JP2014237566A - Method for producing granular ammonium sulfate - Google Patents

Method for producing granular ammonium sulfate Download PDF

Info

Publication number
JP2014237566A
JP2014237566A JP2013121122A JP2013121122A JP2014237566A JP 2014237566 A JP2014237566 A JP 2014237566A JP 2013121122 A JP2013121122 A JP 2013121122A JP 2013121122 A JP2013121122 A JP 2013121122A JP 2014237566 A JP2014237566 A JP 2014237566A
Authority
JP
Japan
Prior art keywords
ammonium sulfate
mother liquor
ammonia
coke oven
oven gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013121122A
Other languages
Japanese (ja)
Other versions
JP6060820B2 (en
Inventor
宮本 修司
Shuji Miyamoto
修司 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2013121122A priority Critical patent/JP6060820B2/en
Publication of JP2014237566A publication Critical patent/JP2014237566A/en
Application granted granted Critical
Publication of JP6060820B2 publication Critical patent/JP6060820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Industrial Gases (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing granular ammonium sulfate which can uniformly and efficiently produce granular ammonium sulfate having a particle diameter of 2-4 mm.SOLUTION: A method for producing granular ammonium sulfate includes: an absorption step of absorbing ammonia in a coke oven gas into an ammonium sulfate mother liquor containing sulfuric acid; a pH adjustment step of adding an alkali source to the ammonium sulfate mother liquor to adjust the pH of the ammonium sulfate mother liquor to 1.7-2.5; and a crystallization step of crystallizing granular ammonium sulfate from the ammonium sulfate mother liquor.

Description

本発明は、コークス炉ガス中のアンモニアから粒状硫安を製造する方法に関するものである。   The present invention relates to a method for producing granular ammonium sulfate from ammonia in coke oven gas.

コークス炉ガスに含まれるアンモニアを回収し粒状硫安(粒状の硫酸アンモニウム)を製造する方法は、一般的に吸収工程と晶出工程とを含む。吸収工程は、飽和塔内でコークス炉ガスに硫酸を含む硫安母液(以下、母液ということがある)をスプレーし、コークス炉ガス中のアンモニアを硫安として回収する工程である。一方、この吸収工程に続く晶出工程は、コークス炉ガス中のアンモニアを吸収した硫安母液を、蒸発槽、晶析槽において加熱、減圧し、水分を蒸発して硫安母液の濃縮を行い、粒状硫安を析出させる工程である(特許文献1〜5参照)。
図3は、粒状硫安の従来の製造方法を示す製造フロー図である。第一の工程である吸収工程は、飽和塔1と母液循環槽2からなり、第二の工程である晶出工程は、母液貯蔵タンク3、晶析槽4、熱交換器5、及び蒸発槽6からなっている。
A method of recovering ammonia contained in coke oven gas and producing granular ammonium sulfate (granular ammonium sulfate) generally includes an absorption step and a crystallization step. The absorption step is a step of spraying an ammonium sulfate mother liquor containing sulfuric acid (hereinafter sometimes referred to as a mother liquor) onto the coke oven gas in the saturation tower and recovering ammonia in the coke oven gas as ammonium sulfate. On the other hand, in the crystallization process following this absorption process, the ammonium sulfate mother liquor that has absorbed ammonia in the coke oven gas is heated and depressurized in an evaporation tank and a crystallization tank, the water is evaporated to concentrate the ammonium sulfate mother liquor, This is a step of depositing ammonium sulfate (see Patent Documents 1 to 5).
FIG. 3 is a production flow diagram showing a conventional method for producing granular ammonium sulfate. The absorption process, which is the first process, includes the saturation tower 1 and the mother liquor circulation tank 2, and the crystallization process, which is the second process, includes the mother liquor storage tank 3, the crystallization tank 4, the heat exchanger 5, and the evaporation tank. It consists of six.

吸収工程では、まず、装入口1Aからコークス炉ガスが飽和塔1内に送り込まれる。母液循環槽2には硫酸が添加され、母液装入ポンプPを介して、硫酸を含む母液が飽和塔1に噴霧される。ガス中のアンモニアは、硫酸を含む母液と接触反応し、母液中の液状硫安となる。反応を終えたガスは外部に排出される。硫安母液は、母液抜出ポンプPによって飽和塔1の下部出口から母液循環槽2に戻される。すなわち、母液抜出ポンプPによって飽和塔1から抜き出された硫安母液は、母液循環槽2を経て、母液装入ポンプPによって再び飽和塔1内に戻され再び新しいガスと接触反応するように、吸収工程内で内部循環される。そして、内部循環される硫安母液の一部が、母液貯蔵タンク3に貯蔵される。 In the absorption process, first, coke oven gas is fed into the saturation tower 1 from the charging port 1A. Sulfuric acid is added to the mother liquor circulation tank 2, and the mother liquor containing sulfuric acid is sprayed onto the saturation tower 1 via the mother liquor charging pump P 1 . Ammonia in the gas reacts with the mother liquor containing sulfuric acid to form liquid ammonium sulfate in the mother liquor. The gas that has finished the reaction is discharged to the outside. Ammonium sulfate mother liquor is returned from the lower outlet of the saturated tower 1 by mother liquor extraction pump P 2 in the mother liquor circulation tank 2. That is, the ammonium sulfate mother liquor withdrawn from the saturation column 1 by the mother liquor withdrawal pump P 2 passes through the mother liquor circulation tank 2 and is again returned into the saturation column 1 by the mother liquor charging pump P 1 to again react with new gas. As such, it is internally circulated within the absorption process. A part of the internally circulated ammonium sulfate mother liquor is stored in the mother liquor storage tank 3.

一方、晶出工程では、母液貯蔵タンク3に貯蔵された硫安母液を、母液装入ポンプPによって晶析槽4に貯蔵し、この晶析槽4から母液抜出ポンプPによって抜き出された硫安母液を、熱交換器5で加熱し、減圧された蒸発槽6内で濃縮し、晶析槽4にて結晶硫安を析出させる。その後、スラリー抜出ポンプPによって晶析槽4から硫安結晶スラリーを抜き出す。 On the other hand, in the crystallization step, the ammonium sulfate mother liquor stored in the mother liquor storage tank 3 is stored in the crystallization tank 4 by the mother liquor charging pump P 3 , and is extracted from the crystallization tank 4 by the mother liquor extraction pump P 4 . The ammonium sulfate mother liquor is heated in the heat exchanger 5 and concentrated in the evaporation tank 6 which has been reduced in pressure, and crystal ammonium sulfate is precipitated in the crystallization tank 4. Thereafter, withdrawing the ammonium sulphate crystals slurry by slurry extraction pump P 5 from the crystallization tank 4.

特開昭60−103022号公報JP 60-103022 A 特開昭63−103820号公報JP 63-103820 A 特開平6−305868号公報JP-A-6-305868 特開2002−193614号公報JP 2002-193614 A 特開2004−10408号公報JP 2004-10408 A

しかしながら、特許文献1〜5に開示された技術では、晶析槽内の硫安母液のpHが、コークス炉ガスの発生量やその中に含まれるアンモニア濃度の変動により、晶析槽内の硫安母液のpHが1〜6.5の間で大きく変動するため、生成する硫安の粒子径のバラツキが大きいことがあった。そのため、製品として付加価値が高い2mm〜4mmの粒子径の製品の歩留まりが低い点で改善の余地があった。
従って、本発明は上述の問題点に鑑みてなされたものであり、その目的は、所定の範囲の粒子径の粒状硫安を均一にかつ効率よく製造する粒状硫安の製造方法を提供することにある。
However, in the techniques disclosed in Patent Literatures 1 to 5, the pH of the ammonium sulfate mother liquor in the crystallization tank is changed depending on the amount of coke oven gas generated and the concentration of ammonia contained in the coke oven gas. Since the pH of the powder fluctuates greatly between 1 and 6.5, the particle size variation of the produced ammonium sulfate may be large. Therefore, there is room for improvement in terms of the low yield of products having a particle size of 2 mm to 4 mm, which has a high added value as a product.
Accordingly, the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for producing granular ammonium sulfate that uniformly and efficiently produces granular ammonium sulfate having a particle diameter in a predetermined range. .

上記課題を解決するための本発明の粒状硫安の製造方法のある態様は、コークス炉ガス中のアンモニアを、硫酸を含む硫安母液に吸収させる吸収工程と、前記硫安母液にアルカリ源を添加して前記硫安母液のpHを1.7〜2.5に調整するpH調整工程と、前記硫安母液から粒状硫安を晶出させる晶出工程とを含む。
このような方法によれば、粒子径のバラツキを低減し、製品として付加価値が高い粒子径の製品(粒状硫安)を製造することができる。
An aspect of the method for producing granular ammonium sulfate according to the present invention for solving the above-described problems includes an absorption step in which ammonia in coke oven gas is absorbed in an ammonium sulfate mother liquor containing sulfuric acid, and an alkali source is added to the ammonium sulfate mother liquor. A pH adjustment step of adjusting the pH of the ammonium sulfate mother liquor to 1.7 to 2.5, and a crystallization step of crystallizing granular ammonium sulfate from the ammonium sulfate mother liquor.
According to such a method, variation in particle diameter can be reduced, and a product (particulate ammonium sulfate) having a high added value as a product can be produced.

また、上記粒状硫安の製造方法においては、上記アルカリ源が、コークス炉ガス精製の脱アンモニア工程から発生するアンモニア水であることが好ましい。
このように、pH調整工程におけるアルカリ源として、コークス炉ガス精製の脱アンモニア工程から発生するアンモニア水を使用することで、低コストで粒子径のバラツキが少ない製品(粒状硫安)を得ることができる。
Moreover, in the manufacturing method of the said granular ammonium sulfate, it is preferable that the said alkali source is the ammonia water generated from the deammonification process of coke oven gas refining.
Thus, by using ammonia water generated from the deammonia process of coke oven gas refining as the alkali source in the pH adjustment process, a product (particulate ammonium sulfate) with low particle size variation can be obtained at low cost. .

本発明によれば、所定の範囲の粒子径の粒状硫安を均一にかつ効率よく製造する粒状硫安の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the granular ammonium sulfate which manufactures the granular ammonium sulfate of the particle diameter of a predetermined range uniformly and efficiently can be provided.

粒状硫安の製造方法の第1実施形態の製造フロー図である。It is a manufacturing flow figure of a 1st embodiment of a manufacturing method of granular ammonium sulfate. 粒状硫安の製造方法の第2実施形態の製造フロー図である。It is a manufacturing flow figure of a 2nd embodiment of a manufacturing method of granular ammonium sulfate. 粒状硫安の従来の製造方法の製造フロー図である。It is a manufacturing flow figure of the conventional manufacturing method of granular ammonium sulfate. 実施例1における晶析槽内のpHの経時変化を示す図である。FIG. 3 is a view showing a change with time of pH in a crystallization tank in Example 1. 比較例1における晶析槽内のpHの経時変化を示す図である。It is a figure which shows the time-dependent change of pH in the crystallization tank in the comparative example 1.

(第1実施形態)
次に、本発明の実施形態について図面を参照して説明する。図1は、粒状硫安の製造方法の第1実施形態の製造フロー図である。図1に示すように、本実施形態は、吸収工程と、pH調整工程と、晶出工程とを含む。
<吸収工程>
吸収工程は、飽和塔内でコークス炉ガスに硫酸を含む硫安母液をスプレーし、コークス炉ガス中のアンモニアを硫安として回収する工程である。吸収工程には、図1に示すように、例えば、飽和塔1と、飽和塔循環槽2と、これらを連結する配管と、各配管に設置された母液装入ポンプP及び母液抜出ポンプPとを有する設備が用いられる。
(First embodiment)
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a production flow diagram of a first embodiment of a method for producing granular ammonium sulfate. As shown in FIG. 1, this embodiment includes an absorption process, a pH adjustment process, and a crystallization process.
<Absorption process>
The absorption step is a step of spraying an ammonium sulfate mother liquor containing sulfuric acid on the coke oven gas in the saturation tower and recovering ammonia in the coke oven gas as ammonium sulfate. In the absorption step, for example, as shown in FIG. 1, for example, a saturation tower 1, a saturation tower circulation tank 2, pipes connecting these, and a mother liquor charging pump P 1 and a mother liquor extraction pump installed in each pipe equipment having a P 2 is used.

具体的には、まず、装入口1Aからコークス炉ガスが飽和塔1内に送り込まれる。母液循環槽2には硫酸が添加され、母液装入ポンプPを介して、硫酸を含む母液が飽和塔1に噴霧される。ガス中のアンモニアは、硫酸を含む母液と接触反応し、母液中の液状硫安となる。反応を終えたガスは外部に排出される。硫安母液は、母液抜出ポンプPによって飽和塔1の下部出口から母液循環槽2に戻される。すなわち、母液抜出ポンプPによって飽和塔1から抜き出された硫安母液は、母液循環槽2を経て、母液装入ポンプPによって再び飽和塔1内に戻され再び新しいガスと接触反応するように、吸収工程内で内部循環される。そして、内部循環される硫安母液の一部が、母液貯蔵タンク3に貯蔵される。なお、この母液貯蔵タンク3を設置することなく、内部循環される硫安母液の一部を晶出工程に提供してもよいが、母液貯蔵タンク3を備えることによって、晶出工程への硫安母液の入れ替えの際に流量の管理が行いやすいという利点がある。 Specifically, first, coke oven gas is fed into the saturation tower 1 from the charging inlet 1A. Sulfuric acid is added to the mother liquor circulation tank 2, and the mother liquor containing sulfuric acid is sprayed onto the saturation tower 1 via the mother liquor charging pump P 1 . Ammonia in the gas reacts with the mother liquor containing sulfuric acid to form liquid ammonium sulfate in the mother liquor. The gas that has finished the reaction is discharged to the outside. Ammonium sulfate mother liquor is returned from the lower outlet of the saturated tower 1 by mother liquor extraction pump P 2 in the mother liquor circulation tank 2. That is, the ammonium sulfate mother liquor withdrawn from the saturation column 1 by the mother liquor withdrawal pump P 2 passes through the mother liquor circulation tank 2 and is again returned into the saturation column 1 by the mother liquor charging pump P 1 to again react with new gas. As such, it is internally circulated within the absorption process. A part of the internally circulated ammonium sulfate mother liquor is stored in the mother liquor storage tank 3. A part of the internally circulated ammonium sulfate mother liquor may be provided to the crystallization step without installing the mother liquor storage tank 3, but by providing the mother liquor storage tank 3, the ammonium sulfate mother liquor for the crystallization step is provided. There is an advantage that the flow rate can be easily managed at the time of replacement.

<晶出工程>
晶出工程は、コークス炉ガス中のアンモニアを吸収した硫安母液を、蒸発槽6、晶析槽4において加熱、減圧し、水分を蒸発して硫安母液の濃縮を行い、粒状硫安を析出させる工程である。
晶出工程は、図1に示すように、例えば、晶析槽4、熱交換器5、蒸発槽6と、これらを相互に連結する配管と、母液貯蔵タンク3と晶析槽4とを連結する配管Lと、各配管に設置された母液装入ポンプP、母液循環ポンプP、及びスラリー抜出ポンプPとを有する設備が用いられる。
<Crystalization process>
In the crystallization step, the ammonium sulfate mother liquor that has absorbed ammonia in the coke oven gas is heated and depressurized in the evaporating tank 6 and the crystallization tank 4 to evaporate water and concentrate the ammonium sulphate mother liquor to precipitate granular ammonium sulphate. It is.
As shown in FIG. 1, the crystallization step includes, for example, a crystallization tank 4, a heat exchanger 5, an evaporation tank 6, a pipe that interconnects these, a mother liquor storage tank 3, and a crystallization tank 4. a pipe L 1 of each piping installed mother liquor charging pump P 3, the mother liquor circulating pump P 4, and equipment and a slurry extraction pump P 5 is used.

具体的には、母液貯蔵タンク3に貯蔵された硫安母液を、母液装入ポンプPによって晶析槽4に貯蔵し、この晶析槽4から母液抜出ポンプPによって抜き出された硫安母液を、熱交換器5で加熱し、減圧された蒸発槽6内で濃縮し、晶析槽4にて結晶硫安を析出させる。その後、スラリー抜出ポンプPによって晶析槽4から硫安結晶スラリーを抜き出す。 Specifically, the ammonium sulfate mother liquor stored in the mother liquor storage tank 3 is stored in the crystallization tank 4 by the mother liquor charging pump P 3 , and the ammonium sulfate extracted from the crystallization tank 4 by the mother liquor extraction pump P 4 . The mother liquor is heated in the heat exchanger 5 and concentrated in the vacuumed evaporation tank 6, and crystal ammonium sulfate is precipitated in the crystallization tank 4. Thereafter, withdrawing the ammonium sulphate crystals slurry by slurry extraction pump P 5 from the crystallization tank 4.

<pH調整工程>
pH調整工程は、配管Lに設けられ、母液装入ポンプPによって母液貯蔵タンク3から晶析槽4に装入される硫安母液にアルカリ源を添加して、晶析槽4内の硫安母液のpHを1.7〜2.5、好ましくは1.8〜2.4に調整する工程である。
pH調整工程は、配管Lに連結された配管Lと、その配管Lに設けられた流量調整弁Bと、母液pH測定センサー7と、母液pH調整部8とを有する母液pH調整装置を用いて行われる。
<PH adjustment step>
pH adjustment step is provided in the pipe L 1, by adding an alkali source to the ammonium sulfate mother liquor which is charged from the mother liquor storage tank 3 into the crystallization tank 4 by mother liquor charged pump P 3, ammonium sulfate crystallization tank 4 This is a step of adjusting the pH of the mother liquor to 1.7 to 2.5, preferably 1.8 to 2.4.
The pH adjustment step is a mother liquor pH adjuster having a pipe L 2 connected to the pipe L 1 , a flow rate adjusting valve B provided in the pipe L 2 , a mother liquor pH measurement sensor 7, and a mother liquor pH adjuster 8. It is done using.

ここで、配管Lは、一端が配管Lに連結され、他端がアルカリ源の供給元(図示せず)に連結されている。また、流量調整弁Bは、アルカリ源の供給元から供給されるアルカリ源の流量を調節するための「アンモニア水装入量調整用自動制御弁」として機能するものである。
また、母液pH測定センサー7は、晶析槽4に装入された硫安母液のpHを測定するセンサーであり、母液pH調整部8は、母液pH測定センサー7に電気通信可能に接続され、当該母液pH測定センサー7から得られた信号に基づいて流量調整弁Bの開度を調節する機能を有する。本実施形態では、母液pH測定センサー7が検出する硫安母液のpHが、1.7〜2.5になるように、母液調整部8が流量調整弁Bを制御する。
Here, the pipe L 2 has one end connected to the pipe L 1 and the other end connected to a supply source (not shown) of the alkali source. The flow rate adjusting valve B functions as an “automatic control valve for adjusting the amount of charged ammonia water” for adjusting the flow rate of the alkali source supplied from the source of the alkali source.
The mother liquor pH measurement sensor 7 is a sensor for measuring the pH of the ammonium sulfate mother liquor charged in the crystallization tank 4, and the mother liquor pH adjuster 8 is connected to the mother liquor pH measurement sensor 7 so as to be capable of electrical communication. Based on a signal obtained from the mother liquor pH measurement sensor 7, it has a function of adjusting the opening degree of the flow rate adjustment valve B. In the present embodiment, the mother liquor adjustment unit 8 controls the flow rate adjustment valve B so that the pH of the ammonium sulfate mother liquor detected by the mother liquor pH measurement sensor 7 is 1.7 to 2.5.

(第2実施形態)
次に、本発明の粒状硫安の製造方法の第2実施形態について図面を参照して説明する。なお、本実施形態は、図1における配管Lを介して配管Lに供給されるアルカリ源及びその供給元に関する構成が異なるのみであるので、前述の第1実施形態と同一部分については、その説明を省略する。
(Second Embodiment)
Next, 2nd Embodiment of the manufacturing method of the granular ammonium sulfate of this invention is described with reference to drawings. The present embodiment, since the configuration for alkali source and a source is supplied to the pipe L 1 through a pipe L 2 in FIG. 1 is only different for the first embodiment and the same parts described above, The description is omitted.

図2は、本実施形態の粒状硫安の製造方法の製造フロー図である。図2に示すように、本実施形態では、アンモニア源の供給元が、コークス炉ガス精製の脱アンモニア工程において用いられるアンモニア水製造装置から発生するアンモニア水である。以下、このアンモニア水製造装置について説明する。
図2に示すように、アンモニア水製造装置20は、飽和塔21、凝縮器22、蒸留塔23、精留塔24、並びにこれらを接続する配管L〜L及び各配管に設けられるポンプP〜Pを有する。
FIG. 2 is a production flow diagram of the method for producing granular ammonium sulfate of the present embodiment. As shown in FIG. 2, in this embodiment, the supply source of the ammonia source is ammonia water generated from an ammonia water production apparatus used in the deammonia process of coke oven gas purification. Hereinafter, this ammonia water production apparatus will be described.
As shown in FIG. 2, the ammonia water production apparatus 20 includes a saturation column 21, a condenser 22, a distillation column 23, a rectification column 24, pipes L 3 to L 8 connecting them, and a pump P provided in each pipe. with a 6 ~P 8.

コークス炉ガス導入管1Aから飽和塔1に供給されるコークス炉ガスの一部は、飽和塔21に供給される。この飽和塔21は配管Lから供給されたアンモニア吸収液をコークス炉ガス(Cガス)と気液接触させてコークス炉ガスのアンモニア成分を吸収するものであって、飽和塔21でコークス炉ガスのアンモニア成分を吸収したアンモニア吸収液は、飽和塔21の下部に接続された配管Lに流入した後、送液ポンプPの吐出口に接続された配管Lを流通してアンモニア水製造装置20の凝縮器22に供給される。 A part of the coke oven gas supplied from the coke oven gas introduction pipe 1 </ b> A to the saturation tower 1 is supplied to the saturation tower 21. This saturation tower 21 be those ammonia absorbing liquid supplied from the pipe L 3 by gas-liquid contact with the coke oven gas (C gas) absorbs the ammonia component of the coke oven gas, coke oven gas saturated tower 21 The ammonia absorbing liquid that has absorbed the ammonia component flows into the pipe L 4 connected to the lower part of the saturation tower 21 and then flows through the pipe L 5 connected to the discharge port of the liquid feed pump P 6 to produce ammonia water. It is supplied to the condenser 22 of the apparatus 20.

アンモニア水製造装置20はコークス炉ガスからアンモニア成分を回収して25%アンモニア水を得るものであって、このアンモニア水製造装置20の凝縮器22で得られたアンモニア水は、配管L、及び流量調整弁Bを経て晶析槽4にpH調整液として供給される。
凝縮器22は、蒸留塔23の頂部から排出されたアンモニア蒸気を蒸留塔23の底部から排出された脱アンモニア吸収液により凝縮するものであって、この凝縮器22でアンモニア蒸気と熱交換したアンモニア吸収液は、蒸留塔23の上部に接続された配管Lから蒸留塔23に供給される。
The ammonia water production apparatus 20 recovers the ammonia component from the coke oven gas to obtain 25% ammonia water, and the ammonia water obtained in the condenser 22 of the ammonia water production apparatus 20 includes the pipe L 2 , and It is supplied as a pH adjusting liquid to the crystallization tank 4 through the flow rate adjusting valve B.
The condenser 22 condenses the ammonia vapor discharged from the top of the distillation column 23 with the deammonia absorbing liquid discharged from the bottom of the distillation column 23, and the ammonia exchanged heat with ammonia vapor in the condenser 22. The absorbing liquid is supplied to the distillation column 23 from a pipe L 7 connected to the upper portion of the distillation column 23.

蒸留塔23は、配管Lから供給されたアンモニア吸収液を蒸気により加熱してアンモニア吸収液のアンモニア成分をアンモニア蒸発とするものであって、この蒸留塔23でアンモニア成分と分離されたアンモニア吸収液は、蒸留塔23の底部に接続された配管Lに流入した後、送液ポンプPの吐出口に接続された配管Lを流通してアンモニア吸収塔21に供給される。
なお、凝縮器22で凝縮されたアンモニア蒸気の一部(アンモニア水)は、送液ポンプP及び配管Lを経て精留塔24に供給され、この精留塔24でアンモニア液として回収される。
Distillation column 23, the ammonia component of the ammonia absorption liquid been made to the ammonia evaporating ammonia absorbing liquid supplied from the pipe L 7 is heated by steam, ammonia absorption is separated from the ammonia component in the distillation column 23 liquid, after flowing into the pipe L 8 connected to the bottom of the distillation column 23, is fed to the ammonia absorption tower 21 flows through the pipe L 8 connected to the discharge port of the liquid feed pump P 7.
A part of the ammonia vapor (ammonia water) condensed in the condenser 22 is supplied to the rectification tower 24 via the liquid feed pump P 8 and the pipe L 6, and is recovered as an ammonia liquid in the rectification tower 24. The

なお、図2では、コークス炉ガスを分岐して飽和塔1と飽和塔21へ導入しているが、全く別系統のコークス炉ガスをそれぞれ飽和塔1と飽和塔21へ導入してもよい。また、精留塔24で得られたアンモニア水をpH制御に用いてもよい。
このように、pH調整用のアルカリ源として、アンモニア水製造装置20で生成されるアンモニア水を使用することで、低コストで粒子径のバラツキが少ない製品(粒状硫安)を得ることができる。
In FIG. 2, the coke oven gas is branched and introduced into the saturated tower 1 and the saturated tower 21, but entirely different coke oven gas may be introduced into the saturated tower 1 and the saturated tower 21, respectively. Moreover, you may use the ammonia water obtained by the rectification column 24 for pH control.
Thus, by using ammonia water produced by the ammonia water production apparatus 20 as an alkali source for pH adjustment, a product (particulate ammonium sulfate) with low particle size variation can be obtained at low cost.

(実施例1)
以下、本発明のある実施例について説明する。実施例1は、上述の第1実施形態(図1に示す装置フロー参照)に従い、連続的に粒状硫安を製造した。
晶析槽4内の硫安母液のpHが1.8〜2.4になるように母液pH調整装置を制御した。pHの経時変化を図4に示す。なお、飽和塔1から抜き出された硫安母液(8m/h)のpHは、1〜6.5の範囲で変動していた。また、母液pH調整装置の制御にあたっては、晶析槽4内に設けたpH測定センサー7の値を検知しながら母液のpHが1.8〜2.4の範囲内で一定となるように、母液装入ポンプPの吸引側において配管Lに接続された配管Lを介して供給されるアンモニア水の流量を制御するプロセスとした。
得られた粒状硫安の粒度分布と平均値を表1に示す。その結果、生成する粒状硫安の粒子径を2〜4mmに制御することが可能となった。
Example 1
Hereinafter, an embodiment of the present invention will be described. In Example 1, granular ammonium sulfate was continuously produced according to the above-described first embodiment (see the apparatus flow shown in FIG. 1).
The mother liquor pH adjuster was controlled so that the pH of the ammonium sulfate mother liquor in the crystallization tank 4 was 1.8 to 2.4. The change with time of pH is shown in FIG. Note that the pH of the ammonium sulfate mother liquor (8 m 3 / h) extracted from the saturation tower 1 varied in the range of 1 to 6.5. In controlling the mother liquor pH adjusting device, while detecting the value of the pH measurement sensor 7 provided in the crystallization tank 4, the pH of the mother liquor is constant within the range of 1.8 to 2.4. A process for controlling the flow rate of the ammonia water supplied through the pipe L 2 connected to the pipe L 1 on the suction side of the mother liquor charging pump P 3 was adopted.
Table 1 shows the particle size distribution and average value of the obtained granular ammonium sulfate. As a result, it became possible to control the particle diameter of the produced granular ammonium sulfate to 2 to 4 mm.

(比較例1)
一方、比較例1は、図3に示す装置フローに従い、飽和塔1から抜き出されるpHが1〜6.5で変動する母液(8m/h)を、pH調整なく母液装入ポンプP3にて晶析槽4へ直接供給して連続的に粒状硫安を製造した。なお、晶析槽4内のpHは1〜6.5で変動した。pHの経時変化を図5に示す。
得られた粒状硫安の粒度分布と平均値を表1に示す。その結果、生成された粒状硫安の粒子径は、1〜6mmの間でバラツキ、不均一な大きさのものとなった。
(Comparative Example 1)
On the other hand, in Comparative Example 1, according to the apparatus flow shown in FIG. 3, the mother liquor (8 m 3 / h), which is extracted from the saturation column 1 and fluctuates between 1 and 6.5, is supplied to the mother liquor charging pump P3 without pH adjustment. Then, it was directly supplied to the crystallization tank 4 to continuously produce granular ammonium sulfate. The pH in the crystallization tank 4 varied from 1 to 6.5. The change with time of pH is shown in FIG.
Table 1 shows the particle size distribution and average value of the obtained granular ammonium sulfate. As a result, the particle diameter of the produced granular ammonium sulfate varied between 1 and 6 mm and became non-uniform in size.

Figure 2014237566
Figure 2014237566

表1に示すように、実施例1によれば、硫安母液のpHを1.8〜2.4に調整するpH調整工程を含むことにより、大粒と称される2mm以上の粒子径の粒状硫安のうち、製品付加価値として高い2〜4mmに精度よく制御して生産することができる。
また、pH調整用のアルカリ源として、コークス炉ガス精製の脱アンモニア工程から発生するアンモニア水を使用することで、低コストで粒子径のバラツキが少ない製品(粒状硫安)を得ることができる。
以上、本発明について具体的に説明したが、本発明は、上記実施形態に示したものに限られるものでなく、その要旨を逸脱しない範囲で種々変更可能である。
As shown in Table 1, according to Example 1, by including a pH adjusting step for adjusting the pH of the ammonium sulfate mother liquor to 1.8 to 2.4, granular ammonium sulfate having a particle diameter of 2 mm or more, which is called a large particle, is obtained. Among them, it can be accurately controlled to produce 2 to 4 mm which is high as a product added value.
Further, by using ammonia water generated from the deammonia process of coke oven gas refining as an alkali source for pH adjustment, a product (particulate ammonium sulfate) with low particle size variation can be obtained at low cost.
Although the present invention has been specifically described above, the present invention is not limited to that shown in the above embodiment, and various modifications can be made without departing from the scope of the invention.

1 飽和塔
2 母液循環槽
3 母液貯蔵タンク
4 晶析槽
5 熱交換器
6 蒸発槽
7 母液pH測定用センサー
8 母液pH測定装置
20 アンモニア水製造装置
DESCRIPTION OF SYMBOLS 1 Saturation tower 2 Mother liquor circulation tank 3 Mother liquor storage tank 4 Crystallization tank 5 Heat exchanger 6 Evaporation tank 7 Mother liquor pH measurement sensor 8 Mother liquor pH measuring device 20 Ammonia water production apparatus

Claims (2)

コークス炉ガス中のアンモニアを、硫酸を含む硫安母液に吸収させる吸収工程と、前記硫安母液にアルカリ源を添加して前記硫安母液のpHを1.7〜2.5に調整するpH調整工程と、前記硫安母液から粒状硫安を晶出させる晶出工程とを含むことを特徴とする粒状硫安の製造方法。   An absorption step of absorbing ammonia in coke oven gas into an ammonium sulfate mother liquor containing sulfuric acid, and a pH adjustment step of adjusting the pH of the ammonium sulfate mother liquor to 1.7 to 2.5 by adding an alkali source to the ammonium sulfate mother liquor. And a crystallization step of crystallizing granular ammonium sulfate from the ammonium sulfate mother liquor. 前記アルカリ源が、コークス炉ガス精製の脱アンモニア工程から発生するアンモニア水であること特徴とする請求項1に記載の粒状硫安の製造方法。   The method for producing granular ammonium sulfate according to claim 1, wherein the alkali source is aqueous ammonia generated from a deammonia step of coke oven gas purification.
JP2013121122A 2013-06-07 2013-06-07 Production method of granular ammonium sulfate Active JP6060820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121122A JP6060820B2 (en) 2013-06-07 2013-06-07 Production method of granular ammonium sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121122A JP6060820B2 (en) 2013-06-07 2013-06-07 Production method of granular ammonium sulfate

Publications (2)

Publication Number Publication Date
JP2014237566A true JP2014237566A (en) 2014-12-18
JP6060820B2 JP6060820B2 (en) 2017-01-18

Family

ID=52135101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121122A Active JP6060820B2 (en) 2013-06-07 2013-06-07 Production method of granular ammonium sulfate

Country Status (1)

Country Link
JP (1) JP6060820B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103022A (en) * 1983-11-01 1985-06-07 Sumikin Coke Co Ltd Manufacture of granular ammonium sulfate
JPS63103820A (en) * 1986-10-20 1988-05-09 Nippon Steel Chem Co Ltd Production of granular ammonium sulfate
JPH01298016A (en) * 1988-05-25 1989-12-01 Kawasaki Steel Corp Method for removing ammonia in coke oven gas by absorbing and production of ammonium sulfate or liquid ammonia
JPH03502089A (en) * 1987-11-02 1991-05-16 リテック リミテッド Granular ammonium sulfate and its manufacturing method
JPH0426512A (en) * 1990-05-21 1992-01-29 Kawasaki Steel Corp Production of granular ammonium sulfate
JP2002193614A (en) * 2000-12-22 2002-07-10 Nippon Steel Chem Co Ltd Method of producing granular ammonium sulfate
JP2004010408A (en) * 2002-06-05 2004-01-15 Nippon Steel Chem Co Ltd Method of manufacturing granular ammonium sulfate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103022A (en) * 1983-11-01 1985-06-07 Sumikin Coke Co Ltd Manufacture of granular ammonium sulfate
JPS63103820A (en) * 1986-10-20 1988-05-09 Nippon Steel Chem Co Ltd Production of granular ammonium sulfate
JPH03502089A (en) * 1987-11-02 1991-05-16 リテック リミテッド Granular ammonium sulfate and its manufacturing method
JPH01298016A (en) * 1988-05-25 1989-12-01 Kawasaki Steel Corp Method for removing ammonia in coke oven gas by absorbing and production of ammonium sulfate or liquid ammonia
JPH0426512A (en) * 1990-05-21 1992-01-29 Kawasaki Steel Corp Production of granular ammonium sulfate
JP2002193614A (en) * 2000-12-22 2002-07-10 Nippon Steel Chem Co Ltd Method of producing granular ammonium sulfate
JP2004010408A (en) * 2002-06-05 2004-01-15 Nippon Steel Chem Co Ltd Method of manufacturing granular ammonium sulfate

Also Published As

Publication number Publication date
JP6060820B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
CN104925759B (en) Continuous production method of sulfuric acid with ultrahigh purity
CN204588905U (en) Ammonia type flue gas desulfurizing waste water evaporated crystallization device
CN204219812U (en) A kind of device of purification of organic acid
CN117361448A (en) Liquid-phase feed preparation process of electronic grade sulfuric acid
JP6060820B2 (en) Production method of granular ammonium sulfate
CN104211020B (en) The adjusting process of sulfuric acid apparatus production product diversification
CN103466658B (en) Sodium cyanide evaporation and concentration device and method
CN105129890A (en) Evaporating crystallizer
CN205099397U (en) High concentration sulfur acid sodium waste water evaporation crystallization process device
CN104129811A (en) Process for preparing zinc sulfate
CN104524806A (en) Urotropin complete continuous crystallization production technology and equipment
CN106621444B (en) A kind of novel double down film melting crystallizer and the technique for carrying out substance separation
CN108940092A (en) A kind of process with raw material ammonia water production denitration ammonium hydroxide
CN105854563A (en) Chemical waste gas desulfurization treatment process based on membrane absorption ammonia process
CN210845344U (en) Integrated crystallization device with continuous fine grain elimination circulation
CN103387483A (en) Production device and process of methanol alkali metal salts
CN204428874U (en) A kind of continuous condensing crystallizing device
CN104192864B (en) The preparation facilities of ammonium bifluoride with high purity and preparation method
CN102631825A (en) Processing method for tail gas generated in preparation of ammonium sulfate from phosphogypsum
CN208545143U (en) Integrated waste water treatment system
CN103191878B (en) The flusher of dual circulation separator and method in carbamide production system
CN202063718U (en) Production device for ultrahigh-purity electronic-grade phosphoric acid
CN205031925U (en) Para -tungstic acid hinge evaporation crystallization equipment
CN202015510U (en) Device for realizing vacuum rectification and vacuum evaporation of bisphenol A by using liquidring vacuum pump
CN104190100A (en) Countercurrent double-effect ammonia concentration device and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161128

R150 Certificate of patent or registration of utility model

Ref document number: 6060820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250