JP2014236536A - Radio power transmission system - Google Patents

Radio power transmission system Download PDF

Info

Publication number
JP2014236536A
JP2014236536A JP2013114896A JP2013114896A JP2014236536A JP 2014236536 A JP2014236536 A JP 2014236536A JP 2013114896 A JP2013114896 A JP 2013114896A JP 2013114896 A JP2013114896 A JP 2013114896A JP 2014236536 A JP2014236536 A JP 2014236536A
Authority
JP
Japan
Prior art keywords
power
unit
power receiving
power transmission
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013114896A
Other languages
Japanese (ja)
Other versions
JP5830495B2 (en
Inventor
啓輔 川原
Keisuke Kawahara
啓輔 川原
竹三 杉村
Takezo Sugimura
竹三 杉村
隆太 津田
Ryuta Tsuda
隆太 津田
勉 横山
Tsutomu Yokoyama
勉 横山
公一 成井
Koichi Narui
公一 成井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Original Assignee
Furukawa Electric Co Ltd
Furukawa Automotive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Automotive Systems Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2013114896A priority Critical patent/JP5830495B2/en
Publication of JP2014236536A publication Critical patent/JP2014236536A/en
Application granted granted Critical
Publication of JP5830495B2 publication Critical patent/JP5830495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radio power transmission system that selectively supplies power from a power transmission apparatus to a power reception apparatus and enables signal retention when the power reception apparatus is not supplied power from the power transmission apparatus.SOLUTION: In a radio power transmission system 100, each power reception apparatus 120 comprises: a power reception unit 121 for performing radio power transmission with a power transmission unit 111; a power reception side control unit 122 for controlling a load 10 connected with the power reception apparatus 120; a radio communication transmission/reception circuit 123 used in radio communication; and a power storage unit 124. The power storage unit 124 receives and stores power when the power reception unit 121 receives power from the power transmission unit 111, and supplies the stored power to the power reception side control unit 122 when the power reception unit 121 does not receive power from the power transmission unit 111.

Description

本発明は、1つの送電機器から複数の受電機器に対して無線で選択的に電力伝送を行う
無線電力伝送システムに関するものである。
The present invention relates to a wireless power transmission system that selectively performs power transmission wirelessly from one power transmission device to a plurality of power receiving devices.

近年、電源コード等を用いず無線で電力を機器に供給する無線電力伝送システムの開発が進められている。一例として、車両に搭載されたバッテリを外部電源を用いて充電する技術として、外部電源に接続された送電機器から車両側の受電機器に無線で電力伝送するものが知られている。外部電源を用いてバッテリを充電する無線電力伝送システムでは、1つの送電機器から1つの受電機器に送電が行われるため、その制御が比較的容易である。   In recent years, a wireless power transmission system that supplies power to devices wirelessly without using a power cord or the like has been developed. As an example, as a technique for charging a battery mounted on a vehicle using an external power source, a technology for wirelessly transmitting power from a power transmitting device connected to the external power source to a power receiving device on the vehicle side is known. In a wireless power transmission system that charges a battery using an external power source, power is transmitted from one power transmitting device to one power receiving device, and thus control thereof is relatively easy.

一方、1つの送電機器から複数の受電機器に対して、選択的に送電する無線電力伝送システムの開発も進められている。例えば、特許文献1では、送電機器が共鳴周波数を離散的または連続的に変化できるように構成され、複数の受電機器がそれぞれ固有の共鳴周波数を有する構成としている。そして、送電機器の共鳴周波数を変えることで、共鳴周波数が一致する受電機器に対して選択的に送電することが可能となっている。   On the other hand, development of a wireless power transmission system that selectively transmits power from one power transmitting device to a plurality of power receiving devices is also underway. For example, in Patent Document 1, the power transmission device is configured to be able to change the resonance frequency discretely or continuously, and each of the plurality of power receiving devices has a unique resonance frequency. Then, by changing the resonance frequency of the power transmission device, it is possible to selectively transmit power to the power receiving device having the same resonance frequency.

また特許文献2では、受電機器毎に、励振素子から整流回路への交流電力の供給/非供給を切り替える切替回路と、受電回路毎の受電の優先度を受け付ける受付手段とを設け、近距離無線通信手段を用いて各受電機器の優先度を判定することにより、各受電機器が同時に受電しないように切替回路を制御する技術が開示されている。   In Patent Document 2, a switching circuit that switches supply / non-supply of AC power from an excitation element to a rectifier circuit and a reception unit that receives priority of power reception for each power reception circuit are provided for each power receiving device, and short-range wireless A technique for controlling a switching circuit so that each power receiving device does not receive power simultaneously by determining the priority of each power receiving device using a communication means is disclosed.

特開2010−63245号公報JP 2010-63245 A 特開2011−19291号公報JP 2011-19291 A

しかしながら、送電機器から複数の受電機器に選択的に給電する無線電力伝送システムでは、受電機器が送電機器から受電しない期間が生じる。そのため、受電機器が外部から入力した信号等を保持している制御装置を内蔵していると、受電機器が送電機器から受電しなくなったとたんに、制御装置に保持されていた信号が消去されてしまう、といった問題が生じる。   However, in a wireless power transmission system that selectively supplies power to a plurality of power receiving devices from a power transmitting device, a period in which the power receiving device does not receive power from the power transmitting device occurs. Therefore, if the power receiving device has a built-in control device that holds signals input from the outside, the signal held in the control device is erased as soon as the power receiving device stops receiving power from the power transmission device. Problem arises.

例えば、複数の電気機器を搭載した自動車では、各電気機器を動作させるためのスイッチ信号や各種センサからの信号等がそれぞれの制御装置に入力されるが、信号入力後に送電機器からの給電が遮断されると、制御装置は入力信号を保持できず消去されてしまう。その結果、電気機器を正常に動作させることができなくなる、といった問題が生じる。   For example, in an automobile equipped with a plurality of electrical devices, switch signals for operating each electrical device and signals from various sensors are input to each control device, but power supply from the power transmission device is cut off after the signal is input. Then, the control device cannot hold the input signal and is erased. As a result, there arises a problem that the electric device cannot be operated normally.

本発明はこれらの問題を解決するためになされたものであり、送電機器から受電機器に選択的に給電するとともに、受電機器が送電機器から給電されないときの信号保持を可能とする無線電力伝送システムを提供することを目的とする。   The present invention has been made to solve these problems. A wireless power transmission system capable of selectively feeding power from a power transmitting device to a power receiving device and holding a signal when the power receiving device is not fed from the power transmitting device. The purpose is to provide.

本発明の無線電力伝送システムの第1の態様は、共鳴周波数が可変の送電機器と、それぞれ異なる固有の共鳴周波数を有してそれぞれに接続された負荷に電力供給する1以上の受電機器と、を備える無線電力伝送システムであって、前記送電機器は、共鳴周波数が可変な一次側共鳴部を具備して送電する送電部と、前記一次側共鳴部の共鳴周波数を制御する送電側制御部と、を備え、前記受電機器は、前記一次側共鳴部の共鳴周波数が前記固有の共鳴周波数に略等しいときに共鳴する二次側共鳴部を具備して前記送電部から受電する受電部と、前記受電部から受電するとともに接続先の前記負荷を制御する受電側制御部とを備えることを特徴とする。   According to a first aspect of the wireless power transmission system of the present invention, a power transmission device having a variable resonance frequency, and one or more power receiving devices that have different inherent resonance frequencies and supply power to loads connected thereto, A power transmission unit including a primary resonance unit having a variable resonance frequency, and a power transmission side control unit that controls a resonance frequency of the primary resonance unit. The power receiving device includes a secondary side resonance unit that resonates when the resonance frequency of the primary side resonance unit is substantially equal to the inherent resonance frequency, and receives power from the power transmission unit, And a power receiving side control unit that receives power from the power receiving unit and controls the load at the connection destination.

本発明の無線電力伝送システムの他の態様は、前記受電機器は、前記受電部から受電して蓄電する蓄電部を備え、前記1以上の受電機器は、前記送電機器から所定の時間間隔で離散的に順次受電し、前記1以上の受電機器のそれぞれの前記蓄電部は、それぞれの前記受電部が前記送電部からの受電を終了するとそれぞれの前記受電側制御部に電力を供給することを特徴とする。   In another aspect of the wireless power transmission system of the present invention, the power receiving device includes a power storage unit that receives and stores power from the power receiving unit, and the one or more power receiving devices are discrete from the power transmitting device at predetermined time intervals. The power storage units of each of the one or more power receiving devices supply power to the power receiving side control units when the power receiving units finish receiving power from the power transmission units. And

本発明の無線電力伝送システムの他の態様は、前記受電機器を2以上備え、前記受電部は、前記蓄電部の電圧が所定の電圧閾値まで低下すると、前記受電部の共鳴周波数が優先度の高い別の前記受電機器の共鳴周波数に自発的に切り替えられることを特徴とする。   According to another aspect of the wireless power transmission system of the present invention, the power receiving unit includes two or more power receiving devices. When the voltage of the power storage unit drops to a predetermined voltage threshold, the power receiving unit sets the resonance frequency of the power receiving unit to a priority level. It is characterized by being spontaneously switched to a higher resonance frequency of the power receiving device.

本発明の無線電力伝送システムの他の態様は、前記一次側共鳴部及び前記二次側共鳴部がコイルで構成されて前記送電部から前記受電部に磁界共鳴方式で送電され、前記受電部は、前記二次側共鳴部と直列または並列に接続された2以上のコンデンサを備えており、前記2以上のコンデンサのうち1以上のコンデンサの接続を自発的に切り替えることで前記共鳴周波数を前記優先度の高い別の受電機器の共鳴周波数に切り替えることを特徴とする。   According to another aspect of the wireless power transmission system of the present invention, the primary-side resonance unit and the secondary-side resonance unit are configured by coils, and are transmitted from the power transmission unit to the power reception unit by a magnetic field resonance method. Two or more capacitors connected in series or in parallel with the secondary resonance unit, and the resonance frequency is given priority by spontaneously switching the connection of one or more of the two or more capacitors. It is characterized by switching to the resonance frequency of another power receiving device having a high degree.

本発明の無線電力伝送システムの他の態様は、前記1以上のコンデンサは、前記蓄電部の電圧が前記所定の電圧閾値まで低下したときに接続が切り替えられることを特徴とする。   Another aspect of the wireless power transmission system of the present invention is characterized in that the connection of the one or more capacitors is switched when the voltage of the power storage unit drops to the predetermined voltage threshold.

本発明の無線電力伝送システムの他の態様は、前記一次側共鳴部及び前記二次側共鳴部がコンデンサで構成されて前記送電部から前記受電部に電界共鳴方式で送電され、前記受電部は、前記二次側共鳴部と直列または並列に接続された2以上のコイルを備えており、前記2以上のコイルのうち1以上のコイルの接続を自発的に切り替えることで前記共鳴周波数を前記優先度の高い別の受電機器の共鳴周波数に切り替えることを特徴とする。   According to another aspect of the wireless power transmission system of the present invention, the primary-side resonance unit and the secondary-side resonance unit are configured by a capacitor, and power is transmitted from the power transmission unit to the power reception unit by an electric field resonance method. , Including two or more coils connected in series or in parallel with the secondary side resonance unit, and the resonance frequency is given priority by spontaneously switching the connection of one or more of the two or more coils. It is characterized by switching to the resonance frequency of another power receiving device having a high degree.

本発明の無線電力伝送システムの他の態様は、前記1以上のコイルは、前記蓄電部の電圧が前記所定の電圧閾値まで低下したときに接続が切り替えられることを特徴とする。   Another aspect of the wireless power transmission system of the present invention is characterized in that the connection of the one or more coils is switched when the voltage of the power storage unit drops to the predetermined voltage threshold.

本発明の無線電力伝送システムの他の態様は、前記受電機器は、それぞれの前記受電部が前記送電部から受電するときに無線通信が可能となる無線通信送受信回路を備え、前記受電側制御部は、前記受電部が前記送電部から受電した電力を監視する電力監視手段を備え、前記電力監視手段は、前記受電した電力が前記固有の共鳴周波数で前記送電部から受電したときの電力より低い所定の電力閾値以下であると判定すると、当該の受電機器の前記無線通信送受信回路の動作を停止させることを特徴とする。   In another aspect of the wireless power transmission system of the present invention, the power receiving device includes a wireless communication transmitting / receiving circuit that enables wireless communication when each of the power receiving units receives power from the power transmitting unit, and the power receiving side control unit Comprises power monitoring means for monitoring the power received by the power receiving section from the power transmitting section, and the power monitoring means is lower than the power when the received power is received from the power transmitting section at the specific resonance frequency. When it is determined that the power is less than or equal to a predetermined power threshold value, the operation of the wireless communication transmitting / receiving circuit of the power receiving device is stopped.

本発明によれば、送電機器から受電機器に選択的に給電するとともに、受電機器が送電機器から給電されないときの信号保持を可能とする無線電力伝送システムを提供することが可能となる。   According to the present invention, it is possible to provide a wireless power transmission system that selectively feeds power from a power transmitting device to a power receiving device and that can retain a signal when the power receiving device is not powered from the power transmitting device.

本発明の第1実施形態の無線電力伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the wireless power transmission system of 1st Embodiment of this invention. 第1実施形態の無線電力伝送システムにおいて、送電機器から複数の受電機器に無線電力伝送方式で選択的に電力供給する一例を示す構成図である。In the wireless power transmission system of 1st Embodiment, it is a block diagram which shows an example which selectively supplies electric power with a wireless power transmission system from a power transmission apparatus to several power receiving apparatus. 第1実施形態の無線電力伝送システムの蓄電部から受電側制御部に電力供給されているときの蓄電部の電圧変化の一例を示すグラフである。It is a graph which shows an example of the voltage change of the electrical storage part when electric power is supplied to the receiving side control part from the electrical storage part of the wireless power transmission system of 1st Embodiment. 本発明の第2実施形態の無線電力伝送システムにおいて、送電機器から複数の受電機器に無線電力伝送方式で選択的に電力供給する一例を示す構成図である。In the wireless power transmission system of 2nd Embodiment of this invention, it is a block diagram which shows an example which selectively supplies electric power with a wireless power transmission system from a power transmission apparatus to several power receiving apparatus. 本発明の第2実施形態の無線電力伝送システムの構成、及び受電機器の構成を示すブロック図である。It is a block diagram which shows the structure of the wireless power transmission system of 2nd Embodiment of this invention, and the structure of a receiving device. 第2実施形態の無線電力伝送システムの受電機器の別の構成を示すブロック図である。It is a block diagram which shows another structure of the power receiving apparatus of the wireless power transmission system of 2nd Embodiment. 本発明の第3実施形態の無線電力伝送システムの受電機器の構成を示すブロック図である。It is a block diagram which shows the structure of the power receiving apparatus of the wireless power transmission system of 3rd Embodiment of this invention.

本発明の好ましい実施の形態における無線電力伝送システムについて、図面を参照して詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。   A wireless power transmission system according to a preferred embodiment of the present invention will be described in detail with reference to the drawings. In addition, about each structural part which has the same function, the same code | symbol is attached | subjected and shown for simplification of illustration and description.

電源に接続された1つの送電機器から複数の受電機器に選択的に給電するシステムの一例として、複数の受電機器を搭載し、それぞれが必要に応じてバッテリから受電して動作するように構成された自動車がある。従来の自動車では、バッテリから各受電機器に電力供給するための電源ケーブルや、各種制御に用いる信号を伝送ための信号線等からなるワイヤハーネスが大量に搭載されていた。これに対し、自動車の軽量化の要求から、ワイヤハーネスの削減が強く望まれていた。   As an example of a system that selectively supplies power to a plurality of power receiving devices from a single power transmitting device connected to a power source, a plurality of power receiving devices are mounted, each configured to receive power from a battery and operate as necessary. There is a car. In a conventional automobile, a large amount of wire harnesses including a power cable for supplying power to each power receiving device from a battery, a signal line for transmitting signals used for various controls, and the like are mounted. On the other hand, reduction of wire harnesses has been strongly desired due to the demand for weight reduction of automobiles.

本発明の無線電力伝送システムは、送電機器から複数の受電機器に選択的に無線電力伝送することが可能となっており、自動車のバッテリから複数の受電機器への給電に適用することにより、自動車の電源ケーブルを大幅に削減することができる。また、無線LANを自動車に搭載することで、各種制御に用いる信号等を無線通信で送受信することが可能となり、信号線を大幅に削減することができる。以下では、本発明の無線電力伝送システムを自動車の電力伝送に適用した場合を例に、本発明の無線電力伝送システムの実施形態を説明する。ここで、自動車には無線LANが搭載されているものとする。   The wireless power transmission system of the present invention can selectively transmit wireless power from a power transmission device to a plurality of power receiving devices, and can be applied to power supply from a vehicle battery to a plurality of power receiving devices. The power cable can be greatly reduced. In addition, by installing a wireless LAN in an automobile, signals and the like used for various controls can be transmitted and received by wireless communication, and signal lines can be greatly reduced. In the following, an embodiment of the wireless power transmission system of the present invention will be described by taking as an example the case where the wireless power transmission system of the present invention is applied to power transmission of an automobile. Here, it is assumed that the vehicle is equipped with a wireless LAN.

(第1実施形態)
本発明の第1の実施形態に係る無線電力伝送システムを、図1、2を用いて説明する。図1は、本実施形態の無線電力伝送システム100の構成を示すブロック図である。また図2は、本実施形態の無線電力伝送システム100において、送電機器110から複数の受電機器120に無線電力伝送方式で選択的に電力供給する一例を示す構成図である。ここでは、一例として受電機器120が4つ(120−1〜4とする。)配置されているものとしているが、受電機器120の個数はこれに限定されず1以上あればよい。
(First embodiment)
A wireless power transmission system according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram illustrating a configuration of a wireless power transmission system 100 according to the present embodiment. FIG. 2 is a configuration diagram showing an example of selectively supplying power from the power transmitting device 110 to the plurality of power receiving devices 120 by the wireless power transmission method in the wireless power transmission system 100 of the present embodiment. Here, as an example, four power receiving devices 120 (120-1 to 4) are arranged, but the number of power receiving devices 120 is not limited to this and may be one or more.

送電機器110と受電機器120−1〜4との間は、無線LANで通信されるものとする。図2では、送電機器110から各受電機器120への給電を実線の矢印で示し、無線通信を破線で示している。送電機器110と各受電機器120との間の無線通信では、送受電制御を行うための制御信号等が送受信される。   It is assumed that the power transmitting device 110 and the power receiving devices 120-1 to 120-4 communicate with each other via a wireless LAN. In FIG. 2, power feeding from the power transmitting device 110 to each power receiving device 120 is indicated by a solid arrow, and wireless communication is indicated by a broken line. In wireless communication between the power transmission device 110 and each power reception device 120, a control signal or the like for performing power transmission / reception control is transmitted and received.

図2に示す一例では、送電機器110と受電機器120−1〜4との間の通信が適切に行われるようにするために、送電機器110と受電機器120−1〜4のそれぞれとの間の通信が、通常は所定の時間間隔で順番に行われ、これが順次繰り返されるものとしている。すなわち、送電機器110は、図2に示す番号(1)〜(4)の順に受電機器120−1〜4との間で通信を行い、受電機器120−4との通信を終了すると再び受信機器120−1との通信に戻る(番号(5))。以下同様にして、受電機器120−1〜4の順に通信を繰り返す。   In the example illustrated in FIG. 2, between the power transmission device 110 and the power reception devices 120-1 to 4, in order to appropriately perform communication between the power transmission device 110 and the power reception devices 120-1 to 120-4. These communications are normally performed in order at predetermined time intervals, and this is repeated sequentially. That is, the power transmission device 110 communicates with the power receiving devices 120-1 to 120-4 in the order of numbers (1) to (4) illustrated in FIG. 2, and when the communication with the power receiving device 120-4 ends, the receiving device again. Return to communication with 120-1 (number (5)). Similarly, the communication is repeated in the order of the power receiving devices 120-1 to 120-4.

上記のように、送電機器110と受電機器120−1〜4との通信が順次行われるようにするには、通信対象となった受電機器120が無線通信を行うのに必要な電力を確保する必要がある。そこで、送電機器110は、通信対象となる受電機器120に対して電力を無線伝送すると同時に無線通信を開始するものとする。また、通信対象の受電機器120に接続された負荷に対しても、必要な電力を供給するものとする。   As described above, in order to sequentially perform communication between the power transmitting device 110 and the power receiving devices 120-1 to 120-4, the power required for the power receiving device 120 that is a communication target to perform wireless communication is secured. There is a need. Therefore, the power transmission device 110 wirelessly transmits power to the power receiving device 120 that is a communication target, and at the same time starts wireless communication. It is also assumed that necessary power is supplied to a load connected to the power receiving device 120 to be communicated.

ここで、送電機器110から複数の受電機器120に選択的に無線電力伝送するように構成した場合には、各受電機器120が送電機器110から給電されない期間が生じ、これにより以下のような課題が発生する。受電機器120−1〜4には、それぞれ負荷が接続されており、各負荷を制御するための制御部(受電側制御部)が備えられている。制御部は、外部から入力した負荷を動作させるためのスイッチ信号や各種センサからの信号等を保持しているが、送電機器110から給電されなくなると、これらの信号を保持することができなくなる。そこで、本実施形態の無線電力伝送システム100では、受電機器120−1〜4が送電機器110から給電されない期間も制御部に電力供給できるように構成されている。   Here, when the wireless power transmission is configured to be selectively transmitted from the power transmission device 110 to the plurality of power reception devices 120, a period in which each power reception device 120 is not supplied with power from the power transmission device 110 occurs. Occurs. Each of the power receiving devices 120-1 to 120-4 is connected to a load, and includes a control unit (power receiving side control unit) for controlling each load. The control unit holds a switch signal for operating a load input from the outside, signals from various sensors, and the like. However, when power is not supplied from the power transmission device 110, the control unit cannot hold these signals. Therefore, the wireless power transmission system 100 according to the present embodiment is configured such that power can be supplied to the control unit even during a period in which the power receiving devices 120-1 to 120-4 are not supplied with power from the power transmission device 110.

図1に示す本実施形態の無線電力伝送システム100において、送電機器110は、無線電力伝送を行う送電部111と、送電部111を制御する送電側制御部112と、無線通信に用いる無線通信送受信回路113とを備えている。また、受電機器120はそれぞれ、送電部111との間で無線電力伝送を行う受電部121と、受電機器120に接続された負荷10を制御する受電側制御部122と、無線通信に用いる無線通信送受信回路123とを備えている。   In the wireless power transmission system 100 of the present embodiment illustrated in FIG. 1, the power transmission device 110 includes a power transmission unit 111 that performs wireless power transmission, a power transmission side control unit 112 that controls the power transmission unit 111, and wireless communication transmission / reception used for wireless communication. Circuit 113. In addition, each of the power receiving devices 120 includes a power receiving unit 121 that performs wireless power transmission with the power transmitting unit 111, a power receiving side control unit 122 that controls the load 10 connected to the power receiving device 120, and wireless communication used for wireless communication. And a transmission / reception circuit 123.

受電側制御部122は、負荷10を制御するとともに、受電部121で受電した電力を負荷10に供給している。また、受電側制御部122には、スイッチ信号やセンサ信号等を外部から入力するための信号入力部11を接続することができる。信号入力部11から入力された信号は、受電側制御部122に保存されて負荷10の制御に用いることができる。   The power receiving side control unit 122 controls the load 10 and supplies the power received by the power receiving unit 121 to the load 10. In addition, the power receiving side control unit 122 can be connected to a signal input unit 11 for inputting a switch signal, a sensor signal, and the like from the outside. The signal input from the signal input unit 11 is stored in the power receiving side control unit 122 and can be used for controlling the load 10.

送電部111は、共鳴周波数が可変の一次側共鳴部(図示せず)を備える一方、受電部121は、それぞれの受電機器120で異なる固有の共鳴周波数を持つ二次側共鳴部(図示せず)を備えている。送電部111は、送電側制御部112からの制御により、一次側共鳴部の共鳴周波数を各受電部121の二次側共鳴部の共鳴周波数に順次合わせていくことで、一次側共鳴部と二次側共鳴部との間の共鳴により各受電部121に送電することができる。これにより、各受電機器120は、一次側共鳴部の共鳴周波数が当該の二次側共鳴部の固有の共鳴周波数と一致する間だけ、送電機器110から離散的に受電することができる。   The power transmission unit 111 includes a primary side resonance unit (not shown) whose resonance frequency is variable, while the power reception unit 121 is a secondary side resonance unit (not shown) having a unique resonance frequency that is different for each power receiving device 120. ). The power transmission unit 111 sequentially adjusts the resonance frequency of the primary side resonance unit to the resonance frequency of the secondary side resonance unit of each power reception unit 121 by the control from the power transmission side control unit 112, thereby Power can be transmitted to each power receiving unit 121 by resonance with the secondary resonance unit. Accordingly, each power receiving device 120 can receive power discretely from the power transmitting device 110 only while the resonance frequency of the primary side resonance unit matches the unique resonance frequency of the secondary side resonance unit.

一次側共鳴部と二次側共鳴部との間の共鳴方式として、磁界共鳴方式と電界共鳴方式のいずれを用いてもよい。磁界共鳴方式を用いるときは、一次側共鳴部及び二次側共鳴部はそれぞれコイルで構成される。また電界共鳴方式を用いるときは、一次側共鳴部及び二次側共鳴部はそれぞれコンデンサで構成される。以下では、一例として磁界共鳴方式を用いる場合について説明する。   As a resonance method between the primary side resonance unit and the secondary side resonance unit, either a magnetic field resonance method or an electric field resonance method may be used. When the magnetic field resonance method is used, each of the primary side resonance unit and the secondary side resonance unit is constituted by a coil. When the electric field resonance method is used, each of the primary side resonance unit and the secondary side resonance unit is constituted by a capacitor. Below, the case where a magnetic field resonance system is used as an example is demonstrated.

受電機器120は、上記構成に加えて、さらに蓄電部124を備えている。蓄電部124は、受電部121が送電部111から受電したときに、受電部121から受電して蓄電することができる。受電部121が送電部111から受電している間は、受電側制御部122及び無線通信送受信回路123も受電部121から受電して所定の動作を行う。   The power receiving apparatus 120 further includes a power storage unit 124 in addition to the above configuration. The power storage unit 124 can receive power from the power receiving unit 121 and store the power when the power receiving unit 121 receives power from the power transmitting unit 111. While the power receiving unit 121 is receiving power from the power transmitting unit 111, the power receiving side control unit 122 and the wireless communication transmitting / receiving circuit 123 also receive power from the power receiving unit 121 and perform predetermined operations.

送電側制御部112からの制御により、一次側共鳴部の共振周波数が別の受電機器120の共鳴周波数に切り替えられると、それまで受電していた受電機器120の受電部121は送電部111から受電できなくなり、当該受電機器120の受電側制御部122及び無線通信送受信回路123は、その動作を停止する。しかしながら、受電側制御部122に保存されている信号を保持することが必要となることから、当該受電機器120の受電部121が送電部111から受電しなくなったのちも保持するための電力が必要である。   When the resonance frequency of the primary-side resonance unit is switched to the resonance frequency of another power reception device 120 by the control from the power transmission side control unit 112, the power reception unit 121 of the power reception device 120 that has received power until then is received from the power transmission unit 111. The power receiving side control unit 122 and the wireless communication transmitting / receiving circuit 123 of the power receiving device 120 stop operating. However, since it is necessary to hold the signal stored in the power receiving side control unit 122, electric power is required to hold the power receiving unit 120 after the power receiving unit 121 of the power receiving device 120 stops receiving power from the power transmission unit 111. It is.

そこで、受電機器120が送電機器110からの受電を終了してからつぎに再び受電するまでの期間は、蓄電部124が受電側制御部122に給電する構成としている。受電側制御部122は、受電部121から受電できない期間は蓄電部124から受電することができ、入力信号を保持することができる。そして、受電機器120が送電機器110から再び受電したときに、受電機器120を適切に動作させることが可能となる。   Therefore, the power storage unit 124 supplies power to the power receiving side control unit 122 during a period from when the power receiving device 120 finishes receiving power from the power transmitting device 110 to when it next receives power again. The power receiving side control unit 122 can receive power from the power storage unit 124 during a period in which power cannot be received from the power receiving unit 121 and can hold an input signal. Then, when the power receiving device 120 receives power from the power transmitting device 110 again, the power receiving device 120 can be appropriately operated.

蓄電部124の容量は、受電側制御部122が信号を保持するのに必要な電圧下限値(動作電圧閾値V1とする。)と信号保持を行う動作時間(T1とする。)とに基づいて決定される。ここで、動作時間T1は、受電機器120が送電機器110から給電されたのちつぎに給電されるまでの時間間隔に相当する。蓄電部124から受電側制御部122に電力供給されているときの蓄電部124の電圧変化の一例を図3に示す。図3では、蓄電部124から受電側制御部122に電力供給を開始してからの経過時間が横軸に示され、蓄電部124の電圧が縦軸に示されている。   The capacity of the power storage unit 124 is based on a voltage lower limit value (referred to as an operating voltage threshold value V1) necessary for the power receiving side control unit 122 to hold a signal and an operation time (T1) during which the signal is held. It is determined. Here, the operation time T1 corresponds to a time interval from when the power receiving device 120 is supplied with power from the power transmission device 110 to when power is supplied next. FIG. 3 shows an example of a voltage change in the power storage unit 124 when power is supplied from the power storage unit 124 to the power receiving side control unit 122. In FIG. 3, the elapsed time from the start of power supply from the power storage unit 124 to the power receiving side control unit 122 is shown on the horizontal axis, and the voltage of the power storage unit 124 is shown on the vertical axis.

図3では、蓄電部124から受電側制御部122への電力供給が開始されると、蓄電部124の電圧が時間とともに低下することが示されている。そして、動作時間T1が経過したときに、蓄電部124の電圧が動作電圧閾値V1以上を確保していることが要求される。動作時間T1が経過したときの電圧が動作電圧閾値V1以上となるように蓄電部124の容量を決定することで、受電側制御部122は信号保持に必要な電力を蓄電部124から受電することができる。   FIG. 3 shows that when power supply from the power storage unit 124 to the power receiving side control unit 122 is started, the voltage of the power storage unit 124 decreases with time. When the operation time T1 has elapsed, it is required that the voltage of the power storage unit 124 is ensured to be equal to or higher than the operation voltage threshold V1. By determining the capacity of the power storage unit 124 so that the voltage when the operating time T1 has elapsed is equal to or higher than the operating voltage threshold V1, the power receiving side control unit 122 receives the power necessary for holding the signal from the power storage unit 124. Can do.

本実施形態の無線電力伝送システム100によれば、送電機器110から受電機器120に所定の時間間隔で選択的に無線電力伝送させることができ、各受電機器120に設けられた受電側制御部122は、受電部121から受電できない期間も蓄電部124から受電して必要な信号を保持することが可能となる。   According to the wireless power transmission system 100 of the present embodiment, it is possible to selectively transmit wireless power from the power transmitting device 110 to the power receiving device 120 at predetermined time intervals, and the power receiving side control unit 122 provided in each power receiving device 120. Can receive power from the power storage unit 124 and hold necessary signals even during a period during which power cannot be received from the power receiving unit 121.

(第2実施形態)
本発明の第2実施形態に係る無線電力伝送システムについて、図4、5を用いて説明する。図4は、図2と同様に、本実施形態の無線電力伝送システム200において、送電機器110から複数の受電機器220に無線電力伝送方式で選択的に電力供給する一例を示す構成図である。ここでも、受電機器の個数を説明簡単のため4つとしている。また図5は、(a)に本実施形態の無線電力伝送システム200の構成を示し、(b)に受電機器220の構成を示している。
(Second Embodiment)
A wireless power transmission system according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a configuration diagram showing an example of selectively supplying power from the power transmitting device 110 to the plurality of power receiving devices 220 by the wireless power transmission method in the wireless power transmission system 200 of the present embodiment, as in FIG. 2. Again, the number of power receiving devices is four for simplicity of explanation. 5A shows the configuration of the wireless power transmission system 200 according to the present embodiment, and FIG. 5B shows the configuration of the power receiving device 220.

本実施形態の無線電力伝送システム200では、第1実施形態と同様に、通常は送電機器110と受電機器220−1〜4との間で順次無線電力伝送が行われるが、これに加えて優先度の高い受電機器220への割り込み操作を可能としている。図4では、一例として受電機器220−3を、優先度の高い受電機器としている。   In the wireless power transmission system 200 of the present embodiment, normally, wireless power transmission is normally performed between the power transmitting device 110 and the power receiving devices 220-1 to 220-4 in the same manner as in the first embodiment. An interrupt operation to the power receiving device 220 with high frequency is possible. In FIG. 4, as an example, the power receiving device 220-3 is a power receiving device with a high priority.

図4において、受電機器220−1から(1)〜(4)の順に受電機器220−4まで選択的に給電され、つぎに再び受電機器220−1に給電されるタイミングにおいて、優先度の高い受電機器220−3に割り込み操作が行われた場合を示している。優先度の高い受電機器220−3への割り込み操作があると、送電機器110の送電側制御部112は、送電部111の共鳴周波数を、受電機器220−1の共鳴周波数でなく受電機器220−3の共鳴周波数に一致させる。これにより、送電機器110は受電機器220−1に給電せず受電機器220−3に給電する(図4に示す番号(5))。受電機器220−3への割り込み操作は、例えば受電機器220−3の起動要求信号が送電機器110の無線通信送受信回路113に送信され、これが送電側制御部112に出力されることで上記の共鳴周波数の切り替えが行われる。   In FIG. 4, the power receiving device 220-1 to the power receiving device 220-4 are selectively supplied in order of (1) to (4), and then the power receiving device 220-1 is again supplied with high priority. A case where an interruption operation is performed on the power receiving device 220-3 is illustrated. When there is an interrupt operation to the power receiving device 220-3 having a high priority, the power transmission side control unit 112 of the power transmission device 110 sets the resonance frequency of the power transmission unit 111 to the power receiving device 220- instead of the resonance frequency of the power receiving device 220-1. 3 resonance frequency. As a result, the power transmitting device 110 supplies power to the power receiving device 220-3 without supplying power to the power receiving device 220-1 (number (5) shown in FIG. 4). The interruption operation to the power receiving device 220-3 is performed by, for example, transmitting the activation request signal of the power receiving device 220-3 to the wireless communication transmission / reception circuit 113 of the power transmission device 110 and outputting the signal to the power transmission side control unit 112. Frequency switching is performed.

上記のように、優先度の高い受電機器220−3への割り込み操作があると、受電機器220−4のつぎに再び給電される予定であった受電機器220−1への給電は、受電機器220−3への給電が終了したのちに行われる(図4に示す番号(6))。その結果、受電機器220−1は、前回給電されてからつぎに給電されるまでの時間間隔が通常の時間間隔より長くなってしまい、その間に蓄電部224が放電してしまうおそれがある。蓄電部224が放電してしまうと、受電側制御部222の信号を保持できなくなり、受電機器220−1に接続された負荷10の制御が適切に行えなくなるおそれがある。   As described above, when there is an interrupt operation to the power receiving device 220-3 having a high priority, the power feeding to the power receiving device 220-1 that is scheduled to be powered again after the power receiving device 220-4 is performed. This is performed after power supply to 220-3 is completed (number (6) shown in FIG. 4). As a result, in power receiving device 220-1, the time interval from the previous power supply to the next power supply becomes longer than the normal time interval, and power storage unit 224 may be discharged during that time. If the power storage unit 224 is discharged, the signal of the power receiving side control unit 222 cannot be held, and the load 10 connected to the power receiving device 220-1 may not be properly controlled.

そこで、本実施形態の無線電力伝送システム200では、受電機器220−1の蓄電部224に蓄電された電力が消費されると、受電部221が送電機器110の送電部111から自発的に受電を開始するように構成されている。送電機器110から優先度の高い受電機器220−3に送電が行われているとき、受電機器220−1も同時に送電機器110から受電できるようにするために、受電機器220−1の受電部221の共鳴周波数を、優先度の高い受電機器220−3の共鳴周波数に一致させるようにする。   Thus, in the wireless power transmission system 200 of the present embodiment, when the power stored in the power storage unit 224 of the power receiving device 220-1 is consumed, the power receiving unit 221 receives power spontaneously from the power transmission unit 111 of the power transmission device 110. Configured to start. When power is being transmitted from the power transmitting device 110 to the power receiving device 220-3 having a high priority, the power receiving unit 221 of the power receiving device 220-1 is also configured so that the power receiving device 220-1 can also receive power from the power transmitting device 110 at the same time. Is made to coincide with the resonance frequency of the power receiving device 220-3 having a high priority.

蓄電部124の蓄電電力が消費されたときに、共鳴周波数を優先度の高い受電機器220−3の共鳴周波数に一致させるように構成された受電機器220を、図5(b)に示す。本実施形態の受電機器220は、受電部221の構成が第1実施形態の受電部121と異なっている。図5(b)では、受電部221が送電部111から磁界共鳴方式で受電する場合の構成が示されている。受電部221は、第1実施形態の受電部121と同様に、二次側共鳴部である二次側共鳴コイル231とコンデンサ(第1コンデンサとする。)232と二次側誘導コイル233と整流回路234とを備えている。二次側共鳴コイル231が送電部111の一次側共鳴コイル(図示せず。)との磁気共鳴で受電すると、二次側誘導コイル233に交流電流が流れ、これが整流回路234で直流に整流されて受電側制御部222及び無線通信送受信回路223に供給される。受電側制御部222に供給された電力は、さらに負荷10に供給される。   FIG. 5B illustrates the power receiving device 220 configured to match the resonance frequency with the resonance frequency of the power receiving device 220-3 having a high priority when the stored power of the power storage unit 124 is consumed. The power receiving device 220 according to the present embodiment is different from the power receiving unit 121 according to the first embodiment in the configuration of the power receiving unit 221. FIG. 5B shows a configuration in the case where the power receiving unit 221 receives power from the power transmitting unit 111 by the magnetic field resonance method. Similarly to the power reception unit 121 of the first embodiment, the power reception unit 221 includes a secondary side resonance coil 231 that is a secondary side resonance unit, a capacitor (referred to as a first capacitor) 232, a secondary side induction coil 233, and rectification. Circuit 234. When the secondary resonance coil 231 receives power by magnetic resonance with the primary resonance coil (not shown) of the power transmission unit 111, an alternating current flows through the secondary induction coil 233, and this is rectified to direct current by the rectifier circuit 234. To the power receiving side control unit 222 and the wireless communication transmitting / receiving circuit 223. The electric power supplied to the power receiving side control unit 222 is further supplied to the load 10.

本実施形態の受電部221は、第1コンデンサ232と並列にさらに別のコンデンサ(第2コンデンサとする。)235が接続され、第2コンデンサ235の接続をオン/オフするためのリレー236が設けられている。図5(b)では、二次側共鳴コイル231と2つのコンデンサ232、235とが並列に接続されているが、これに限定されず、二次側共鳴コイル231と2つのコンデンサ232、235とが直列に接続されていてもよい。   In the power receiving unit 221 of this embodiment, another capacitor (referred to as a second capacitor) 235 is connected in parallel with the first capacitor 232, and a relay 236 for turning on / off the connection of the second capacitor 235 is provided. It has been. In FIG. 5B, the secondary resonance coil 231 and the two capacitors 232 and 235 are connected in parallel. However, the present invention is not limited to this, and the secondary resonance coil 231 and the two capacitors 232 and 235 are connected. May be connected in series.

リレー236は、蓄電部224に蓄電されているときは励磁されて閉となり、蓄電部224の蓄電電力が減少すると励磁されなくなって開となる。二次側共鳴コイル231のインダクタンスをL、第1コンデンサ232及び第2コンデンサ235のそれぞれの容量をC1、C2とし、両者の合成容量をCとするとき、リレー236が閉のときの受電部221の共鳴周波数は、第1コンデンサ232と第2コンデンサ235の合成容量Cと二次側共鳴コイル231のインダクタンスLとから決定される固有の共鳴周波数となる。   Relay 236 is energized and closed when power is stored in power storage unit 224, and is not excited and opened when the power stored in power storage unit 224 decreases. When the inductance of the secondary resonance coil 231 is L, the capacities of the first capacitor 232 and the second capacitor 235 are C1 and C2, and the combined capacity of both is C, the power receiving unit 221 when the relay 236 is closed This resonance frequency is a specific resonance frequency determined from the combined capacitance C of the first capacitor 232 and the second capacitor 235 and the inductance L of the secondary resonance coil 231.

これに対し、蓄電部224の蓄電電力が低下してリレー236が開になると、受電部221の共鳴周波数は、第1コンデンサ232の容量C1と二次側共鳴コイル231のインダクタンスLとから決定される周波数となる。蓄電部224の蓄電電力が少なくなってリレー234が開になったときは、送電機器110から受電できるように受電部221の共鳴周波数を優先度の高い受電機器220−3の共鳴周波数に一致させる必要がある。そこで、第1コンデンサ232の容量C1と二次側共鳴コイル231のインダクタンスLとから決定される共鳴周波数が優先度の高い受電機器220−3の共鳴周波数に一致するように、第1コンデンサ232の容量C1を決定しておく。   In contrast, when the stored power of the power storage unit 224 decreases and the relay 236 is opened, the resonance frequency of the power reception unit 221 is determined from the capacitance C1 of the first capacitor 232 and the inductance L of the secondary resonance coil 231. Frequency. When the power stored in the power storage unit 224 is reduced and the relay 234 is opened, the resonance frequency of the power reception unit 221 is matched with the resonance frequency of the power reception device 220-3 having a high priority so that power can be received from the power transmission device 110. There is a need. Therefore, the first capacitor 232 has a resonance frequency determined from the capacitance C1 of the first capacitor 232 and the inductance L of the secondary resonance coil 231 so that it matches the resonance frequency of the power receiving device 220-3 having a high priority. The capacity C1 is determined in advance.

受電機器220−1の受電部221は、第2コンデンサ235が接続されて固有の共鳴周波数で磁気共鳴する通常の無線電力伝送のときに、送電機器110から効率的に受電できるようにインピーダンス整合が行われている。そのため、第2コンデンサ235の接続がオフにされて第1コンデンサ232のみが接続されているときは、インピーダンスの不整合により給電される電力が低下する。   The power receiving unit 221 of the power receiving device 220-1 has impedance matching so that power can be efficiently received from the power transmitting device 110 during normal wireless power transmission in which the second capacitor 235 is connected and magnetic resonance is performed at a specific resonance frequency. Has been done. For this reason, when the connection of the second capacitor 235 is turned off and only the first capacitor 232 is connected, the power supplied by the impedance mismatch is reduced.

二次側共鳴コイル231に第1コンデンサ232と第2コンデンサ235とが接続されて固有の共鳴周波数で効率的に受電するときの受電部221のインピーダンスをZ0とし、第2コンデンサ235の接続がオフにされたときの受電部221のインピーダンスをZとする。また、受電側制御部222が通常の動作で必要とする電力をP0とし、受電側制御部222が信号を保持するのに必要な電力をP1とする。ここで、説明簡単のため、整合インピーダンスZ0のときに受電部221が送電部111から受電する電力は、受電側制御部122が通常の動作で必要とする電力P0に等しいとする。   When the first capacitor 232 and the second capacitor 235 are connected to the secondary resonance coil 231, and the power is received efficiently at a specific resonance frequency, the impedance of the power receiving unit 221 is Z0, and the connection of the second capacitor 235 is off. Let Z be the impedance of the power receiving unit 221 when the power is set. Further, the power required by the power receiving side control unit 222 for normal operation is P0, and the power required for the power receiving side control unit 222 to hold a signal is P1. Here, for simplicity of explanation, it is assumed that the power received by the power receiving unit 221 from the power transmitting unit 111 when the matching impedance is Z0 is equal to the power P0 required by the power receiving side control unit 122 for normal operation.

蓄電部224の蓄電電力が低下して第2コンデンサ235の接続がオフにされたのちは、インピーダンスの不整合により給電される電力が低下するが、少なくとも受電側制御部222が信号を保持するのに必要な電力P1を送電機器110の送電部111から受電する必要がある。受電部221のインピーダンスがZのときの反射係数ρは、次式で与えられる。

Figure 2014236536
After the stored power of the power storage unit 224 is reduced and the connection of the second capacitor 235 is turned off, the power supplied due to impedance mismatch is reduced, but at least the power receiving side control unit 222 holds the signal. It is necessary to receive the power P <b> 1 necessary for the power transmission from the power transmission unit 111 of the power transmission device 110. The reflection coefficient ρ when the impedance of the power receiving unit 221 is Z is given by the following equation.
Figure 2014236536

これより、受電部221のインピーダンスがZのとき、受電部221が送電部111から受電する電力は、(1―ρ)P0となる。この受電電力は、次式で示すように、受電側制御部222が信号を保持するのに必要な電力P1より高いことが要求される。
P1<(1―ρ)P0 (2)
Accordingly, when the impedance of the power receiving unit 221 is Z, the power received by the power receiving unit 221 from the power transmitting unit 111 is (1−ρ) P0. This received power is required to be higher than the power P1 necessary for the power receiving side control unit 222 to hold a signal, as shown by the following equation.
P1 <(1-ρ) P0 (2)

よって、受電部221のインピーダンスZ0,Zを、式(2)を満たすように決定する必要がある。第1コンデンサ232の容量C1は、二次側共鳴コイル231のインダクタンスLとで決定される共鳴周波数が優先度の高い受電機器220−3の共鳴周波数に一致するように決定されることから、式(2)を満たすように第2コンデンサ235の容量C2を決定する必要がある。また、このように決定された第1コンデンサ235の容量C1と第2コンデンサ235の容量C2との合成容量Cから、受電部221の固有の共鳴周波数が決定される。   Therefore, it is necessary to determine the impedances Z0 and Z of the power receiving unit 221 so as to satisfy Expression (2). The capacitance C1 of the first capacitor 232 is determined so that the resonance frequency determined by the inductance L of the secondary resonance coil 231 matches the resonance frequency of the power receiving device 220-3 having a high priority. It is necessary to determine the capacitance C2 of the second capacitor 235 so as to satisfy (2). In addition, the inherent resonance frequency of the power reception unit 221 is determined from the combined capacitance C of the capacitance C1 of the first capacitor 235 and the capacitance C2 of the second capacitor 235 determined in this way.

なお、受電部221の回路インピーダンスZは、次式で与えられる。

Figure 2014236536
Figure 2014236536
ここで、式(3)はコイルLとコンデンサCが直列に接続されたときのインピーダンス、式(4)はコイルLとコンデンサCが並列に接続されたときのインピーダンス、をそれぞれ算出する式である。 The circuit impedance Z of the power receiving unit 221 is given by the following equation.
Figure 2014236536
Figure 2014236536
Here, Expression (3) is an expression for calculating the impedance when the coil L and the capacitor C are connected in series, and Expression (4) is an expression for calculating the impedance when the coil L and the capacitor C are connected in parallel. .

上記では、無線電力伝送方式として磁界共鳴方式を用いる場合について説明したが、本実施形態の無線電力伝送システムでも電界共鳴方式を用いることができる。電界共鳴方式を用いたときの本実施形態の受電機器(220’とする)の構成を図6に示す。受電機器220’は、二次側共鳴部として二次側共鳴コイル231に代えて二次側共鳴コンデンサ231’を備え、第1コンデンサ232に代えてコイル(第1コイルとする。)232’を備えている。電界共鳴方式では二次側誘導コイル233が不要となり、送電部111の一次側共鳴コンデンサ(図示せず。)との電界共鳴で二次側共鳴コンデンサ231’に交流電流が発生すると、これが整流回路234で直流に整流されて受電側制御部222及び無線通信送受信回路223に供給される。さらに、第2コンデンサ235に代えて第1コイル232’と並列に別のコイル(第2コイルとする。)235’が接続されている。ここでは、2つのコイル232’と235’とが並列に接続されているが、これに限定されず、2つのコイル232’と235’とが直列に接続されていてもよい。   Although the case where the magnetic field resonance method is used as the wireless power transmission method has been described above, the electric field resonance method can also be used in the wireless power transmission system of the present embodiment. FIG. 6 shows a configuration of a power receiving device (referred to as 220 ′) of this embodiment when the electric field resonance method is used. The power receiving device 220 ′ includes a secondary resonance capacitor 231 ′ instead of the secondary resonance coil 231 as a secondary resonance unit, and a coil (referred to as a first coil) 232 ′ instead of the first capacitor 232. I have. In the electric field resonance method, the secondary induction coil 233 is unnecessary, and when an alternating current is generated in the secondary resonance capacitor 231 ′ due to electric field resonance with the primary resonance capacitor (not shown) of the power transmission unit 111, this is converted into a rectifier circuit. The power is rectified to direct current at 234 and supplied to the power receiving side control unit 222 and the wireless communication transmitting / receiving circuit 223. Furthermore, instead of the second capacitor 235, another coil (referred to as a second coil) 235 'is connected in parallel with the first coil 232'. Here, the two coils 232 ′ and 235 ′ are connected in parallel, but the present invention is not limited to this, and the two coils 232 ′ and 235 ′ may be connected in series.

本実施形態の無線電力伝送システム200によれば、優先度の高い受電機器の割り込みにより別の受電機器の蓄電部の電力が不足する場合には、当該受電機器の共鳴周波数を優先度の高い受電機器の共鳴周波数に一致させて受電させることが可能となり、これにより当該受電機器の受電側制御部に保存されている信号を保持させることが可能となる。なお、本実施形態では二次側共鳴コイルまたは二次側共鳴コンデンサに接続されるコンデンサまたはコイルの数を2としたが、これに限定されず3以上としてもよい。また、共鳴周波数を優先度の高い受電機器の共鳴周波数に切り替えるときは、1以上のコンデンサまたはコイルの接続をオン/オフすることで行えるようにすることができる。   According to the wireless power transmission system 200 of the present embodiment, when the power of the power storage unit of another power receiving device is insufficient due to an interruption of a power receiving device with a high priority, the resonance frequency of the power receiving device is set to be a power receiving device with a high priority. It is possible to receive power in accordance with the resonance frequency of the device, and thereby it is possible to hold a signal stored in the power receiving side control unit of the power receiving device. In the present embodiment, the number of capacitors or coils connected to the secondary side resonance coil or the secondary side resonance capacitor is two, but is not limited to this and may be three or more. In addition, when switching the resonance frequency to the resonance frequency of the power receiving device having a high priority, it can be performed by turning on / off connection of one or more capacitors or coils.

なお、優先度の高い受電機器への割り込みが終了すると、共鳴周波数を優先度の高い受電機器の共鳴周波数に切り替えていた受電機器は、これを元の固有の共鳴周波数に戻す。また、割り込み終了後の各受電機器への送電の順序は、各受電機器の蓄電部の電力が不足しないように送電機器110側で制御される。送電機器110は、割り込み終了後の各受電機器の受電しない期間が、割り込み発生前の当初の受電しない期間と同じになるように、各受電機器への送電の順序を決定している。   When the interruption to the power receiving device with a high priority is completed, the power receiving device that has switched the resonance frequency to the resonance frequency of the power receiving device with a high priority returns this to the original unique resonance frequency. In addition, the order of power transmission to each power receiving device after completion of the interruption is controlled on the power transmission device 110 side so that the power of the power storage unit of each power receiving device is not insufficient. The power transmission device 110 determines the order of power transmission to each power receiving device so that the period during which each power receiving device does not receive power after the end of the interruption is the same as the initial period during which power is not received before the occurrence of the interrupt.

(第3実施形態)
第2実施形態の無線電力伝送システム200において、受電機器220−1の受電部221が固有の共鳴周波数から優先度の高い受電機器220−3の共鳴周波数に切り替えられたとき、受電機器220−1の無線通信送受信回路223も受電部221から受電する.これにより、受電機器220−1の無線通信送受信回路223は、無線通信を行うことが可能な状態となる。受電機器220−1の無線通信送受信回路223が無線通信を行うことで、優先度の高い受電機器220−3が行う無線通信を妨害するおそれがあるときは、受電機器220−1による無線通信を停止させる必要がある。
(Third embodiment)
In the wireless power transmission system 200 according to the second embodiment, when the power receiving unit 221 of the power receiving device 220-1 is switched from the inherent resonance frequency to the resonance frequency of the power receiving device 220-3 having a higher priority, the power receiving device 220-1. The wireless communication transmitting / receiving circuit 223 also receives power from the power receiving unit 221. As a result, the wireless communication transmitting / receiving circuit 223 of the power receiving device 220-1 is in a state in which wireless communication can be performed. When the wireless communication transmitting / receiving circuit 223 of the power receiving device 220-1 performs wireless communication and may interfere with wireless communication performed by the power receiving device 220-3 having a high priority, the wireless communication by the power receiving device 220-1 is performed. It needs to be stopped.

受電機器220−1の受電部221が固有の共鳴周波数で送信部111から受電するときは、インピーダンス整合されていることから高い電力を受電することができる。これに対し、受電機器220−1の受電部221が優先度の高い受電機器220−3の共鳴周波数に一致させて受電するときは、インピーダンスの不整合により受電する電力が低下する。そこで、受電部221が送電部111から受電する電力を監視し、受電電力が低いときは受電機器220−1の無線通信送受信回路223の動作を停止させるようにすることができる。   When the power receiving unit 221 of the power receiving device 220-1 receives power from the transmitting unit 111 at a unique resonance frequency, high power can be received because the impedance is matched. On the other hand, when the power receiving unit 221 of the power receiving device 220-1 receives power by matching the resonance frequency of the power receiving device 220-3 having a high priority, the power received by the impedance mismatch is reduced. Therefore, the power received by the power receiving unit 221 from the power transmitting unit 111 can be monitored, and when the received power is low, the operation of the wireless communication transmitting / receiving circuit 223 of the power receiving device 220-1 can be stopped.

本発明の第3の実施形態に係る無線電力伝送システムとして、受電部221の受電電力を監視する電力監視手段340を備えた受電機器320の構成を図7に示す。図7は、本実施形態の無線電力伝送システムが備える受電機器320の構成を示すブロック図である。本実施形態では、電力監視手段340が受電側制御部322に設けられている。   As a wireless power transmission system according to the third embodiment of the present invention, a configuration of a power receiving device 320 including a power monitoring unit 340 for monitoring the power received by the power receiving unit 221 is illustrated in FIG. FIG. 7 is a block diagram illustrating a configuration of the power receiving device 320 included in the wireless power transmission system of the present embodiment. In the present embodiment, the power monitoring unit 340 is provided in the power receiving side control unit 322.

電力監視手段340は、受電部320で受電される電力を監視しており、受電電力が固有の共鳴周波数で受電するときの受電電力より低い所定の電力閾値以下であると判定したときに、無線通信送受信回路323が動作しないように制御する。これにより、優先度の高い受電機器220−3が行う無線通信を妨害しないようにすることができる。   The power monitoring unit 340 monitors the power received by the power receiving unit 320 and wirelessly determines that the received power is equal to or lower than a predetermined power threshold lower than the received power when receiving power at a specific resonance frequency. Control is performed so that the communication transceiver circuit 323 does not operate. Accordingly, it is possible to prevent the wireless communication performed by the power receiving device 220-3 having a high priority from being disturbed.

なお、本実施の形態における記述は、本発明に係る無線電力伝送システムの一例を示すものであり、これに限定されるものではない。本実施の形態における無線電力伝送システムの細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。   In addition, the description in this Embodiment shows an example of the wireless power transmission system which concerns on this invention, and is not limited to this. The detailed configuration and detailed operation of the wireless power transmission system in the present embodiment can be changed as appropriate without departing from the spirit of the present invention.

10 負荷
100、200 無線電力伝送システム
110 送電機器
111 送電部
112 送電側制御部
113 無線通信送受信回路
120、220、320 受電機器
121、221 受電部
122、222、322 受電側制御部
123、223、323 無線通信送受信回路
124、224 蓄電部
231 二次側共鳴コイル
232 第1コンデンサ
233 二次側誘導コイル
234 整流回路
235 第2コンデンサ
236 リレー
340 電力監視手段
DESCRIPTION OF SYMBOLS 10 Load 100, 200 Wireless power transmission system 110 Power transmission apparatus 111 Power transmission part 112 Power transmission side control part 113 Wireless communication transmission / reception circuit 120,220,320 Power reception apparatus 121,221 Power reception part 122,222,322 Power reception side control part 123,223 323 Wireless communication transmission / reception circuit 124, 224 Power storage unit 231 Secondary resonance coil 232 First capacitor 233 Secondary induction coil 234 Rectifier circuit 235 Second capacitor 236 Relay 340 Power monitoring means

Claims (8)

共鳴周波数が可変の送電機器と、それぞれ異なる固有の共鳴周波数を有してそれぞれに接続された負荷に電力供給する1以上の受電機器と、を備える無線電力伝送システムであって、
前記送電機器は、
共鳴周波数が可変な一次側共鳴部を具備して送電する送電部と、
前記一次側共鳴部の共鳴周波数を制御する送電側制御部と、を備え、
前記受電機器は、
前記一次側共鳴部の共鳴周波数が前記固有の共鳴周波数に略等しいときに共鳴する二次側共鳴部を具備して前記送電部から受電する受電部と、
前記受電部から受電するとともに接続先の前記負荷を制御する受電側制御部とを備える
ことを特徴とする無線電力伝送システム。
A wireless power transmission system comprising: a power transmitting device having a variable resonance frequency; and one or more power receiving devices each having a unique resonance frequency and supplying power to a load connected thereto,
The power transmission equipment is
A power transmission unit including a primary resonance unit having a variable resonance frequency and transmitting power;
A power transmission side control unit for controlling a resonance frequency of the primary side resonance unit,
The power receiving device is:
A power receiving unit that includes a secondary side resonance unit that resonates when a resonance frequency of the primary side resonance unit is substantially equal to the inherent resonance frequency, and receives power from the power transmission unit;
A wireless power transmission system comprising: a power receiving side control unit that receives power from the power receiving unit and controls the load at a connection destination.
前記受電機器は、前記受電部から受電して蓄電する蓄電部を備え、
前記1以上の受電機器は、前記送電機器から所定の時間間隔で離散的に順次受電し、前記1以上の受電機器のそれぞれの前記蓄電部は、それぞれの前記受電部が前記送電部からの受電を終了するとそれぞれの前記受電側制御部に電力を供給する
ことを特徴とする請求項1に記載の無線電力伝送システム。
The power receiving device includes a power storage unit that receives and stores power from the power receiving unit,
The one or more power receiving devices receive power sequentially and discretely from the power transmission device at a predetermined time interval, and each of the power storage units of the one or more power receiving devices receives power from the power transmission unit. 2. The wireless power transmission system according to claim 1, wherein power is supplied to each of the power receiving side control units when the operation is terminated.
前記受電機器を2以上備え、
前記受電部は、前記蓄電部の電圧が所定の電圧閾値まで低下すると、前記受電部の共鳴周波数が優先度の高い別の前記受電機器の共鳴周波数に自発的に切り替えられる
ことを特徴とする請求項1または2に記載の無線電力伝送システム。
Comprising two or more power receiving devices,
The power reception unit, when the voltage of the power storage unit drops to a predetermined voltage threshold, the resonance frequency of the power reception unit is spontaneously switched to the resonance frequency of another power reception device having a higher priority. Item 3. The wireless power transmission system according to Item 1 or 2.
前記一次側共鳴部及び前記二次側共鳴部がコイルで構成されて前記送電部から前記受電部に磁界共鳴方式で送電され、
前記受電部は、前記二次側共鳴部と直列または並列に接続された2以上のコンデンサを備えており、前記2以上のコンデンサのうち1以上のコンデンサの接続を自発的に切り替えることで前記共鳴周波数を前記優先度の高い別の受電機器の共鳴周波数に切り替える
ことを特徴とする請求項3に記載の無線電力伝送システム。
The primary side resonance unit and the secondary side resonance unit are configured by coils and are transmitted from the power transmission unit to the power reception unit by a magnetic field resonance method,
The power receiving unit includes two or more capacitors connected in series or in parallel with the secondary resonance unit, and the resonance is achieved by spontaneously switching connection of one or more capacitors of the two or more capacitors. The wireless power transmission system according to claim 3, wherein the frequency is switched to a resonance frequency of another power receiving device having a higher priority.
前記1以上のコンデンサは、前記蓄電部の電圧が前記所定の電圧閾値まで低下したときに接続が切り替えられる
ことを特徴とする請求項4に記載の無線電力伝送システム。
The wireless power transmission system according to claim 4, wherein the connection of the one or more capacitors is switched when the voltage of the power storage unit drops to the predetermined voltage threshold value.
前記一次側共鳴部及び前記二次側共鳴部がコンデンサで構成されて前記送電部から前記受電部に電界共鳴方式で送電され、
前記受電部は、前記二次側共鳴部と直列または並列に接続された2以上のコイルを備えており、前記2以上のコイルのうち1以上のコイルの接続を自発的に切り替えることで前記共鳴周波数を前記優先度の高い別の受電機器の共鳴周波数に切り替える
ことを特徴とする請求項3に記載の無線電力伝送システム。
The primary-side resonance unit and the secondary-side resonance unit are configured by capacitors and are transmitted from the power transmission unit to the power reception unit by an electric field resonance method,
The power receiving unit includes two or more coils connected in series or in parallel with the secondary resonance unit, and the resonance is achieved by spontaneously switching connection of one or more of the two or more coils. The wireless power transmission system according to claim 3, wherein the frequency is switched to a resonance frequency of another power receiving device having a higher priority.
前記1以上のコイルは、前記蓄電部の電圧が前記所定の電圧閾値まで低下したときに接続が切り替えられる
ことを特徴とする請求項6に記載の無線電力伝送システム。
The wireless power transmission system according to claim 6, wherein the connection of the one or more coils is switched when the voltage of the power storage unit decreases to the predetermined voltage threshold value.
前記受電機器は、それぞれの前記受電部が前記送電部から受電するときに無線通信が可能となる無線通信送受信回路を備え、
前記受電側制御部は、前記受電部が前記送電部から受電した電力を監視する電力監視手段を備え、
前記電力監視手段は、前記受電した電力が前記固有の共鳴周波数で前記送電部から受電したときの電力より低い所定の電力閾値以下であると判定すると、当該の受電機器の前記無線通信送受信回路の動作を停止させる
ことを特徴とする請求項1乃至7のいずれか1項に記載の無線電力伝送システム。
The power receiving device includes a wireless communication transmission / reception circuit that enables wireless communication when each of the power receiving units receives power from the power transmission unit,
The power receiving side control unit includes power monitoring means for monitoring the power received by the power receiving unit from the power transmitting unit,
When the power monitoring unit determines that the received power is equal to or lower than a predetermined power threshold lower than the power when the power is received from the power transmission unit at the inherent resonance frequency, the power monitoring unit of the power receiving device The wireless power transmission system according to any one of claims 1 to 7, wherein the operation is stopped.
JP2013114896A 2013-05-31 2013-05-31 Wireless power transmission system Active JP5830495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013114896A JP5830495B2 (en) 2013-05-31 2013-05-31 Wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114896A JP5830495B2 (en) 2013-05-31 2013-05-31 Wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2014236536A true JP2014236536A (en) 2014-12-15
JP5830495B2 JP5830495B2 (en) 2015-12-09

Family

ID=52138887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114896A Active JP5830495B2 (en) 2013-05-31 2013-05-31 Wireless power transmission system

Country Status (1)

Country Link
JP (1) JP5830495B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051137A (en) * 2008-08-25 2010-03-04 Hitachi Ltd Power transmitting apparatus and power receiving apparatus
WO2010116441A1 (en) * 2009-03-30 2010-10-14 富士通株式会社 Wireless power supply system, wireless power transmission device, and wireless power receiving device
US20110080051A1 (en) * 2009-10-07 2011-04-07 Kwang Du Lee Wireless power transmission/reception apparatus and method
JP2013062903A (en) * 2011-09-12 2013-04-04 Furukawa Electric Co Ltd:The Vehicular power transmission apparatus and vehicular power supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051137A (en) * 2008-08-25 2010-03-04 Hitachi Ltd Power transmitting apparatus and power receiving apparatus
WO2010116441A1 (en) * 2009-03-30 2010-10-14 富士通株式会社 Wireless power supply system, wireless power transmission device, and wireless power receiving device
US20110080051A1 (en) * 2009-10-07 2011-04-07 Kwang Du Lee Wireless power transmission/reception apparatus and method
JP2013062903A (en) * 2011-09-12 2013-04-04 Furukawa Electric Co Ltd:The Vehicular power transmission apparatus and vehicular power supply system

Also Published As

Publication number Publication date
JP5830495B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
EP2273650B1 (en) Contactless power receiving apparatus, power receiving method for contactless power receiving apparatus and contactless power supplying system
KR101891426B1 (en) Wireless power transmission control method and wireless power transmission system
US9006935B2 (en) Wireless power feeder/receiver and wireless power transmission system
US9608469B2 (en) Method for transmitting power wirelessly, method for receiving power wirelessly, wireless power transmitting device, and wireless power receiving device
US9973237B2 (en) Wireless charging apparatus and method
US8421411B2 (en) Resonance type non-contact charging device
US9391468B2 (en) Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
JP5597022B2 (en) Power supply apparatus and control method
CN101232189B (en) Adaptive inductive power supply with communication
US20150137749A1 (en) Wireless charging apparatus and wireless charging method
US9583969B2 (en) Electronic device, computer-readable storage medium, and portable terminal
EP2571134A1 (en) Resonance-type non-contact power supply system
JP6191562B2 (en) Power supply device
WO2018135092A1 (en) Feeding device and method for controlling same
WO2013038885A1 (en) Vehicle electric power transmission device and vehicle power source system
JP2019083647A (en) Charging communication control device and charging communication control method
JP5756646B2 (en) Contactless charging system
JP5830495B2 (en) Wireless power transmission system
JP2016007107A (en) Non-contact power transmission device
US20140210277A1 (en) Inductive power transmission
KR20150077884A (en) System for Wireless Charging using multi-protocol and multi-band antenna
JP2014033581A (en) Non contact charger
WO2015098747A1 (en) Power transmission device and non-contact power transmission apparatus
KR101460996B1 (en) Method of exciting primary coils in contactless power supplying device and contactless power supplying device
JP2014042428A (en) Contactless power transmission apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R151 Written notification of patent or utility model registration

Ref document number: 5830495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350