JP2014236217A - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
JP2014236217A
JP2014236217A JP2014019334A JP2014019334A JP2014236217A JP 2014236217 A JP2014236217 A JP 2014236217A JP 2014019334 A JP2014019334 A JP 2014019334A JP 2014019334 A JP2014019334 A JP 2014019334A JP 2014236217 A JP2014236217 A JP 2014236217A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
finger
electrodes
bus bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014019334A
Other languages
Japanese (ja)
Inventor
莊尚餘
Shang-Yu Chuang
林士達
Shih Da Lin
王業明
Yeh Ming Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neo Solar Power Corp
Original Assignee
Neo Solar Power Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neo Solar Power Corp filed Critical Neo Solar Power Corp
Publication of JP2014236217A publication Critical patent/JP2014236217A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar cell.SOLUTION: In a solar cell including a substrate for solar cell having a first surface and a second surface, and a plurality of sets of electrode assemblies arranged on the first surface of the substrate for solar cell while separated from each other, each electrode assembly includes a bus bar electrode, a plurality of finger electrodes, a plurality of wire electrodes for connection, and a plurality of vertical finger electrodes.

Description

本発明は、太陽電池に関し、特に、電界発光を低減する太陽電池に関する。   The present invention relates to a solar cell, and more particularly to a solar cell that reduces electroluminescence.

太陽電池の生産プロセスにおいては、製品が最終的に検査を受けてからその品質を確保できる。測定が必要とされる欠陥項目は、材料瑕疵、焼結、製造工程汚染、微視的な亀裂、回路断線等が含まれる。電気テスト方法で、これらの欠陥製品を除去できる。ただし、微視的な亀裂や回路断線という2つの欠陥は、変換効率への影響が大きくないにしても、製品の安定性と寿命について極めて大きな影響があるため、外観測定方法でこれらの欠陥を検出する必要がある。   In the production process of solar cells, the quality can be ensured after the product is finally inspected. Defect items that need to be measured include material defects, sintering, manufacturing process contamination, microscopic cracks, circuit breaks, and the like. Electrical test methods can remove these defective products. However, the two defects, microscopic cracks and circuit breaks, have a very large effect on the stability and life of the product even if they do not have a large effect on the conversion efficiency. It needs to be detected.

外観測定方法では、エレクトロルミネセンス(Electroluminescence、EL)が最も普及している。ELは、太陽電池に順方向電流を印加すると、太陽電池が発光ダイオードのように近赤外光を発し、その光の強度が入力電流の大きさと関係する以外に、欠陥とも関係がある。欠陥がある時、電流が回路を通過しても光を発しないため、欠陥が存在していることが分かる。   As the appearance measurement method, electroluminescence (EL) is most popular. When the forward current is applied to the solar cell, the EL emits near-infrared light like a light-emitting diode, and the intensity of the light is related to the magnitude of the input current and is also related to defects. When there is a defect, it can be seen that the defect exists because no light is emitted even if the current passes through the circuit.

図1Aの従来技術の太陽電池を示す図を参照しながら説明する。ここでは、3本のバスバー電極3本の120(Bus Bar Electrode)、複数のフィンガー電極(Finger Electrode)110を太陽電池用基板100上に配置する。この太陽電池は、製造工程の原因により太陽電池の正面電極構造の局所領域1に断線が生じている。   Description will be made with reference to the diagram of the prior art solar cell of FIG. 1A. Here, three bus bar electrodes 120 (Bus Bar Electrode) and a plurality of finger electrodes (Finger Electrode) 110 are arranged on the solar cell substrate 100. In this solar cell, disconnection occurs in the local region 1 of the front electrode structure of the solar cell due to the cause of the manufacturing process.

次に、図1Bの従来技術の太陽電池構造の局所領域1の拡大図を参照しながら説明する。順方向電流を太陽電池に印加した後、太陽電池は本来電流が通過したところで近赤外光を発するはずであるが、局所領域1で断線箇所111が生じ、経路が長すぎて、電流が断線箇所111に十分流れることができないため、フィンガー電極115が赤外光を発することができない。赤外線カメラで局所領域1を撮影した時、フィンガー電極115の一部が暗色であった。   Next, a description will be given with reference to an enlarged view of the local region 1 of the conventional solar cell structure of FIG. 1B. After applying the forward current to the solar cell, the solar cell should emit near-infrared light when the current originally passes, but the disconnection point 111 occurs in the local region 1, the path is too long, and the current is disconnected. The finger electrode 115 cannot emit infrared light because it cannot sufficiently flow to the portion 111. When the local region 1 was photographed with the infrared camera, a part of the finger electrode 115 was dark.

このEL測定は、現在太陽電池の重要な品質測定基準で、一般的に該フィンガー電極のEL測定時常に電流の経路が長すぎることにより断線箇所111に到達できないため、フィンガー電極115全体が暗色になり、集電効率の低下と判断され、つまりEL欠陥の問題があるとされ、太陽電池全体が不良品と見なされて廃棄される。しかし、該フィンガー電極115自体は、太陽電池の発電時、実際には集電能力を持っている。
よって、如何にして太陽電池のEL測定時に発見した断線問題を減らし、更にフィンガー電極の集電能力を改善するかが、太陽電池業者の技術開発の1つの重要な技術課題となっている。
This EL measurement is currently an important quality metric for solar cells. Generally, the finger electrode 115 as a whole is darkened because the current path is always too long to reach the disconnection point 111 during the EL measurement of the finger electrode. Therefore, it is determined that the current collection efficiency is reduced, that is, there is an EL defect problem, and the entire solar cell is regarded as a defective product and discarded. However, the finger electrode 115 itself actually has a current collecting ability when the solar cell generates power.
Therefore, how to reduce the disconnection problem discovered during the EL measurement of the solar cell and further improve the current collection capability of the finger electrode is one important technical issue for the technical development of solar cell manufacturers.

そこで、本発明は上記従来技術の問題点に鑑みて、太陽電池の断線で生じるEL測定の不良問題を減らすことで、発電効率を低下させない前提の下で良好な太陽電池の品質を維持するという具体的効果を奏する太陽電池を提供することを目的とする。   Therefore, in view of the above-mentioned problems of the prior art, the present invention maintains good solar cell quality under the premise that power generation efficiency is not lowered by reducing the problem of EL measurement failure caused by disconnection of the solar cell. It aims at providing the solar cell which has a specific effect.

本発明は、第1表面と第2表面とを備える太陽電池用基板と、太陽電池用基板の第1表面上で互いに隔離して配置される複数組の電極集合体とを含む太陽電池を提供する。
各電極集合体は、太陽電池用基板の第1表面に設けられるバスバー電極と、バスバー電極の両側に間隔を持って配置される複数のフィンガー電極と、太陽電池用基板の第1表面上に設けられ、少なくとも2個のフィンガー電極の末端に接続する少なくとも1個の接続用ワイヤ電極と、太陽電池用基板の第1表面上に設けられ、該バスバー電極と平行で且つ該フィンガー電極両端の間に設けられ、少なくとも2個の隣り合う該フィンガー電極に接続するための少なくとも1個の垂直なフィンガー電極とを含む。
The present invention provides a solar cell including a solar cell substrate having a first surface and a second surface, and a plurality of sets of electrode assemblies arranged separately from each other on the first surface of the solar cell substrate. To do.
Each electrode assembly is provided on the first surface of the solar cell substrate, a bus bar electrode provided on the first surface of the solar cell substrate, a plurality of finger electrodes arranged on both sides of the bus bar electrode, and a gap. At least one connecting wire electrode connected to the ends of at least two finger electrodes, provided on the first surface of the solar cell substrate, parallel to the bus bar electrode and between both ends of the finger electrodes. And at least one vertical finger electrode for connecting to at least two adjacent finger electrodes.

以下に、実施形態において本発明の詳細な特徴及び利点を詳述する。その内容は当業者に本発明の技術内容を理解させると共に、当業者はこれをもって本発明を実施でき、且つ本明細書で開示される内容、特許請求の範囲及び図面に基き、当業者が容易に本発明に関する目的及び利点を理解できる。   Hereinafter, detailed features and advantages of the present invention will be described in detail in the embodiments. The contents make it possible for those skilled in the art to understand the technical contents of the present invention, and for those skilled in the art to practice the present invention, and based on the contents disclosed in this specification, the claims, and the drawings, those skilled in the art can easily perform the present invention. The objects and advantages of the present invention can be understood.

従来技術の太陽電池の構造を示す図である。It is a figure which shows the structure of the solar cell of a prior art. 図1Aの従来技術の太陽電池の構造の局所拡大図である。1B is a locally enlarged view of the structure of the prior art solar cell of FIG. 1A. FIG. 本発明に係る太陽電池の構造の一実施例を示す図である。It is a figure which shows one Example of the structure of the solar cell which concerns on this invention. 図2Aの本発明に係る太陽電池の構造の局所拡大図である。It is a local enlarged view of the structure of the solar cell which concerns on this invention of FIG. 2A. 図2Bの本発明に係る太陽電池の構造の断線を示す図である。It is a figure which shows the disconnection of the structure of the solar cell which concerns on this invention of FIG. 2B. 本発明に係る太陽電池の構造の他の実施例を示す図である。It is a figure which shows the other Example of the structure of the solar cell which concerns on this invention. 図3Aの本発明に係る太陽電池の構造の局所拡大図である。It is the local enlarged view of the structure of the solar cell which concerns on this invention of FIG. 3A. 本発明に係る太陽電池の構造の更なる実施例を示す図である。It is a figure which shows the further Example of the structure of the solar cell which concerns on this invention. 図4Aの本発明に係る太陽電池の構造の局所拡大図である。It is a local enlarged view of the structure of the solar cell according to the present invention of FIG. 4A. 本発明に係る太陽電池の構造の他の実施例を示す図である。It is a figure which shows the other Example of the structure of the solar cell which concerns on this invention. 図5Aの本発明に係る太陽電池の構造の局所拡大図である。It is a local enlarged view of the structure of the solar cell according to the present invention of FIG. 5A. 本発明に係る太陽電池の構造の更なる実施例を示す図である。It is a figure which shows the further Example of the structure of the solar cell which concerns on this invention. 図6Aの本発明に係る太陽電池の構造の局所拡大図である。It is a local enlarged view of the structure of the solar cell which concerns on this invention of FIG. 6A. 本発明に係る太陽電池の構造の他の実施例の局所拡大図である。It is a local enlarged view of the other Example of the structure of the solar cell concerning this invention. 本発明に係る太陽電池の構造の他の実施例の局所拡大図である。It is a local enlarged view of the other Example of the structure of the solar cell concerning this invention.

図2Aは、本発明に係る太陽電池の正面電極構造の一実施例を示す図である。図2Bは、図2Aの本発明に係る太陽電池の構造の局所領域2拡大図である。
図2Aと図2Bを参照しながら説明する。本発明に係る太陽電池は、複数のバスバー電極120(本実施例は3個のバスバー電極120)と複数のフィンガー電極110と複数の接続用ワイヤ電極130と複数の垂直なフィンガー電極140とを含む。バスバー電極120は太陽電池基板100上に間隔を持って配置される。実質上、図2Aの実施例において太陽電池の構造は、3組の電極集合体3、4、5を含み、この3組の電極集合体3、4、5が太陽電池用基板100上に互いに隔離して配置される。
電極集合体3、4、5は、太陽電池用基板100の第1表面に設けられるバスバー電極120と、バスバー電極120の両側に間隔を持って配置される複数のフィンガー電極110と、太陽電池用基板100の第1表面上に設けられ、各接続用ワイヤ電極130が少なくとも2個のフィンガー電極110の末端に接続する複数の接続用ワイヤ電極130と、太陽電池用基板100の第1表面上に設けられ、且つ各垂直なフィンガー電極140が該バスバー電極120と平行し、且つ該フィンガー電極両端の間に設けられ、少なくとも2個の隣り合うフィンガー電極110に接続するための複数の垂直なフィンガー電極140とを各々含む。
図2Aに示すように、フィンガー電極110の両端は、バスバー電極120と接続用ワイヤ電極130に各々接続し、垂直なフィンガー電極140がフィンガー電極110の両端の間に設けられるため、垂直なフィンガー電極140の対向位置はバスバー電極120と接続用ワイヤ電極130の間にある。本実施例において各垂直なフィンガー電極140と各接続用ワイヤ電極130が接続する隣り合うフィンガー電極は、同一である。
FIG. 2A is a diagram showing an embodiment of a front electrode structure of a solar cell according to the present invention. FIG. 2B is an enlarged view of the local region 2 of the structure of the solar cell according to the present invention of FIG. 2A.
This will be described with reference to FIGS. 2A and 2B. The solar cell according to the present invention includes a plurality of bus bar electrodes 120 (three bus bar electrodes 120 in this embodiment), a plurality of finger electrodes 110, a plurality of connecting wire electrodes 130, and a plurality of vertical finger electrodes 140. . The bus bar electrodes 120 are arranged on the solar cell substrate 100 with an interval. In essence, the solar cell structure in the embodiment of FIG. 2A includes three sets of electrode assemblies 3, 4, and 5, and the three sets of electrode assemblies 3, 4, and 5 Placed in isolation.
The electrode assemblies 3, 4, and 5 are a bus bar electrode 120 provided on the first surface of the solar cell substrate 100, a plurality of finger electrodes 110 arranged on both sides of the bus bar electrode 120, and a solar cell A plurality of connecting wire electrodes 130 provided on the first surface of the substrate 100, each connecting wire electrode 130 connecting to the ends of at least two finger electrodes 110, and the first surface of the solar cell substrate 100. A plurality of vertical finger electrodes 140 connected to at least two adjacent finger electrodes 110, each vertical finger electrode 140 being parallel to the bus bar electrode 120 and provided between both ends of the finger electrodes; 140 respectively.
As shown in FIG. 2A, both ends of the finger electrode 110 are connected to the bus bar electrode 120 and the connecting wire electrode 130, and the vertical finger electrode 140 is provided between both ends of the finger electrode 110. 140 is located between the bus bar electrode 120 and the connecting wire electrode 130. In this embodiment, adjacent finger electrodes to which each vertical finger electrode 140 and each connecting wire electrode 130 are connected are the same.

図2A及び図2Bを従来技術の図1A及び図1Bと比較すると、その相違点は本実施例の電極集合体3、4、5の間において間隔を持って互いに隔離して配置され、且つ複数の垂直なフィンガー電極140と複数の接続用ワイヤ電極130を追加し、各垂直なフィンガー電極140が少なくとも2個のフィンガー電極110に接続し、太陽電池構造の局所領域2の拡大図の図2Bから見ると、垂直なフィンガー電極140と接続用ワイヤ電極130を加えた後、EL測定時の電流経路を短くすることができることである。
本実施例において、垂直なフィンガー電極140とバスバー電極120は0度交角となり、つまりバスバー電極120に平行する。その他の実施例において、該垂直なフィンガー電極140と該バスバー電極120の間が45度未満の交角とすることができ、つまり該垂直なフィンガー電極140は隣り合う両フィンガー電極110に斜めに接続できる。
Comparing FIG. 2A and FIG. 2B with FIG. 1A and FIG. 1B of the prior art, the difference is that the electrode assemblies 3, 4, and 5 of this embodiment are spaced apart from each other, and a plurality From FIG. 2B of the enlarged view of the local region 2 of the solar cell structure, each vertical finger electrode 140 and a plurality of connecting wire electrodes 130 are added, and each vertical finger electrode 140 is connected to at least two finger electrodes 110. As can be seen, after adding the vertical finger electrode 140 and the connecting wire electrode 130, the current path during EL measurement can be shortened.
In this embodiment, the vertical finger electrode 140 and the bus bar electrode 120 have an angle of intersection of 0 degrees, that is, parallel to the bus bar electrode 120. In other embodiments, the vertical finger electrode 140 and the bus bar electrode 120 may have an angle of intersection of less than 45 degrees, that is, the vertical finger electrode 140 may be obliquely connected to both adjacent finger electrodes 110. .

次に、図2Cの断線箇所111を参照する。垂直なフィンガー電極140と接続用ワイヤ電極130を加えた後、その電流経路は短くなり且つ選択可能な経路が多くなる。フィンガー電極110に断線箇所111が現れた時、電流は垂直なフィンガー電極140と接続用ワイヤ電極130を介して断線箇所111に到達して発光させることができるため、EL測定を利用すると、設けた本発明の垂直なフィンガー電極140と接続用ワイヤ電極130を通じて従来技術中の断線箇所111がEL測定中にやはり発光させることが可能なことを発見できる。
よって垂直なフィンガー電極140と接続用ワイヤ電極130を加えた後、断線箇所111がEL測定において暗色になる問題を確実に改善できる。逆に、本実施例においてフィンガー電極110に断線箇所111があり、光照射後該断線箇所111の付近で発生する電流はやはり垂直なフィンガー電極140と接続用ワイヤ電極130を通じて各電極集合体3、4、5のバスバー電極120に流すことができるため、本発明も太陽光発電の効率をアップできる。
Next, reference is made to the disconnection point 111 in FIG. 2C. After adding the vertical finger electrode 140 and the connecting wire electrode 130, the current path becomes shorter and there are more selectable paths. When the disconnection point 111 appears in the finger electrode 110, the current can reach the disconnection point 111 via the vertical finger electrode 140 and the connecting wire electrode 130 to emit light. Through the vertical finger electrode 140 and the connecting wire electrode 130 of the present invention, it can be found that the disconnection point 111 in the prior art can still emit light during the EL measurement.
Therefore, after adding the vertical finger electrode 140 and the connecting wire electrode 130, it is possible to reliably improve the problem that the disconnection portion 111 becomes dark in EL measurement. On the contrary, in this embodiment, the finger electrode 110 has a disconnection portion 111, and the current generated in the vicinity of the disconnection portion 111 after light irradiation is also applied to each electrode assembly 3 through the vertical finger electrode 140 and the connection wire electrode 130, Since it can be made to flow to 4 and 5 bus-bar electrodes 120, the present invention can also raise the efficiency of photovoltaic power generation.

各単独の電極集合体は、独立してカバーする領域の中で発生した電流をその中のフィンガー電極110を経由してバスバー電極120上に集中できる。電極集合体の間が互いに隔離しているため、各電極集合体でカバーする領域の中で発生した電流は、その他の領域に流れない。このほか、電極集合体3、4、5の中のバスバー電極120は互いに実質的に平行とする。且つ、バスバー電極120の中心は、位置する電極集合体の中心にある。   Each single electrode assembly can concentrate the current generated in the independently covered region on the bus bar electrode 120 via the finger electrode 110 therein. Since the electrode assemblies are isolated from each other, the current generated in the region covered by each electrode assembly does not flow to other regions. In addition, the bus bar electrodes 120 in the electrode assemblies 3, 4, and 5 are substantially parallel to each other. The center of the bus bar electrode 120 is at the center of the electrode assembly located.

隣り合う電極集合体は、互いに幅dを持って区切られ、図2Bに示すような電極集合体3、4である。幅dは、30マイクロメートル〜5,000マイクロメートルとなり、この範囲内において、太陽電池には電池効率の顕著な低下状況が生じない。   Adjacent electrode assemblies are separated from each other with a width d, and are electrode assemblies 3 and 4 as shown in FIG. 2B. The width d is 30 micrometers to 5,000 micrometers. Within this range, the solar cell does not experience a significant decrease in battery efficiency.

次に、図3Aは、本発明に係る太陽電池の構造の他の実施例を示す図である。図3Bは、図3Aの本発明に係る太陽電池の構造の局所領域2拡大図である。図3Aと図3Bを参照しながら説明する。
接続用ワイヤ電極130は、隣り合うフィンガー電極110の末端に接続することで、2個のフィンガー電極110を互いに接続させる。図3Aに示すように、フィンガー電極110両端はバスバー電極120と接続用ワイヤ電極130まで各々接続され、垂直なフィンガー電極140がフィンガー電極110両端の間に設けられるため、垂直なフィンガー電極14は、バスバー電極120と接続用ワイヤ電極130の間に配置される。ただし、本実施例において各垂直なフィンガー電極140と各接続用ワイヤ電極130が接続する隣接フィンガー電極が異なる。図3A、図3Bに示すように、各接続用ワイヤ電極130の線幅は、10マイクロメートル(μm)〜200マイクロメートル(μm)となる。隣り合う2本の接続用ワイヤ電極130は互いに幅dを持って区切られ、幅dが30マイクロメートル〜5,000マイクロメートルとなる。
このほかに、図3A、図3Bの実施例についていうと、複数本の接続用ワイヤ電極130の接続後で形成した態様は線状で、その他の実施例についていうと、複数本の接続用ワイヤ電極130の接続後に形成された態様が、波状或いは歯状(図示略)、若しくはその他の形状とすることができる。異なる形状の接続用ワイヤ電極130についていうと、互いに固定距離にある必要がなく、相互間隔が幅dの前記幅dの範囲内に維持するだけでよい。該接続用ワイヤ電極130とバスバー電極120は、交角θとなり、交角θが0度〜80度とする。
Next, FIG. 3A is a figure which shows the other Example of the structure of the solar cell based on this invention. FIG. 3B is an enlarged view of the local region 2 of the structure of the solar cell according to the present invention of FIG. 3A. This will be described with reference to FIGS. 3A and 3B.
The connection wire electrode 130 connects the two finger electrodes 110 to each other by connecting to the end of the adjacent finger electrodes 110. As shown in FIG. 3A, both ends of the finger electrode 110 are connected to the bus bar electrode 120 and the connecting wire electrode 130, and the vertical finger electrode 140 is provided between both ends of the finger electrode 110. Arranged between the bus bar electrode 120 and the connecting wire electrode 130. However, in this embodiment, adjacent finger electrodes to which each vertical finger electrode 140 and each connecting wire electrode 130 are connected are different. As shown in FIGS. 3A and 3B, the line width of each connection wire electrode 130 is 10 micrometers (μm) to 200 micrometers (μm). Two adjacent connecting wire electrodes 130 are separated from each other with a width d, and the width d is 30 micrometers to 5,000 micrometers.
In addition, regarding the embodiment of FIGS. 3A and 3B, the form formed after the connection of the plurality of connection wire electrodes 130 is linear, and regarding the other embodiments, a plurality of connection wires are used. The form formed after the connection of the electrode 130 can be a wave shape, a tooth shape (not shown), or other shapes. With respect to the connecting wire electrodes 130 having different shapes, they do not need to be at a fixed distance from each other, and it is only necessary to maintain the mutual distance within the range of the width d of the width d. The connecting wire electrode 130 and the bus bar electrode 120 have an intersection angle θ, and the intersection angle θ is 0 to 80 degrees.

図2A、2B、3A、3Bに示す実施例は、隣り合う2組の電極集合体の隣り合う部分がバスバー電極120と平行となる実施例である。その他の実施例においては、隣り合う2組の電極集合体3、4の隣り合う部分は、バスバー電極120と平行しない方式を採用できる。   2A, 2B, 3A, and 3B are examples in which adjacent portions of two adjacent electrode assemblies are parallel to the bus bar electrode 120. FIG. In another embodiment, a method in which adjacent portions of two adjacent electrode assemblies 3 and 4 are not parallel to the bus bar electrode 120 can be employed.

図4Aは、本発明に係る太陽電池の正面電極構造の更なる実施例を示す図である。図4Bは、図4Aの本発明に係る太陽電池構造の局所拡大図である。図4Aと図4Bを参照しながら説明する。本実施例において、2個の電極集合体3、4の隣り合う箇所とバスバー電極120が交角θとなり、交角θは10度とすることができる。   FIG. 4A is a diagram showing a further embodiment of the front electrode structure of the solar cell according to the present invention. FIG. 4B is a locally enlarged view of the solar cell structure according to the present invention of FIG. 4A. This will be described with reference to FIGS. 4A and 4B. In this embodiment, the adjacent portions of the two electrode assemblies 3 and 4 and the bus bar electrode 120 have an intersection angle θ, and the intersection angle θ can be 10 degrees.

図5Aは、本発明に係る太陽電池の正面電極構造の一実施例を示す図である。図5Bは、図5Aの本発明に係る太陽電池構造の局所領域2の拡大図である。図5Aと図5Bを参照しながら説明する。垂直なフィンガー電極140は、電極集合体両側に配置され、各垂直なフィンガー電極140が3個のフィンガー電極に接続することで、3個のフィンガー電極110の一部を互いに接続させる。   FIG. 5A is a diagram showing an embodiment of a front electrode structure of a solar cell according to the present invention. FIG. 5B is an enlarged view of the local region 2 of the solar cell structure according to the present invention of FIG. 5A. This will be described with reference to FIGS. 5A and 5B. The vertical finger electrodes 140 are disposed on both sides of the electrode assembly, and each vertical finger electrode 140 is connected to three finger electrodes, thereby connecting a part of the three finger electrodes 110 to each other.

図6Aは、本発明に係る太陽電池の正面電極構造の一実施例を示す図である。図6Bは、図6Aの本発明に係る太陽電池構造の局所領域2の拡大図である。図6Aと図6Bを参照しながら説明する。垂直なフィンガー電極140は、電極集合体両側に配置され、各垂直なフィンガー電極140が4個のフィンガー電極110に接続し、4個のフィンガー電極110の一部を互いに接続される。   FIG. 6A is a diagram showing an embodiment of a front electrode structure of a solar cell according to the present invention. FIG. 6B is an enlarged view of the local region 2 of the solar cell structure according to the present invention of FIG. 6A. This will be described with reference to FIGS. 6A and 6B. The vertical finger electrodes 140 are arranged on both sides of the electrode assembly, and each vertical finger electrode 140 is connected to the four finger electrodes 110, and a part of the four finger electrodes 110 is connected to each other.

以上の接続用ワイヤ電極130の実施例を総括すると、接続用ワイヤ電極130の配置方法には、以下のいくつかの種類がある。   To summarize the embodiments of the connecting wire electrode 130 described above, there are several types of methods for arranging the connecting wire electrode 130 as follows.

I.接続用ワイヤ電極130は、図2Aの実施例のように各電極集合体3、4、5の両側に配置される。言い換えると、接続用ワイヤ電極130は各電極集合体の両側に配置され、これらフィンガー電極110に接続してこれらフィンガー電極を互いに接続させる。つまり接続用ワイヤ電極130は、フィンガー電極110の末端に接続し、且つ複数の該接続用ワイヤ電極130を介して隣り合うこれらフィンガー電極110の両端に接続することで、これらフィンガー電極の全てを互いに接続させる。   I. The connection wire electrodes 130 are arranged on both sides of each electrode assembly 3, 4, 5 as in the embodiment of FIG. 2A. In other words, the connecting wire electrodes 130 are arranged on both sides of each electrode assembly, and are connected to the finger electrodes 110 to connect the finger electrodes to each other. That is, the connecting wire electrode 130 is connected to the end of the finger electrode 110 and connected to both ends of the adjacent finger electrodes 110 via the plurality of connecting wire electrodes 130, so that all of the finger electrodes are connected to each other. Connect.

II.接続用ワイヤ電極130は、図3Aの実施例のように各電極集合体3、4、5の両側に配置される。言い換えると、接続用ワイヤ電極130は、各電極集合体の両側に配置され、これら2個のフィンガー電極110に接続し、接続用ワイヤ電極130がフィンガー電極110の開放端までに接続できる。複数の該接続用ワイヤ電極130は、これら隣り合うフィンガー電極110の両端に各々接続するが、全ての隣り合う電極110の両端に接続用ワイヤ電極130の接続があるものではない。
図3Aと図3Bに示すように、一部の隣り合うフィンガー電極110のみは接続用ワイヤ電極130で接続される。こうすると更に電極遮蔽領域を減少し、同時にELの測定問題と太陽電池のフィンガー電極の断線発生による発電効率低下の問題も解決できる。
II. The connection wire electrodes 130 are arranged on both sides of each electrode assembly 3, 4, 5 as in the embodiment of FIG. 3A. In other words, the connection wire electrode 130 is disposed on both sides of each electrode assembly and is connected to the two finger electrodes 110, and the connection wire electrode 130 can be connected to the open end of the finger electrode 110. The plurality of connection wire electrodes 130 are respectively connected to both ends of the adjacent finger electrodes 110, but the connection wire electrodes 130 are not connected to both ends of all the adjacent electrodes 110.
As shown in FIGS. 3A and 3B, only some of the adjacent finger electrodes 110 are connected by a connection wire electrode 130. In this way, the electrode shielding area can be further reduced, and at the same time, the EL measurement problem and the problem of reduced power generation efficiency due to the occurrence of disconnection of the finger electrode of the solar cell can be solved.

以上の垂直なフィンガー電極140の実施例を総括すると、図2A、図3A、図5Aと図6Aの実施例のように垂直なフィンガー電極140は電極集合体3、4、5の両側に配置されることができる。言い換えると、垂直なフィンガー電極140は、各電極集合体の両側に配置され、且つ各垂直なフィンガー電極140が2個のフィンガー電極110、3個のフィンガー電極110或いは4個のフィンガー電極110に接続できる。
ただし、本発明の垂直なフィンガー電極140は、2個のフィンガー電極110、3個のフィンガー電極110或いは4個のフィンガー電極110に限定されるものではなく、4個のフィンガー電極110以上の接続があった場合、本発明も実施できる。
To summarize the above-described embodiments of the vertical finger electrodes 140, the vertical finger electrodes 140 are disposed on both sides of the electrode assemblies 3, 4, 5 as in the embodiments of FIGS. 2A, 3A, 5A and 6A. Can. In other words, the vertical finger electrodes 140 are arranged on both sides of each electrode assembly, and each vertical finger electrode 140 is connected to two finger electrodes 110, three finger electrodes 110, or four finger electrodes 110. it can.
However, the vertical finger electrode 140 of the present invention is not limited to the two finger electrodes 110, the three finger electrodes 110, or the four finger electrodes 110. If so, the present invention can also be implemented.

このほかに、垂直なフィンガー電極140は、接続用ワイヤ電極130とバスバー電極120の間に配置され、例えば印刷時バスバー電極に近くフィンガー電極110の断線しやすい問題を解決するため、該垂直なフィンガー電極140がバスバー電極120に近く配置され、且つ該バスバー電極120までの距離はバスバー電極120と接続用ワイヤ電極130の1/4の間隔より小さい。
ただしこれに限定されるものではなく、当業者は、その電極を印刷するパターンと電極材料に基いて垂直なフィンガー電極140の配置位置を変更して本発明が解決しようとするELの測定課題と太陽電池のフィンガー電極の断線発生による発電効率低下の課題を達成できる。
In addition, the vertical finger electrode 140 is disposed between the connecting wire electrode 130 and the bus bar electrode 120. For example, in order to solve the problem that the finger electrode 110 is easily disconnected near the bus bar electrode during printing, the vertical finger electrode 140 is provided. The electrode 140 is disposed close to the bus bar electrode 120, and the distance to the bus bar electrode 120 is smaller than a quarter interval between the bus bar electrode 120 and the connecting wire electrode 130.
However, the present invention is not limited to this, and those skilled in the art will be able to solve the EL measurement problem to be solved by the present invention by changing the arrangement position of the vertical finger electrodes 140 based on the pattern of printing the electrode and the electrode material. The subject of the power generation efficiency fall by disconnection generation | occurrence | production of the finger electrode of a solar cell can be achieved.

その他の実施例において、各電極集合体の複数の垂直なフィンガー電極140から接続用ワイヤ電極130までの距離は、同じ或いは異なることができ、つまり垂直なフィンガー電極140はバスバー電極120方向に沿って直線配列又は交互配列となることができる。直線配列方式は図2A乃至図6Bに示す通りとし、交互配列方式は図7に示す通りとする。   In other embodiments, the distance from the plurality of vertical finger electrodes 140 of each electrode assembly to the connecting wire electrode 130 can be the same or different, i.e., the vertical finger electrodes 140 are along the direction of the bus bar electrode 120. It can be a linear array or an alternating array. The linear arrangement method is as shown in FIGS. 2A to 6B, and the alternating arrangement method is as shown in FIG.

前記実施例において、バスバー電極120と接続用ワイヤ電極130の間に1個の垂直なフィンガー電極140のみを設け、その他の実施例において垂直なフィンガー電極140とバスバー電極120或いは接続用ワイヤ電極130の間に1個の垂直なフィンガー電極140を更に設けることができる。つまり1個のフィンガー電極110を2個以上の異なる垂直なフィンガー電極140に接続する。
例えば、図8に示すように両フィンガー電極130の間に2個の異なる垂直なフィンガー電極140を設け、且つこれら垂直なフィンガー電極140もバスバー電極120の方向に沿って直線配列又は交互配列とすることで、多種類の電流経路を形成し、更にEL測定中にフィンガー電極110断線によって生じる発光と効率低下の問題を減らすことができる。
本発明の若干の実施例において、本発明に係る太陽電池は、ELの測定問題を解決し、太陽電池のフィンガー電極の断線発生による発電効率低下の問題を減らし、且つ発電効率をアップする具体的な効果を持っている。
In the embodiment, only one vertical finger electrode 140 is provided between the bus bar electrode 120 and the connecting wire electrode 130. In other embodiments, the vertical finger electrode 140 and the bus bar electrode 120 or the connecting wire electrode 130 One vertical finger electrode 140 may be further provided therebetween. That is, one finger electrode 110 is connected to two or more different vertical finger electrodes 140.
For example, as shown in FIG. 8, two different vertical finger electrodes 140 are provided between the finger electrodes 130, and these vertical finger electrodes 140 are also linearly arranged or alternately arranged along the direction of the bus bar electrode 120. As a result, various types of current paths can be formed, and the problem of light emission and efficiency reduction caused by disconnection of the finger electrode 110 during EL measurement can be reduced.
In some embodiments of the present invention, the solar cell according to the present invention solves the EL measurement problem, reduces the problem of power generation efficiency reduction due to the occurrence of disconnection of the finger electrode of the solar cell, and increases the power generation efficiency Have a good effect.

その他の実施例において、本発明に係る太陽電池のフィンガー電極の両端の幅は、同じ或いは異なるようにすることができる。両端の幅が異なる状況は、例えば該フィンガー電極のバスバー電極に近い一端の幅は、接続用ワイヤ電極に近い一端の幅より広い、若しくは該フィンガー電極のバスバー電極に近い一端の幅が接続用ワイヤ電極に近い一端の幅より小さく、且つフィンガー電極両端の幅が異なる時、該フィンガー電極は三角形、台形、多段階方形或いは凹形円弧線、凸形円弧線、直線又は斜線のうちのいずれか2本線で構成した態様とすることができる。好ましくは、該フィンガー電極は、多段方形の態様を呈し、且つバスバー電極に近い一端の幅が接続用ワイヤ電極に近い一端の幅より大きい。   In other embodiments, the widths of both ends of the finger electrode of the solar cell according to the present invention may be the same or different. For example, the width of one end near the bus bar electrode of the finger electrode is wider than the width of one end near the connecting wire electrode, or the width of one end close to the bus bar electrode of the finger electrode is different. When the width of the finger electrode is smaller than the width of one end close to the electrode and the widths of both ends of the finger electrode are different, the finger electrode is any one of triangle, trapezoid, multi-step square or concave arc line, convex arc line, straight line or diagonal line It can be set as the aspect comprised with the main line. Preferably, the finger electrode has a multi-step rectangular shape, and the width of one end close to the bus bar electrode is larger than the width of one end close to the connecting wire electrode.

1 局所領域
2 局所領域
3 電極集合体
4 電極集合体
5 電極集合体
100 太陽電池用基板
110 フィンガー電極
111 断線箇所
115 フィンガー電極
120 バスバー電極
130 接続用ワイヤ電極
131 接続用ワイヤ電極
132 接続用ワイヤ電極
140 垂直なフィンガー電極
DESCRIPTION OF SYMBOLS 1 Local area | region 2 Local area | region 3 Electrode assembly 4 Electrode assembly 5 Electrode assembly 100 Solar cell substrate 110 Finger electrode 111 Disconnection location 115 Finger electrode 120 Bus bar electrode 130 Connection wire electrode 131 Connection wire electrode 132 Connection wire electrode 140 Vertical finger electrode

Claims (15)

第1表面と第2表面とを備える太陽電池用基板と前記太陽電池用基板の前記第1表面上で互いに隔離して配置される複数組の電極集合体と、を含む太陽電池であって、各前記電極集合体は、
前記太陽電池用基板の前記第1表面に設けられるバスバー電極と、
前記バスバー電極の両側に間隔を持って配置される複数のフィンガー電極と、
前記太陽電池用基板の前記第1表面上に設けられ、少なくとも2個の前記フィンガー電極の末端に接続する少なくとも1個の接続用ワイヤ電極と、
前記太陽電池用基板の前記第1表面上に設けられ、前記バスバー電極と平行し、且つ、前記フィンガー電極の両端の間に設けられ、少なくとも2個の隣り合う前記フィンガー電極に接続するための少なくとも1個の垂直なフィンガー電極と、を含むことを特徴とする、
太陽電池。
A solar cell comprising: a solar cell substrate comprising a first surface and a second surface; and a plurality of sets of electrode assemblies arranged separately from each other on the first surface of the solar cell substrate, Each of the electrode assemblies is
A bus bar electrode provided on the first surface of the solar cell substrate;
A plurality of finger electrodes arranged at intervals on both sides of the bus bar electrode;
At least one connecting wire electrode provided on the first surface of the solar cell substrate and connected to the ends of at least two finger electrodes;
Provided on the first surface of the solar cell substrate, parallel to the bus bar electrode, provided between both ends of the finger electrode, and at least for connecting to at least two adjacent finger electrodes One vertical finger electrode,
Solar cell.
隣り合う前記電極集合体は、互いに幅を持って区切られ、前記幅が30マイクロメートル〜5,000マイクロメートルとなることを特徴とする請求項1に記載の太陽電池。   2. The solar cell according to claim 1, wherein the adjacent electrode assemblies are separated from each other with a width, and the width is 30 μm to 5,000 μm. 前記電極集合体の前記バスバー電極は、互いに実質的に平行になることを特徴とする請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the bus bar electrodes of the electrode assembly are substantially parallel to each other. 前記接続用ワイヤ電極と前記バスバー電極は、10度〜80度の交角となることを特徴とする請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the connection wire electrode and the bus bar electrode have an intersection angle of 10 degrees to 80 degrees. 前記バスバー電極の中心は、位置する前記電極集合体の中心にあることを特徴とする請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the center of the bus bar electrode is at the center of the electrode assembly located. 各前記接続用ワイヤ電極の線幅は、10マイクロメートル〜200マイクロメートルとなることを特徴とする請求項1に記載の太陽電池。   2. The solar cell according to claim 1, wherein a line width of each of the connection wire electrodes is 10 μm to 200 μm. 複数の前記接続用ワイヤ電極は、前記フィンガー電極の両端に接続することで、前記フィンガー電極の全てを互いに接続させることを特徴とする請求項1に記載の太陽電池。   2. The solar cell according to claim 1, wherein the plurality of connecting wire electrodes are connected to both ends of the finger electrode to connect all of the finger electrodes to each other. 複数の前記接続用ワイヤ電極は、前記フィンガー電極の両端に接続することで、前記フィンガー電極の一部を互いに接続させることを特徴とする請求項1に記載の太陽電池。   2. The solar cell according to claim 1, wherein the plurality of connecting wire electrodes are connected to both ends of the finger electrode to connect a part of the finger electrodes to each other. 前記垂直なフィンガー電極は、各前記電極集合体の両側に配置され、各前記垂直なフィンガー電極が2個の前記フィンガー電極に接続して2個の前記フィンガー電極の部分を互いに接続させることを特徴とする、請求項1、7、または8のいずれか一項に記載の太陽電池。   The vertical finger electrodes are disposed on both sides of each electrode assembly, and each vertical finger electrode is connected to two finger electrodes to connect two finger electrode portions to each other. The solar cell according to any one of claims 1, 7, and 8. 前記垂直なフィンガー電極は、各前記電極集合体の両側に配置され、各前記垂直なフィンガー電極が3個の前記フィンガー電極に接続して3個の前記フィンガー電極の部分を互いに接続させることを特徴とする、請求項1、7、または8のいずれか一項に記載の太陽電池。     The vertical finger electrodes are disposed on both sides of each electrode assembly, and the vertical finger electrodes are connected to the three finger electrodes to connect the three finger electrode portions to each other. The solar cell according to any one of claims 1, 7, and 8. 前記垂直なフィンガー電極は、各前記電極集合体の両側に配置され、各前記垂直なフィンガー電極が4個の前記フィンガー電極に接続して4個の前記フィンガー電極の部分を互いに接続させることを特徴とする、請求項1、7、または8のいずれか一項に記載の太陽電池。   The vertical finger electrodes are disposed on both sides of each electrode assembly, and the vertical finger electrodes are connected to the four finger electrodes to connect the four finger electrode portions to each other. The solar cell according to any one of claims 1, 7, and 8. 各前記垂直なフィンガー電極の線幅は、10マイクロメートル〜200マイクロメートルとなることを特徴とする請求項1に記載の太陽電池。   2. The solar cell according to claim 1, wherein a line width of each of the vertical finger electrodes is 10 μm to 200 μm. 前記フィンガー電極は、対向する第1端と第2端を有し、且つ、前記第1端が前記バスバー電極に接続し、前記第1端の幅と前記第2端の幅の差が0マイクロメートル〜100マイクロメートルとなることを特徴とする請求項1に記載の太陽電池。   The finger electrode has a first end and a second end facing each other, the first end is connected to the bus bar electrode, and a difference between the width of the first end and the width of the second end is 0 micron. The solar cell according to claim 1, wherein the solar cell is in a range of meters to 100 micrometers. 前記垂直なフィンガー電極と前記バスバー電極は、10度〜45度の交角となることを特徴とする請求項1に記載の太陽電池。   The solar cell according to claim 1, wherein the vertical finger electrode and the bus bar electrode have an intersection angle of 10 degrees to 45 degrees. 前記垂直なフィンガー電極と前記バスバー電極は、10度〜20度の交角となることを特徴とする請求項14に記載の太陽電池。   The solar cell according to claim 14, wherein the vertical finger electrode and the bus bar electrode have an intersection angle of 10 degrees to 20 degrees.
JP2014019334A 2013-05-31 2014-02-04 Solar cell Pending JP2014236217A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102119505 2013-05-31
TW102119505A TWI447921B (en) 2013-05-31 2013-05-31 Solar cell

Publications (1)

Publication Number Publication Date
JP2014236217A true JP2014236217A (en) 2014-12-15

Family

ID=51794489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014019334A Pending JP2014236217A (en) 2013-05-31 2014-02-04 Solar cell

Country Status (3)

Country Link
JP (1) JP2014236217A (en)
CN (1) CN104218103A (en)
TW (1) TWI447921B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409527A (en) * 2014-11-06 2015-03-11 浙江正泰太阳能科技有限公司 Solar cell front grid line structure, solar cell and solar cell module
CN104882497A (en) * 2015-06-05 2015-09-02 中利腾晖光伏科技有限公司 Grid-shaped electrode solar cell
CN105489684A (en) * 2016-02-03 2016-04-13 江苏赛拉弗光伏系统有限公司 Solar photovoltaic assembly
TWI590475B (en) * 2016-06-17 2017-07-01 財團法人工業技術研究院 Tandem solar cell module
CN107978647A (en) * 2016-10-21 2018-05-01 英稳达科技股份有限公司 Solar cell
CN116864550A (en) * 2021-08-27 2023-10-10 浙江晶科能源有限公司 Battery piece and photovoltaic module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135655A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module, manufacturing method therefor, and solar battery cell
JP2011507275A (en) * 2007-12-11 2011-03-03 エバーグリーン ソーラー, インコーポレイテッド Photovoltaic panel having fine fingers, photovoltaic cell, and method for producing the same
JP2011077362A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Solar cell, and solar cell module
JP2012124328A (en) * 2010-12-08 2012-06-28 Ulvac Japan Ltd Solar cell
WO2013035667A1 (en) * 2011-09-05 2013-03-14 デクセリアルズ株式会社 Solar cell module manufacturing method, solar cell module, and tab wire connection method
JP3184336U (en) * 2012-09-18 2013-06-20 太陽光電能源科技股▲ふん▼有限公司 Solar cell with tilted finger electrode
JP3186623U (en) * 2012-11-09 2013-10-17 太陽光電能源科技股▲ふん▼有限公司 Solar cell having bus bar electrodes of different thickness
JP2014120761A (en) * 2012-12-17 2014-06-30 Talesun Photovoltaic Technology Co Ltd Crystal silicon solar cell preventing generation of dark area due to breaking of electrode gate lines

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121928B2 (en) * 2003-10-08 2008-07-23 シャープ株式会社 Manufacturing method of solar cell
CN201444480U (en) * 2009-02-16 2010-04-28 新日光能源科技股份有限公司 Solar battery
KR101001877B1 (en) * 2009-04-10 2010-12-17 엘지이노텍 주식회사 Pattern of the front electrode of solar cell and Solar cell using the same
TWM387372U (en) * 2010-03-29 2010-08-21 Neo Solar Power Corp Electrode structure of solar cell
EP2590226A4 (en) * 2010-06-30 2015-06-17 Sanyo Electric Co Solar cell module
CN202142543U (en) * 2011-07-15 2012-02-08 中电电气(南京)光伏有限公司 Crystalline silicon solar cell electrode
TWM438025U (en) * 2012-06-04 2012-09-21 Inventec Solar Energy Corp Solar cell device
TWM451667U (en) * 2012-11-06 2013-04-21 Motech Ind Inc Solar cell and module thereof
CN102969370A (en) * 2012-12-17 2013-03-13 中利腾晖光伏科技有限公司 Break-proof type grid crystalline silicon solar cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135655A (en) * 2006-11-29 2008-06-12 Sanyo Electric Co Ltd Solar battery module, manufacturing method therefor, and solar battery cell
JP2011507275A (en) * 2007-12-11 2011-03-03 エバーグリーン ソーラー, インコーポレイテッド Photovoltaic panel having fine fingers, photovoltaic cell, and method for producing the same
JP2011077362A (en) * 2009-09-30 2011-04-14 Sanyo Electric Co Ltd Solar cell, and solar cell module
JP2012124328A (en) * 2010-12-08 2012-06-28 Ulvac Japan Ltd Solar cell
WO2013035667A1 (en) * 2011-09-05 2013-03-14 デクセリアルズ株式会社 Solar cell module manufacturing method, solar cell module, and tab wire connection method
JP3184336U (en) * 2012-09-18 2013-06-20 太陽光電能源科技股▲ふん▼有限公司 Solar cell with tilted finger electrode
JP3186623U (en) * 2012-11-09 2013-10-17 太陽光電能源科技股▲ふん▼有限公司 Solar cell having bus bar electrodes of different thickness
JP2014120761A (en) * 2012-12-17 2014-06-30 Talesun Photovoltaic Technology Co Ltd Crystal silicon solar cell preventing generation of dark area due to breaking of electrode gate lines

Also Published As

Publication number Publication date
TWI447921B (en) 2014-08-01
TW201445752A (en) 2014-12-01
CN104218103A (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP2014236217A (en) Solar cell
US9978899B2 (en) Solar cell module and method and device for repairing the same
US20140352773A1 (en) Solar cell
US20180366596A1 (en) Solar cell, solar cell module, and fabricating methods thereof
CN109463012B (en) System and method for reworking of cover-stacked solar cell module
TWI404223B (en) Method for manufacturing solar battery
US11063183B2 (en) Light emitting element
JP5279914B2 (en) ORGANIC OPTICAL DEVICE AND METHOD FOR MANUFACTURING ORGANIC OPTICAL DEVICE
CN114255683B (en) Display panel
JP3188303U (en) Solar cell with improved electrode structure
CN102969369A (en) Solar battery frontage electrode structure as well as battery piece and component
JP2015026665A (en) Reverse surface electrode type solar battery, solar battery module using reverse surface electrode type solar battery, and method of manufacturing reverse surface electrode type solar battery
TWI520324B (en) Display panel with varing conductive pattern zone
US20160247989A1 (en) Semiconductor Light Emitting Diode Chip
CN216362130U (en) Front pattern structure of solar cell and solar cell
CN202009029U (en) Light emitting diode capable of reinforcing expansion of transverse current
TWI503994B (en) Front electrode structure of solar cell
CN208489208U (en) A kind of IBC battery and a kind of IBC battery strings
JPWO2011024750A1 (en) Solar cell evaluation method and evaluation apparatus
WO2018079657A1 (en) Solar cell inspection method and inspection device, method for manufacturing solar cell, method for manufacturing solar cell module, inspection program, and storage medium
CN218975462U (en) Battery string and photovoltaic module
TWM453247U (en) Solar cell
TW201544332A (en) Printing screen and solar cell
CN102479903A (en) Light emitting diode capable of enhancing transverse current expansion
CN216528904U (en) Front side pattern structure of solar cell suitable for fractional printing and solar cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150728