JP2014237740A - Composite resin composition and planar connector molded from the same - Google Patents

Composite resin composition and planar connector molded from the same Download PDF

Info

Publication number
JP2014237740A
JP2014237740A JP2013119896A JP2013119896A JP2014237740A JP 2014237740 A JP2014237740 A JP 2014237740A JP 2013119896 A JP2013119896 A JP 2013119896A JP 2013119896 A JP2013119896 A JP 2013119896A JP 2014237740 A JP2014237740 A JP 2014237740A
Authority
JP
Japan
Prior art keywords
resin composition
composite resin
respect
mass
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013119896A
Other languages
Japanese (ja)
Other versions
JP6109651B2 (en
Inventor
信彰 佐々木
Nobuaki Sasaki
信彰 佐々木
吉昭 田口
Yoshiaki Taguchi
吉昭 田口
淳一郎 杉浦
Junichiro Sugiura
淳一郎 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2013119896A priority Critical patent/JP6109651B2/en
Priority to CN201410245154.7A priority patent/CN104231564B/en
Priority to TW103119508A priority patent/TWI622619B/en
Publication of JP2014237740A publication Critical patent/JP2014237740A/en
Application granted granted Critical
Publication of JP6109651B2 publication Critical patent/JP6109651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composite resin composition which can obtain a planar connector excellent in flatness, weld strength, and crack resistance, and a planar connector molded from the composite resin composition.SOLUTION: A composite resin composition comprises (A) a liquid crystal polymer containing a predetermined component, (B) glass fiber, and (C) one or more plate-shaped inorganic fillers selected from the group consisting of mica and talc. The content of the liquid crystal polymer (A) is 45-60 mass% with respect to the total mass of the composite resin composition, the content of the glass fiber (B) is larger than 25 mass% and equal to or less than 30 mass% with respect to the total mass of the composite resin composition, and the total amount of the one or more plate-shaped inorganic fillers (C) selected from the group consisting of mica and talc is 15-20 mass% with respect to the total mass of the composite resin composition.

Description

本発明は、複合樹脂組成物及び当該複合樹脂組成物から成形された平面状コネクターに関する。   The present invention relates to a composite resin composition and a planar connector molded from the composite resin composition.

液晶性ポリマーは、流動性等に優れるため、従来各種電子部品の材料として採用されてきた。   Since liquid crystalline polymers are excellent in fluidity and the like, they have been conventionally used as materials for various electronic components.

特に、近年のエレクトロニクス機器の高性能化に伴い、微細な構造等を有する電子部品(コネクター等)に対するニーズがある。このようなニーズに応えるために、例えば、特許文献1には、所定の液晶性ポリマー、無機充填剤及びガラス繊維からなる複合樹脂組成物から成形され、平面状コネクターの格子部等に割れ(「クラック」とも呼ばれる)が生じにくい、耐クラック性を有する平面状コネクターが開示されている。   In particular, with the recent improvement in performance of electronic equipment, there is a need for electronic parts (connectors and the like) having a fine structure. In order to meet such needs, for example, Patent Document 1 discloses that a composite resin composition composed of a predetermined liquid crystalline polymer, an inorganic filler, and glass fiber is molded and cracked in a lattice portion of a planar connector (“ There has been disclosed a planar connector having crack resistance, which is less likely to cause cracks).

特開2012−214652号公報JP 2012-214652 A

しかし、平面度を犠牲にせずに、安定的に耐クラック性が高い平面状コネクターを得ることは困難であった。また、本発明者による検討の結果、平面状コネクターのクラックの発生は、当該コネクターのウエルド強度と相関していることが見出された。つまり、クラックの発生の抑制のためには、コネクターのウエルド強度を高める必要がある。   However, it has been difficult to stably obtain a planar connector having high crack resistance without sacrificing flatness. Further, as a result of studies by the present inventors, it has been found that the occurrence of cracks in a planar connector correlates with the weld strength of the connector. That is, in order to suppress the occurrence of cracks, it is necessary to increase the weld strength of the connector.

本発明は、かかる事情に鑑みてなされたものであり、平面度、ウエルド強度及び耐クラック性に優れる平面状コネクターが得られる複合樹脂組成物、ならびに、当該複合樹脂組成物から成形された平面状コネクターを提供することを目的とする。   The present invention has been made in view of such circumstances, and a composite resin composition from which a flat connector excellent in flatness, weld strength and crack resistance can be obtained, and a flat shape molded from the composite resin composition. The purpose is to provide a connector.

本発明者らは、特定の構成単位を所定量含む液晶性ポリマーと、ガラス繊維と、所定の板状無機充填材と、を組み合わせることで上記の課題を解決できることを見出した。具体的には、本発明は、以下のようなものを提供する。   The present inventors have found that the above problem can be solved by combining a liquid crystalline polymer containing a specific amount of a specific structural unit, glass fiber, and a predetermined plate-like inorganic filler. Specifically, the present invention provides the following.

(1) (A)液晶性ポリマーと、(B)ガラス繊維と、(C)マイカ及びタルクからなる群より選択される1以上の板状無機充填材と、を含む複合樹脂組成物であって、
前記(A)液晶性ポリマーは、必須の構成成分として、下記の構成単位;(I)4−ヒドロキシ安息香酸、(II)2−ヒドロキシ−6−ナフトエ酸、(III)テレフタル酸、(IV)イソフタル酸及び(V)4,4’−ジヒドロキシビフェニルを含み、
全構成単位に対して(I)の構成単位は35〜75モル%であり、
全構成単位に対して(II)の構成単位は2〜8モル%であり、
全構成単位に対して(III)の構成単位は4.5〜30.5モル%であり、
全構成単位に対して(IV)の構成単位は2〜8モル%であり、
全構成単位に対して(V)の構成単位は12.5〜32.5モル%であり、
全構成単位に対して(II)及び(IV)の構成単位の総量は4〜10モル%であり、
前記(A)液晶性ポリマーは、複合樹脂組成物全体に対して45〜60質量%であり、
前記(B)ガラス繊維は、複合樹脂組成物全体に対して25質量%超30質量%以下であり、
前記(C)マイカ及びタルクからなる群より選択される1以上の板状無機充填材は、複合樹脂組成物全体に対して総量が15〜20質量%である複合樹脂組成物。
(1) A composite resin composition comprising (A) a liquid crystalline polymer, (B) glass fiber, and (C) one or more plate-like inorganic fillers selected from the group consisting of mica and talc. ,
The (A) liquid crystalline polymer has the following constituent units as essential constituents: (I) 4-hydroxybenzoic acid, (II) 2-hydroxy-6-naphthoic acid, (III) terephthalic acid, (IV) Including isophthalic acid and (V) 4,4′-dihydroxybiphenyl,
The structural unit of (I) is 35 to 75 mol% with respect to all the structural units,
The structural unit of (II) is 2 to 8 mol% with respect to all the structural units,
The structural unit of (III) is 4.5 to 30.5 mol% with respect to all structural units,
The structural unit of (IV) is 2 to 8 mol% with respect to all the structural units,
The structural unit of (V) is 12.5 to 32.5 mol% with respect to all the structural units,
The total amount of the structural units (II) and (IV) is 4 to 10 mol% with respect to all the structural units,
Said (A) liquid crystalline polymer is 45-60 mass% with respect to the whole composite resin composition,
The (B) glass fiber is more than 25 mass% and 30 mass% or less with respect to the entire composite resin composition,
One or more plate-shaped inorganic fillers selected from the group consisting of (C) mica and talc are a composite resin composition having a total amount of 15 to 20% by mass with respect to the entire composite resin composition.

(2) (1)に記載の複合樹脂組成物から成形され、
外枠部の内部に格子構造を有し、
前記格子構造における格子部のピッチ間隔が1.5mm以下である、平面状コネクター。
(2) Molded from the composite resin composition according to (1),
It has a lattice structure inside the outer frame part,
The planar connector whose pitch interval of the lattice part in the lattice structure is 1.5 mm or less.

本発明によれば、平面度、ウエルド強度及び耐クラック性に優れる平面状コネクターが得られる複合樹脂組成物、ならびに、当該複合樹脂組成物から成形された平面状コネクターが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the composite resin composition from which the planar connector excellent in flatness, weld strength, and crack resistance is obtained, and the planar connector shape | molded from the said composite resin composition are provided.

実施例で成形した平面状コネクターを示す図である。(a)は平面状コネクターの平面図である。(b)は(a)中のA部の詳細である。なお、図中の数値の単位はmmである。It is a figure which shows the planar connector shape | molded in the Example. (A) is a top view of a planar connector. (B) is the detail of the A section in (a). In addition, the unit of the numerical value in a figure is mm.

以下、本発明の実施形態について具体的に説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be specifically described. In addition, this invention is not limited to the following embodiment.

[複合樹脂組成物]
本発明の複合樹脂組成物は、特定の液晶性ポリマーと、ガラス繊維と、板状無機充填材とを所定量ずつ含む。以下、本発明の複合樹脂組成物を構成する成分について説明する。
[Composite resin composition]
The composite resin composition of the present invention contains a predetermined amount of a specific liquid crystalline polymer, glass fiber, and a plate-like inorganic filler. Hereinafter, the components constituting the composite resin composition of the present invention will be described.

(液晶性ポリマー)
本発明における液晶性ポリマーは、必須の構成成分として、下記の構成単位;(I)4−ヒドロキシ安息香酸(「HBA」とも呼ばれる)、(II)2−ヒドロキシ−6−ナフトエ酸(「HNA」とも呼ばれる)、(III)テレフタル酸(「TA」とも呼ばれる)、(IV)イソフタル酸(「IA」とも呼ばれる)及び(V)4,4’−ジヒドロキシビフェニル(「BP」とも呼ばれる)を含む。
(Liquid crystal polymer)
The liquid crystalline polymer in the present invention contains, as essential constituents, the following constituent units: (I) 4-hydroxybenzoic acid (also referred to as “HBA”), (II) 2-hydroxy-6-naphthoic acid (“HNA”). (III) terephthalic acid (also referred to as “TA”), (IV) isophthalic acid (also referred to as “IA”) and (V) 4,4′-dihydroxybiphenyl (also referred to as “BP”).

本発明における液晶性ポリマーには、上記の構成単位が特定の割合で含まれる。すなわち、全構成単位に対して(I)の構成単位は35〜75モル%(好ましくは40〜65モル%)である。全構成単位に対して(II)の構成単位は2〜8モル%(好ましくは3〜7モル%)である。全構成単位に対して(III)の構成単位は4.5〜30.5モル%(好ましくは13〜26モル%)である。全構成単位に対して(IV)の構成単位は2〜8モル%(好ましくは3〜7モル%)である。全構成単位に対して(V)の構成単位は12.5〜32.5モル%(好ましくは15.5〜29モル%)である。全構成単位に対して(II)及び(IV)の構成単位の総量は4〜10モル%(好ましくは5〜10モル%)である。   The liquid crystalline polymer in the present invention contains the above structural units in a specific ratio. That is, the structural unit of (I) is 35-75 mol% (preferably 40-65 mol%) with respect to all the structural units. The structural unit of (II) is 2 to 8 mol% (preferably 3 to 7 mol%) with respect to all the structural units. The structural unit of (III) is 4.5-30.5 mol% (preferably 13-26 mol%) with respect to all the structural units. The structural unit of (IV) is 2 to 8 mol% (preferably 3 to 7 mol%) with respect to all the structural units. The structural unit of (V) is 12.5 to 32.5 mol% (preferably 15.5 to 29 mol%) with respect to all the structural units. The total amount of the structural units (II) and (IV) is 4 to 10 mol% (preferably 5 to 10 mol%) with respect to all the structural units.

全構成単位に対して(I)の構成単位が35モル%未満又は75モル%超であると、液晶性ポリマーの融点が著しく高くなり、平面状コネクター等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなる可能性があるため好ましくない。   When the constituent unit of (I) is less than 35 mol% or more than 75 mol% with respect to all the constituent units, the melting point of the liquid crystalline polymer becomes remarkably high, and liquid crystallinity is produced in the production of molded products such as planar connectors. This is not preferable because the polymer may solidify in the reactor and a liquid crystalline polymer having a desired molecular weight may not be produced.

全構成単位に対して(II)の構成単位が2モル%未満であると、平面状コネクター等の成形品を製造する際に、格子部等にクラックが発生する可能性があるため好ましくない。また、全構成単位に対して(II)の構成単位が8モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。   When the amount of the structural unit (II) is less than 2 mol% with respect to all the structural units, there is a possibility that cracks may occur in the lattice portion or the like when a molded product such as a planar connector is produced. Moreover, when the structural unit of (II) exceeds 8 mol% with respect to all the structural units, since the heat resistance of a liquid crystalline polymer will become low, it is unpreferable.

全構成単位に対して(III)の構成単位が4.5モル%未満又は30.5モル%超であると、液晶性ポリマーの融点が著しく高くなり、平面状コネクター等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなる可能性があるため好ましくない。   When the constituent unit of (III) is less than 4.5 mol% or more than 30.5 mol% with respect to all the constituent units, the melting point of the liquid crystalline polymer becomes remarkably high, and a molded product such as a planar connector is produced. At this time, the liquid crystalline polymer is solidified in the reactor, and it may not be possible to produce a liquid crystalline polymer having a desired molecular weight.

全構成単位に対して(IV)の構成単位が2モル%未満であると、平面状コネクター等の成形品を製造する際に、格子部等にクラックが発生する可能性があるため好ましくない。また、全構成単位に対して(IV)の構成単位が8モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。   If the structural unit of (IV) is less than 2 mol% with respect to all the structural units, there is a possibility that cracks may occur in the lattice portion or the like when a molded product such as a planar connector is produced. Moreover, when the structural unit of (IV) exceeds 8 mol% with respect to all the structural units, since the heat resistance of a liquid crystalline polymer will become low, it is unpreferable.

全構成単位に対して(V)の構成単位が12.5モル%未満又は32.5モル%超であると、液晶性ポリマーの融点が著しく高くなり、平面状コネクター等の成形品を製造する際に液晶性ポリマーがリアクター内で固化し、所望の分子量の液晶性ポリマーを製造することができなくなるため好ましくない。   When the constituent unit of (V) is less than 12.5 mol% or more than 32.5 mol% with respect to all the constituent units, the melting point of the liquid crystalline polymer becomes remarkably high, and a molded product such as a planar connector is produced. At this time, the liquid crystalline polymer is solidified in the reactor, which makes it impossible to produce a liquid crystalline polymer having a desired molecular weight.

全構成単位に対して(II)及び(IV)の構成単位の総量が4モル%未満であると、液晶性ポリマーの結晶化熱量が2.5J/g以上となり得る。この場合、平面状コネクター等の成形品を製造する際に、格子部等にクラックが発生する可能性があるため好ましくない。液晶性ポリマーの結晶化熱量の好ましい値は、2.3J/g以下であり、より好ましくは2.0J/g以下である。なお、結晶化熱量は、液晶性ポリマーの結晶化状態を示し、示差熱量測定によって求められる値である。具体的には、液晶性ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+40℃の温度で2分間保持した後、20℃/分の降温条件で測定した際に観測される発熱ピーク温度のピークより求められる発熱ピークの熱量を指す。   When the total amount of the structural units (II) and (IV) is less than 4 mol% with respect to all the structural units, the crystallization heat amount of the liquid crystalline polymer can be 2.5 J / g or more. In this case, when a molded product such as a planar connector is manufactured, cracks may occur in the lattice portion or the like, which is not preferable. A preferable value for the heat of crystallization of the liquid crystalline polymer is 2.3 J / g or less, and more preferably 2.0 J / g or less. The crystallization heat quantity indicates the crystallization state of the liquid crystalline polymer, and is a value obtained by differential calorimetry. Specifically, after observing the endothermic peak temperature (Tm1) observed when the liquid crystalline polymer is measured from room temperature at a temperature rising condition of 20 ° C./min, the liquid crystal polymer is held at a temperature of Tm1 + 40 ° C. for 2 minutes, and then 20 ° C. It refers to the calorific value of the exothermic peak obtained from the peak of the exothermic peak temperature observed when measured under the temperature lowering condition per minute.

また、全構成単位に対して(II)及び(IV)の構成単位の総量が10モル%超であると、液晶性ポリマーの耐熱性が低くなるため好ましくない。   Moreover, it is not preferable that the total amount of the structural units (II) and (IV) exceeds 10 mol% with respect to all the structural units because the heat resistance of the liquid crystalline polymer is lowered.

なお、本発明における液晶性ポリマーには、本発明の目的を阻害しない範囲で公知の他の構成単位を導入することもできる。   In addition, the well-known other structural unit can also be introduce | transduced into the liquid crystalline polymer in this invention in the range which does not inhibit the objective of this invention.

本発明における液晶性ポリマーは、上記の構成単位を、直接重合法、エステル交換法、溶融重合法、溶液重合法、スラリー重合法、固相重合法等によって重合させることで得られる。   The liquid crystalline polymer in the present invention can be obtained by polymerizing the above structural units by a direct polymerization method, a transesterification method, a melt polymerization method, a solution polymerization method, a slurry polymerization method, a solid phase polymerization method or the like.

上記の構成単位の重合においては、上記の構成単位に加えて、上記の構成単位に対するアシル化剤や、酸塩化物誘導体として末端を活性化したモノマーを併用できる。アシル化剤としては、無水酢酸等の酸無水物等が挙げられる。   In the polymerization of the above structural unit, in addition to the above structural unit, an acylating agent for the above structural unit or a monomer whose terminal is activated as an acid chloride derivative can be used in combination. Examples of the acylating agent include acid anhydrides such as acetic anhydride.

上記の構成単位の重合においては、種々の触媒を使用でき、例えば、ジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタンケイ酸塩類、チタンアルコラート類、カルボン酸のアルカリ金属塩類、アルカリ土類金属塩類、ルイス酸塩(BF等)等が挙げられる。触媒の使用量は、上記の構成単位の総量に対して約0.001〜1質量%、好ましくは約0.003〜0.2質量%であってもよい。 In the polymerization of the above structural units, various catalysts can be used, such as dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali metal salts of carboxylic acids, alkaline earths. Metal salts, Lewis acid salts (BF 3 and the like) and the like. The amount of the catalyst used may be about 0.001-1% by mass, preferably about 0.003-0.2% by mass, based on the total amount of the above structural units.

重合反応の条件としては、上記の構成単位の重合が進行する条件であれば特に限定されず、例えば、反応温度200〜380℃、最終到達圧力0.1〜760Torr(すなわち、13〜101,080Pa)であってもよい。   The conditions for the polymerization reaction are not particularly limited as long as the polymerization of the above structural units proceeds. For example, the reaction temperature is 200 to 380 ° C., the final ultimate pressure is 0.1 to 760 Torr (that is, 13 to 101,080 Pa). ).

重合反応は、全原料モノマー、アシル化剤及び触媒を同一反応容器に仕込んで反応を開始させる方法(一段方式)でもよく、原料モノマー(I)、(II)及び(V)のヒドロキシル基をアシル化剤によりアシル化させた後、(III)及び(IV)のカルボキシル基と反応させる方法(二段方式)でもよい。   The polymerization reaction may be a method (one-step system) in which all the raw material monomers, the acylating agent and the catalyst are charged in the same reaction vessel and the reaction is started, and the hydroxyl groups of the raw material monomers (I), (II) and (V) are acylated. A method of reacting with the carboxyl groups of (III) and (IV) (two-stage system) after acylation with an agent may be used.

上記の構成単位(I)乃至(V)から得られる液晶性ポリマーは、構成成分及び液晶性ポリマー中のシーケンス分布によっては、異方性溶融相を形成しないものも存在するが、熱安定性と易加工性を併せ持つ点で、本発明における液晶性ポリマーは、異方性溶融相を形成するもの、すなわち、溶融時に光学的異方性を示す液晶性ポリマーであることが好ましい。   Some liquid crystalline polymers obtained from the structural units (I) to (V) do not form an anisotropic molten phase depending on the constituent components and the sequence distribution in the liquid crystalline polymer. In terms of having easy processability, the liquid crystalline polymer in the present invention is preferably one that forms an anisotropic molten phase, that is, a liquid crystalline polymer that exhibits optical anisotropy when melted.

溶融異方性の性質は直交偏光子を利用した慣用の偏光検査方法により確認することができる。具体的には、溶融異方性は、偏光顕微鏡(オリンパス(株)製等)を使用し、ホットステージ(リンカム社製等)にのせた試料を溶融し、窒素雰囲気下で150倍の倍率で観察することにより確認できる。溶融時に光学的異方性を示す液晶性ポリマーは、光学的に異方性であり、直交偏光子間に挿入したとき光を透過させる。試料が光学的に異方性であると、例えば溶融静止液状態であっても偏光が透過する。   The property of melt anisotropy can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. Specifically, for melting anisotropy, a polarizing microscope (manufactured by Olympus Co., Ltd.) is used, a sample placed on a hot stage (manufactured by Linkham Co., Ltd.) is melted, and the magnification is 150 times under a nitrogen atmosphere. This can be confirmed by observation. Liquid crystalline polymers that exhibit optical anisotropy when melted are optically anisotropic and transmit light when inserted between crossed polarizers. When the sample is optically anisotropic, for example, polarized light is transmitted even in a molten stationary liquid state.

さらに、融点より10〜40℃高い温度で、剪断速度1000/秒における、液晶性ポリマーの溶融粘度が1×10Pa・s以下(さらに好ましくは、5Pa・s以上かつ1×10Pa・s以下)であることが、平面状コネクターの格子部の成形時において、複合樹脂組成物の流動性を確保し、充填圧力が過度にならない点で好ましい。 Furthermore, the melt viscosity of the liquid crystalline polymer at a shear rate of 1000 / second at a temperature 10 to 40 ° C. higher than the melting point is 1 × 10 5 Pa · s or less (more preferably 5 Pa · s or more and 1 × 10 2 Pa · s. s or less) is preferable in that the fluidity of the composite resin composition is ensured and the filling pressure does not become excessive at the time of forming the lattice portion of the planar connector.

本発明の複合樹脂組成物は、上記の液晶性ポリマーを、複合樹脂組成物中に、複合樹脂組成物全体に対して45〜60質量%含む。液晶性ポリマーの量が、複合樹脂組成物全体に対して45質量%未満であると、流動性が悪化するため好ましくない。液晶性ポリマーの量が、複合樹脂組成物全体に対して60質量%超であると、複合樹脂組成物から得られる平面状コネクター等の成形品の曲げ弾性率及び耐クラック性が低下するため好ましくない。本発明の複合樹脂組成物は、上記の液晶性ポリマーを、複合樹脂組成物中に、複合樹脂組成物全体に対して50〜60質量%含むことが好ましい。   The composite resin composition of this invention contains 45-60 mass% of said liquid crystalline polymer with respect to the whole composite resin composition in a composite resin composition. If the amount of the liquid crystalline polymer is less than 45% by mass with respect to the entire composite resin composition, the fluidity deteriorates, which is not preferable. When the amount of the liquid crystalline polymer is more than 60% by mass with respect to the entire composite resin composition, it is preferable because the bending elastic modulus and crack resistance of a molded product such as a planar connector obtained from the composite resin composition are decreased. Absent. It is preferable that the composite resin composition of this invention contains 50-60 mass% of said liquid crystalline polymer with respect to the whole composite resin composition in a composite resin composition.

(ガラス繊維)
本発明の複合樹脂組成物は、ガラス繊維を、複合樹脂組成物中に、複合樹脂組成物全体に対して25質量%超30質量%以下含む。
(Glass fiber)
The composite resin composition of this invention contains glass fiber in more than 25 mass% and 30 mass% or less with respect to the whole composite resin composition in a composite resin composition.

ガラス繊維の量が、複合樹脂組成物全体に対して25質量%以下であると、複合樹脂組成物から得られる成形品のウエルド強度が低く、成形品が平面状コネクター等である場合には、その格子部等にクラックが発生しやすい。   When the amount of the glass fiber is 25% by mass or less with respect to the entire composite resin composition, the weld strength of the molded product obtained from the composite resin composition is low, and when the molded product is a planar connector or the like, Cracks are likely to occur in the lattice portion.

ガラス繊維の量が、複合樹脂組成物全体に対して30質量%超であると、組成物の流動性が悪化するうえ、複合樹脂組成物全体に対して30質量%超のガラス繊維を含む複合樹脂組成物から得られる平面状コネクターは、平面度が劣り、歪みを有し得る。   When the amount of the glass fiber is more than 30% by mass with respect to the entire composite resin composition, the fluidity of the composition deteriorates and the composite contains more than 30% by mass of glass fiber with respect to the entire composite resin composition. The flat connector obtained from the resin composition has poor flatness and may have distortion.

本発明者の検討の結果、成形品(平面状コネクター等)のウエルド強度と、当該成形品のクラック数との間には相関があることが見出された。具体的には、各種複合樹脂組成物を使用して、下記実施例に記載の方法で得られた平面状コネクター及び試験片について、下記実施例に記載の測定条件にてウエルド強度及びクラック数を検討した。その結果、ガラス繊維の量が、複合樹脂組成物全体に対して25質量%以下である複合樹脂組成物から得られた試験片のウエルド強度は10kgf以下(場合によっては8kgf以下)であり、かつ、同複合樹脂組成物から得られた平面状コネクターにはクラックが多数認められた。他方、複合樹脂組成物全体に対して25質量%超30質量%以下(27.5〜30質量%)のガラス繊維を含む複合樹脂組成物から得られた試験片のウエルド強度は10kgf超であり、かつ、同複合樹脂組成物から得られた平面状コネクターには、クラックがほとんど認められなかった。   As a result of the study by the present inventors, it has been found that there is a correlation between the weld strength of a molded product (such as a planar connector) and the number of cracks of the molded product. Specifically, using various composite resin compositions, for the planar connector and the test piece obtained by the method described in the following examples, the weld strength and the number of cracks were measured under the measurement conditions described in the following examples. investigated. As a result, the weld strength of the test piece obtained from the composite resin composition in which the amount of glass fiber is 25% by mass or less with respect to the entire composite resin composition is 10 kgf or less (in some cases, 8 kgf or less), and Many cracks were observed in the planar connector obtained from the composite resin composition. On the other hand, the weld strength of the test piece obtained from the composite resin composition containing glass fiber of more than 25% by mass and 30% by mass or less (27.5-30% by mass) with respect to the entire composite resin composition is more than 10 kgf. In addition, almost no cracks were observed in the planar connector obtained from the composite resin composition.

本発明におけるガラス繊維の平均繊維長は、特に限定されないが、250〜800μmであることが好ましい。平均繊維長が250μm未満であると、複合樹脂組成物から得られる平面状コネクター等の成形品の格子部等にクラックが発生する可能性があるため好ましくない。平均繊維長が800μm超であると、流動性が悪化し、複合樹脂組成物の成形が困難になる可能性があるため好ましくない。   Although the average fiber length of the glass fiber in this invention is not specifically limited, It is preferable that it is 250-800 micrometers. An average fiber length of less than 250 μm is not preferable because cracks may occur in a lattice portion or the like of a molded product such as a planar connector obtained from the composite resin composition. If the average fiber length is more than 800 μm, the fluidity is deteriorated and molding of the composite resin composition may be difficult, which is not preferable.

また、本発明におけるガラス繊維の繊維径は、特に制限されないが、一般的に5〜15μm程度のものが使用される。   In addition, the fiber diameter of the glass fiber in the present invention is not particularly limited, but generally about 5 to 15 μm is used.

(板状無機充填材)
本発明の複合樹脂組成物には、マイカ及びタルクからなる群より選択される1以上の板状無機充填材が含まれる。当該板状無機充填材がガラス繊維とともに複合樹脂組成物に含まれることにより、複合樹脂組成物の流動性を悪化させることなく、平面度、耐クラック性及びウエルド強度に優れる成形体を成形できる複合樹脂組成物が得られる。
(Plate-like inorganic filler)
The composite resin composition of the present invention includes one or more plate-like inorganic fillers selected from the group consisting of mica and talc. By including the plate-like inorganic filler in the composite resin composition together with the glass fiber, a composite that can form a molded article having excellent flatness, crack resistance and weld strength without deteriorating the fluidity of the composite resin composition. A resin composition is obtained.

本発明の複合樹脂組成物中に含まれる板状無機充填材の総量は、複合樹脂組成物全体に対して15〜20質量%である。板状無機充填材がかかる範囲で複合樹脂組成物中に含まれていると、ガラス繊維によって奏される成形体のウエルド強度の向上効果及びクラック数の低減効果が補強される。このような補強効果は、本発明の複合樹脂組成物中のガラス繊維の量が上限(すなわち、複合樹脂組成物全体に対して30質量%)に近い値である場合に顕著に奏される。   The total amount of the plate-like inorganic filler contained in the composite resin composition of the present invention is 15 to 20% by mass with respect to the entire composite resin composition. When the plate-like inorganic filler is contained in such a range in the composite resin composition, the effect of improving the weld strength and the effect of reducing the number of cracks of the molded body produced by the glass fiber are reinforced. Such a reinforcing effect is remarkably exhibited when the amount of the glass fiber in the composite resin composition of the present invention is a value close to the upper limit (that is, 30% by mass with respect to the entire composite resin composition).

〔マイカ〕
マイカとは、アルミニウム、カリウム、マグネシウム、ナトリウム、鉄等を含んだケイ酸塩鉱物の粉砕物である。本発明におけるマイカとしては、白雲母、金雲母、黒雲母、人造雲母等が挙げられるが、これらのうち色相が良好であり、低価格であるという点で白雲母が好ましい。
[Mica]
Mica is a pulverized product of silicate mineral containing aluminum, potassium, magnesium, sodium, iron and the like. Examples of mica in the present invention include muscovite, phlogopite, biotite, and artificial mica. Of these, muscovite is preferable in terms of good hue and low price.

また、マイカの製造において、鉱物を粉砕する方法としては、湿式粉砕法及び乾式粉砕法が知られている。湿式粉砕法とは、マイカ原石を乾式粉砕機にて粗粉砕した後、水を加えてスラリー状態にて湿式粉砕で本粉砕し、その後、脱水、乾燥を行う方法である。湿式粉砕法と比較して、乾式粉砕法は低コストで一般的な方法であるが、鉱物を薄く細かく粉砕することが困難である。後述する好ましい平均粒径及び厚みを有するマイカが得られるという理由で、本発明においては薄く細かい粉砕物を使用することが好ましい。従って、本発明においては、湿式粉砕法により製造されたマイカを使用するのが好ましい。   In addition, in the production of mica, wet pulverization methods and dry pulverization methods are known as methods for pulverizing minerals. The wet pulverization method is a method in which raw mica is roughly pulverized with a dry pulverizer, then water is added and main pulverization is performed by wet pulverization in a slurry state, followed by dehydration and drying. Compared with the wet pulverization method, the dry pulverization method is a low-cost and general method, but it is difficult to pulverize the mineral thinly and finely. In the present invention, it is preferable to use a thin and fine pulverized product because mica having a preferable average particle diameter and thickness described later can be obtained. Therefore, in the present invention, it is preferable to use mica produced by a wet pulverization method.

また、湿式粉砕法においては、被粉砕物を水に分散させる工程が必要であるため、被粉砕物の分散効率を高めるために、被粉砕物に凝集沈降剤及び/又は沈降助剤を加えることが一般的である。凝集沈降剤及び沈降助剤としては、ポリ塩化アルミニウム、硫酸アルミニウム、硫酸第一鉄、硫酸第二鉄、塩化コッパラス、ポリ硫酸鉄、ポリ塩化第二鉄、鉄−シリカ無機高分子凝集剤、塩化第二鉄−シリカ無機高分子凝集剤、消石灰(Ca(OH))、苛性ソーダ(NaOH)、ソーダ灰(NaCO)等が挙げられる。しかし、これらの凝集沈降剤及び沈降助剤は、pHがアルカリ性又は酸性である。そのため、本発明において、凝集沈降剤及び/又は沈降助剤で処理されたマイカを使用すると、複合樹脂組成物中のポリマーの分解を引き起こし、多量のガス発生やポリマーの分子量低下等を引き起こす可能性があるため、得られる成形品の性能に悪影響を及ぼし得る。そのため、本発明で使用するマイカは、湿式粉砕する際に凝集沈降剤及び/又は沈降助剤を使用していないものが好ましい。 In addition, since the wet pulverization method requires a step of dispersing the material to be pulverized in water, a coagulating sedimentation agent and / or settling aid is added to the material to be pulverized in order to increase the dispersion efficiency of the material to be crushed. Is common. Examples of the coagulating settling agent and settling aid include polyaluminum chloride, aluminum sulfate, ferrous sulfate, ferric sulfate, copper chloride, polyiron sulfate, polyferric chloride, iron-silica inorganic polymer flocculant, chloride A ferric-silica inorganic polymer flocculant, slaked lime (Ca (OH) 2 ), caustic soda (NaOH), soda ash (Na 2 CO 3 ) and the like can be mentioned. However, these coagulating sedimentation agents and sedimentation aids are alkaline or acidic in pH. Therefore, in the present invention, if mica treated with a coagulating sedimentation agent and / or sedimentation aid is used, it may cause degradation of the polymer in the composite resin composition, causing a large amount of gas generation or a decrease in the molecular weight of the polymer. Can adversely affect the performance of the resulting molded article. Therefore, the mica used in the present invention is preferably one that does not use a coagulating sedimentation agent and / or a sedimentation aid when wet pulverizing.

本発明におけるマイカは、マイクロトラックレーザー回折法により測定した平均粒径が10〜100μmであるものが好ましく、平均粒径が20〜80μmであるものが特に好ましい。マイカの平均粒径が10μm未満であると、成形品の剛性が十分ではない可能性があるため好ましくない。マイカの平均粒径が100μm超であると、成形品の剛性及びウエルド強度が十分ではない可能性があるため好ましくない。また、マイカの平均粒径が100μm超であると、複合樹脂組成物の流動性が十分ではない可能性がある。   The mica in the present invention preferably has an average particle size of 10 to 100 μm, particularly preferably 20 to 80 μm, as measured by a microtrack laser diffraction method. If the average particle diameter of mica is less than 10 μm, the molded product may not have sufficient rigidity, which is not preferable. If the average particle diameter of mica is more than 100 μm, the rigidity and weld strength of the molded product may not be sufficient. If the average particle diameter of mica is more than 100 μm, the fluidity of the composite resin composition may not be sufficient.

本発明におけるマイカの厚みは、電子顕微鏡の観察により実測した厚みが0.01〜1μmであることが好ましく、0.03〜0.3μmであることが特に好ましい。マイカの厚みが0.01μm未満であると、複合樹脂組成物の溶融加工の際にマイカが割れやくなるため好ましくない。マイカの厚みが1μm超であると、成形品の剛性が十分ではない可能性がある。   The thickness of mica in the present invention is preferably 0.01 to 1 μm, particularly preferably 0.03 to 0.3 μm, as measured by observation with an electron microscope. If the thickness of the mica is less than 0.01 μm, the mica tends to break during the melt processing of the composite resin composition, which is not preferable. If the thickness of mica exceeds 1 μm, the molded product may not have sufficient rigidity.

本発明におけるマイカは、シランカップリング剤等で表面処理されていてもよく、かつ/又は、結合剤で造粒し顆粒状であってもよい。   The mica in the present invention may be surface-treated with a silane coupling agent or the like and / or granulated with a binder.

〔タルク〕
本発明におけるタルクとしては、当該タルクの全固形分量に対して、Fe、Al及びCaOの合計含有量が2.5質量%以下であり、Fe及びAlの合計含有量が1.0質量%超2.0質量%以下であり、かつCaOの含有量が0.5質量%未満であるものが好ましい。すなわち、本発明におけるタルクは、その主成分たるSiO及びMgOの他、Fe、Al及びCaOのうちの少なくとも1種を含み、各成分を上記の範囲で含んでいてもよい。
〔talc〕
As the talc in the present invention, the total content of Fe 2 O 3 , Al 2 O 3 and CaO is 2.5 mass% or less with respect to the total solid content of the talc, and Fe 2 O 3 and Al 2 O The total content of 3 is more than 1.0% by mass and 2.0% by mass or less, and the CaO content is preferably less than 0.5% by mass. That is, the talc in the present invention contains at least one of Fe 2 O 3 , Al 2 O 3 and CaO in addition to the main components SiO 2 and MgO, and each component may be included in the above range. Good.

上記タルクにおいて、Fe、Al及びCaOの総量が2.5質量%超であると、複合樹脂組成物の成形加工性及び当該複合樹脂組成物から成形された成形品の耐熱性が悪化する可能性がある。そのため、Fe、Al及びCaOの総量は、1.0質量%以上2.0質量%以下が好ましい。 In the above talc, when the total amount of Fe 2 O 3 , Al 2 O 3 and CaO is more than 2.5% by mass, the moldability of the composite resin composition and the heat resistance of the molded product molded from the composite resin composition Sexuality may deteriorate. Therefore, the total amount of Fe 2 O 3 , Al 2 O 3 and CaO is preferably 1.0% by mass or more and 2.0% by mass or less.

本発明におけるタルクの、レーザー回折法で測定した質量基準又は体積基準の累積平均粒子径(D50)は、複合樹脂組成物の流動性の維持等という観点から、4.0〜20.0μmであることが好ましく、10〜18μmであることがより好ましい。 The cumulative average particle size (D 50 ) of talc measured by laser diffraction method in the present invention is 4.0 to 20.0 μm from the viewpoint of maintaining the fluidity of the composite resin composition. It is preferable that it is 10 to 18 μm.

(その他の成分)
本発明の複合樹脂組成物には、上記の成分の他に、核剤、カーボンブラック、顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤又は難燃剤等を配合してもよい。これらの成分の配合量や種類は得ようとする効果に応じて適宜調整できる。
(Other ingredients)
In addition to the above components, the composite resin composition of the present invention may contain a nucleating agent, carbon black, pigment, antioxidant, stabilizer, plasticizer, lubricant, mold release agent, flame retardant, and the like. . The amounts and types of these components can be appropriately adjusted according to the effect to be obtained.

(複合樹脂組成物の製造方法)
本発明の複合樹脂組成物の製造方法は、上記の液晶性ポリマーと、ガラス繊維等とを均一に混合できれば特に限定されず、従来知られる樹脂組成物の製造方法から適宜選択することができる。例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出した後、得られた複合樹脂組成物を粉末、フレーク、ペレット等の所望の形態に加工する方法が挙げられる。
(Production method of composite resin composition)
The method for producing the composite resin composition of the present invention is not particularly limited as long as the above liquid crystalline polymer and glass fiber can be uniformly mixed, and can be appropriately selected from conventionally known methods for producing resin compositions. For example, each component is melt-kneaded and extruded using a melt-kneader such as a single-screw or twin-screw extruder, and then the resulting composite resin composition is processed into a desired form such as powder, flakes, pellets, etc. A method is mentioned.

本発明の複合樹脂組成物は流動性に優れるため、成形時の最小充填圧力が過度になりにくく、平面状コネクターの格子部等のような複雑な形状を有する部分を好ましく成形できる。最小充填圧力は、複合樹脂組成物を成形する際に、365℃において良好な成形品を得られる最小の射出充填圧として特定される。   Since the composite resin composition of the present invention is excellent in fluidity, the minimum filling pressure at the time of molding is hardly excessive, and a portion having a complicated shape such as a lattice portion of a planar connector can be preferably molded. The minimum filling pressure is specified as the minimum injection filling pressure at which a good molded product can be obtained at 365 ° C. when molding the composite resin composition.

[平面状コネクター]
本発明の複合樹脂組成物を成形することにより、本発明の平面状コネクターを得ることができる。平面状コネクターの形状としては、特に限定されないが、外枠部の内部に格子構造を有し、当該格子構造における格子部のピッチ間隔が1.5mm以下である平面状コネクターであってもよい。また、平面状コネクターにおける端子を保持する格子部の樹脂部分の幅が0.5mm以下、製品全体の高さが5.0mm以下という非常に薄肉の平面状コネクターであってもよい。本発明の平面状コネクターの具体的な形状としては、例えば、図1に示すようなものが挙げられる。
[Flat connector]
By molding the composite resin composition of the present invention, the planar connector of the present invention can be obtained. The shape of the planar connector is not particularly limited, and may be a planar connector having a lattice structure inside the outer frame portion and a pitch interval of the lattice portions in the lattice structure being 1.5 mm or less. Further, the planar connector may be a very thin planar connector in which the width of the resin portion of the lattice portion holding the terminals in the planar connector is 0.5 mm or less and the total height of the product is 5.0 mm or less. Specific examples of the planar connector of the present invention include those shown in FIG.

本発明の平面状コネクターの格子部におけるピン挿入穴の形状は特に限定されず、角形、丸形、異形穴等であってもよい。   The shape of the pin insertion hole in the lattice part of the planar connector of the present invention is not particularly limited, and may be a square, a round, a deformed hole, or the like.

本発明の平面状コネクターを得るための成形方法としては特に限定されないが、得られる平面状コネクターの変形を防ぎ、良好な平面度を有する平面状コネクターを得るために、残留内部応力が少ない成形条件を選ぶことが好ましい。充填圧力を低くし、得られる平面状コネクターの残留内部応力を低下させるために、成形機のシリンダー温度は、液晶性ポリマーの融点以上の温度が好ましい。   The molding method for obtaining the planar connector of the present invention is not particularly limited, but molding conditions with little residual internal stress are required in order to obtain a planar connector having good flatness to prevent deformation of the obtained planar connector. Is preferred. In order to lower the filling pressure and reduce the residual internal stress of the planar connector obtained, the cylinder temperature of the molding machine is preferably a temperature equal to or higher than the melting point of the liquid crystalline polymer.

また、金型温度は70〜100℃が好ましい。金型温度が低いと、金型に充填された複合樹脂組成物が流動不良を起こす可能性があるため好ましくない。金型温度が高いと、バリ発生等の問題が生じる可能性があるため好ましくない。射出速度については、150mm/秒以上で成形することが好ましい。射出速度が低いと、未充填成形品しか得られない可能性があり、完全に充填した成形品が得られたとしても、充填圧力が高く残留内部応力の大きい成形品となり、平面度が劣るコネクターしか得られない可能性がある。   The mold temperature is preferably 70 to 100 ° C. If the mold temperature is low, the composite resin composition filled in the mold may cause flow failure, which is not preferable. If the mold temperature is high, problems such as the occurrence of burrs may occur, which is not preferable. The injection speed is preferably 150 mm / second or more. If the injection speed is low, there is a possibility that only an unfilled molded product can be obtained. Even if a completely filled molded product is obtained, it becomes a molded product with a high filling pressure and a large residual internal stress, resulting in a poor flatness. May only be obtained.

また、本発明の平面状コネクターは、変形やそりが抑制され、平面度に優れる。コネクターの平面度は、コネクターを水平な机の上に静置し、平面状コネクターの高さを画像測定器により測定し、コネクター端面より、0.5mmの位置を10mm間隔で測定し、最大高さと最小高さの差として特定される。   In addition, the planar connector of the present invention is excellent in flatness because deformation and warpage are suppressed. The flatness of the connector is measured by placing the connector on a horizontal desk, measuring the height of the flat connector with an image measuring instrument, and measuring 0.5 mm from the connector end face at 10 mm intervals. And the minimum height difference.

また、本発明の平面状コネクターは、ウエルド強度及び耐クラック性に優れる。上述の通り、成形品のウエルド強度と耐クラック性とは相関するが、本発明によれば、ウエルド強度及び耐クラック性のいずれもが良好な平面状コネクターが得られる。   The planar connector of the present invention is excellent in weld strength and crack resistance. As described above, the weld strength and crack resistance of the molded product are correlated, but according to the present invention, a planar connector having good weld strength and crack resistance can be obtained.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(液晶性ポリマーの製造方法)
撹拌機、還流カラム、モノマー投入口、窒素導入口、減圧/流出ラインを備えた重合容器に、以下の原料モノマー、金属触媒、アシル化剤を仕込み、窒素置換を開始した。
(I)4−ヒドロキシ安息香酸;1041g(48モル%)
(II)2−ヒドロキシ−6−ナフトエ酸;89g(3モル%)
(III)テレフタル酸;565g(21.7モル%)
(IV)イソフタル酸;78g(3モル%)
(V)4,4’−ジヒドロキシビフェニル;711g(24.3モル%)
金属触媒(酢酸カリウム触媒);110mg
アシル化剤(無水酢酸);1645g
(Method for producing liquid crystalline polymer)
A polymerization vessel equipped with a stirrer, a reflux column, a monomer inlet, a nitrogen inlet, and a pressure reduction / outflow line was charged with the following raw material monomers, a metal catalyst, and an acylating agent, and nitrogen substitution was started.
(I) 4-hydroxybenzoic acid; 1041 g (48 mol%)
(II) 2-hydroxy-6-naphthoic acid; 89 g (3 mol%)
(III) terephthalic acid; 565 g (21.7 mol%)
(IV) Isophthalic acid; 78 g (3 mol%)
(V) 4,4′-dihydroxybiphenyl; 711 g (24.3 mol%)
110 mg of metal catalyst (potassium acetate catalyst)
Acylating agent (acetic anhydride); 1645 g

重合容器に原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、さらに360℃まで5.5時間かけて昇温し、そこから30分かけて5Torr(すなわち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、その他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレット化した。得られたペレットについて、窒素気流下、300℃で8時間の熱処理を行った。ペレットの融点は358℃、結晶化熱量は1.6J/g、溶融粘度は9Pa・sであった。   After the raw materials were charged into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at 140 ° C. for 1 hour. Thereafter, the temperature is further increased to 360 ° C. over 5.5 hours, and then reduced to 5 Torr (ie, 667 Pa) over 30 minutes to melt while distilling acetic acid, excess acetic anhydride, and other low-boiling components. Polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced to change from a reduced pressure state to a normal pressure through a normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strand was pelletized to pelletize. The obtained pellets were heat-treated at 300 ° C. for 8 hours under a nitrogen stream. The pellet had a melting point of 358 ° C., a heat of crystallization of 1.6 J / g, and a melt viscosity of 9 Pa · s.

なお、本実施例において、溶融粘度の測定は、下記の条件で行った。
L=20mm、d=1mmの(株)東洋精機製キャピログラフ1B型を使用し、液晶性ポリマーの融点よりも10〜20℃高い温度で、剪断速度1000/秒で、ISO11443に準拠して、液晶性ポリマーの溶融粘度を測定した。
In this example, the melt viscosity was measured under the following conditions.
A Capillograph Type 1B manufactured by Toyo Seiki Co., Ltd. with L = 20 mm and d = 1 mm was used, and the liquid crystal was liquid crystallized in conformity with ISO 11443 at a shear rate of 1000 / sec. The melt viscosity of the conductive polymer was measured.

(液晶性ポリマー以外の成分)
上記で得られた液晶性ポリマーと、下記の成分とを二軸押出機を使用して混合し、複合樹脂組成物を得た。各成分の配合量は表1及び2に示した通りである。
ガラス繊維;日本電気硝子(株)製ECS03T−786H、繊維径10μm、長さ3mmのチョプドストランド
マイカ;(株)ヤマグチマイカ製AB−25S、平均粒径25μm
タルク;松村産業(株)製クラウンタルクPP、平均粒径10μm
(Components other than liquid crystalline polymers)
The liquid crystalline polymer obtained above and the following components were mixed using a twin screw extruder to obtain a composite resin composition. The amount of each component is as shown in Tables 1 and 2.
Glass fiber; ECS03T-786H manufactured by Nippon Electric Glass Co., Ltd., chopped strand mica having a fiber diameter of 10 μm and length of 3 mm; AB-25S manufactured by Yamaguchi Mica Co., Ltd., average particle diameter of 25 μm
Talc: Crown Talc PP manufactured by Matsumura Sangyo Co., Ltd., average particle size 10 μm

下記の方法に基づき、得られた複合樹脂組成物又は平面状コネクターの物性を測定した。各評価結果を表1及び2に示す。   Based on the following method, the physical properties of the obtained composite resin composition or planar connector were measured. Each evaluation result is shown in Tables 1 and 2.

(コネクター平面度)
複合樹脂組成物を、図1に示す形状を有し、全体の大きさは39.82mm×39.82mm×1mmtであり、格子部ピッチ間隔は1.2mmである平面状コネクター(ピン孔数750ピン)に下記成形条件で射出成形した。なお、ゲートは、格子部の長さの長い辺からのフィルムゲートを使用し、ゲート厚みは0.3mmにした。
[成形条件]
成形機;住友重機械工業SE100DUZ
シリンダー温度;365℃−365℃−365℃−360℃
金型温度;80℃
射出速度;200mm/sec
保圧力;50MPa
保圧時間;1sec
冷却時間;5sec
スクリュー回転数;120rpm
スクリュー背圧;2MPa
(Connector flatness)
The composite resin composition has a shape shown in FIG. 1 and is a planar connector (pin hole number 750) having an overall size of 39.82 mm × 39.82 mm × 1 mmt and a lattice pitch interval of 1.2 mm. The pin was injection molded under the following molding conditions. In addition, the gate used the film gate from the long side of a grating | lattice part, and the gate thickness was 0.3 mm.
[Molding condition]
Molding machine; Sumitomo Heavy Industries SE100DUZ
Cylinder temperature: 365 ° C-365 ° C-365 ° C-360 ° C
Mold temperature: 80 ℃
Injection speed: 200mm / sec
Holding pressure: 50 MPa
Holding pressure time: 1 sec
Cooling time: 5 sec
Screw rotation speed: 120rpm
Screw back pressure: 2MPa

得られたコネクターを水平な机の上に静置し、コネクターの高さを、ミツトヨ製クイックビジョン404PROCNC画像測定器により測定した。その際、コネクター端面より、0.5mmの位置を10mm間隔で測定し、最大高さと最小高さの差を平面度として特定した。平面度の値が低い程、コネクターが平面であることを示す。   The obtained connector was allowed to stand on a horizontal desk, and the height of the connector was measured with a Mitutoyo Quick Vision 404 PROCNC image measuring device. At that time, 0.5 mm positions were measured at 10 mm intervals from the connector end face, and the difference between the maximum height and the minimum height was specified as flatness. A lower flatness value indicates that the connector is flat.

(コネクター最小充填圧力)
図1の平面状コネクターを365℃で射出成形する際に良好な成形品を得られる最小の射出充填圧力を最小充填圧力として測定した。
(Connector minimum filling pressure)
When the planar connector of FIG. 1 was injection molded at 365 ° C., the minimum injection filling pressure at which a good molded product was obtained was measured as the minimum filling pressure.

(耐クラック性)
図1の平面状コネクターに対して、下記条件でIRリフローを行い、格子部を光学顕微鏡にて観察し、クラック数を計測した。クラック数が少ないほど、耐クラック性が高いことを示す。
[IRリフロー条件]
測定機;日本パルス技術研究所製大型卓上リフローハンダ付け装置RF−300(遠赤外線ヒーター使用)
試料送り速度;140mm/sec
リフロー炉通過時間;5min
温度条件;
プレヒートゾーン;150℃
リフローゾーン;240℃
ピーク温度;260℃
(Crack resistance)
IR reflow was performed on the planar connector of FIG. 1 under the following conditions, the lattice portion was observed with an optical microscope, and the number of cracks was measured. A smaller number of cracks indicates higher crack resistance.
[IR reflow conditions]
Measuring instrument: RF-300 (using far infrared heater)
Sample feed rate: 140 mm / sec
Reflow furnace transit time: 5 min
Temperature conditions;
Preheat zone: 150 ° C
Reflow zone: 240 ° C
Peak temperature: 260 ° C

(ウエルド強度)
複合樹脂組成物を、測定用試験片(125mm×13mm×0.4mm、2点フィルムゲート)に下記成形条件で射出成形した。得られた試験片のウエルド強度を下記測定条件で測定した。
[成形条件]
成形機;住友重機械工業SE100DU
シリンダー温度;365℃−365℃−365℃−365℃−365℃−365℃
金型温度;90℃
射出速度;200mm/sec
保圧力;70MPa
保圧時間;5sec
冷却時間;8sec
スクリュー回転数;150rpm
スクリュー背圧;1MPa
[測定条件]
測定機;オリエンテック社テンシロン万能試験機製RTM−100
ロードセル;100kg
金型温度;90℃
チャック間距離;2.5mm
チャック力;2.0kgf/cm
引張り速度;0.5mm/min
(Weld strength)
The composite resin composition was injection molded under the following molding conditions on a test specimen for measurement (125 mm × 13 mm × 0.4 mm, two-point film gate). The weld strength of the obtained test piece was measured under the following measurement conditions.
[Molding condition]
Molding machine: Sumitomo Heavy Industries SE100DU
Cylinder temperature: 365 ° C.-365 ° C.-365 ° C.-365 ° C.-365 ° C.-365 ° C.
Mold temperature: 90 ° C
Injection speed: 200mm / sec
Holding pressure: 70 MPa
Holding pressure time: 5 sec
Cooling time: 8 sec
Screw rotation speed: 150rpm
Screw back pressure: 1MPa
[Measurement condition]
Measuring machine: Orientec Tensilon Universal Tester RTM-100
Load cell: 100kg
Mold temperature: 90 ° C
Distance between chucks: 2.5 mm
Chuck force: 2.0 kgf / cm 2
Tensile speed: 0.5 mm / min

(荷重たわみ温度)
複合樹脂組成物を、測定用試験片(4mm×10mm×80mm)に下記成形条件で射出成形した。得られた試験片の荷重たわみ温度をISO75−1,2に準拠して測定した。
[成形条件]
成形機;住友重機械工業SE100DU
シリンダー温度;360℃−370℃−370℃−360℃−340℃−330℃
金型温度;80℃
射出速度;33mm/sec
保圧力;50MPa
保圧時間;2sec
冷却時間;10sec
スクリュー回転数;120rpm
(Load deflection temperature)
The composite resin composition was injection-molded on a test specimen for measurement (4 mm × 10 mm × 80 mm) under the following molding conditions. The deflection temperature under load of the obtained test piece was measured according to ISO75-1,2.
[Molding condition]
Molding machine: Sumitomo Heavy Industries SE100DU
Cylinder temperature: 360 ° C-370 ° C-370 ° C-360 ° C-340 ° C-330 ° C
Mold temperature: 80 ℃
Injection speed: 33mm / sec
Holding pressure: 50 MPa
Holding time: 2 sec
Cooling time: 10 sec
Screw rotation speed: 120rpm

Figure 2014237740
Figure 2014237740

Figure 2014237740
Figure 2014237740

表1及び2に示される通り、本発明の平面状コネクターは、平面度、耐クラック性及びウエルド強度の全てにおいて優れる。比較例8及び9における平面状コネクターの耐クラック性及びウエルド強度は、本発明と同等であったものの、平面度が劣っていた。本発明によれば、平面度、耐クラック性及びウエルド強度の全てが良好である平面状コネクターが得られる。   As shown in Tables 1 and 2, the planar connector of the present invention is excellent in all of flatness, crack resistance and weld strength. The crack resistance and weld strength of the planar connectors in Comparative Examples 8 and 9 were equivalent to the present invention, but the flatness was inferior. According to the present invention, a planar connector having good flatness, crack resistance and weld strength can be obtained.

Claims (2)

(A)液晶性ポリマーと、(B)ガラス繊維と、(C)マイカ及びタルクからなる群より選択される1以上の板状無機充填材と、を含む複合樹脂組成物であって、
前記(A)液晶性ポリマーは、必須の構成成分として、下記の構成単位;(I)4−ヒドロキシ安息香酸、(II)2−ヒドロキシ−6−ナフトエ酸、(III)テレフタル酸、(IV)イソフタル酸及び(V)4,4’−ジヒドロキシビフェニルを含み、
全構成単位に対して(I)の構成単位は35〜75モル%であり、
全構成単位に対して(II)の構成単位は2〜8モル%であり、
全構成単位に対して(III)の構成単位は4.5〜30.5モル%であり、
全構成単位に対して(IV)の構成単位は2〜8モル%であり、
全構成単位に対して(V)の構成単位は12.5〜32.5モル%であり、
全構成単位に対して(II)及び(IV)の構成単位の総量は4〜10モル%であり、
前記(A)液晶性ポリマーは、複合樹脂組成物全体に対して45〜60質量%であり、
前記(B)ガラス繊維は、複合樹脂組成物全体に対して25質量%超30質量%以下であり、
前記(C)マイカ及びタルクからなる群より選択される1以上の板状無機充填材は、複合樹脂組成物全体に対して総量が15〜20質量%である複合樹脂組成物。
A composite resin composition comprising (A) a liquid crystalline polymer, (B) glass fiber, and (C) one or more plate-like inorganic fillers selected from the group consisting of mica and talc,
The (A) liquid crystalline polymer has the following constituent units as essential constituents: (I) 4-hydroxybenzoic acid, (II) 2-hydroxy-6-naphthoic acid, (III) terephthalic acid, (IV) Including isophthalic acid and (V) 4,4′-dihydroxybiphenyl,
The structural unit of (I) is 35 to 75 mol% with respect to all the structural units,
The structural unit of (II) is 2 to 8 mol% with respect to all the structural units,
The structural unit of (III) is 4.5 to 30.5 mol% with respect to all structural units,
The structural unit of (IV) is 2 to 8 mol% with respect to all the structural units,
The structural unit of (V) is 12.5 to 32.5 mol% with respect to all the structural units,
The total amount of the structural units (II) and (IV) is 4 to 10 mol% with respect to all the structural units,
Said (A) liquid crystalline polymer is 45-60 mass% with respect to the whole composite resin composition,
The (B) glass fiber is more than 25 mass% and 30 mass% or less with respect to the entire composite resin composition,
One or more plate-shaped inorganic fillers selected from the group consisting of (C) mica and talc are a composite resin composition having a total amount of 15 to 20% by mass with respect to the entire composite resin composition.
請求項1に記載の複合樹脂組成物から成形され、
外枠部の内部に格子構造を有し、
前記格子構造における格子部のピッチ間隔が1.5mm以下である、平面状コネクター。
Molded from the composite resin composition according to claim 1,
It has a lattice structure inside the outer frame part,
The planar connector whose pitch interval of the lattice part in the lattice structure is 1.5 mm or less.
JP2013119896A 2013-06-06 2013-06-06 Composite resin composition and planar connector molded from the composite resin composition Active JP6109651B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013119896A JP6109651B2 (en) 2013-06-06 2013-06-06 Composite resin composition and planar connector molded from the composite resin composition
CN201410245154.7A CN104231564B (en) 2013-06-06 2014-06-04 Composite resin composition and the planar connector being molded with by the composite resin composition
TW103119508A TWI622619B (en) 2013-06-06 2014-06-05 Composite resin composition and planar connector formed from the composite resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013119896A JP6109651B2 (en) 2013-06-06 2013-06-06 Composite resin composition and planar connector molded from the composite resin composition

Publications (2)

Publication Number Publication Date
JP2014237740A true JP2014237740A (en) 2014-12-18
JP6109651B2 JP6109651B2 (en) 2017-04-05

Family

ID=52135163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013119896A Active JP6109651B2 (en) 2013-06-06 2013-06-06 Composite resin composition and planar connector molded from the composite resin composition

Country Status (3)

Country Link
JP (1) JP6109651B2 (en)
CN (1) CN104231564B (en)
TW (1) TWI622619B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124145A1 (en) * 2016-12-28 2018-07-05 住友化学株式会社 Liquid-crystal polyester resin composition
WO2023145517A1 (en) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 Liquid crystalline resin composition for planar connector, and planar connector obtained using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837803B (en) * 2016-02-01 2017-05-31 金发科技股份有限公司 A kind of liquid crystal polyester and the moulding compound being made from it and its application
CN105837805A (en) * 2016-02-01 2016-08-10 金发科技股份有限公司 Liquid crystal polyester and its molded composition and use
CN110603278B (en) * 2017-05-10 2021-02-09 宝理塑料株式会社 Wholly aromatic polyester and polyester resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216120A (en) * 1988-07-05 1990-01-19 Polyplastics Co Polyester resin exhibiting optical anisotropy when melted and resin composition
JP2010003661A (en) * 2008-05-23 2010-01-07 Polyplastics Co Plane-form connector
JP2010138228A (en) * 2008-12-09 2010-06-24 Nippon Oil Corp Liquid crystalline polyester resin composition
WO2012137636A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition
JP2012193343A (en) * 2011-02-28 2012-10-11 Sumitomo Chemical Co Ltd Liquid crystal polyester composition
WO2012137271A1 (en) * 2011-04-06 2012-10-11 東レ株式会社 Liquid crystal polyester resin composition and metal composite molding using same
JP2012214652A (en) * 2011-04-01 2012-11-08 Polyplastics Co Planar connector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268252A (en) * 2002-03-19 2003-09-25 Polyplastics Co Liquid crystalline polymer composition
JP4463637B2 (en) * 2004-07-30 2010-05-19 ポリプラスチックス株式会社 Liquid crystalline polyester resin composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216120A (en) * 1988-07-05 1990-01-19 Polyplastics Co Polyester resin exhibiting optical anisotropy when melted and resin composition
JP2010003661A (en) * 2008-05-23 2010-01-07 Polyplastics Co Plane-form connector
JP2010138228A (en) * 2008-12-09 2010-06-24 Nippon Oil Corp Liquid crystalline polyester resin composition
JP2012193343A (en) * 2011-02-28 2012-10-11 Sumitomo Chemical Co Ltd Liquid crystal polyester composition
WO2012137636A1 (en) * 2011-04-01 2012-10-11 ポリプラスチックス株式会社 Fully aromatic polyester and polyester resin composition
JP2012214652A (en) * 2011-04-01 2012-11-08 Polyplastics Co Planar connector
WO2012137271A1 (en) * 2011-04-06 2012-10-11 東レ株式会社 Liquid crystal polyester resin composition and metal composite molding using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124145A1 (en) * 2016-12-28 2018-07-05 住友化学株式会社 Liquid-crystal polyester resin composition
JP2018109096A (en) * 2016-12-28 2018-07-12 住友化学株式会社 Liquid-crystal polyester resin composition
KR20190095310A (en) * 2016-12-28 2019-08-14 스미또모 가가꾸 가부시끼가이샤 Liquid Crystal Polyester Resin Composition
KR102346770B1 (en) 2016-12-28 2022-01-04 스미또모 가가꾸 가부시끼가이샤 Liquid crystalline polyester resin composition
KR20220003149A (en) * 2016-12-28 2022-01-07 스미또모 가가꾸 가부시끼가이샤 Liquid-crystal polyester resin composition
KR102444368B1 (en) 2016-12-28 2022-09-16 스미또모 가가꾸 가부시끼가이샤 Liquid-crystal polyester resin composition
US11572507B2 (en) 2016-12-28 2023-02-07 Sumitomo Chemical Company, Limited Liquid-crystal polyester resin composition
WO2023145517A1 (en) * 2022-01-26 2023-08-03 ポリプラスチックス株式会社 Liquid crystalline resin composition for planar connector, and planar connector obtained using same

Also Published As

Publication number Publication date
JP6109651B2 (en) 2017-04-05
TW201510060A (en) 2015-03-16
CN104231564A (en) 2014-12-24
TWI622619B (en) 2018-05-01
CN104231564B (en) 2017-09-12

Similar Documents

Publication Publication Date Title
JP6345376B1 (en) Composite resin composition and electronic component molded from the composite resin composition
JP6022127B1 (en) Composite resin composition and planar connector
JP6356938B1 (en) Composite resin composition and connector molded from the composite resin composition
JP5769888B2 (en) Composite resin composition for electronic parts, and electronic parts molded from the composite resin composition
JP6321899B1 (en) Composite resin composition and connector molded from the composite resin composition
WO2012137637A1 (en) Planar connector
JP6109651B2 (en) Composite resin composition and planar connector molded from the composite resin composition
WO2014050370A1 (en) Composite resin composition and flat connector molded from same
WO2017110867A1 (en) Composite resin composition and connector formed from composite resin composition
WO2019203157A1 (en) Liquid-crystalline resin composition
JP6321898B1 (en) Composite resin composition and electronic component molded from the composite resin composition
JP2018095683A (en) Composite resin composition, and electronic component molded from the composite resin composition
JP2018095684A (en) Composite resin composition, and connector molded from the composite resin composition
JP7393590B1 (en) Liquid crystalline resin composition for planar connectors and planar connectors using the same
JP6944616B1 (en) Resin composition and planar connector
JP6944615B1 (en) Resin composition and connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170308

R150 Certificate of patent or registration of utility model

Ref document number: 6109651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250