどすることで、冷凍室37のみに冷気を循環させる必要がある。送風機46から吐出された冷気が冷凍室37のみを循環しているとき、冷却室43には冷凍室37からの戻り冷気のみが流れ込むことになる。   Since the refrigerator 30 needs to cool the freezer compartment 37 having the largest temperature difference from the outside temperature among the three storage rooms, the refrigerator 30 can be frozen by closing the high-temperature discharge air passage 54 with an on-off valve (not shown). It is necessary to circulate cold air only to the chamber 37. When the cool air discharged from the blower 46 circulates only in the freezer compartment 37, only the return cool air from the freezer compartment 37 flows into the cooler chamber 43.

このときも冷凍室戻り冷気は、全貯蔵室に冷気が循環しているときと同様に、入り口53aから冷凍室戻り風路53を通り、冷凍室吸込み口56から冷却室43へ入り、ガラス管ヒータ47の下を通りドレンパン48に沿って背面から冷却器44へ突入する。従って、冷凍室戻り冷気は冷却器44内を対角線上に流れることができ、熱交換距離を長く取ることができるため、熱交換量を増加し冷却能力を向上させることができる。   At this time, the freezer return cold air passes through the freezer return air passage 53 from the entrance 53a and enters the cooling chamber 43 through the freezer inlet 56, as in the case where the cold air circulates in all the storage rooms. It passes under the heater 47 and enters the cooler 44 along the drain pan 48 from the back surface. Therefore, the freezer return cold air can flow diagonally in the cooler 44, and the heat exchange distance can be increased, so that the heat exchange amount can be increased and the cooling capacity can be improved.

さらに、冷却室43の前面に設置された吸込み口は冷凍室吸込み口56のみであるため冷凍室吸込み口56の幅を冷却器44の幅と同じまで広げることができる。従って、冷凍室37のみに冷気が循環しているときでも、冷却器44全体を使うことができ、冷却能力を更に向上させることができる。   Furthermore, since the suction port installed on the front surface of the cooling chamber 43 is only the freezing chamber suction port 56, the width of the freezing chamber suction port 56 can be expanded to the same as the width of the cooler 44. Therefore, even when the cold air is circulating only in the freezer compartment 37, the entire cooler 44 can be used, and the cooling capacity can be further improved.

また、冷凍室吸込み口56は冷凍室戻り風路53の入り口53aよりも大きいため、ここでの圧力損失も抑制することができ、さらに風量を増加させることができる。   Further, since the freezer compartment suction port 56 is larger than the inlet 53a of the freezer compartment return air passage 53, the pressure loss can be suppressed and the air volume can be increased.

また、一般的に冷蔵庫30の背面には、冷蔵庫内で最も低温となる冷却器44が配置されているため背面の断熱壁を介して侵入する熱量は冷蔵庫内で最大であるが、冷却室43と断熱壁の間に高温戻り風路57を構成しているため、冷蔵庫30の背面の断熱壁を介して侵入する熱量を効果的に低減することができる。   In general, the cooler 44 having the lowest temperature in the refrigerator is disposed on the back of the refrigerator 30, so that the amount of heat entering through the heat insulating wall on the back is maximum in the refrigerator. Since the high-temperature return air passage 57 is configured between the heat insulating wall and the heat insulating wall, the amount of heat entering through the heat insulating wall on the back surface of the refrigerator 30 can be effectively reduced.

更に、冷却器44によって冷却された冷気は、熱伝達によってその周辺に広がるが、冷却器44の背面に設置された高温戻り風路57の中を冷蔵室35や野菜室36からの戻り冷気が流れる際に、冷却器44から漏れ出した冷気を吸収し、再び冷却室43へ帰還させるため、冷蔵庫30の外への冷気漏れを抑制し、消費電力量を低減することができる。   Further, the cold air cooled by the cooler 44 spreads around it by heat transfer, but the return cold air from the refrigerator compartment 35 and the vegetable compartment 36 passes through the high-temperature return air passage 57 installed on the back surface of the cooler 44. When flowing, the cool air leaked from the cooler 44 is absorbed and returned to the cooling chamber 43 again, so that the cool air leakage to the outside of the refrigerator 30 can be suppressed and the power consumption can be reduced.

(実施の形態2)
図4は、本発明の実施の形態2における冷蔵庫の縦断面図、図5は、本発明の実施の形態2における冷却室の正面図である。
(Embodiment 2)
FIG. 4 is a longitudinal sectional view of the refrigerator in the second embodiment of the present invention, and FIG. 5 is a front view of the cooling chamber in the second embodiment of the present invention.

なお、実施の形態1と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、不具合がない限り実施の形態1の構成に本実施の形態を組み合わせて適用することが可能である。   In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1, and the same technical idea, as long as there is no malfunction, it can apply combining this Embodiment with the structure of Embodiment 1. Is possible.

図4および図5において、冷蔵庫30の複数の貯蔵室は、最上部に冷蔵室35、最下部に野菜室36、そして冷蔵室35と野菜室36の間に冷凍室37が配置されている。   4 and 5, the plurality of storage rooms of the refrigerator 30 has a refrigeration room 35 at the top, a vegetable room 36 at the bottom, and a freezing room 37 between the refrigeration room 35 and the vegetable room 36.

また、仕切壁である第一区画壁71によって野菜室36と冷凍室37とは上下に区画され、仕切壁である第二区画壁72によって冷蔵室35と冷凍室37とは上下に区画されている。   Moreover, the vegetable compartment 36 and the freezer compartment 37 are divided up and down by the 1st division wall 71 which is a partition wall, and the refrigerator compartment 35 and the freezer compartment 37 are divided up and down by the 2nd division wall 72 which is a partition wall. Yes.

分配風路51は、第一区画壁71内に設けられた野菜室吐出風路(図示せず)に接続し、分配風路51と野菜室36とを連通している。また第二区画壁72内に設けられた冷蔵室吐出風路85に接続し、分配風路51と冷蔵室35とを連通している。   The distribution air passage 51 is connected to a vegetable room discharge air passage (not shown) provided in the first partition wall 71 and communicates the distribution air passage 51 and the vegetable compartment 36. In addition, the distribution air passage 51 and the refrigerating chamber 35 are communicated with each other by connecting to a refrigerating chamber discharge air passage 85 provided in the second partition wall 72.

冷却器44の背面に冷蔵室戻り風路87が配置されている。冷蔵室戻り風路87は第二区画壁72を通り冷蔵室35と冷却室43とを連通しており、冷蔵室35を冷却した冷気が流れている。冷蔵室戻り風路87は下方に冷却室43と連通する冷蔵室吸込み口88を備える。   A refrigeration chamber return air passage 87 is disposed on the back surface of the cooler 44. The refrigeration chamber return air passage 87 passes through the second partition wall 72 and communicates the refrigeration chamber 35 and the cooling chamber 43, and cold air that has cooled the refrigeration chamber 35 flows therethrough. The refrigerating room return air passage 87 includes a refrigerating room suction port 88 communicating with the cooling room 43 below.

また、冷却室43の背面は、冷蔵室吸込み口88の横に野菜室吸込み口89を有する。野菜室吸込み口89は第一区画壁71内に設けられた野菜室戻り風路90を介して野菜室36と連通している。   In addition, the rear surface of the cooling chamber 43 has a vegetable chamber suction port 89 next to the refrigeration chamber suction port 88. The vegetable room suction port 89 communicates with the vegetable room 36 via a vegetable room return air passage 90 provided in the first partition wall 71.

冷蔵室吸込み口88および野菜室吸込み口89は、冷却器44の下端近傍に設けられ、冷凍室吸込み口56よりも高い位置に構成される。   The refrigerator compartment suction port 88 and the vegetable compartment suction port 89 are provided in the vicinity of the lower end of the cooler 44 and are configured at a position higher than the freezer compartment suction port 56.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

分配風路51内上方に吐出された冷気は第二区画壁72内の冷蔵室吐出風路84を経て冷蔵室35に吐出される。冷蔵室35内を冷却した冷気は湿気を帯びた空気となって、冷蔵室戻り風路87を通り冷蔵室吸込み口88から冷却器44の下部に導かれて冷却器44と熱交換および除湿され、新鮮な冷気が再び送風機46によって強制的に送風される。   The cold air discharged upward in the distribution air passage 51 is discharged to the refrigerating chamber 35 through the refrigerating chamber discharge air passage 84 in the second partition wall 72. The cold air that has cooled the inside of the refrigerating chamber 35 becomes humid air, passes through the refrigerating chamber return air passage 87, is led from the refrigerating chamber suction port 88 to the lower part of the cooler 44, and is heat exchanged and dehumidified with the cooler 44. Fresh cool air is forcibly blown by the blower 46 again.

また分配風路51内側方に吐出された冷気は第一区画壁71内の野菜室吐出風路84を経て野菜室36に吐出される。野菜室36内を冷却した冷気は湿気を帯びた空気となって、野菜室戻り風路90を通り野菜室吸込み口89から冷却器44の下部に導かれて冷却器44と熱交換および除湿され、新鮮な冷気が再び送風機によって強制的に送風される。   Further, the cold air discharged to the inside of the distribution air passage 51 is discharged to the vegetable compartment 36 through the vegetable compartment discharge air passage 84 in the first partition wall 71. The cold air that has cooled the inside of the vegetable compartment 36 becomes humid air, passes through the vegetable compartment return air passage 90, is led from the vegetable compartment suction port 89 to the lower part of the cooler 44, and is heat-exchanged and dehumidified with the cooler 44. The fresh cold air is forced to be blown again by the blower.

冷蔵室35からの冷蔵室戻り冷気は、冷蔵室戻り風路87中を下向きに流れてくるが、冷蔵室戻り風路87の下面で前向きに方向転換し冷却室43の背面に設置された高温吸込み口58から冷却室43内に流れ込む。   The refrigerated room return cold air from the refrigeration room 35 flows downward in the refrigeration room return air passage 87, but the high temperature is installed on the back surface of the cooling room 43 by changing the direction forward on the lower surface of the refrigeration room return air passage 87. It flows into the cooling chamber 43 from the suction port 58.

冷蔵室吸込み口88から出てきた冷蔵室戻り冷気は、冷却室43の背面に沿って上ってきた冷凍室戻り冷気と合流する。冷蔵室戻り冷気は上向きの冷凍室戻り冷気に押され、スムーズに上向きに方向転換し、冷凍室戻り冷気と一緒に冷却器44へ突入することができる。   The cold room return cold air that has come out of the cold room suction port 88 merges with the freezer compartment return cold air that has risen along the back surface of the cooling chamber 43. The cold air returning from the refrigerator compartment is pushed by the upward freezing room return air, smoothly turning upward, and can enter the cooler 44 together with the freezing room return cold air.

一方、野菜室36からの野菜室戻り冷気は、野菜室戻り風路90中を上向きに流れてくるため、野菜室吸込み口89から出てきた野菜室戻り冷気は、冷却室43の背面に沿って上ってきた冷凍室戻り冷気とスムーズに合流し、冷凍室戻り冷気と一緒に冷却器44へ突入することができる。   On the other hand, since the vegetable room return cold air from the vegetable room 36 flows upward in the vegetable room return air passage 90, the vegetable room return cold air that has come out from the vegetable room suction port 89 runs along the back of the cooling room 43. The freezing room return cold air that has come up can smoothly merge and enter the cooler 44 together with the freezing room return cold air.

ここで、冷蔵室吸込み口88と野菜室吸込み口89とは横並びで構成されているため、上向きに流れる冷却室43内ではお互いが干渉することはない。   Here, since the refrigerator compartment inlet 88 and the vegetable compartment inlet 89 are arranged side by side, they do not interfere with each other in the cooling chamber 43 that flows upward.

なお、風路構成により冷蔵室吸込み口88と野菜室吸込み口89とを上下に並べて構成した場合でも、全ての冷却室43内では全ての流れが上方向を向くため、干渉し合い風量を低下させることはない。   Even when the refrigeration room suction port 88 and the vegetable room suction port 89 are arranged one above the other according to the air path configuration, since all the flows are directed upward in all the cooling chambers 43, they interfere with each other and reduce the air volume. I will not let you.

従って、全ての戻り冷気はお互いに干渉し合うことがないため、循環する風量を増やすことで冷却器44の熱交換量を増加させ、冷却能力を向上させることができる。   Accordingly, since all the return cold air does not interfere with each other, the amount of heat exchange of the cooler 44 can be increased by increasing the amount of circulating air, and the cooling capacity can be improved.

以上のように、本実施の形態では、冷凍室吸込み口56は冷却室43前面に、冷蔵室吸込み口88および野菜室吸込み口89は冷却室43背面に設け、冷凍室吸込み口56は冷蔵室吸込み口88および野菜室吸込み口89よりも下方に位置し、冷蔵室吸込み口上端88aと野菜室吸込み口上端89a、冷蔵室吸込み口下端88bと野菜室吸込み口下端89bの間に、冷却器下端44bを配設し、冷気冷蔵室吸込み口上端88aと野菜室吸込み口上端89aが、除霜用のガラス管ヒータ59および上方のヒータカバー60よりも上方に位置されているため、前向きの速度が大きい冷蔵室35および野菜室36からの高温戻り冷気は、冷却器44側へ流れやすくなるため、冷凍室37からの冷凍室戻り冷気とは、上下方向にずれる。よって、高温戻り冷気と冷凍室戻り冷気の相互干渉を抑制し庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。   As described above, in the present embodiment, the freezer compartment suction port 56 is provided on the front surface of the cooling chamber 43, the refrigerator compartment suction port 88 and the vegetable compartment suction port 89 are provided on the back surface of the cooling chamber 43, and the freezer compartment suction port 56 is provided in the refrigerator compartment. The lower end of the cooler is located below the suction port 88 and the vegetable room suction port 89, and is located between the refrigeration room suction port upper end 88a, the vegetable room suction port upper end 89a, the refrigeration room suction port lower end 88b, and the vegetable room suction port lower end 89b. 44b is provided, and the upper end 88a of the cold air refrigeration chamber suction port and the upper end 89a of the vegetable chamber suction port are positioned above the glass tube heater 59 and the upper heater cover 60 for defrosting. The high-temperature return cold air from the large refrigerator compartment 35 and vegetable compartment 36 easily flows to the cooler 44 side, so that the freezer return cold air from the freezer compartment 37 is shifted in the vertical direction. Therefore, the mutual interference between the high-temperature return cold air and the freezer compartment return cold air can be suppressed and the air volume circulating in the warehouse can be increased, so that the cooling capacity can be further improved.

なお、最も大きな冷却効果が必要となる低温貯蔵室からの冷気を、より下方から冷却室へ戻すことで、低温戻り冷気が冷却器を通過する距離が長くなり熱交換量を増やすことで更に冷却能力を向上させることができる。   In addition, by returning the cool air from the low temperature storage room where the greatest cooling effect is required from the lower part to the cooling room, the distance that the low temperature return cold air passes through the cooler becomes longer, and the heat exchange amount is increased to further cool the air. Ability can be improved.

よって、冷蔵室戻り風路87と野菜室戻り風路90が独立した場合でも、冷却能力向上により省エネ性に優れた効果を得ることが出来る。   Therefore, even when the refrigeration room return air path 87 and the vegetable room return air path 90 are independent, an effect excellent in energy saving can be obtained by improving the cooling capacity.

(実施の形態3)
図6は、本発明の実施の形態3における冷蔵庫の冷却室の詳細縦断面図である。
(Embodiment 3)
FIG. 6 is a detailed longitudinal sectional view of the cooling chamber of the refrigerator in the third embodiment of the present invention.

なお、実施の形態1と同様の構成および同様の技術思想が適用できる部分については、説明を省略するが、不具合がない限り実施の形態1の構成に本実施の形態を組み合わせて適用することが可能である。   In addition, although description is abbreviate | omitted about the part which can apply the structure similar to Embodiment 1, and the same technical idea, as long as there is no malfunction, it can apply combining this Embodiment with the structure of Embodiment 1. Is possible.

図6に示すように、冷却器44の前面に冷凍室吸込み口56を配置し、背面に高温戻り風路57を配置し、高温戻り風路57の上端である高温吸込み口上端58aと、高温戻り風路57の下端である高温吸込み口下端58bの間に冷却器44の下端である冷却器下端44bを配置し、高温吸込み口上端58aは除霜用のガラス管ヒータ59および、ガラス管ヒータ59を覆い上方のヒータカバー60よりも上方に位置した構成において、ヒータカバー60は冷却器44の背面側、即ち高温戻り風路57に向かって前後方向で下側に傾けて配置してある。   As shown in FIG. 6, a freezer compartment suction port 56 is disposed on the front surface of the cooler 44, a high temperature return air passage 57 is disposed on the rear surface, a high temperature suction port upper end 58 a that is the upper end of the high temperature return air passage 57, and a high temperature A cooler lower end 44b, which is the lower end of the cooler 44, is disposed between the high temperature suction port lower end 58b, which is the lower end of the return air passage 57, and the high temperature suction port upper end 58a is a glass tube heater 59 for defrosting and a glass tube heater. In the configuration that covers 59 and is positioned above the upper heater cover 60, the heater cover 60 is disposed so as to be inclined downward in the front-rear direction toward the back side of the cooler 44, that is, toward the high-temperature return air passage 57.

これによって、高温戻り風路57を通過し、高温吸込み口58から冷却器44へと流れる冷気および、冷凍室吸込み口56を通過し、ガラス管ヒータ59の下を通った後、上向きに流れる冷凍室戻り冷気は、ヒータカバー60をガイドにして冷却器44へとスムーズに効率よく流れることとなり、冷却室43内での風路圧損を増加させることがなく冷却器44との熱交換効率の向上が図れ、冷却能力が向上する。この結果、省エネ性に優れた冷蔵庫を提供できる。   As a result, the cold air flowing through the high temperature return air passage 57 and flowing from the high temperature suction port 58 to the cooler 44 and the freezing chamber suction port 56, passing under the glass tube heater 59 and then flowing upward. The return air from the chamber flows smoothly and efficiently into the cooler 44 with the heater cover 60 as a guide, and the heat exchange efficiency with the cooler 44 is improved without increasing the air path pressure loss in the cooling chamber 43. And the cooling capacity is improved. As a result, a refrigerator excellent in energy saving can be provided.

また、ヒータカバー60が冷却器44に前後方向で傾きを設けており、庫内側に対して手前側のヒータカバー60の端面を上げた構成としている。これにより、除霜時にガラス管ヒータ59に加熱された暖気は上方に上がりやすくなり、除霜効率の向上を図ることが出来る。   In addition, the heater cover 60 is inclined in the front-rear direction of the cooler 44, and the end surface of the heater cover 60 on the near side is raised with respect to the inside of the refrigerator. Thereby, the warm air heated by the glass tube heater 59 at the time of defrosting easily rises upward, and the defrosting efficiency can be improved.

なお、本実施の形態のように、ヒータカバー60の端面を庫内側に上げて傾けた場合においても、冷凍室吸込み口56の上端である、冷凍室吸込み口上端56aの位置は、ガラ
ス管ヒータ59およびヒータカバー60の位置に対して下方に配置しているため、除霜時の赤熱を見えなくできるため、冷蔵庫の除霜時に冷凍室ドアを開けた場合にもガラス管ヒータ59の赤熱による使用者への不安感を与えることがない。
Even in the case where the end surface of the heater cover 60 is tilted upward as in the present embodiment, the position of the freezer compartment suction port upper end 56a, which is the upper end of the freezer compartment suction port 56, is a glass tube heater. 59 and the heater cover 60 are disposed below, so that red heat at the time of defrosting can be made invisible. Therefore, when the freezer compartment door is opened at the time of defrosting of the refrigerator, the red heat of the glass tube heater 59 is also generated. Does not give anxiety to the user.

以上のように、本発明にかかる冷蔵庫の構成は、風路の圧力損失を大きくすることなく冷却器の熱交換量を向上させることができるため、家庭用又は業務用冷蔵庫など、強制的に風を循環させて熱交換を行っている機器に対しても適用できる。   As described above, the configuration of the refrigerator according to the present invention can improve the heat exchange amount of the cooler without increasing the pressure loss of the air passage. It can also be applied to equipment that circulates heat to exchange heat.

30 冷蔵庫
35 冷蔵室(高温貯蔵室)
36 野菜室(高温貯蔵室)
37 冷凍室(低温貯蔵室)
43 冷却室
44 冷却器
44b 冷却器下端
46 送風機
47 ガラス管ヒータ
48 ドレンパン(冷却室底面)
53 冷凍室戻り風路
53a 入り口
56 冷凍室吸込み口(低温吸込み口)
56a 冷凍室吸込み口上端(低温吸込み口上端)
58 高温吸込み口
58a 高温吸込み口上端
58b 高温吸込み口下端
59 ガラス管ヒータ
60 ヒータカバー
201 冷媒チューブ
202 プレートフィン
203 長孔
30 Refrigerator 35 Refrigerated room (high temperature storage room)
36 Vegetable room (high temperature storage room)
37 Freezer room (cold storage room)
43 Cooling chamber 44 Cooler 44b Cooler lower end 46 Blower 47 Glass tube heater 48 Drain pan (bottom of cooling chamber)
53 Freezer return air passage 53a Entrance 56 Freezer compartment inlet (low temperature inlet)
56a Freezer compartment inlet top (low temperature inlet top)
58 High temperature inlet 58a High temperature inlet upper end 58b High temperature inlet lower end 59 Glass tube heater 60 Heater cover 201 Refrigerant tube 202 Plate fin 203 Long hole

Claims (5)

冷気を生成する冷却器と、前記冷却器で生成された冷気を強制的に循環させる送風機と、前記冷却器の下方に配置される除霜手段と、前記冷却器と送風機と除霜手段とを収める冷却室と、前記冷却室を背面に備える低温貯蔵室と、前記低温貯蔵室と温度帯の異なる少なくとも一つの高温貯蔵室と、前記低温貯蔵室からの低温戻り冷気を冷却室へ導入する低温吸込み口と、前記高温貯蔵室からの高温戻り冷気を冷却室へ導入する高温吸込み口とを備える冷蔵庫において、前記低温吸込み口は前記冷却室前面に、前記高温吸込み口は前記冷却室背面に設けられ、前記低温吸込み口の下端は前記冷却器の下端より下方に配置し、前記高温吸込み口の上端は前記冷却器の下端より上方に配置するとともに、前記高温吸込み口の上端は前記除霜手段より上方に配置したことを特徴とする冷蔵庫。 A cooler that generates cold air, a blower that forcibly circulates the cold air generated by the cooler, a defrosting unit disposed below the cooler, the cooler, the blower, and a defrosting unit. A cooling chamber to be stored, a low-temperature storage chamber provided with the cooling chamber on the back surface, at least one high-temperature storage chamber having a temperature zone different from that of the low-temperature storage chamber, and a low temperature for introducing the low-temperature return cold air from the low-temperature storage chamber into the cooling chamber In a refrigerator comprising a suction port and a high temperature suction port for introducing high temperature return cold air from the high temperature storage chamber into the cooling chamber, the low temperature suction port is provided on the front surface of the cooling chamber, and the high temperature suction port is provided on the back surface of the cooling chamber. The lower end of the low temperature inlet is disposed below the lower end of the cooler, the upper end of the high temperature inlet is disposed above the lower end of the cooler, and the upper end of the high temperature inlet is the defrosting means. Than Refrigerator, characterized in that it is disposed towards. 前記低温吸込み口は前記高温吸込み口よりも下方に位置したことを特徴とする請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the low-temperature suction port is positioned below the high-temperature suction port. 前記高温吸込み口は、前記冷却器の幅寸法と略同一に配置したことを特徴とする請求項1または2に記載の冷蔵庫。 The refrigerator according to claim 1 or 2, wherein the high-temperature suction port is arranged substantially the same as the width dimension of the cooler. 前記除霜手段は、ガラス管ヒータと前記ガラス管ヒータの上方に配置されたヒータカバーとを備え、前記高温吸込み口の下端は前記ガラス管ヒータおよびヒータカバーより上方に位置したことを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。 The defrosting means includes a glass tube heater and a heater cover disposed above the glass tube heater, and a lower end of the high temperature suction port is located above the glass tube heater and the heater cover. The refrigerator according to any one of claims 1 to 3. 前記除霜手段は、ガラス管ヒータと前記ガラス管ヒータの上方に配置されたヒータカバーとを備え、前記低温吸込み口の上端は前記ガラス管ヒータおよびヒータカバーより下方に位置したことを特徴とする請求項1から3のいずれか一項に記載の冷蔵庫。 The defrosting means includes a glass tube heater and a heater cover disposed above the glass tube heater, and an upper end of the low-temperature suction port is located below the glass tube heater and the heater cover. The refrigerator according to any one of claims 1 to 3.
JP2013119495A 2013-06-06 2013-06-06 refrigerator Expired - Fee Related JP6145643B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013119495A JP6145643B2 (en) 2013-06-06 2013-06-06 refrigerator
DE212014000135.8U DE212014000135U1 (en) 2013-06-06 2014-06-06 fridge
PCT/JP2014/003031 WO2014196210A1 (en) 2013-06-06 2014-06-06 Refrigerator
CN201490000783.7U CN205482060U (en) 2013-06-06 2014-06-06 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013119495A JP6145643B2 (en) 2013-06-06 2013-06-06 refrigerator

Publications (2)

Publication Number Publication Date
JP2014238186A true JP2014238186A (en) 2014-12-18
JP6145643B2 JP6145643B2 (en) 2017-06-14

Family

ID=52135472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013119495A Expired - Fee Related JP6145643B2 (en) 2013-06-06 2013-06-06 refrigerator

Country Status (1)

Country Link
JP (1) JP6145643B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222129A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 refrigerator
JP2017020690A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 refrigerator
JPWO2016129050A1 (en) * 2015-02-10 2017-06-29 三菱電機株式会社 Freezer refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921465U (en) * 1972-05-26 1974-02-23
JP2004085070A (en) * 2002-08-27 2004-03-18 Matsushita Refrig Co Ltd Refrigerator
JP2007155200A (en) * 2005-12-05 2007-06-21 Matsushita Electric Ind Co Ltd Cooler, and refrigerator provided with the same
JP2010060188A (en) * 2008-09-03 2010-03-18 Hitachi Appliances Inc Refrigerator
WO2013046580A1 (en) * 2011-09-29 2013-04-04 パナソニック株式会社 Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921465U (en) * 1972-05-26 1974-02-23
JP2004085070A (en) * 2002-08-27 2004-03-18 Matsushita Refrig Co Ltd Refrigerator
JP2007155200A (en) * 2005-12-05 2007-06-21 Matsushita Electric Ind Co Ltd Cooler, and refrigerator provided with the same
JP2010060188A (en) * 2008-09-03 2010-03-18 Hitachi Appliances Inc Refrigerator
WO2013046580A1 (en) * 2011-09-29 2013-04-04 パナソニック株式会社 Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222129A (en) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 refrigerator
JPWO2016129050A1 (en) * 2015-02-10 2017-06-29 三菱電機株式会社 Freezer refrigerator
JP2017020690A (en) * 2015-07-09 2017-01-26 パナソニックIpマネジメント株式会社 refrigerator

Also Published As

Publication number Publication date
JP6145643B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
KR101306536B1 (en) Refrigerator
JP5617669B2 (en) refrigerator
CN104641190B (en) Freezer
CN103975207A (en) Refrigerator
WO2021047549A1 (en) Refrigerator
JP6405526B2 (en) refrigerator
WO2015029409A1 (en) Refrigerator
JP6023986B2 (en) refrigerator
JP6145643B2 (en) refrigerator
JP2012127629A (en) Cooling storage cabinet
JP6405525B2 (en) refrigerator
JP2012007759A (en) Refrigerator
WO2017163965A1 (en) Refrigerator
JP6940424B2 (en) refrigerator
JP6145642B2 (en) refrigerator
JP6446663B2 (en) refrigerator
JP6145640B2 (en) refrigerator
JP6145639B2 (en) refrigerator
TWI658245B (en) Refrigerator
WO2014196210A1 (en) Refrigerator
JP2017172850A (en) refrigerator
JP6811371B2 (en) refrigerator
JP6145641B2 (en) refrigerator
CN102317713A (en) Refrigerator
JP2006250424A (en) Refrigerator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170410

R151 Written notification of patent or utility model registration

Ref document number: 6145643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees