JP2014235945A - Method for concurrently recovering lithium salt for electrolyte use and organic solvent from waste electrolytic solution, and device therefor - Google Patents

Method for concurrently recovering lithium salt for electrolyte use and organic solvent from waste electrolytic solution, and device therefor Download PDF

Info

Publication number
JP2014235945A
JP2014235945A JP2013118204A JP2013118204A JP2014235945A JP 2014235945 A JP2014235945 A JP 2014235945A JP 2013118204 A JP2013118204 A JP 2013118204A JP 2013118204 A JP2013118204 A JP 2013118204A JP 2014235945 A JP2014235945 A JP 2014235945A
Authority
JP
Japan
Prior art keywords
organic solvent
electrolyte
evaporator
lithium salt
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118204A
Other languages
Japanese (ja)
Other versions
JP5360328B1 (en
Inventor
洋 西村
Hiroshi Nishimura
洋 西村
敏彦 池畠
Toshihiko Ikehata
敏彦 池畠
裕美子 山内
Yumiko Yamauchi
裕美子 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOINT ENGINEERING CO Ltd
Original Assignee
JOINT ENGINEERING CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOINT ENGINEERING CO Ltd filed Critical JOINT ENGINEERING CO Ltd
Priority to JP2013118204A priority Critical patent/JP5360328B1/en
Priority to PCT/JP2013/082199 priority patent/WO2014097861A1/en
Application granted granted Critical
Publication of JP5360328B1 publication Critical patent/JP5360328B1/en
Publication of JP2014235945A publication Critical patent/JP2014235945A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for concurrently recovering a lithium salt for electrolyte use and an organic solvent, which can be preferably reused for lithium batteries and lithium ion batteries, from waste electrolytic solution resulting from a trouble in a manufacturing process of the lithium batteries and the lithium ion batteries, and from waste electrolytic solution collected from used batteries while suppressing the production of a lithium salt insoluble to organic solvent; and a device which allows such a method to be implemented.SOLUTION: A method for concurrently recovering a lithium salt for electrolyte use and an organic solvent from waste electrolytic solution comprises the steps below in a process for heating and condensing, by an evaporator, the waste electrolytic solution containing the organic solvent and the lithium salt serving as electrolyte of lithium batteries and/or lithium ion batteries thereby causing the lithium salt to crystallize and concurrently, condensing, by a condenser, the organic solvent evaporated by the evaporator and recovering the condensed organic solvent: mutually communicating the evaporator and the condenser thereby forming a sealable system; evaporating the organic solvent by heating the waste electrolytic solution while controlling the amount of emission of uncondensed gas in the condenser to outside the system in the evaporator; and condensing, by the condenser, the organic solvent evaporated by the evaporator.

Description

本発明は、リチウム電池やリチウムイオン電池の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法及びその回収に適した装置に関する。   The present invention relates to a method for simultaneously recovering a lithium salt for an electrolyte and an organic solvent from a waste electrolyte solution of a lithium battery or a lithium ion battery, and an apparatus suitable for the recovery.

近年、リチウムイオン電池市場が携帯電話、パソコン等の電子機器から車にまで急速に拡大するに伴い、使用済みのリチウム電池やリチウムイオン電池あるいはリチウム電池やリチウムイオン電池の製造工程でのトラブルで発生する不良電池が今後急激に増加してくることが予想されている。そこで資源の有効利用の観点から、これら不良電池及び/又は使用済み電池から有価物を回収し、リサイクルする方法が種々提案されているが、電池製造工程のトラブルで発生する廃電解液及び/又は使用済み電池から回収された廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法についての有効な提案は現在まで見当たらない。   In recent years, as the lithium-ion battery market has rapidly expanded from electronic devices such as mobile phones and personal computers to cars, it has occurred due to problems in the manufacturing process of used lithium batteries, lithium-ion batteries, or lithium batteries and lithium-ion batteries. It is expected that the number of defective batteries will increase rapidly in the future. In view of the effective use of resources, various methods for recovering and recycling valuable materials from these defective batteries and / or used batteries have been proposed. To date, no effective proposal has been found for a method for simultaneously recovering a lithium salt for electrolyte and an organic solvent from a waste electrolyte recovered from a used battery.

一方、リチウムイオン電池製造工程のトラブルで発生する不良電池及び/又は使用済みリチウムイオン電池から有価物を回収リサイクルする方法として、例えば、使用済みの廃棄リチウムイオン電池を高温オーブンで焼き付け及び篩い分けによって金属及び金属酸化物を含む炭灰を生成させて金属を回収する方法がある(特許文献1)。しかし、この方法ではリチウムは炭酸塩として回収されるため電解質そのものを回収すること及び有機溶媒を回収することはできず、しかも電解質用リチウム塩としては主にリチウムのフッ素化合物が使用されているため高温オーブンで焼き付ける際に電解質の分解生成物としてフッ化水素等の有害なガスを発生させる問題が考えられる。   On the other hand, as a method for recovering and recycling valuable materials from defective batteries and / or used lithium ion batteries that occur due to troubles in the manufacturing process of lithium ion batteries, for example, used waste lithium ion batteries are baked and sieved in a high-temperature oven. There is a method of generating metal ash containing metal and metal oxide to recover metal (Patent Document 1). However, in this method, since lithium is recovered as a carbonate, the electrolyte itself cannot be recovered and the organic solvent cannot be recovered. Moreover, as a lithium salt for electrolyte, a fluorine fluorine compound is mainly used. When baking in a high temperature oven, there may be a problem of generating harmful gases such as hydrogen fluoride as decomposition products of the electrolyte.

また、特許文献2には、リチウム電池やリチウムイオン二次電池で使用される電解質を構成するリチウム塩であるLiPF6と、ジメチルカーボネート又はジエチルカーボネートとからなる飽和溶液を蒸発、濃縮、晶析させ、濾別した結晶を60〜90℃の温度で減圧脱気してLiPF6を精製する手法が記載されている。ここでは、LiPF6は下記式(1)の反応式に従い解離する性質があり、60〜70℃の温度範囲で2Torr(約0.26kPa)以上の蒸気圧を持つため減圧乾燥は50〜70℃の範囲で3〜10torr(約0.4〜1.3kPa)の圧力を保持しながら行うこと、さらに90℃以上では蒸気圧は6Torr(約0.8kPa)以上になると記載されている。 In Patent Document 2, a saturated solution composed of LiPF 6 that is a lithium salt constituting an electrolyte used in a lithium battery or a lithium ion secondary battery and dimethyl carbonate or diethyl carbonate is evaporated, concentrated, and crystallized. A method is described in which LiPF 6 is purified by degassing the filtered crystals at a temperature of 60 to 90 ° C. under reduced pressure. Here, LiPF 6 has a property of dissociating according to the reaction formula of the following formula (1), and has a vapor pressure of 2 Torr (about 0.26 kPa) or more in a temperature range of 60 to 70 ° C., so that the reduced pressure drying is 50 to 70 ° C. It is described that the vapor pressure is 6 Torr (about 0.8 kPa) or higher at 90 ° C. or higher.

Figure 2014235945
Figure 2014235945

特許文献3にはLiPF6とジメチルカーボネートからなる溶液より溶媒を−20℃〜150℃の範囲で蒸発、濃縮しLiPF6を晶析させるLiPF6の製造方法が記載されている。ところがこの製造方法を前記廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する手段として適用しても、前記特許文献2に記載があるようにLiPF6を含んだ有機溶媒を加熱すると少なからずLiPF6の解離が起こり60℃以上になると分解が顕著になる。このため晶析したLiPF6中に不純物である有機溶媒に対し不溶性のLiFが残存しLiPF6の純度を低下させるという問題がある。 Patent Document 3 evaporation in the range of -20 ° C. to 150 DEG ° C. The solvent from the solution comprising LiPF 6 and dimethyl carbonate method for producing LiPF 6 to be concentrated crystallizing LiPF 6 is described. However, even if this production method is applied as a means for simultaneously recovering the lithium salt for electrolyte and the organic solvent from the waste electrolyte solution, as described in Patent Document 2, it is not a little when the organic solvent containing LiPF 6 is heated. When LiPF 6 is dissociated and the temperature exceeds 60 ° C., decomposition becomes significant. Therefore, there is a problem that LiF that is insoluble in the organic solvent that is an impurity remains in the crystallized LiPF 6 to lower the purity of LiPF 6 .

また、LiFに限らず電池用有機溶媒に不溶性のリチウム塩は、リチウム電池及び/又はリチウムイオン電池用電解液の濾過工程で濾材の目詰まりを促進し電解液の製造工程に重篤な悪影響を与える。このため、これらの不純物は電解質の製造工程で厳しく管理されている。   In addition, lithium salts that are insoluble in organic solvents for batteries, not limited to LiF, promote clogging of the filter medium in the filtration process for lithium battery and / or lithium ion battery electrolytes, and have a serious adverse effect on the electrolyte production process. give. For this reason, these impurities are strictly controlled in the electrolyte manufacturing process.

特開2003−157913号公報JP 2003-157913 A 特開平11−147705号公報JP-A-11-147705 特開平10−316410号公報Japanese Patent Laid-Open No. 10-316410

本発明は、リチウム電池及び/又はリチウムイオン電池の製造工程でのトラブルで発生する廃電解液及び/又は使用済み電池から回収された廃電解液から有機溶媒に不溶性のリチウム塩の生成を抑制しながら、前記リチウム電池及び/又はリチウムイオン電池用として好適に再利用できる電解質用リチウム塩と有機溶媒とを同時に分離して回収する方法及びこの方法を実施することができる装置を提供することを課題とする。   The present invention suppresses the production of lithium salts that are insoluble in organic solvents from waste electrolytes generated from troubles in the manufacturing process of lithium batteries and / or lithium ion batteries and / or waste electrolytes recovered from used batteries. However, it is an object to provide a method for simultaneously separating and recovering an electrolyte lithium salt and an organic solvent that can be suitably reused for the lithium battery and / or lithium ion battery, and an apparatus that can implement the method. And

本発明の要旨は、
[1]有機溶媒とリチウム電池及び/又はリチウムイオン電池の電解質であるリチウム塩とを含む廃電解液を蒸発器にて加熱濃縮してリチウム塩を晶析させると同時に、凝縮器にて前記蒸発器で蒸発させた有機溶媒を凝縮して回収するに際し、
前記蒸発器と前記凝縮器とを連通させて密閉可能な1つの系とし、
前記凝縮器内の不凝縮ガスの系外への排出量を制御しつつ、蒸発器において廃電解液を加熱して有機溶媒を蒸発させ、かつ、凝縮器において蒸発器にて蒸発させた有機溶媒を凝縮させることを特徴とする廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法、
[2]前記凝縮器内の不凝縮ガスの系外への排出量を、廃電解液中の電解質の当初量の10質量%以下に制御する前記[1]に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法、
[3]前記凝縮器に、不凝縮ガス及び/又は未凝縮ガスを系外へ排出可能な排気手段が設けられた前記[1]または[2]に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法、
[4]前記排気手段に、未凝縮ガスを捕捉して不凝縮ガスを抽出する手段がさらに設けられた前記[3]に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法、
[5]前記凝縮器内の不凝縮ガス及び/又は未凝縮ガスを蒸発器内に還流させる前記[1]〜[4]ずれかに記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法、
[6]前記リチウム塩がLiPF6又はLiBF4であり、前記系の系外からPF5又はBF3をそれぞれ前記系内に添加する前記[1]〜[5]いずれかに記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法、
[7]前記廃電解液が、少なくとも有機溶媒と電解質用リチウム塩とを含む電解液を含有及び/又は付着した電池部材で構成される使用済みリチウム電池及び/又はリチウムイオン電池を放電させた後解体し、前記電池部材に前記電解質用リチウム塩を含まない有機溶媒を加え、該有機溶媒中に前記電解液を抽出させて得られる液である前記[1]〜[6]いずれかに記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法、
[8]前記蒸発器へ低沸点の有機溶媒及び/又は廃電解液中の高沸点溶媒成分と最低沸点共沸混合物を形成することができる有機溶媒を添加する前記[1]〜[7]いずれかに記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法、
[9]有機溶媒とリチウム電池及び/又はリチウムイオン電池の電解質であるリチウム塩とを含む廃電解液を加熱して有機溶媒を蒸発させリチウム塩を晶析させる蒸発器と、
前記蒸発器にて蒸発した有機溶媒を凝縮させて回収する凝縮器と、
前記蒸発器と前記凝縮器とを連通させて密閉可能な一つの系を形成する連結管とを備え、
前記凝縮器が該凝縮器内にある不凝縮ガス及び/又は未凝縮ガスを系外へ排出可能な排気手段を有し、
前記蒸発器において蒸発させた有機溶媒を前記凝縮器にて凝縮させつつ、前記排気手段による系内の不凝縮ガスの系外への排出量を制御する制御手段を有することを特徴とする廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する装置、
[10]前記排気手段に未凝縮ガスを捕捉して不凝縮ガスを抽出する手段がさらに設けられた前記[9]に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する装置、
[11]前記凝縮器内の不凝縮ガス及び/又は未凝縮ガスを前記蒸発器内に還流させるための還流手段、
前記系の系外からPF5又はBF3を前記系内に添加する添加手段、
蒸発器へ低沸点の有機溶媒及び/又は廃電解液中の高沸点溶媒成分と最低沸点共沸混合物を形成することができる有機溶媒を供給する溶媒供給手段
のいずれか1つ以上を更に備える前記[10]に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する装置
に関する。
The gist of the present invention is as follows:
[1] A waste electrolyte containing an organic solvent and a lithium salt as an electrolyte of a lithium battery and / or a lithium ion battery is heated and concentrated in an evaporator to crystallize the lithium salt, and at the same time, the evaporation is performed in a condenser. When condensing and recovering the organic solvent evaporated in the vessel,
The evaporator and the condenser are communicated to form a single sealable system,
The organic solvent evaporated by heating the waste electrolyte in the evaporator and evaporating the organic solvent while controlling the discharge amount of the non-condensable gas in the condenser to the outside of the system. A method of simultaneously recovering a lithium salt for electrolyte and an organic solvent from a waste electrolyte, characterized by condensing
[2] The amount of non-condensable gas discharged from the condenser to the outside of the system is controlled to 10% by mass or less of the initial amount of the electrolyte in the waste electrolyte. A method of simultaneously recovering a lithium salt and an organic solvent;
[3] The lithium salt for electrolyte from the waste electrolyte solution according to [1] or [2], wherein the condenser is provided with an exhaust means capable of discharging non-condensable gas and / or uncondensed gas out of the system. A method of simultaneously recovering an organic solvent,
[4] The method for simultaneously recovering the lithium salt for electrolyte and the organic solvent from the waste electrolyte solution according to [3], wherein the exhaust means is further provided with means for capturing uncondensed gas and extracting non-condensable gas ,
[5] The electrolyte lithium salt and the organic solvent are simultaneously obtained from the waste electrolyte solution according to any one of [1] to [4], wherein the non-condensable gas and / or the non-condensed gas in the condenser is refluxed into the evaporator. How to recover,
[6] The waste electrolyte solution according to any one of [1] to [5], wherein the lithium salt is LiPF 6 or LiBF 4 and PF 5 or BF 3 is added into the system from outside the system. A method for simultaneously recovering lithium salt for electrolyte and organic solvent from
[7] After discharging the used lithium battery and / or the lithium ion battery, which is composed of a battery member containing and / or adhering an electrolyte solution containing at least an organic solvent and a lithium salt for electrolyte. The battery according to any one of [1] to [6], which is a liquid obtained by disassembling, adding an organic solvent not containing the electrolyte lithium salt to the battery member, and extracting the electrolytic solution into the organic solvent. A method of simultaneously recovering a lithium salt for electrolyte and an organic solvent from a waste electrolyte;
[8] Any of the above [1] to [7], wherein a low boiling point organic solvent and / or an organic solvent capable of forming a minimum boiling point azeotrope with a high boiling point solvent component in the waste electrolyte is added to the evaporator. A method of simultaneously recovering a lithium salt for electrolyte and an organic solvent from the waste electrolyte solution according to claim 1,
[9] An evaporator that heats a waste electrolytic solution containing an organic solvent and a lithium salt that is an electrolyte of a lithium battery and / or a lithium ion battery to evaporate the organic solvent and crystallize the lithium salt;
A condenser for condensing and recovering the organic solvent evaporated in the evaporator;
A connecting pipe that connects the evaporator and the condenser to form a single sealable system;
The condenser has exhaust means capable of discharging non-condensable gas and / or uncondensed gas in the condenser to the outside of the system;
Waste electrolysis characterized by having control means for controlling the discharge amount of non-condensable gas in the system to the outside by the exhaust means while condensing the organic solvent evaporated in the evaporator in the condenser An apparatus for simultaneously recovering lithium salt for electrolyte and organic solvent from liquid,
[10] The apparatus for simultaneously recovering the lithium salt for electrolyte and the organic solvent from the waste electrolyte solution according to [9], wherein the exhaust means captures uncondensed gas and further extracts non-condensable gas.
[11] A reflux means for refluxing non-condensable gas and / or uncondensed gas in the condenser into the evaporator,
An adding means for adding PF 5 or BF 3 into the system from outside the system;
The apparatus further comprises any one or more of solvent supply means for supplying an organic solvent capable of forming a low boiling point organic solvent and / or a high boiling point solvent component in the waste electrolyte solution and a minimum boiling point azeotrope to the evaporator. The present invention relates to an apparatus for simultaneously recovering a lithium salt for electrolyte and an organic solvent from the waste electrolyte solution according to [10].

本発明の方法によれば、前記不溶性リチウム塩の生成を抑制することで、特段の高度で複雑な精製を行わずとも、低コストで前記廃電解液から前記電池用として好適に再利用できる電解質用リチウム塩と有機溶媒とを同時に分離して回収できる。
中でも、本発明の方法において、前記凝縮器内の不凝縮ガス及び/又は未凝縮ガスを前記蒸発器内に還流させたり、前記系の系外からPF5又はBF3を前記系内に添加したり、蒸発器へ低沸点の有機溶媒及び/又は廃電解液中の高沸点溶媒成分と最低沸点共沸混合物を形成することができる有機溶媒を供給することで、不溶性リチウム塩の生成を顕著に抑制することができ、高品質のリチウム塩を効率よく回収することができる。
According to the method of the present invention, by suppressing the production of the insoluble lithium salt, an electrolyte that can be suitably reused for the battery from the waste electrolyte solution at low cost without performing a particularly sophisticated and complicated purification. The lithium salt and the organic solvent can be separated and recovered at the same time.
Among them, in the method of the present invention, non-condensable gas and / or uncondensed gas in the condenser is refluxed into the evaporator, or PF 5 or BF 3 is added into the system from outside the system. Or by supplying a low boiling point organic solvent and / or an organic solvent capable of forming a minimum boiling point azeotrope with a high boiling point solvent component in the waste electrolyte to the evaporator. Therefore, it is possible to efficiently recover a high-quality lithium salt.

また、本発明の装置を用いることで、前記廃電解液からの電解質用リチウム塩と有機溶媒との回収を効率よく行うことができる。
中でも、本発明の装置が、前記凝縮器内の不凝縮ガス及び/又は未凝縮ガスを前記蒸発器内に還流させるための還流手段、前記系の系外からPF5又はBF3を前記系内に添加する添加手段、蒸発器へ低沸点の有機溶媒及び/又は廃電解液中の高沸点溶媒成分と最低沸点共沸混合物を形成することができる有機溶媒を供給する溶媒供給手段のいずれか1つ以上を更に備えることで、不溶性リチウム塩の生成を顕著に抑制することができ、高品質のリチウム塩を効率よく回収することができる。
Moreover, by using the apparatus of the present invention, it is possible to efficiently recover the lithium salt for electrolyte and the organic solvent from the waste electrolyte solution.
Among them, the apparatus of the present invention includes a reflux means for refluxing non-condensable gas and / or uncondensed gas in the condenser into the evaporator, and PF 5 or BF 3 from the outside of the system into the system. Any one of an addition means for adding to the solvent, an organic solvent having a low boiling point and / or a solvent supply means for supplying an organic solvent capable of forming a minimum boiling azeotrope with the high boiling point solvent component in the waste electrolyte. By further providing at least one, the production of insoluble lithium salt can be remarkably suppressed, and high-quality lithium salt can be efficiently recovered.

図1は、本発明の装置の実施形態の一例を示す概略説明図である。FIG. 1 is a schematic explanatory view showing an example of an embodiment of the apparatus of the present invention. 図2は、本発明の装置の別の実施形態の一例を示す概略説明図である。FIG. 2 is a schematic explanatory view showing an example of another embodiment of the apparatus of the present invention. 図3は、本発明の装置の別の実施形態の一例を示す概略説明図である。FIG. 3 is a schematic explanatory view showing an example of another embodiment of the apparatus of the present invention. 図4は、本発明の装置の別の実施形態の一例を示す概略説明図である。FIG. 4 is a schematic explanatory view showing an example of another embodiment of the apparatus of the present invention. 図5は、本発明の装置の別の実施形態の一例を示す概略説明図である。FIG. 5 is a schematic explanatory view showing an example of another embodiment of the apparatus of the present invention. 図6は、本発明の装置の別の実施形態の一例を示す概略説明図である。FIG. 6 is a schematic explanatory view showing an example of another embodiment of the apparatus of the present invention.

以下に本発明の実施形態について詳細に説明するが、当該説明は本発明の実施態様の一例であり本発明はこれらに制限されず任意に改変して実施することができる。   Embodiments of the present invention will be described in detail below, but the description is an example of embodiments of the present invention, and the present invention is not limited to these and can be implemented with any modifications.

1.回収方法
本発明の方法は廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法であり、有機溶媒とリチウム電池及び/又はリチウムイオン電池の電解質であるリチウム塩とを含む廃電解液を蒸発器にて加熱濃縮してリチウム塩を晶析させると同時に凝縮器にて前記蒸発器で蒸発させた有機溶媒を凝縮して回収するに際し、
前記蒸発器と前記凝縮器とを連通させて密閉可能な1つの系とし、
凝縮器内の不凝縮ガスの系外への排出量を制御しつつ蒸発器において廃電解液を加熱して有機溶媒を蒸発させ、かつ、凝縮器において蒸発器にて蒸発させた有機溶媒を凝縮させることを特徴とする。
1. Recovery method The method of the present invention is a method of simultaneously recovering a lithium salt for electrolyte and an organic solvent from a waste electrolyte, and a waste electrolyte containing an organic solvent and a lithium salt that is an electrolyte of a lithium battery and / or a lithium ion battery. In condensing and recovering the organic solvent evaporated in the evaporator at the same time as condensing the lithium salt by heating and concentrating in an evaporator,
The evaporator and the condenser are communicated to form a single sealable system,
The waste electrolyte is heated in the evaporator to evaporate the organic solvent while controlling the discharge amount of the non-condensable gas in the condenser to the outside of the system, and the organic solvent evaporated in the evaporator is condensed in the condenser. It is characterized by making it.

本発明でいう廃電解液とは、リチウム電池及び/又はリチウムイオン電池の製造工程のトラブルで発生する廃電解液及び/又は使用済みのこれらの電池から回収された廃電解液であって、電解質用リチウム塩及び有機溶媒を含有しているものをいう。これらの廃電解液中のリチウム塩や有機溶媒の含有量については特に制限はない。   The waste electrolyte referred to in the present invention is a waste electrolyte generated in troubles in the production process of a lithium battery and / or a lithium ion battery and / or a waste electrolyte recovered from these used batteries, It contains lithium salt for use and organic solvent. There is no restriction | limiting in particular about content of the lithium salt and organic solvent in these waste electrolyte solutions.

前記使用済みの電池から廃電解液を回収する方法については、少なくとも有機溶媒と電解質用リチウム塩を含む電解液を含有及び/又は付着した電池部材で構成される使用済みリチウム電池及び/又はリチウムイオン電池を放電させた後解体し、前記電池部材に前記電解質用リチウム塩を含まない抽出用の有機溶媒を加え、該有機溶媒中に前記電解液を抽出させて回収する。   Regarding the method of recovering the waste electrolyte from the used battery, the used lithium battery and / or lithium ion comprising a battery member containing and / or adhering to an electrolyte containing at least an organic solvent and a lithium salt for electrolyte The battery is discharged and then disassembled, and an extraction organic solvent not containing the electrolyte lithium salt is added to the battery member, and the electrolyte solution is extracted into the organic solvent and recovered.

前記電池の解体については、少なくとも有機溶媒と電解質用リチウム塩を含む電解液を含有及び又は付着した電池部材が有機溶媒と接触できる程度に解体されていればよい。前記電池部材としては、例えば、正極、負極、セパレータ、正極缶あるいは負極缶などが挙げられる。   The battery may be disassembled as long as the battery member containing and / or adhering to the electrolyte solution containing at least an organic solvent and an electrolyte lithium salt can be disassembled so as to be in contact with the organic solvent. Examples of the battery member include a positive electrode, a negative electrode, a separator, a positive electrode can, and a negative electrode can.

前記抽出にあたっては、解体された電池部材を抽出用の有機溶媒中に浸漬すればよい。また、必要に応じて前記有機溶媒を流動させてもよい。流動の方法としては、前記有機溶媒を加熱し還流させる方法、ポンプあるいは撹拌羽根等の流体機器を使用して有機溶媒を強制的に流動させる方法、振動素子を使用して有機溶媒を振動させる方法、廃電解液を含んだ部材に遠心力を与える方法等が挙げられる。これらの流動方法は、個別に、または複数の方法を組み合わせてもよいが、振動を与える方法または遠心力を与える方法は部材に含浸された電解液を抽出する方法として有効である。   In the extraction, the disassembled battery member may be immersed in an organic solvent for extraction. Moreover, you may make the said organic solvent flow as needed. As a flow method, the organic solvent is heated and refluxed, the organic solvent is forced to flow using a fluid device such as a pump or a stirring blade, and the organic solvent is vibrated using a vibrating element. And a method of applying centrifugal force to the member containing the waste electrolyte. These flow methods may be used individually or in combination of a plurality of methods. However, a method of applying vibration or a method of applying centrifugal force is effective as a method of extracting the electrolyte solution impregnated in the member.

抽出用の有機溶媒としては、前記廃電解液を溶解することができる溶媒であれば特段の制限はないが、リチウム電池及び/又はリチウムイオン電池に使用される有機溶媒を使用すると、回収した電解質及び溶媒に抽出用の有機溶媒が残留しても前記電池に悪影響を与えないため好ましく、その中でもジエチルカーボネート、エチルメチルカーボネートまたはジメチルカーボネートは沸点が比較的低く、抽出用の溶媒として抽出した溶液から簡易に蒸留回収し再利用できるためさらに好ましく、これらの中で最も沸点の低いジメチルカーボネートが特に好ましい。   The organic solvent for extraction is not particularly limited as long as it is a solvent that can dissolve the waste electrolyte solution. However, when an organic solvent used for a lithium battery and / or a lithium ion battery is used, the recovered electrolyte is used. Even if an organic solvent for extraction remains in the solvent, it is preferable because it does not adversely affect the battery. Among them, diethyl carbonate, ethyl methyl carbonate or dimethyl carbonate has a relatively low boiling point, and is extracted from a solution extracted as a solvent for extraction. Dimethyl carbonate having the lowest boiling point is particularly preferred because it can be easily recovered by distillation and reused.

前記廃電解液中に含まれる電解質用のリチウム塩としては、有機溶媒に溶解して導電性を示すリチウム塩であれば特段の制限はなく、例えば、LiPF6、LiBF4、LiClO4が挙げられるが、当該リチウム塩自体及び/又は当該リチウム塩を有機溶媒に溶解した溶液を加熱すると分解し、有機溶媒の蒸気中に分解により生じたガスを生成するとともに前記不溶性リチウム塩を生成する性質を持つリチウム塩が好ましい。特にLiPF6あるいはLiBF4は加熱すると少なからず解離し60℃以上になると数kPaの蒸気圧を持ち顕著に当該塩の分解が起こるためより好ましく適用できる。 The lithium salt for the electrolyte contained in the waste electrolyte solution is not particularly limited as long as it is a lithium salt that dissolves in an organic solvent and exhibits conductivity, and examples thereof include LiPF 6 , LiBF 4 , and LiClO 4. However, when the lithium salt itself and / or a solution in which the lithium salt is dissolved in an organic solvent are heated, it decomposes to generate a gas generated by the decomposition in the vapor of the organic solvent and to generate the insoluble lithium salt. Lithium salts are preferred. In particular, LiPF 6 or LiBF 4 can be more preferably applied because it dissociates considerably when heated and has a vapor pressure of several kPa when it reaches 60 ° C. or higher, and the salt is significantly decomposed.

前記廃電解液中に含まれる有機溶媒としては、電池の使用環境あるいは使用目的等に応じて、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン等の環状エステル類、酢酸メチル等の鎖状エステル類、テトラヒドロフラン等の環状エーテル類、1,2−ジメトキシエタン、1,2−ジエトキシエタン等の鎖状エーテル類、ジメチルスルホキシド、スルホランのような含硫黄化合物類、含フッ素カーボネート類、含フッ素エーテル類、含フッ素ラクトン類、含フッ素エステル類、含フッ素含塩素エーテル類のような含フッ素化合物よりなる群から選ばれる少なくとも2種類以上を混合した有機溶媒が用いられているが、本発明はこれらの有機溶媒に対し制限なく適用できる。   Examples of the organic solvent contained in the waste electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, and vinylene carbonate, and chains such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, depending on the use environment or purpose of use of the battery. Cyclic esters such as linear carbonates, γ-butyrolactone, chain esters such as methyl acetate, cyclic ethers such as tetrahydrofuran, chain ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, dimethyl At least selected from the group consisting of sulfur-containing compounds such as sulfoxide and sulfolane, fluorine-containing carbonates, fluorine-containing ethers, fluorine-containing lactones, fluorine-containing esters, and fluorine-containing chlorine-containing ethers. 2 or more types The combined organic solvent is used, but the present invention is applicable without limitation to these organic solvents.

前記廃電解液に含まれる水分は、100ppm以下が好ましく、10ppm以下がさらに好ましく、1ppm以下がもっとも好ましい。水分が存在すると後述の蒸発器で加熱濃縮中に電解質のリチウム塩が水分と反応し有機溶媒に目的物であるLiPF6又はLiBF4などとは異なる不溶性のリチウム塩、さらにフッ酸、リン酸、あるいはその他の酸を生成して回収した電解質用リチウム塩の純度を低下させるため好ましくない。なお、不溶性のリチウム塩としては、LiF、LiOH、Li2CO3、Li3PO4、Li2PO3F等のオキシフルオロリン酸リチウム、ヒドロキシフルオロホウ酸リチウム、ホウ酸リチウムなどが挙げられる。 The water contained in the waste electrolyte is preferably 100 ppm or less, more preferably 10 ppm or less, and most preferably 1 ppm or less. When moisture is present, the lithium salt of the electrolyte reacts with moisture during heating and concentration in an evaporator described later, and an insoluble lithium salt that is different from the target LiPF 6 or LiBF 4 in an organic solvent, hydrofluoric acid, phosphoric acid, Alternatively, it is not preferable because the purity of the lithium salt for electrolyte recovered by generating other acid is lowered. Examples of insoluble lithium salts include lithium oxyfluorophosphate such as LiF, LiOH, Li 2 CO 3 , Li 3 PO 4 , and Li 2 PO 3 F, lithium hydroxyfluoroborate, and lithium borate.

このため前記廃電解液中に100ppm以上の水分を含む場合は、水分含量を低減するための精製を行った後、加熱濃縮することが好ましい。前記精製の方法としては抽出、吸着、脱水蒸留等の通常の脱水手段を単独で又は組み合わせて行うことができる。特に吸着により精製する場合はモレキュラーシーブあるいは活性炭等の吸着材が好ましく使用できる。   For this reason, when the waste electrolyte contains 100 ppm or more of water, it is preferably heated and concentrated after purification for reducing the water content. As the purification method, usual dehydration means such as extraction, adsorption, dehydration distillation and the like can be performed alone or in combination. In particular, when purifying by adsorption, an adsorbent such as molecular sieve or activated carbon can be preferably used.

本発明の方法においては、廃電解液を蒸発器と凝縮器とを連通させた密閉可能な1つの系で処理する。
ここで、「密閉可能な1つの系」とは、蒸発器で生じた有機溶媒の気体が凝縮器中に供給できるように蒸発器と凝縮器とが連通された1つの系となっており、必要に応じて有機溶媒の気体、蒸発器で晶析させたリチウム塩、凝縮器で凝縮させた有機溶媒ならびに不凝縮ガス及び/又は未凝縮ガスを蒸発器及び凝縮器の外部へ排出できるように密閉可能な状態であることをいう。例えば、図1に示すように、蒸発器と凝縮器とが連通管で接続されている態様が挙げられる。また、この系には、系外からリチウム塩を溶解した有機溶媒の溶液、PF5またはBF3の供給ができるように構成されている。
In the method of the present invention, the waste electrolyte is treated in one sealable system in which an evaporator and a condenser are communicated.
Here, “one system that can be sealed” is one system in which the evaporator and the condenser communicate so that the organic solvent gas generated in the evaporator can be supplied into the condenser. Gases of organic solvent, lithium salt crystallized by evaporator, organic solvent condensed by condenser and non-condensable gas and / or uncondensed gas can be discharged to the outside of evaporator and condenser as necessary It means that it can be sealed. For example, as shown in FIG. 1, the aspect by which the evaporator and the condenser are connected by the communicating pipe | tube is mentioned. Further, this system is configured so that a solution of an organic solvent in which a lithium salt is dissolved, PF 5 or BF 3 can be supplied from outside the system.

本発明においては加熱濃縮の前に系内に予め不活性ガスを供給して空気などを排除し、次いで不活性ガスを減圧等で系外に排除することで電解質用のリチウム塩や有機溶媒を効率よく回収することができる。なお、不活性ガスが系内に残留すると加熱濃縮工程での蒸発温度の上昇あるいは凝縮工程での凝縮温度の低下を招き、より高温の加熱媒体あるいはより低温の冷却媒体が必要となるため好ましくない。   In the present invention, before the concentration by heating, an inert gas is supplied into the system in advance to exclude air and the like, and then the inert gas is excluded from the system by reducing the pressure, etc. It can be recovered efficiently. In addition, if the inert gas remains in the system, it causes an increase in the evaporation temperature in the heating and concentration process or a decrease in the condensation temperature in the condensation process, and a higher temperature heating medium or a lower temperature cooling medium is required. .

また、系内の水分は完全に排除してから廃電解液を蒸発器へ供給することが好ましい。系内に水分が存在すると電解質の分解を誘発する場合があり好ましくない。そのため系内のパージあるいは析出した結晶の取り出しや濾過の工程で雰囲気ガスとして使用されるN2等の不活性ガスに含まれる水分は100ppm以下であることが好ましく、10ppm以下がさらに好ましく、1ppm以下が特に好ましい。 In addition, it is preferable that the waste electrolyte is supplied to the evaporator after moisture in the system is completely removed. The presence of moisture in the system is not preferable because it may induce electrolyte decomposition. Therefore, the moisture contained in an inert gas such as N 2 used as an atmospheric gas in the purging of the system or removal of the precipitated crystals and filtration is preferably 100 ppm or less, more preferably 10 ppm or less, and 1 ppm or less. Is particularly preferred.

また、廃電解液はあらかじめ濾過して固体不純物を除いてから蒸発器に供給することが好ましい。濾過により固体不純物が精製され回収した電解質用リチウム塩の純度が向上する。濾過手段としては廃電解液中の固体不純物を濾別できるものであればよく、材質、篩のサイズ、濾過装置の大きさなどについては特に限定はない。   Further, it is preferable that the waste electrolytic solution is filtered in advance to remove solid impurities and then supplied to the evaporator. The purity of the lithium salt for electrolyte recovered after the solid impurities are purified by filtration is improved. Any filtering means may be used as long as it can filter out solid impurities in the waste electrolyte, and the material, the size of the sieve, the size of the filtering device, and the like are not particularly limited.

本発明では前記系において蒸発器に廃電解液を供給し、加熱濃縮する。廃電解液を加熱濃縮することで有機溶媒が気化してリチウム塩濃度が上昇して廃電解液中に晶析する。
ただし、廃電解液の温度が上昇しすぎるとリチウム塩は分解しやすくなる。例えば、LiPF6は前記式(1)に示すようにLiFとPF5に分解し、生成したPF5が有機溶媒の分解を引き起こす可能性がある。
したがって、本発明において蒸発器での加熱濃縮は、前記のようなリチウム塩の分解を抑えながら晶析させる観点から、加熱濃縮温度を−20℃〜150℃の範囲に設定することが好ましく、0℃〜120℃がさらに好ましく、20℃〜100℃が特に好ましい。
In the present invention, the waste electrolyte is supplied to the evaporator in the system and concentrated by heating. By concentrating the waste electrolyte by heating, the organic solvent is vaporized and the lithium salt concentration is increased and crystallizes in the waste electrolyte.
However, if the temperature of the waste electrolyte rises too much, the lithium salt tends to decompose. For example, LiPF 6 decomposes into LiF and PF 5 as shown in the above formula (1), and the generated PF 5 may cause decomposition of the organic solvent.
Therefore, in the present invention, the heat concentration in the evaporator is preferably set in the range of −20 ° C. to 150 ° C. from the viewpoint of crystallization while suppressing the decomposition of the lithium salt as described above. C. to 120.degree. C. is more preferable, and 20.degree. C. to 100.degree. C. is particularly preferable.

本発明に使用する蒸発器は、回分式、半回分式、連続式のいずれかの操作方式が適用できるものであればよい。回分式もしくは半回分式で行う場合には廃電解液が完全に蒸発乾固するまで濃縮を行ってもよいが、伝熱面積の縮小による加熱効率の低下や伝熱面へのリチウム塩の析出結晶の固着を来すため溶媒が残存した状態で濃縮を停止することが好ましい。   The evaporator used in the present invention may be any one that can be applied to any one of batch, semi-batch, and continuous operation methods. In the batch or semi-batch method, the waste electrolyte may be concentrated until it completely evaporates to dryness, but the heating efficiency decreases due to the reduction of the heat transfer area and the lithium salt is deposited on the heat transfer surface. It is preferable to stop the concentration with the solvent remaining in order to fix the crystals.

前記蒸発器は廃電解液を加熱して有機溶媒を蒸発させる機能を持つものであれば特に制限はなく、ジャケット式熱交換器を搭載した槽型蒸発器、熱交換器を槽内部に搭載した槽型蒸発器、又は熱交換器へ廃電解液を給液して加熱濃縮を行う蒸発器等が好適に用いられる。また、当然ながら蒸発器内の廃電解液を攪拌機、気体によるバブリングあるいは送液手段を使用する等して撹拌することは蒸発器の伝熱性能を向上させたり、伝熱面へのリチウム塩の結晶の付着を軽減するうえで効果的である   The evaporator is not particularly limited as long as it has a function of heating the waste electrolyte and evaporating the organic solvent. A tank type evaporator equipped with a jacket type heat exchanger and a heat exchanger are mounted inside the tank. A tank-type evaporator, an evaporator that supplies a waste electrolyte solution to a heat exchanger, and performs concentration by heating are preferably used. Of course, stirring the waste electrolyte in the evaporator by using a stirrer, bubbling with gas or using a liquid feeding means improves the heat transfer performance of the evaporator, and the lithium salt on the heat transfer surface. Effective in reducing crystal adhesion

蒸発器には廃電解液の蒸発濃縮により析出した結晶又は結晶を含んだ溶液を系外に取り出すための取り出し口を設けることが好ましい。当該取り出し口はバルブを介して溶液から結晶を分離するための濾過装置へ供給するシステムと連結されるとさらに好ましい。
なお、蒸発器の具体的な構成については後述する。
The evaporator is preferably provided with a take-out port for taking out crystals deposited by evaporation of the waste electrolyte or a solution containing the crystals out of the system. More preferably, the outlet is connected via a valve to a system that supplies a filtration device for separating crystals from the solution.
A specific configuration of the evaporator will be described later.

高沸点及び/又は高融点の有機溶媒を含む廃電解液に対しては本発明を通常の手段で適用しても蒸発温度が高くなるため、低温の凝縮温度下、高真空で加熱濃縮などの操作を行う必要が生じる場合がある。さらに濃縮終了後、常温では前記高融点有機溶媒が凝固しリチウム塩の結晶の濾過が困難になる場合がある。あるいは高温で凝固を阻止して濾過する等しても高沸点有機溶媒がリチウム塩の結晶に付着して残留するため、高沸点有機溶媒を除去するために後処理として乾燥をしても高い温度が必要になり、しかもこの乾燥中に前記リチウム塩の結晶の分解が起こる等の問題が発生する場合がある。   For waste electrolytes containing organic solvents with a high boiling point and / or a high melting point, the evaporation temperature becomes high even if the present invention is applied by ordinary means. It may be necessary to perform an operation. Further, after completion of concentration, the high-melting organic solvent may solidify at room temperature, and it may be difficult to filter lithium salt crystals. Alternatively, the high-boiling organic solvent remains attached to the lithium salt crystals even if it is filtered at a high temperature to prevent coagulation. Therefore, even if it is dried as a post-treatment to remove the high-boiling organic solvent, the temperature is high. In addition, problems such as decomposition of the lithium salt crystals may occur during drying.

前記問題の回避のために前記高沸点及び/又は高融点の有機溶媒を含んだ廃電解液を加熱濃縮するに際しては回分的又は連続的にあるいはその双方を組み合わせて、系外から低沸点の溶媒を蒸発器へ供給して蒸発器内の溶媒組成を漸次、当初の組成以上に低沸点成分に富むように加熱濃縮を行うことが好ましい。なお、低沸点の有機溶媒の供給量は蒸発した溶媒量以下でかつ蒸発した有機溶媒中の低沸点溶媒成分から高沸点溶媒成分の質量を差し引いた質量以上であることが好ましい。   In order to avoid the above problem, when the waste electrolyte containing the organic solvent having a high boiling point and / or a high melting point is heated and concentrated, a solvent having a low boiling point from outside the system may be used batchwise or continuously or a combination of both. Is preferably supplied to the evaporator, and the solvent composition in the evaporator is gradually heated and concentrated so as to be richer in low-boiling components than the initial composition. The supply amount of the low-boiling organic solvent is preferably equal to or less than the amount of the evaporated solvent and not less than the mass obtained by subtracting the mass of the high-boiling solvent component from the low-boiling solvent component in the evaporated organic solvent.

前記系外から供給する低沸点の有機溶媒としてはリチウム電池及び/又はリチウムイオン電池に使用される有機溶媒であることが好ましく、ジエチルカーボネートあるいはエチルメチルカーボネートがさらに好ましく、ジメチルカーボネートが特に好ましい。なお当然ではあるが系外から供給する低沸点の溶媒は前記操作で凝縮器に回収された有機溶媒を蒸留、抽出、吸着等あるいはこれらの操作を組み合わせて精製を行い使用してもよい。   The organic solvent having a low boiling point supplied from outside the system is preferably an organic solvent used for a lithium battery and / or a lithium ion battery, more preferably diethyl carbonate or ethyl methyl carbonate, and particularly preferably dimethyl carbonate. Of course, the low-boiling point solvent supplied from outside the system may be used after purifying the organic solvent recovered in the condenser by the above-mentioned operation by distillation, extraction, adsorption, or a combination of these operations.

また前記高沸点及び/又は高融点の有機溶媒を含んだ廃電解液に対し、少なくともその高沸点溶媒成分と最低沸点共沸混合物を形成することができる成分を添加して濃縮を行ってもよい。添加する成分はリチウム電池及び/又はリチウムイオン電池の電解液に使用される有機溶媒であること、もしくは前記電池の特性に影響を与えない化合物であることが好ましい。具体的には、高
沸点溶媒成分がエチレンカーボネートやプロピレンカーボネートなどの場合、最低沸点共沸混合物を形成することができる成分としては、エチレングリコール、プロピレングリコールなどが挙げられる。
なお、最低沸点共沸混合物とは、高沸点溶媒成分と、最低沸点共沸混合物を形成することができる成分との混合物であり、混合された溶媒よりも沸点が低い混合物をいう。
本発明では、蒸発器に高沸点溶媒成分と、最低沸点共沸混合物を形成することができる成分とを供給して、最低沸点共沸混合物として高沸点溶媒成分を留去した後、さらに該蒸発器に残留する前記供給した成分と最低沸点共沸混合物を形成することができる別の有機溶媒をさらに添加混合することで蒸発器内のリチウム塩を含む内容物を乾固しやすくしてもよい。
Further, the waste electrolytic solution containing the organic solvent having a high boiling point and / or a high melting point may be concentrated by adding at least a component capable of forming a minimum boiling azeotrope with the high boiling solvent component. . The component to be added is preferably an organic solvent used in an electrolyte solution of a lithium battery and / or a lithium ion battery, or a compound that does not affect the characteristics of the battery. Specifically, when the high boiling point solvent component is ethylene carbonate or propylene carbonate, examples of the component capable of forming the lowest boiling point azeotrope include ethylene glycol and propylene glycol.
The lowest boiling azeotrope is a mixture of a high boiling solvent component and a component capable of forming the lowest boiling azeotrope, and means a mixture having a boiling point lower than that of the mixed solvent.
In the present invention, a high boiling point solvent component and a component capable of forming the lowest boiling point azeotrope are supplied to the evaporator, and after the high boiling point solvent component is distilled off as the lowest boiling point azeotrope, the evaporation is further performed. The content containing the lithium salt in the evaporator may be easily dried by further adding and mixing another organic solvent capable of forming the lowest boiling azeotrope with the supplied component remaining in the evaporator. .

また前記廃電解液の電解質用リチウム塩がLiPF6又はLiBF4である場合、系外からPF5又はBF3をそれぞれ添加すればLiPF6又はLiBF4の分解がさらに抑えられて、前記不溶性リチウム塩の生成が低減され好ましい。 Also the case for electrolyte lithium salt of the waste electrolyte solution is LiPF 6 or LiBF 4, and the decomposition of LiPF 6 or LiBF 4 is further suppressed be added respectively PF 5 or BF 3 from the outside of the system, the insoluble lithium salt Production is reduced.

前記系外からのPF5又はBF3の添加の時期は加熱濃縮の前や途中で行うことが好ましく、蒸発器を加熱する前に行うとさらに好ましい。添加する場所は蒸発器内又は凝縮器内でもよいし、蒸発器と凝縮器を連結した連結管へPF5又はBF3の添加手段を接続して添加してもよい。添加手段としては、気体流量計等の計測機器とバルブ等の流量調節機器又は必要なら圧縮機、ブロアー等の気体流動装置を適宜組み合わせた添加装置が使用できる。 The timing of adding PF 5 or BF 3 from the outside of the system is preferably performed before or during heating and concentration, and more preferably before heating the evaporator. The place of addition may be in the evaporator or in the condenser, or may be added by connecting a means for adding PF 5 or BF 3 to a connecting pipe connecting the evaporator and the condenser. As the adding means, an adding device in which a measuring device such as a gas flow meter and a flow rate adjusting device such as a valve or a gas flow device such as a compressor and a blower are appropriately combined can be used.

前記系外からのPF5又はBF3の添加量は廃電解液に含まれる電解質の当初量の10質量%以下が好ましい。電解質の当初量の10質量%を超えると高価なPF5又はBF3の使用量が増えコストが高くなるとともに、PF5又はBF3と有機溶媒との反応が促進され有機溶媒が劣化変質するため好ましくない。 The amount of PF 5 or BF 3 added from outside the system is preferably 10% by mass or less of the initial amount of the electrolyte contained in the waste electrolyte. If the amount exceeds 10% by mass of the initial amount of the electrolyte, the amount of expensive PF 5 or BF 3 used is increased and the cost is increased, and the reaction between PF 5 or BF 3 and the organic solvent is promoted, so that the organic solvent deteriorates and deteriorates. It is not preferable.

さらには前記電解質用リチウム塩がLiPF6又はLiBF4である場合、前記蒸発器から取り出した析出結晶の濾過と、濾過後の乾燥とをそれぞれPF5又はBF3を含むガス雰囲気中で行うと前記不溶性リチウム塩の生成がいっそう低減されてより好ましい。 Furthermore, when the lithium salt for electrolyte is LiPF 6 or LiBF 4 , the filtration of the precipitated crystals taken out from the evaporator and the drying after the filtration are performed in a gas atmosphere containing PF 5 or BF 3 , respectively. The production of insoluble lithium salt is further reduced, which is more preferable.

中でも、前記濾過と濾過後の乾燥とはそれぞれPF5又はBF3を0.1モル〜5モル%含むガス雰囲気で行うことが好ましい。PF5又はBF3が0.1モル%未満であると効果が小さく、5モル%を超えて行うと高価なPF5あるいはBF3の消費量が増えて好ましくない。 Among them, it is preferable to perform the filtration with each of the drying after filtration in a gas atmosphere containing PF 5 or BF 3 0.1 to 5 mol%. If PF 5 or BF 3 is less than 0.1 mol%, the effect is small, and if it exceeds 5 mol%, the consumption of expensive PF 5 or BF 3 increases, which is not preferable.

次いで、前記蒸発器で発生した有機溶媒の気体を蒸発器と連通された凝縮器に供する。   Next, the organic solvent gas generated in the evaporator is supplied to a condenser communicated with the evaporator.

前記蒸発器と凝縮器との連通状態は、例えば、蒸発器にある気化した有機溶媒用の排出口と、凝縮器にある気化した有機溶媒用の供給口とを連結させればよい。また、この連結に用いる連結管としては有機溶媒に侵食されない材質であればよく、連結管のサイズ、形状等については特に限定はない。   The communication state between the evaporator and the condenser may be, for example, by connecting a vaporized organic solvent outlet in the evaporator and a vaporized organic solvent supply port in the condenser. The connecting pipe used for the connection may be any material that does not erode by the organic solvent, and the size, shape, etc. of the connecting pipe are not particularly limited.

前記凝縮器は有機溶媒の気体を沸点以下に冷却して液体状にするために使用される。
前記凝縮器は加熱蒸発した溶媒蒸気を冷却して有機溶媒を凝縮させる機能を持つものであれば特に制限はなく、ジャケット式熱交換器を搭載した槽型凝縮器や溶媒蒸気を導入凝縮させる熱交換器と凝縮した有機溶媒を貯留する貯留槽を連結した凝縮器等が好適に用いられる。
なお、凝縮器の具体的な構成については後述する。
The condenser is used to cool an organic solvent gas below the boiling point to form a liquid.
The condenser is not particularly limited as long as it has a function of cooling the evaporated solvent vapor to condense the organic solvent, and is a tank type condenser equipped with a jacket type heat exchanger or heat for introducing and condensing the solvent vapor. A condenser in which an exchanger and a storage tank for storing the condensed organic solvent are connected is preferably used.
A specific configuration of the condenser will be described later.

前記のように凝縮器では、蒸発器で蒸発させた有機溶媒を凝縮させて回収しているが、凝縮器で凝縮されないガスとして、不凝縮ガスおよび未凝縮ガスも確認している。
本発明で、「不凝縮ガス」とは電解質の分解により生成した、−80℃において13kPa以上の蒸気圧を示すガスと定義し、後述の未凝縮ガスを捕捉して不凝縮ガスを抽出するような特段の分離操作を行わない限り未凝縮ガスと混合した状態で存在している。また、「未凝縮ガス」とは、凝縮器において凝縮されてはいないが、より低温の凝縮環境により凝縮されるガスと定義し、その殆どは蒸発した有機溶媒の凝縮温度における蒸気圧相当を占めるガスである。
なお、不凝縮ガスおよび未凝縮ガスの種類については、電池の種類などにより一概に限定できないが、例えば、前記不凝縮ガスの例としては、PF5、BF3など、また、未凝縮ガスの例としては、ジメチルカーボネート、ジエチルカーボネート等の溶媒ガスなどが挙げられる。
As described above, in the condenser, the organic solvent evaporated by the evaporator is condensed and recovered, but non-condensable gas and uncondensed gas are also confirmed as gases that are not condensed by the condenser.
In the present invention, “non-condensable gas” is defined as a gas having a vapor pressure of 13 kPa or higher at −80 ° C. generated by decomposition of the electrolyte, and captures uncondensed gas described later to extract non-condensable gas. Unless special separation operation is performed, it exists in a state mixed with uncondensed gas. In addition, “uncondensed gas” is defined as a gas that is not condensed in a condenser but is condensed in a lower temperature condensing environment, and most of it occupies the vapor pressure at the condensation temperature of the evaporated organic solvent. Gas.
Note that the types of non-condensable gas and non-condensable gas cannot be unconditionally limited depending on the type of battery. For example, examples of the non-condensable gas include PF 5 and BF 3 , and examples of non-condensable gas. Examples thereof include solvent gases such as dimethyl carbonate and diethyl carbonate.

本発明では、系内の操作圧力及び/又は蒸発温度を所望の値に保つよう凝縮温度を制御することにより、不凝縮ガス及び/又は未凝縮ガスの系外への排出及び/又は凝縮器から蒸発器への還流を行わずとも実施できるが、何らかの理由により所望の値に制御できない場合は前記不凝縮ガス及び/又は未凝縮ガスの系外への排出及び/又は蒸発器への還流を行うことが好ましい。凝縮器内の前記不凝縮ガス及び/又は未凝縮ガスの蒸発器への還流量又は前記不凝縮ガス及び/又は未凝縮ガスの系外への排出量は系内の操作圧力及び/又は蒸発温度を所望の値に保つよう凝縮温度と連動させながら定常的又は変動的に決定できる。   In the present invention, by controlling the condensation temperature so as to keep the operating pressure and / or the evaporation temperature in the system at a desired value, the non-condensable gas and / or the uncondensed gas is discharged from the system and / or from the condenser. It can be carried out without reflux to the evaporator, but if for some reason it cannot be controlled to a desired value, the non-condensed gas and / or uncondensed gas is discharged out of the system and / or refluxed to the evaporator. It is preferable. The reflux amount of the non-condensable gas and / or uncondensed gas in the condenser to the evaporator or the discharge amount of the non-condensable gas and / or uncondensed gas to the outside of the system is the operating pressure and / or evaporation temperature in the system. Can be determined in a steady or variable manner in conjunction with the condensation temperature so as to maintain the desired value.

本発明の方法では、前記凝縮器内の不凝縮ガスの系外への排出量を制御する点に一つの特徴がある。このように不凝縮ガスの系外への排出量を調整することで前記不溶性リチウム塩の生成を抑制するという利点がある。この不凝縮ガスの排出量の調整は、前記凝縮器に設けた前記不凝縮ガス及び/又は未凝縮ガスを前記系外へ排出可能な排気手段により行う。排気手段としては、後述する。   The method of the present invention has one feature in that the discharge amount of the non-condensable gas in the condenser to the outside of the system is controlled. Thus, there exists an advantage of suppressing the production | generation of the said insoluble lithium salt by adjusting the discharge | emission amount of the non-condensable gas out of the system. The adjustment of the discharge amount of the non-condensable gas is performed by an exhaust unit that can discharge the non-condensable gas and / or the non-condensable gas provided in the condenser. The exhaust means will be described later.

不凝縮ガスの系外への排出量としては、前記廃電解液中の電解質の当初量の10質量%以下が好ましく、5質量%以下がさらに好ましく、0質量%が最も好ましい。前記排出量が前記電解質の当初量の10質量%を超えると、晶析した電解質用リチウム塩の収量が低下するとともに当該電解質中に不溶性リチウム塩が多く混入するようになり、電解質として使用するに当たっては高度の精製操作が必要になり好ましくなく、蒸発器に残留する有機溶媒も顕著に変質し、着色あるいは粘度の上昇を来し、晶析した結晶が着色する、あるいは濾過が困難になるなどの問題も誘発する。   The amount of non-condensable gas discharged outside the system is preferably 10% by mass or less, more preferably 5% by mass or less, and most preferably 0% by mass with respect to the initial amount of the electrolyte in the waste electrolyte solution. When the discharge amount exceeds 10% by mass of the initial amount of the electrolyte, the yield of crystallized lithium salt for electrolyte decreases, and a large amount of insoluble lithium salt is mixed in the electrolyte, so that it can be used as an electrolyte. Is not preferable because it requires a high degree of purification operation, and the organic solvent remaining in the evaporator is also significantly altered, causing coloration or increase in viscosity, and crystallized crystals are colored, or filtration becomes difficult. Problems are also triggered.

なお、前記電解質の当初量とは、蒸発器に供給される廃電解液中の電解質の量をいう。この前記電解質の当初量は廃電解液中の濃度を重量法や、リチウム塩の含有量を質量分析や発光分析等の手法で測定して決定できる。不凝縮ガスの系外への排出量は気体の状態で測定されるが、質量流量計を使用すると直接的に排出量を質量で計測できるので好ましい。体積流量計を使用する場合は密度と体積流量から排出量を質量に換算することができる。また、各配管をフレキシブル継手を使用して連結し、秤を使って直接的に蒸発器、凝縮器及び未凝縮ガスを捕捉して不凝縮ガスを抽出する装置の重量を量ることなどで溶媒の蒸発量と不凝縮ガスの系外への排出量を測定することもできる。   The initial amount of the electrolyte refers to the amount of electrolyte in the waste electrolyte solution supplied to the evaporator. The initial amount of the electrolyte can be determined by measuring the concentration in the waste electrolyte solution by a weight method and the content of the lithium salt by a method such as mass spectrometry or emission spectrometry. The discharge amount of non-condensable gas to the outside of the system is measured in a gas state, but it is preferable to use a mass flow meter because the discharge amount can be directly measured by mass. When a volumetric flow meter is used, the discharge amount can be converted into mass from the density and the volumetric flow rate. In addition, each pipe is connected using a flexible joint, and the solvent is measured by weighing the evaporator, the condenser, and the non-condensable gas by using a scale to capture the non-condensable gas directly. It is also possible to measure the amount of evaporation and the amount of noncondensable gas discharged outside the system.

不凝縮ガス及び/又は未凝縮ガスの系外への排出量又は還流量は、質量流量計、熱式流量計、差圧式流量計等一般的に使用される流量計を介して流量を計測しながら手動又は自動で回分的又は連続的に所望の量に制御することができる。   The amount of non-condensable gas and / or uncondensed gas discharged or refluxed is measured through a commonly used flow meter such as a mass flow meter, thermal flow meter, or differential pressure flow meter. However, the desired amount can be controlled manually or automatically batchwise or continuously.

凝縮器が備える前記不凝縮ガス及び/又は未凝縮ガスを系外へ排出する排気手段としては、凝縮器に接続されたバルブ及び/又は系外への排気管に接続された送気手段等が好適に使用できる。バルブは前記不凝縮ガス及び/又は未凝縮ガスを系外へ排出できる機能を有すれば特段の制限はなく、気体用流量計と組み合わせて常用のグローブバルブ等が好適に用いられるが、特に精密に排出を制御する必要がある場合はニードルバルブ等の流量調整機能の優れたバルブの使用が好ましい。送気手段は前記不凝縮ガス及び/又は未凝縮ガスを系外へ排出できる機能を有すれば特段の制限はなく、真空ポンプ、ブロワー、圧縮機等の気体流動装置が運転圧力あるいは排気量等、使用環境に応じて適宜使用できる。   Examples of the exhaust means for discharging the non-condensed gas and / or uncondensed gas provided in the condenser to the outside of the system include a valve connected to the condenser and / or an air supply means connected to the exhaust pipe to the outside of the system. It can be used suitably. The valve is not particularly limited as long as it has a function of discharging the non-condensable gas and / or non-condensed gas out of the system, and a normal globe valve or the like is preferably used in combination with a gas flow meter. When it is necessary to control the discharge, it is preferable to use a valve having an excellent flow rate adjusting function such as a needle valve. The air supply means is not particularly limited as long as it has a function of discharging the non-condensable gas and / or uncondensed gas to the outside of the system, and the gas flow device such as a vacuum pump, a blower, a compressor, etc. operates at an operating pressure or a displacement amount. It can be used as appropriate according to the use environment.

送気手段を用いた前記不凝縮ガス及び/又は未凝縮ガスの還流量あるいは系外への排出量の制御方法の1例として、蒸発量と蒸発温度を所望の値になるよう蒸発器へ供給する加熱媒体の温度と供給量を制御し同時に凝縮器へ供給する冷却媒体の温度と供給量を制御し、かつ還流管及び/又は排気管に設置された流量計で流量を計測しながら送気手段の吐出側に設置した流量調整用バルブで行う方法、又は送気手段の吐出側と吸入側を連結したバイパス管に設置された流量調整バルブで行う方法あるいはその双方を組み合わせて行う方法等がある。   As an example of a method for controlling the recirculation amount of the non-condensed gas and / or uncondensed gas using the air supply means or the discharge amount outside the system, the evaporation amount and the evaporation temperature are supplied to the evaporator so as to have desired values. Control the temperature and supply amount of the heating medium to be supplied and simultaneously control the temperature and supply amount of the cooling medium to be supplied to the condenser, and measure the flow rate with a flow meter installed in the reflux pipe and / or the exhaust pipe. A method using a flow rate adjusting valve installed on the discharge side of the means, a method using a flow rate adjusting valve installed on a bypass pipe connecting the discharge side and the suction side of the air supply means, or a method combining both of them is there.

また、前記凝縮器内において、不凝縮ガスは未凝縮ガスとの混合ガスの状態で存在しているが、未凝縮ガスの量の割合の方が多い場合、未凝縮ガスを分離せずに混合ガスを排出すると未凝縮ガスのロスが多くなる分だけ、回収効率が低いといえる。そこで、よりロスの少ない不凝縮ガスの排気手段として、未凝縮ガスを捕捉して不凝縮ガスを抽出する手段を用いて前記混合ガスを処理し、混合ガスから未凝縮ガスを回収することにより、残った不凝縮ガスだけを系外に排出することが挙げられる。
前記未凝縮ガスを捕捉して不凝縮ガスを抽出する手段としては、例えば、不凝縮ガス及び/又は未凝縮ガスの排出口側に設けた未凝縮ガストラップで不凝縮ガスを分離抽出して不凝縮ガスだけを下流側に配置した流量計へ導入し不凝縮ガスの流量を計測しながら、前記不凝縮ガス及び/又は未凝縮ガスの排出口に設けたバルブを開閉することで調整することが挙げられる。未凝縮ガストラップの一例として−80℃以下の冷却器を設けてもよいし、−80℃以下と、−80℃以上の運転温度で運転する少なくとも2系列の凝縮器を直列に接続して、後段の−80℃以下の凝縮器に前記排気手段を設けてもよい。また、未凝縮ガスと混合している不凝縮ガスの量をガスクロマトグラフあるいはフーリエ変換型赤外分光計(FT−IR)などのガス分析装置でモニターしながら、不凝縮ガスの排出量を所望の量になるように未凝縮ガスの系外への排出量をバルブ等の流量調節装置で調整して行うこともできる。
Further, in the condenser, the non-condensable gas exists in a mixed gas state with the non-condensed gas, but when the proportion of the amount of the non-condensed gas is larger, the non-condensed gas is mixed without being separated. It can be said that the recovery efficiency is low because the loss of uncondensed gas increases when the gas is discharged. Therefore, as a means for exhausting the non-condensable gas with less loss, by processing the mixed gas using a means for capturing the non-condensed gas and extracting the non-condensed gas, by recovering the non-condensed gas from the mixed gas, For example, only the remaining non-condensable gas is discharged out of the system.
As a means for capturing the non-condensable gas and extracting the non-condensable gas, for example, a non-condensable gas and / or a non-condensable gas trap provided on the outlet side of the non-condensed gas is separated and extracted. It is possible to adjust by opening and closing the valve provided at the discharge port of the non-condensable gas and / or the non-condensed gas while introducing only the condensed gas into the flow meter arranged on the downstream side and measuring the flow rate of the non-condensable gas. Can be mentioned. As an example of the uncondensed gas trap, a cooler of −80 ° C. or lower may be provided, and at least two series of condensers operating at an operating temperature of −80 ° C. or lower and −80 ° C. or higher are connected in series, The exhaust means may be provided in a subsequent condenser of −80 ° C. or lower. In addition, while monitoring the amount of non-condensable gas mixed with uncondensed gas with a gas analyzer such as a gas chromatograph or Fourier transform infrared spectrometer (FT-IR), the amount of non-condensable gas discharged can be determined as desired. The amount of uncondensed gas discharged to the outside of the system can be adjusted by a flow rate adjusting device such as a valve so that the amount becomes equal to the amount.

前記のように凝縮器で凝縮された有機溶媒、さらには未凝縮ガスを捕捉する手段により捕捉された未凝縮ガス由来の有機溶媒は、そのまま有機合成の溶媒又は原料として使用してもよいしボイラー燃料として使用してもよいが精製して再度リチウムイオン電池用溶媒として使用することが好ましい。   The organic solvent condensed by the condenser as described above, and the organic solvent derived from the non-condensed gas captured by the means for capturing the non-condensed gas may be used as they are as a solvent for organic synthesis or as a raw material. Although it may be used as a fuel, it is preferably purified and used again as a solvent for a lithium ion battery.

回収した有機溶媒の精製法としては、それぞれの有機溶媒に適合した精製方法、例えば、吸着、ろ過、抽出、晶析、蒸留等の一般的な精製方法が単独でもしくは複数組み合わせて適用できる。   As a method for purifying the recovered organic solvent, a purification method suitable for each organic solvent, for example, general purification methods such as adsorption, filtration, extraction, crystallization, and distillation can be applied singly or in combination.

また、本発明の方法では前記のように不凝縮ガス及び/又は未凝縮ガスを系外へ排出するのとは別に、前記不凝縮ガス及び/又は未凝縮ガスを蒸発器内に還流させてもよい。このような還流手段としては、前記未凝縮ガスを捕捉して不凝縮ガスを抽出する手段を用いて、凝縮器内の不凝縮ガスを未凝縮ガスから分離して還流させてもよいが、分離せずに不凝縮ガスと未凝縮ガスとを含む混合ガスをそのまま還流させてもよい。このように凝縮器で凝縮されない不凝縮ガス及び/又は未凝縮ガスを蒸発器へ還流させることで、系の圧力と蒸発温度の上昇及び凝縮温度の低下を抑制するという利点がある。具体的な還流手段としては、前記凝縮器に設けた前記不凝縮ガス及び/又は未凝縮ガスの排出口と前記蒸発器に廃電解液を供給するための管状物とを還流管を介して連結させて、蒸発器内に前記不凝縮ガス及び/又は未凝縮ガスを供給できるようにすればよい。また、蒸発器が大型であれば前記還流管を蒸発器に設けた前記不凝縮ガス及び/又は未凝縮ガス用の供給口に接続してもよい。   In the method of the present invention, the non-condensable gas and / or the non-condensable gas may be recirculated into the evaporator separately from the discharge of the non-condensable gas and / or the non-condensed gas to the outside of the system as described above. Good. As such a reflux means, a means for capturing the non-condensable gas and extracting the non-condensable gas may be used to separate and reflux the non-condensable gas in the condenser from the non-condensed gas. The mixed gas containing the non-condensable gas and the non-condensed gas may be refluxed as it is without being separated. Thus, the non-condensable gas and / or the non-condensed gas that is not condensed in the condenser is refluxed to the evaporator, thereby having an advantage of suppressing an increase in system pressure and evaporation temperature and a decrease in condensation temperature. As a specific reflux means, the non-condensable gas and / or uncondensed gas outlet provided in the condenser and a tubular material for supplying waste electrolyte to the evaporator are connected via a reflux pipe. Thus, the non-condensable gas and / or uncondensed gas may be supplied into the evaporator. If the evaporator is large, the reflux pipe may be connected to the supply port for the non-condensable gas and / or uncondensed gas provided in the evaporator.

前記還流手段では、送気手段を用いてもよい。送気手段としては、特段の制限はないが、凝縮器から前記不凝縮ガス及び/又は未凝縮ガスを蒸発器へ還流させる還流管へ真空ポンプ、ブロワー、圧縮機等の気体流動装置を運転圧力あるいは還流量等、使用環境に応じて適宜選択して設置するとよい。なお当然のことながら前記還流用の気体流動装置の吐出側にベントバルブを設置し還流用送気手段と排気手段とを兼用してもよい。   In the reflux means, an air supply means may be used. The air supply means is not particularly limited, but the operating pressure of the gas flow device such as a vacuum pump, blower, compressor, etc. from the condenser to the reflux pipe for refluxing the uncondensed gas and / or uncondensed gas to the evaporator. Or it is good to select and install suitably according to use environment, such as recirculation | reflux amount. As a matter of course, a vent valve may be provided on the discharge side of the reflux gas flow device so that both the reflux air supply means and the exhaust means are used.

なお、前記還流管は蒸発器内に連通されていればよい。また還流効果を高める観点から蒸発器内の廃電解液中へ還流管の端部を挿入してバブリングしながら加熱濃縮を行ってもよいが、還流管の閉塞又は管内への濃縮液の逆流に注意する必要がある。また、前記還流管にはPF5又はBF3の添加手段を接続してもよい。 In addition, the said reflux pipe should just be connected in the evaporator. From the viewpoint of enhancing the reflux effect, the end of the reflux tube may be inserted into the waste electrolyte in the evaporator and heated and concentrated while bubbling. However, the reflux tube may be blocked or the concentrated solution may flow back into the tube. You need to be careful. Moreover, said the return pipe may be connected to the addition means PF 5 or BF 3.

また、本発明の方法における、蒸発器内及び凝縮器内の運転時の圧力は大気圧未満、大気圧以上のいずれでも可能であるが、0.1〜500kPaの範囲に調整することが好ましく、1〜100kPaの範囲がさらに好ましい。0.1kPa未満に調整すると減圧度が大きいため高価な減圧対応の設備が必要になり設備コストの増大を招くおそれがあり、さらに、蒸発した有機溶媒の凝縮温度が低くなり凝縮器へ供給する冷媒媒体の温度を、冷凍機等を用いて下げないと凝縮が効率よく起こらなくなる等の問題が発生し好ましくない。   In the method of the present invention, the operating pressure in the evaporator and the condenser can be less than atmospheric pressure or higher than atmospheric pressure, but is preferably adjusted to a range of 0.1 to 500 kPa, The range of 1-100 kPa is more preferable. If the pressure is adjusted to less than 0.1 kPa, the degree of decompression is large, so expensive equipment for decompression is required, which may increase the equipment cost, and the condensation temperature of the evaporated organic solvent is lowered and the refrigerant supplied to the condenser If the temperature of the medium is not lowered by using a refrigerator or the like, problems such as the occurrence of efficient condensation occur, which is not preferable.

また、前記圧力を500kPaを超えて調整すると加圧度が高いため高価な高圧対応の設備が必要になり設備コストの増大を招来したり、さらに有機溶媒の蒸発温度が上昇して加熱源として高温の加熱媒体が必要になる等の問題が発生し好ましくない。   Further, when the pressure is adjusted to exceed 500 kPa, the degree of pressurization is high, so expensive equipment for high pressure is required, resulting in an increase in equipment cost, and further, the evaporation temperature of the organic solvent is increased to increase the temperature as a heating source. This causes problems such as the need for a heating medium.

また、廃電解液の加熱濃縮は当該廃電解液に含まれる電解質の熱による分解生成物の分圧が0.0001kPa〜27kPaの圧力を示す温度範囲で行うことが好ましい。0.0001kPa未満で加熱濃縮を行うと溶媒の蒸気圧も小さくなり操作圧力が前記適正操作圧力の0.1kPaを下回る場合があり好ましくない。27kPaを超えて加熱濃縮を行うと有機溶媒の蒸気圧も大きくなり操作圧力が前記適正操作圧力範囲の500kPaを上回る場合があり好ましくない。前記の圧力は凝縮器に設ける圧力計で測定することができる。   Moreover, it is preferable to perform heat concentration of a waste electrolyte solution in the temperature range in which the partial pressure of the decomposition product by the heat | fever of the electrolyte contained in the said waste electrolyte solution shows the pressure of 0.0001 kPa-27 kPa. If the heat concentration is carried out at less than 0.0001 kPa, the vapor pressure of the solvent is decreased, and the operation pressure may be less than the appropriate operation pressure of 0.1 kPa. If the heating concentration exceeds 27 kPa, the vapor pressure of the organic solvent increases, and the operating pressure may exceed 500 kPa in the appropriate operating pressure range. The pressure can be measured with a pressure gauge provided in the condenser.

2.装置
次に、本発明の装置の実施形態を添付図面に基づき詳細に説明する。図1は本発明の装置1の全体構成の概略を示す図である。
2. Apparatus Next, an embodiment of the apparatus of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing an outline of the overall configuration of an apparatus 1 according to the present invention.

前記装置1は本発明の方法を効率よく実施することで廃電解液から電解質用リチウム塩と有機溶媒を同時に回収することができる装置の一例である。   The apparatus 1 is an example of an apparatus that can simultaneously recover the lithium salt for electrolyte and the organic solvent from the waste electrolyte by efficiently carrying out the method of the present invention.

前記装置1は、蒸発器2、凝縮器3、蒸発器2と凝縮器3とを連通させる連結管4とを備える。前記蒸発器2は、この蒸発器2で生じた有機溶媒の気体が連結管4を通じて凝縮器3に供給されるように凝縮器3に連通されており、密閉可能な一つの系を形成している。   The apparatus 1 includes an evaporator 2, a condenser 3, and a connecting pipe 4 that allows the evaporator 2 and the condenser 3 to communicate with each other. The evaporator 2 is connected to the condenser 3 so that the organic solvent gas generated in the evaporator 2 is supplied to the condenser 3 through the connecting pipe 4 to form a sealable system. Yes.

前記蒸発器2では、リチウム電池及び/又はリチウムイオン電池の廃電解液を加熱濃縮することで有機溶媒を蒸発させて、電解質であるリチウム塩を晶析させる。   The evaporator 2 heats and concentrates the waste electrolyte of the lithium battery and / or lithium ion battery to evaporate the organic solvent and crystallize the lithium salt as the electrolyte.

前記蒸発器2としては、廃電解液を収容できる容積と気化した有機溶媒の加圧もしくは減圧に耐えられる強度を有し、廃電解液を供給するための供給口5、蒸発器内部の廃電解液を所定の温度に加熱する加熱手段6、晶析させたリチウム塩を取り出す取り出し口7及び気化した有機溶媒を排出する排出口8を備えている。これらの各部の位置、サイズ、形状等については、特に限定はなくそれぞれの目的に応じた常識的な位置、サイズ、形状等であればよい。
なお、蒸発器2に設けた供給口5、取り出し口7にはそれぞれバルブ9a、9bを設けることで前記系を密閉状態とすることができる。気化した有機溶媒を排出する排出口8は前記連結管4と接続されている。
The evaporator 2 has a volume capable of accommodating a waste electrolyte, a strength capable of withstanding the pressure or pressure reduction of a vaporized organic solvent, a supply port 5 for supplying the waste electrolyte, and waste electrolysis inside the evaporator. A heating means 6 for heating the liquid to a predetermined temperature, an outlet 7 for taking out the crystallized lithium salt, and an outlet 8 for discharging the vaporized organic solvent are provided. There are no particular limitations on the position, size, shape, and the like of each of these parts, and any common position, size, shape, or the like according to the purpose may be used.
The system can be sealed by providing valves 9a and 9b at the supply port 5 and the take-out port 7 provided in the evaporator 2, respectively. A discharge port 8 for discharging the vaporized organic solvent is connected to the connecting pipe 4.

前記加熱手段6は加熱媒体によって蒸発器2を加熱することができる手段であればよい。また、加熱媒体の種類については蒸発器2に供給された廃電解液を所望の温度に加熱できればよく、特に限定はない。また、図1に示すように加熱媒体の供給量を調整するバルブ9dを設けることで加熱温度を調整してもよい。   The heating means 6 may be any means that can heat the evaporator 2 with a heating medium. The type of the heating medium is not particularly limited as long as the waste electrolyte supplied to the evaporator 2 can be heated to a desired temperature. Further, as shown in FIG. 1, the heating temperature may be adjusted by providing a valve 9d for adjusting the supply amount of the heating medium.

前記蒸発器2に供給された廃電解液の温度は、温度計10で測定することができる。温度計10は廃電解液の温度を効率よく測定できるように設置されていればよく、例えば、廃電解液に接触できる位置に配置すればよい。   The temperature of the waste electrolyte supplied to the evaporator 2 can be measured with a thermometer 10. The thermometer 10 should just be installed so that the temperature of a waste electrolyte solution can be measured efficiently, for example, should just be arrange | positioned in the position which can contact a waste electrolyte solution.

また、前記蒸発器2にはN2等の不活性ガスを供給するための供給口24を設けていてもよい。この場合、不活性ガスを効率よく蒸発器2から排出するために排出口11を設け、ここから外部に排出してもよい。
なお、前記加熱濃縮時の有機溶媒の漏出を防ぐために排出口11に接続した管にはバルブ9fを設ける必要がある。
The evaporator 2 may be provided with a supply port 24 for supplying an inert gas such as N 2 . In this case, in order to efficiently discharge the inert gas from the evaporator 2, a discharge port 11 may be provided and discharged from here.
In addition, in order to prevent leakage of the organic solvent during the heat concentration, it is necessary to provide a valve 9f on the pipe connected to the discharge port 11.

前記蒸発器2で加熱濃縮することで晶析させたリチウム塩は蒸発器2の廃電解液中に沈殿しているため、蒸発器2の下部に設置されている取り出し口7からバルブ9bを開けることで取り出すことができる。取り出したリチウム塩については濾過を行うことで廃電解液と分離することができる。   Since the lithium salt crystallized by heating and concentrating in the evaporator 2 is precipitated in the waste electrolyte solution of the evaporator 2, the valve 9 b is opened from the outlet 7 provided at the lower part of the evaporator 2. It can be taken out. The extracted lithium salt can be separated from the waste electrolyte by filtering.

前記蒸発器2で気化した有機溶媒は排出口8から連結管4を通って凝縮器3に供給される。   The organic solvent vaporized by the evaporator 2 is supplied from the discharge port 8 to the condenser 3 through the connecting pipe 4.

前記凝縮器3では、前記蒸発器2にて蒸発した有機溶媒を凝縮させて回収する。   In the condenser 3, the organic solvent evaporated in the evaporator 2 is condensed and recovered.

前記凝縮器3としては、前記気化した有機溶媒を収容できる容積を有しかつ気化した有機溶媒を供給する供給口12、凝縮器3内部の気化した有機溶媒を液化する冷却手段13、液化した有機溶媒を排出する排出口14、不凝縮ガス及び/又は未凝縮ガスを排出する排出口15及び前記不凝縮ガス及び/又は未凝縮ガスを系外へ排出可能な排気手段16を備えている。各部の位置、サイズ、形状等については特に限定はなくそれぞれの目的に応じた常識的な位置、サイズ、形状等であればよい。なお、凝縮器3に設けた排出口14、15にはそれぞれ接続した管にバルブ9g、9hを設けることで前記系を密閉状態とすることができる。なお、前記不凝縮ガス及び/又は未凝縮ガスを排出する排出口15は前記排気手段16に接続されている。   The condenser 3 has a volume capable of accommodating the vaporized organic solvent, a supply port 12 for supplying the vaporized organic solvent, a cooling means 13 for liquefying the vaporized organic solvent inside the condenser 3, and a liquefied organic solvent. A discharge port 14 for discharging the solvent, a discharge port 15 for discharging non-condensable gas and / or uncondensed gas, and an exhaust means 16 capable of discharging the non-condensed gas and / or non-condensed gas out of the system are provided. The position, size, shape, and the like of each part are not particularly limited, and may be a common sense position, size, shape, or the like according to each purpose. It should be noted that the system can be hermetically sealed by providing valves 9g and 9h on the pipes connected to the discharge ports 14 and 15 provided in the condenser 3, respectively. A discharge port 15 for discharging the non-condensable gas and / or the non-condensed gas is connected to the exhaust means 16.

前記冷却手段13は、冷却媒体によって凝縮器3内の気化した有機溶媒を冷却することができるものであればよい。また、冷却媒体の種類については凝縮器3に供給された気化した有機溶媒を所望の温度に冷却できればよく特に限定はない。また、図1に示すように冷却媒体の供給量を調整するためのバルブ9iを設けることで冷却温度を調整してもよい。   The said cooling means 13 should just be what can cool the vaporized organic solvent in the condenser 3 with a cooling medium. The kind of the cooling medium is not particularly limited as long as the vaporized organic solvent supplied to the condenser 3 can be cooled to a desired temperature. Further, as shown in FIG. 1, the cooling temperature may be adjusted by providing a valve 9i for adjusting the supply amount of the cooling medium.

前記凝縮器3内の圧力は圧力計17で測定することができる。圧力計17はバルブ9jを開けることで凝縮器3内に連通して圧力測定ができる。   The pressure in the condenser 3 can be measured with a pressure gauge 17. The pressure gauge 17 can communicate with the condenser 3 by opening the valve 9j to measure the pressure.

また、前記凝縮器3には前記蒸発器2から供給された不活性ガスを効率よく排出するために排出口18を設け、ここから不活性ガスを外部に排出してもよい。なお、凝縮時の有機溶媒や不凝縮ガス及び/又は未凝縮ガスの漏出を防ぐために排出口18に接続した管にはバルブ9kを設ける必要がある。   Further, the condenser 3 may be provided with a discharge port 18 for efficiently discharging the inert gas supplied from the evaporator 2, and the inert gas may be discharged to the outside from here. In order to prevent leakage of the organic solvent and non-condensable gas and / or uncondensed gas during condensation, it is necessary to provide a valve 9k on the pipe connected to the discharge port 18.

前記凝縮器3で凝縮することで液化した有機溶媒は凝縮器3の底部に集まるため、凝縮器3の下部に設置されている排出口14からバルブ9gを開けることで取り出すことができる。   Since the organic solvent liquefied by condensing in the condenser 3 is collected at the bottom of the condenser 3, it can be taken out by opening the valve 9 g from the outlet 14 installed at the lower part of the condenser 3.

前記凝縮器3で凝縮されない前記不凝縮ガス及び/又は未凝縮ガスは、排出口15から管を通って前記不凝縮ガス及び/又は未凝縮ガスを系外へ排出可能な排気手段16に供される。この場合、管に設けたバルブ9hとその他関連するバルブにより前記系を密閉可能にすることができる。   The non-condensable gas and / or uncondensed gas that is not condensed in the condenser 3 is supplied to an exhaust means 16 that can discharge the non-condensable gas and / or non-condensed gas out of the system through a pipe from a discharge port 15. The In this case, the system can be sealed by the valve 9h provided in the pipe and other related valves.

前記排気手段16としては送気手段が好適に使用できる。前記送気手段は、前記不凝縮ガス及び/又は未凝縮ガスを系外へ排出できる機能を有すれば特段の制限はなく、例えば、真空ポンプ、ブロワー、圧縮機等の気体流動装置が運転圧力又は排気量等、使用環境に応じて適宜使用できる。   As the exhaust means 16, an air supply means can be preferably used. The air supply means is not particularly limited as long as it has a function of discharging the non-condensable gas and / or uncondensed gas to the outside of the system. For example, a gas flow device such as a vacuum pump, a blower, a compressor, etc. Or it can use suitably according to use environment, such as displacement.

また、前記排気手段16では排気管20からバルブ9lを用いて系外への不凝縮ガス及び/又は未凝縮ガスの排気量を調整する。この排気量はバルブ9lの下流に設けた未凝縮ガストラップ25の下流側に配置した流量計19aにより正確に測定することができる。あるいは、未凝縮ガストラップを使用せず未凝縮ガスとともに不凝縮ガスを系外へ排出する場合には、排出口15に接続された管にバルブ9uを介して設けられたガス分析装置27で未凝縮ガスと不凝縮ガスとを含む混合ガスをサンプリングし未凝縮ガスと混合される不凝縮ガスの濃度を計測、モニターしつつ未凝縮ガストラップ25の入口と出口に設けたバルブ9tと9rを閉止し、未凝縮ガストラップ25をバイパスするバイパス管26に設けたバルブ9sを開けると上述のごとくバルブ9lを用いて系外への不凝縮ガス及び/又は未凝縮ガスの排気量を調整することもできる。バルブ9lはグローブバルブ等が好適に用いられるが、特に精密に排出を制御する必要がある場合はニードルバルブ等の流量調整機能の優れたバルブの使用が好ましい。   The exhaust means 16 adjusts the exhaust amount of non-condensable gas and / or uncondensed gas from the exhaust pipe 20 to the outside of the system using a valve 9l. This displacement can be accurately measured by a flow meter 19a disposed downstream of the non-condensable gas trap 25 provided downstream of the valve 9l. Alternatively, when the non-condensable gas is discharged together with the non-condensed gas without using the non-condensed gas trap, the gas analyzer 27 provided on the pipe connected to the discharge port 15 via the valve 9u is not used. The mixed gas containing the condensed gas and the non-condensable gas is sampled, and the concentration of the non-condensable gas mixed with the non-condensable gas is measured and monitored, and the valves 9t and 9r provided at the inlet and outlet of the non-condensable gas trap 25 are closed. When the valve 9s provided in the bypass pipe 26 that bypasses the non-condensable gas trap 25 is opened, the exhaust amount of non-condensable gas and / or uncondensed gas to the outside of the system can be adjusted using the valve 9l as described above. it can. A globe valve or the like is preferably used as the valve 9l. However, when it is particularly necessary to precisely control the discharge, it is preferable to use a valve having a superior flow rate adjusting function such as a needle valve.

本発明においては、前記蒸発器2において蒸発させた有機溶媒を前記凝縮器3にて凝縮させつつ、前記排気手段16により系内の不凝縮ガスの系外への排出量を前記廃電解液中の電解質の当初量の10質量%以下に制御することが好ましい。
前記電解質の当初量は前記蒸発器2にバルブ9aを介して供給された廃電解液中の電解質の含有量をいい、前記凝縮器3内の不凝縮ガスの系外への排出量は排気手段16に接続された流量計19aで測定する量が相当する。
なお、既述のごとく前記電解質の当初量は廃電解液中の濃度を重量法や、リチウム含有量を質量分析や発光分析等の手法で測定するなどして決定できる。不凝縮ガス及び/又は未凝縮ガスの系外への排出量は流量計19aにおいて気体の状態で測定されるが、質量流量計を使用すると直接的に排出量を質量で計測できるので好ましい。体積流量計を使用する場合は密度と体積流量から排出量を質量に換算することができる。また、図示しないがフレキシブル継手を使用して各配管を連結し、秤を使って直接的に蒸発器2、凝縮器3及び前記未凝縮ガストラップ25の重量を量ることで蒸発量と不凝縮ガス及び/又は未凝縮ガスの系外への排出量を測定することもできる。
In the present invention, while the organic solvent evaporated in the evaporator 2 is condensed in the condenser 3, the exhaust means 16 discharges the amount of non-condensable gas in the system out of the waste electrolyte. It is preferable to control to 10% by mass or less of the initial amount of the electrolyte.
The initial amount of the electrolyte refers to the content of the electrolyte in the waste electrolyte supplied to the evaporator 2 via the valve 9a, and the amount of noncondensable gas discharged from the system in the condenser 3 is the exhaust means. The amount measured by the flow meter 19a connected to 16 corresponds to this.
As described above, the initial amount of the electrolyte can be determined by measuring the concentration in the waste electrolyte solution by a weight method and measuring the lithium content by a method such as mass spectrometry or emission spectrometry. The amount of non-condensable gas and / or uncondensed gas discharged outside the system is measured in a gas state in the flow meter 19a, but it is preferable to use a mass flow meter because the discharge amount can be directly measured by mass. When a volumetric flow meter is used, the discharge amount can be converted into mass from the density and the volumetric flow rate. Although not shown, each pipe is connected using a flexible joint, and the evaporator 2, the condenser 3 and the uncondensed gas trap 25 are directly weighed using a scale, thereby evaporating and non-condensing. The amount of gas and / or uncondensed gas discharged out of the system can also be measured.

図1に示す装置において、不凝縮ガスの系外への排出量を制御する制御手段は、排気手段16、前記排気手段16の下流にある排出管20に設けたバルブ9l、未凝縮ガストラップ25及び流量計19aで構成され、前記流量計19aで前記不凝縮ガスの流量を確認しながらバルブ9lを開閉することで調整すればよい。
言うまでもないが、未凝縮ガストラップ25を介して不凝縮ガスを系外へ排出する場合は直接的に不凝縮ガスの系外への排出量を制御することが可能である。
In the apparatus shown in FIG. 1, the control means for controlling the discharge amount of the non-condensable gas out of the system is the exhaust means 16, the valve 9 l provided in the exhaust pipe 20 downstream of the exhaust means 16, and the uncondensed gas trap 25. The flow meter 19a may be adjusted by opening and closing the valve 9l while confirming the flow rate of the non-condensable gas with the flow meter 19a.
Needless to say, when the non-condensable gas is discharged out of the system via the non-condensed gas trap 25, it is possible to directly control the discharge amount of the non-condensed gas out of the system.

また、別の制御手段として、前記排気手段16から前記不凝縮ガス及び/又は未凝縮ガスを前記蒸発器2に還流させる還流手段が挙げられる。具体的には、図1に示すように、排気手段16と蒸留器2とを連結する還流管21aを設ければよい。前記還流管21aにはバルブ9mを設けることで流量を調整することができる。この流量はバルブ9mの下流に設けた流量計19bにより正確に測定することができる。さらに前記還流管21aや接続する蒸発器2の入口部付近にバルブ9qを設けることで前記系を密閉状態にできる。また還流管21aの端部を、不凝縮ガス及び/又は未凝縮ガスの供給口28として蒸発器2に設ければよい。   As another control means, there is a reflux means for refluxing the non-condensable gas and / or uncondensed gas from the exhaust means 16 to the evaporator 2. Specifically, as shown in FIG. 1, a reflux pipe 21a for connecting the exhaust means 16 and the distiller 2 may be provided. The flow rate can be adjusted by providing the return pipe 21a with a valve 9m. This flow rate can be accurately measured by a flow meter 19b provided downstream of the valve 9m. Furthermore, the system can be hermetically sealed by providing a valve 9q in the vicinity of the inlet of the reflux pipe 21a or the evaporator 2 to be connected. Moreover, what is necessary is just to provide the edge part of the reflux pipe 21a in the evaporator 2 as the supply port 28 of a non-condensable gas and / or a non-condensable gas.

また、別の制御手段として、前記未凝縮ガストラップ25の下流側に別の還流管21bの一方端を接続し、他方端を前記流量計19bに接続することで、不凝縮ガスのみを還流させる構成としてもよい。この場合、前記流量計19bで不凝縮ガスの流量を確認しながら還流管21bに設置したバルブ9vを開閉することで調整すればよい。   Further, as another control means, one end of another reflux pipe 21b is connected to the downstream side of the uncondensed gas trap 25, and the other end is connected to the flow meter 19b, whereby only non-condensable gas is refluxed. It is good also as a structure. In this case, adjustment may be performed by opening and closing the valve 9v installed in the reflux pipe 21b while confirming the flow rate of the non-condensable gas with the flow meter 19b.

前記の前記装置1において排気手段16を用いた前記不凝縮ガス及び/又は未凝縮ガスの前記還流量及び/又は系外への排出量の制御方法としては、蒸発量と蒸発温度を所望の値になるよう蒸発器2へ供給する加熱媒体の温度と供給量を制御し、同時に凝縮器3へ供給する冷却媒体の温度と供給量を制御し、かつ還流管21aに設置された流量計19b及び/又は排気管20に設置された流量計19aでそれぞれの流量を計測しながら排気手段16の吐出側に設置した流量調整用のバルブ9mと9lで行う方法、あるいは排気手段16の吐出側と吸入側を連結したバイパス管22に設置された流量調整用のバルブ9nで行う方法、あるいはその双方を組み合わせて行う方法等が挙げられる。   As a method for controlling the recirculation amount and / or discharge amount of the non-condensable gas and / or uncondensed gas using the exhaust means 16 in the apparatus 1, the evaporation amount and the evaporation temperature are set to desired values. The temperature and supply amount of the heating medium supplied to the evaporator 2 so as to become the same, and the temperature and supply amount of the cooling medium supplied to the condenser 3 at the same time, and the flow meter 19b installed in the reflux pipe 21a; And / or a method in which the flow rate adjusting valves 9m and 9l installed on the discharge side of the exhaust means 16 are measured while measuring the respective flow rates with a flow meter 19a installed in the exhaust pipe 20, or the discharge side and suction of the exhaust means 16 For example, there may be mentioned a method performed by a flow rate adjusting valve 9n installed in the bypass pipe 22 connected on the side, or a method performed by combining both.

また、凝縮器3の排出口15に接続された管にバルブ9uを介して設けられたガス分析装置27をさらに設けることで、不凝縮ガスの排出量をより正確に調整することができる。
具体的には、不凝縮ガスのみを系外へ排出する場合、前記ガス分析装置27で未凝縮ガスと混合している不凝縮ガスの濃度を測定しつつ、前記流量計19aで不凝縮ガスの流量を確認しながらバルブ9lを開閉することでより正確に不凝縮ガスの系外への排出量を制御することができる。
また、図1に示すようにバルブ9t、9rを閉じて未凝縮ガストラップ25を通さずに、バイパス管26を用いて混合ガスを直接系外に排出する場合でも、前記ガス分析装置27で未凝縮ガスと混合している不凝縮ガスの濃度を測定しつつ、前記流量計19aで混合ガスの流量を確認しながらバルブ9lを開閉することで混合ガス中に含まれる不凝縮ガスの系外への排出量を制御することができる。
Further, by further providing a gas analyzer 27 provided via a valve 9u on the pipe connected to the discharge port 15 of the condenser 3, the discharge amount of the non-condensable gas can be adjusted more accurately.
Specifically, when only non-condensable gas is discharged out of the system, the gas analyzer 27 measures the concentration of non-condensable gas mixed with uncondensed gas, and the flow meter 19a By opening and closing the valve 9l while checking the flow rate, the amount of non-condensable gas discharged out of the system can be controlled more accurately.
Further, as shown in FIG. 1, even when the mixed gas is directly discharged out of the system using the bypass pipe 26 without closing the valves 9t and 9r and passing through the uncondensed gas trap 25, the gas analyzer 27 does not. While measuring the concentration of the non-condensable gas mixed with the condensed gas and confirming the flow rate of the mixed gas with the flow meter 19a, the valve 9l is opened and closed to move the non-condensable gas contained in the mixed gas out of the system. The amount of discharge can be controlled.

さらに、凝縮器3内の不凝縮ガス及び/又は未凝縮ガスを蒸発器2内へ還流させる場合については、不凝縮ガス及び/又は未凝縮ガスの排出口15から管を介して吸い込み側が排気手段16に接続される一方、吐出側は還流管21aに接続された系を使用して前記還流管21aに配置された流量計19bで前記不凝縮ガス及び/又は未凝縮ガスの流量を計測しつつ流量調整用のバルブ9mを開閉するか、排気手段16の吐出側と吸入側を連結したバイパス管22に設置された流量調整用のバルブ9nを開閉して排気手段16の吐出ガスを再度吸い込み側にバイパスさせる、あるいはその双方を行うことで還流量を制御できる。   Further, when the non-condensable gas and / or the non-condensable gas in the condenser 3 is recirculated into the evaporator 2, the suction side is connected to the non-condensed gas and / or the non-condensed gas outlet 15 through the pipe. 16, while the discharge side measures the flow rate of the non-condensed gas and / or uncondensed gas with a flow meter 19 b disposed in the reflux pipe 21 a using a system connected to the reflux pipe 21 a. The valve 9m for adjusting the flow rate is opened or closed, or the valve 9n for adjusting the flow rate installed in the bypass pipe 22 connecting the discharge side and the suction side of the exhaust means 16 is opened and closed, and the discharge gas of the exhaust means 16 is again sucked in The amount of reflux can be controlled by bypassing or both.

また、前記還流管21aには系外からPF5又はBF3を前記系内に添加する添加手段23を接続してもよい。
この添加手段23は供給側から順にPF5又はBF3の流量を調節するバルブ9o、流量計19c及びPF5又はBF3の供給用のバルブ9pとなるように構成される。
なお、この添加手段23の別の態様としては、前記蒸発器2、凝縮器3、連結管4のいずれかに接続してもよい。
Further, an addition means 23 for adding PF 5 or BF 3 from the outside of the system may be connected to the reflux pipe 21a.
The adding means 23 is configured to be a valve 9o for adjusting the flow rate of PF 5 or BF 3 , a flow meter 19c, and a valve 9p for supplying PF 5 or BF 3 in order from the supply side.
In addition, as another aspect of this addition means 23, you may connect to any of the said evaporator 2, the condenser 3, and the connection pipe 4. As shown in FIG.

また、前記蒸発器2へ廃電解液とは別に低沸点の有機溶媒及び/又は廃電解液中の高沸点溶媒成分と最低沸点共沸混合物を形成することができる有機溶媒を供給する溶媒供給手段を備えていてもよい。この溶媒供給手段としては、廃電解液とは別に低沸点の有機溶媒及び/又は廃電解液中の高沸点溶媒成分と最低沸点共沸混合物を形成することができる有機溶媒を貯留した容器(図示せず)と前記蒸発器2の供給口5とを接続すればよいし、別の態様としては、これらの溶媒用の新たな供給口を前記蒸発器2に設けてもよい。   Further, a solvent supply means for supplying the evaporator 2 with an organic solvent having a low boiling point separately from the waste electrolyte and / or an organic solvent capable of forming a minimum boiling azeotrope with the high boiling point solvent component in the waste electrolyte. May be provided. As the solvent supply means, a container having a low boiling point organic solvent and / or an organic solvent capable of forming a minimum boiling point azeotrope with the high boiling point solvent component in the waste electrolyte (see FIG. (Not shown) and the supply port 5 of the evaporator 2 may be connected. Alternatively, a new supply port for these solvents may be provided in the evaporator 2.

以上のような装置1を構成する各部の材料としては特段の制限はなく、鉄鋼、アルミニウム、銅、ステンレス鋼、ハステロイ等の高合金鋼、あるいはこれらにフッ素樹脂等のライニングを施した複合材料等が適宜、環境に応じて使用できる。   There is no particular limitation on the material of each part constituting the apparatus 1 as described above, and steel, aluminum, copper, stainless steel, high alloy steel such as Hastelloy, or composite material obtained by lining such as fluororesin Can be used as appropriate depending on the environment.

また、前記装置1の各部を操作する条件としては本発明の方法に準じて調整すればよい。   Moreover, what is necessary is just to adjust according to the method of this invention as conditions which operate each part of the said apparatus 1. FIG.

また、図1に示す装置1であれば、本発明の方法をすべて実施することが可能であるが、凝縮器3内の不凝縮ガスの系外への排出量の制御方法に応じて、装置の構成を適宜選択してもよい。   Moreover, if it is the apparatus 1 shown in FIG. 1, although it is possible to implement all the methods of this invention, according to the control method of the discharge | emission amount of the non-condensable gas in the condenser 3 out of the system, an apparatus The configuration may be selected as appropriate.

例えば、前記凝縮器内の不凝縮ガス及び/又は未凝縮ガスを装置の外へ排出する場合であれば、図2に示す装置1a、図3に示す装置1bでもよい。図1に示す装置1との構成を比較すると、装置1aは還流手段および系外からPF5又はBF3を前記系内に添加する添加手段がない装置、装置1bは還流手段がない装置である。また、不凝縮ガスと未凝縮ガスとを含む混合ガスを排出するのであれば、図4に示す構成の装置1cのように図2に示す装置1aからさらに未凝縮ガストラップ25を取り外してもよい。 For example, if the non-condensable gas and / or uncondensed gas in the condenser is discharged outside the apparatus, the apparatus 1a shown in FIG. 2 and the apparatus 1b shown in FIG. 3 may be used. Comparing the configuration with the apparatus 1 shown in FIG. 1, the apparatus 1a is an apparatus having no reflux means and an adding means for adding PF 5 or BF 3 into the system from outside the system, and the apparatus 1b is an apparatus having no reflux means. . Further, if the mixed gas containing the non-condensable gas and the non-condensable gas is discharged, the non-condensable gas trap 25 may be further removed from the device 1a shown in FIG. 2 like the device 1c having the configuration shown in FIG. .

また、不凝縮ガス及び未凝縮ガスを還流させる場合には、図5に示す装置1dでもよい。図1に示す装置1の構成と比較すると、装置1dはバイパス管22、不凝縮ガス及び/又は未凝縮ガスを装置の外へ排出する手段である未凝縮ガストラップ25、流量計19aなどがない装置である。
また、不凝縮ガスのみを還流させる場合には、図6に示す装置1eでもよい。図1に示す装置1の構成と比較すると、装置1eは流量計19a、バイパス管22、26がない装置である。
Further, when the non-condensable gas and the non-condensed gas are refluxed, the apparatus 1d shown in FIG. 5 may be used. Compared with the configuration of the apparatus 1 shown in FIG. 1, the apparatus 1d does not have a bypass pipe 22, an uncondensed gas trap 25 that is a means for discharging noncondensable gas and / or uncondensed gas to the outside of the apparatus, a flow meter 19a, and the like. Device.
Further, when only non-condensable gas is refluxed, the apparatus 1e shown in FIG. 6 may be used. Compared with the configuration of the device 1 shown in FIG. 1, the device 1e is a device that does not have the flow meter 19a and the bypass pipes 22 and 26.

前記装置1a〜1e以外にも必要な処理に応じて、適宜構成を組み合わせることができる。   In addition to the devices 1a to 1e, the configurations can be appropriately combined according to the necessary processing.

以下、実施例により本発明をより詳細に説明するが本発明はこれらの内容に限定されるものではなく、この実施例に記載されている装置、材料あるいは温度などは説明例であり適宜変更することができる。 Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to these contents, and the devices, materials, temperatures, and the like described in the examples are illustrative examples and are appropriately changed. be able to.

実施例1〜4
本発明の有効性を検証するために模擬廃電解液AとしてDMC(ジメチルカーボネート)26.8kg(25リットル)とDEC(ジエチルカーボネート)24.4kg(25リットル)からなる混合溶媒にLiPF6を8.2kg溶解した溶液(13.8%)を調製した。当該模擬廃電解液Aの含有水分濃度並びに不溶性リチウム塩の濃度は10ppm以下であった。
Examples 1-4
In order to verify the effectiveness of the present invention, LiPF 6 was added to a mixed solvent consisting of 26.8 kg (25 liters) of DMC (dimethyl carbonate) and 24.4 kg (25 liters) of DEC (diethyl carbonate) as a simulated waste electrolyte A. A solution (13.8%) dissolved in 2 kg was prepared. The water content of the simulated waste electrolyte A and the concentration of the insoluble lithium salt were 10 ppm or less.

図1に示す装置1内をN2でパージした後、真空ポンプで系内を0.13kPaの真空度になるまで排気し、模擬廃電解液Aから10kgずつを分取しそれぞれ実施例1〜4に供するため0.5μmの目開きのフィルターを介し蒸発器2にそれぞれ仕込んだ。
なお、蒸発器2はフレキシブル継手により配管と接続し該蒸発器2の重量を秤により計量できる仕組みとした。
After purging the inside of the apparatus 1 shown in FIG. 1 with N 2 , the inside of the system is evacuated with a vacuum pump to a vacuum level of 0.13 kPa, and 10 kg each is sampled from the simulated waste electrolyte A and each of Examples 1 to In order to be used for No. 4, the evaporator 2 was charged through a filter having an opening of 0.5 μm.
The evaporator 2 is connected to the pipe by a flexible joint so that the weight of the evaporator 2 can be measured by a scale.

次に凝縮器3へ10℃の冷却媒体を供給し、同時に蒸発器2へ120℃の加熱媒体を供給し蒸発器2の温度が30℃〜100℃になるように冷却媒体と加熱媒体の流量を調節しながら加熱濃縮を行う一方、留出してきた溶媒蒸気を凝縮器3で凝縮させた。合わせて排気手段16の排気装置を起動し排出量調節バルブ9lを開けて未凝縮ガストラップ25(−80℃の冷却媒体を供給した熱交換器)を介して質量流量計19aで質量を計測しながら不凝縮ガスの系外への排出を行った。   Next, a cooling medium of 10 ° C. is supplied to the condenser 3, and simultaneously, a heating medium of 120 ° C. is supplied to the evaporator 2, and the flow rates of the cooling medium and the heating medium so that the temperature of the evaporator 2 becomes 30 ° C. to 100 ° C. The solvent vapor that had been distilled off was condensed in the condenser 3 while being concentrated while heating. At the same time, the exhaust device of the exhaust means 16 is started, the discharge amount adjusting valve 9l is opened, and the mass is measured by the mass flow meter 19a via the uncondensed gas trap 25 (heat exchanger supplied with a cooling medium at −80 ° C.). However, non-condensable gas was discharged out of the system.

蒸発器2での模擬廃電解液Aの蒸発量が7.5kgに到達した時点で加熱媒体の供給を停止し系を室温まで冷却した後、冷却媒体の供給を停止した。この間の不凝縮ガスの系外への排出量は実施例1においては85g、実施例2においては60gであった。また、実施例3として、上記の操作に加えてPF5添加手段23を介して蒸発器2へ連続的にPF5を添加しながら加熱濃縮を行った。PF5の添加量は50gであり、不凝縮ガスの系外への排出量は実施例2と同様60g、模擬廃電解液の蒸発量は7.5kgである。 When the evaporation amount of the simulated waste electrolyte A in the evaporator 2 reached 7.5 kg, the supply of the heating medium was stopped and the system was cooled to room temperature, and then the supply of the cooling medium was stopped. During this time, the amount of noncondensable gas discharged out of the system was 85 g in Example 1 and 60 g in Example 2. As Example 3, in addition to the above operation, heating and concentration were performed while PF 5 was continuously added to the evaporator 2 via the PF 5 addition means 23. The amount of PF 5 added is 50 g, the amount of non-condensable gas discharged out of the system is 60 g as in Example 2, and the amount of evaporation of the simulated waste electrolyte is 7.5 kg.

さらに実施例1、実施例2及び実施例3の操作に替えて、実施例4においては排気手段16の排気装置を起動し、バルブ9mを開けて質量流量計19bで不凝縮ガスと未凝縮ガスとを含む混合ガスの流量を計測しながら蒸発器2へ混合ガスを100g/時の速度で還流させ、系外への不凝縮ガスの排出並びに、系外から蒸発器2へのPF5の添加は行わなかった。 Further, in place of the operations of the first embodiment, the second embodiment, and the third embodiment, in the fourth embodiment, the exhaust device of the exhaust means 16 is started, the valve 9m is opened, and the non-condensable gas and the uncondensed gas are detected by the mass flow meter 19b. The mixed gas is recirculated to the evaporator 2 at a rate of 100 g / hour while measuring the flow rate of the mixed gas containing, and discharge of non-condensable gas to the outside of the system and addition of PF 5 from the outside to the evaporator 2 Did not.

続いて、N2でシールしながら系内を大気圧にした後、濾過板の上方に雰囲気ガスの入口を、下方に出口を備えた濾過器を取り出し口7に接続し雰囲気ガスとしてN2を5リットル/分の速度で流しながら析出したLiPF6を含んだスラリーを30分間室温で濾過した。次に、N2雰囲気下で濾別したLiPF6を容器に移し替え、容器内にN2を1リットル/分の速度で流通させながら、100℃で5時間乾燥したところLiPF6の結晶が得られた。なお、前記の一連の操作では水分含有量が10ppm以下のN2を使用した。これらの結果を表1に示す。 Subsequently, after the inside of the system is brought to atmospheric pressure while being sealed with N 2 , an atmosphere gas inlet is connected to the upper side of the filter plate, and a filter having an outlet is connected to the take-out port 7 to connect N 2 as the atmosphere gas. The slurry containing LiPF 6 precipitated while flowing at a rate of 5 liters / minute was filtered at room temperature for 30 minutes. Next, LiPF 6 filtered off in an N 2 atmosphere was transferred to a container, and dried at 100 ° C. for 5 hours while N 2 was circulated in the container at a rate of 1 liter / minute to obtain LiPF 6 crystals. It was. In the series of operations, N 2 having a water content of 10 ppm or less was used. These results are shown in Table 1.

Figure 2014235945
Figure 2014235945

表1に示す結果より、実施例1〜4のいずれにおいても不凝縮ガスの系外への排出量を調整することで、不溶性のリチウム塩の発生を抑えながら、LiPF6を効率よく回収することができることがわかる。 From the results shown in Table 1, LiPF 6 can be efficiently recovered while suppressing the generation of insoluble lithium salt by adjusting the amount of noncondensable gas discharged outside the system in any of Examples 1 to 4. You can see that

続いて実施例1〜4にて得られたLiPF6の結晶300gを採取しそれぞれ900gの無水HFに溶解し当該溶液を−20℃まで冷却し、再結晶により精製を行った。再結晶にて析出した結晶を含んだスラリーを濾過板の上方に雰囲気ガスの入口を、下方に出口を備えた濾過器に移し雰囲気ガスとしてN2を500ミリリットル/分の速度で流しながら析出したLiPF6を含んだスラリーを10分間室温で濾過した。次に、N2雰囲気下で、濾別したLiPF6を容器に移し替え、容器内にN2を500ミリリットル/分の速度で流通させながら、60℃で5時間乾燥した。その結果を表2に示す。 Subsequently, 300 g of LiPF 6 crystals obtained in Examples 1 to 4 were collected and dissolved in 900 g of anhydrous HF, and the solution was cooled to −20 ° C. and purified by recrystallization. The slurry containing crystals precipitated by recrystallization was transferred to a filter equipped with an inlet of the atmospheric gas above the filter plate and an outlet below, and precipitated while flowing N 2 as an atmospheric gas at a rate of 500 ml / min. The slurry containing LiPF 6 was filtered for 10 minutes at room temperature. Next, under a N 2 atmosphere, the LiPF 6 separated by filtration was transferred to a container, and dried at 60 ° C. for 5 hours while N 2 was passed through the container at a rate of 500 ml / min. The results are shown in Table 2.

Figure 2014235945
Figure 2014235945

表2に示す結果より、実施例1〜4では、再結晶という簡便な方法を用いて、不溶性のリチウム塩の含有量が顕著に低減されたLiPF6を得ることできることがわかる。 From the results shown in Table 2, it can be seen that in Examples 1 to 4, LiPF 6 in which the content of the insoluble lithium salt is remarkably reduced can be obtained using a simple method of recrystallization.

なお、実施例1〜4は図1に示す装置1を用いて処理を行ったが、他の構成の装置でも可能である。例えば、実施例1、2は図2に示す装置1aを用いてもよいし、実施例3は図3に示す装置1bを用いてもよいし、実施例4は図5に示す装置1dを用いてもよい。   In addition, although Examples 1-4 performed the process using the apparatus 1 shown in FIG. 1, the apparatus of another structure is also possible. For example, the first and second embodiments may use the apparatus 1a shown in FIG. 2, the third embodiment may use the apparatus 1b shown in FIG. 3, and the fourth embodiment uses the apparatus 1d shown in FIG. May be.

実施例5、比較例1
図1に示す装置内をN2でパージした後、真空ポンプで系内を0.13kPaの真空度になるまで排気し、前記実施例1〜4において調製した模擬廃電解液Aから5kgずつを分取しそれぞれ実施例5、比較例1に供するため0.5μmの目開きのフィルターを介し蒸発器2に仕込んだ。
なお、蒸発器2はフレキシブル継手により配管と接続し該蒸発器2の重量を秤により計量できる仕組みとした。
Example 5, Comparative Example 1
After purging the inside of the apparatus shown in FIG. 1 with N 2 , the inside of the system is evacuated to a vacuum level of 0.13 kPa with a vacuum pump, and 5 kg each from the simulated waste electrolyte A prepared in Examples 1 to 4 above. The aliquots were fed into the evaporator 2 through a filter having an opening of 0.5 μm for use in Example 5 and Comparative Example 1, respectively.
The evaporator 2 is connected to the pipe by a flexible joint so that the weight of the evaporator 2 can be measured by a scale.

次に凝縮器3へ10℃の冷却媒体を供給し、同時に蒸発器2へ120℃の加熱媒体を供給し蒸発器2の温度が30℃〜100℃になるように冷却媒体と加熱媒体の流量を調節しながら加熱濃縮を行う一方、留出してきた溶媒蒸気を凝縮器3で凝縮させた。合わせて排気手段16の排気装置を起動しガス分析装置27と質量流量計19aを使用して未凝縮ガスと混合している不凝縮ガスの濃度と排気される混合ガスの質量を計測しつつ排出量調節バルブ9lを開閉してバイパス管26を介して不凝縮ガスを含む混合ガスの系外への排出を行った。   Next, a cooling medium of 10 ° C. is supplied to the condenser 3, and simultaneously, a heating medium of 120 ° C. is supplied to the evaporator 2, and the flow rates of the cooling medium and the heating medium so that the temperature of the evaporator 2 becomes 30 ° C. to 100 ° C. The solvent vapor that had been distilled off was condensed in the condenser 3 while being concentrated while heating. At the same time, the exhaust device of the exhaust means 16 is started, and the gas analyzer 27 and the mass flow meter 19a are used to measure the concentration of the non-condensable gas mixed with the uncondensed gas and the mass of the mixed gas to be exhausted. The amount adjusting valve 9 l was opened and closed, and the mixed gas containing non-condensable gas was discharged out of the system through the bypass pipe 26.

模擬廃電解液Aの蒸発量が3.75kgに到達した時点で加熱媒体の供給を停止し系を室温まで冷却した後、冷却媒体の供給を停止した。この間の不凝縮ガスの系外への排出量は実施例5においては55g、比較例1においては105gであった。   When the evaporation amount of the simulated waste electrolyte A reached 3.75 kg, the supply of the heating medium was stopped and the system was cooled to room temperature, and then the supply of the cooling medium was stopped. During this time, the amount of noncondensable gas discharged out of the system was 55 g in Example 5 and 105 g in Comparative Example 1.

続いて、N2でシールしながら系内を大気圧にした後、濾過板の上方に雰囲気ガスの入口を、下方に出口を備えた濾過器を取り出し口7に接続し雰囲気ガスとしてN2を2.5リットル/分の速度で流しながら析出したLiPF6を含んだスラリーを30分間室温で濾過した。次に、N2雰囲気下で濾別したLiPF6を容器に移し替え、容器内にN2を0.5リットル/分の速度で流通させながら100℃で5時間乾燥したところLiPF6の結晶が得られた。なお、これら一連の操作では水分含有量が10ppm以下のN2を使用した。これらの結果を表3に示す。 Subsequently, after the inside of the system is brought to atmospheric pressure while being sealed with N 2 , an atmosphere gas inlet is connected to the upper side of the filter plate, and a filter having an outlet is connected to the take-out port 7 to connect N 2 as the atmosphere gas. The slurry containing LiPF 6 precipitated while flowing at a rate of 2.5 liters / minute was filtered at room temperature for 30 minutes. Then, N transferred to LiPF 6 was filtered off in a container under 2 atmosphere, the crystals of LiPF 6 where the N 2 in the container was dried for 5 hours at 100 ° C. while circulating at a rate of 0.5 liters / minute Obtained. In these series of operations, N 2 having a water content of 10 ppm or less was used. These results are shown in Table 3.

Figure 2014235945
Figure 2014235945

表3の結果より、不凝縮ガスの系外への排出量を10%未満に抑えた実施例5においては、前記排出量を10%を超えるように調整した比較例1と比べると、得られるLiPF6の量が約1.5倍多く回収できており、しかもLiPF6に含まれる不溶性のリチウム塩の濃度が約3分の1に抑えられていることから、高品質のLiPF6がより多く回収されているといえる。
また、比較例1では、前記のように晶析した電解質用リチウム塩の収量が低下するとともに当該電解質中に不溶性リチウム塩が多く混入するようになり、しかも、蒸発器に残留する有機溶媒も顕著に変質し、晶析した結晶が着色していた。
From the results of Table 3, in Example 5 in which the discharge amount of non-condensable gas to the outside of the system was suppressed to less than 10%, it is obtained as compared with Comparative Example 1 in which the discharge amount was adjusted to exceed 10%. The amount of LiPF 6 can be recovered about 1.5 times more, and the concentration of insoluble lithium salt contained in LiPF 6 is suppressed to about one third, so that there is more high-quality LiPF 6 It can be said that it has been recovered.
In Comparative Example 1, the yield of the lithium salt for electrolyte crystallized as described above is reduced, and a large amount of insoluble lithium salt is mixed in the electrolyte, and the organic solvent remaining in the evaporator is also remarkable. The crystallized crystals were colored.

なお、実施例5は図1に示す装置1を用いて処理を行ったが、例えば、図4に示す装置1cを用いても実施可能である。   In addition, although Example 5 performed the process using the apparatus 1 shown in FIG. 1, for example, it can implement also using the apparatus 1c shown in FIG.

実施例6
実施例1において凝縮器3に回収された有機溶媒と、未凝縮ガストラップ25に回収された有機溶媒を合わせた7.5kgを蒸留したところ、99.9%以上の純度のDMCが4.0kg同じく99.9%以上のDECが2.5kg得られた。
したがって、回収された有機溶媒は、高品質のものであり、そのまま電池作製の原料として使用できることがわかる。
Example 6
When 7.5 kg of the organic solvent recovered in the condenser 3 and the organic solvent recovered in the uncondensed gas trap 25 in Example 1 was distilled, 4.0 kg of DMC having a purity of 99.9% or more was obtained. Similarly, 2.5 kg of DEC of 99.9% or more was obtained.
Therefore, it can be seen that the recovered organic solvent is of high quality and can be used as a raw material for battery production as it is.

実施例7
模擬廃電解液BとしてDMC10.7kg、DEC9.8kg、EC(エチレンカーボネート)13.2kgからなる混合溶媒にLiPF6を4.9kg溶解した溶液(12.7%)を調製した。当該模擬廃電解液Bの含有水分濃度並びに不溶性リチウム塩の濃度は10ppm以下であった。
Example 7
As a simulated waste electrolyte B, a solution (12.7%) in which 4.9 kg of LiPF 6 was dissolved in a mixed solvent composed of 10.7 kg of DMC, 9.8 kg of DEC, and 13.2 kg of EC (ethylene carbonate) was prepared. The water content of the simulated waste electrolyte B and the concentration of the insoluble lithium salt were 10 ppm or less.

図1に示す装置1内をN2でパージした後、真空ポンプで系内を0.13kPaの真空度になるまで排気し模擬廃電解液Bから10kgを分取し0.5μmの目開きのフィルターを介し蒸発器2に仕込んだ。
なお、蒸発器2はフレキシブル継手により配管と接続し該蒸発器2の重量を秤により計量できる仕組みとした。
After purging the inside of the apparatus 1 shown in FIG. 1 with N 2 , the inside of the system is evacuated to a vacuum level of 0.13 kPa with a vacuum pump, and 10 kg is separated from the simulated waste electrolyte B, and the opening is 0.5 μm. The evaporator 2 was charged through a filter.
The evaporator 2 is connected to the pipe by a flexible joint so that the weight of the evaporator 2 can be measured by a scale.

次に凝縮器3へ20℃の冷却媒体を供給し、同時に蒸発器2へ140℃の加熱媒体を供給し蒸発器2の温度が60℃〜120℃になるように冷却媒体と加熱媒体の流量を調節しながら加熱濃縮を行う一方、留出してきた溶媒蒸気を凝縮器3で凝縮させた。合わせて排気手段16の排気装置を起動し排出量調節バルブ9lを開けて未凝縮ガストラップ25を介して質量流量計19aで質量を計測しながら不凝縮ガスの系外への排出を行った。   Next, a cooling medium of 20 ° C. is supplied to the condenser 3, and simultaneously, a heating medium of 140 ° C. is supplied to the evaporator 2, and the flow rates of the cooling medium and the heating medium so that the temperature of the evaporator 2 is 60 ° C. to 120 ° C. The solvent vapor that had been distilled off was condensed in the condenser 3 while being concentrated while heating. At the same time, the exhaust device of the exhaust means 16 was started, the discharge amount adjusting valve 9l was opened, and the non-condensable gas was discharged outside the system while measuring the mass with the mass flow meter 19a via the uncondensed gas trap 25.

さらに、模擬廃電解液Bの蒸発量が5kgに到達する時点から蒸発器2の温度を120℃に調節しても蒸発が認められなくなったため、一旦、蒸発濃縮を停止し、凝縮器3内に回収された有機溶媒を系外へ排出した後、廃電解液の供給口5からバルブ9aを介してECと低沸点共沸混合物を形成することができるエチレングリコール70kgを連続的に蒸発器2へ供給しながら80℃〜120℃の蒸発温度で再度蒸発濃縮を開始した。   Further, since the evaporation was not recognized even when the temperature of the evaporator 2 was adjusted to 120 ° C. from the time when the evaporation amount of the simulated waste electrolyte B reached 5 kg, the evaporation concentration was temporarily stopped, and the inside of the condenser 3 was stopped. After discharging the recovered organic solvent out of the system, 70 kg of ethylene glycol capable of forming a low-boiling azeotrope with EC from the supply port 5 of the waste electrolyte through the valve 9a is continuously supplied to the evaporator 2. Evaporation concentration was started again at an evaporation temperature of 80 ° C. to 120 ° C. while feeding.

蒸発量の総計が77.5kgに到達した時点でエチレングリコールの供給を停止し、引き続いて廃電解液の供給口5からバルブ9aを介してトルエン60kgを連続的に蒸発器2へ供給し60℃〜100℃の蒸発温度で蒸発濃縮を継続した。トルエンの供給停止後、蒸発器2の内容物を乾固するため重量の減少が認められなくなるまでさらに加熱を行った後、加熱媒体の供給を停止し、系を室温まで冷却した後、冷却媒体の供給を停止した。この間の不凝縮ガスの系外への排出量の合計は60gであった。   When the total amount of evaporation reached 77.5 kg, the supply of ethylene glycol was stopped, and subsequently 60 kg of toluene was continuously supplied from the waste electrolyte supply port 5 through the valve 9a to the evaporator 2 at 60 ° C. Evaporation concentration was continued at an evaporation temperature of ˜100 ° C. After stopping the supply of toluene, the contents of the evaporator 2 are dried to further solidify until no weight reduction is observed, the supply of the heating medium is stopped, the system is cooled to room temperature, and then the cooling medium The supply of was stopped. During this time, the total amount of noncondensable gas discharged out of the system was 60 g.

蒸発器2内の乾固した結晶1.2kgを取り出し分析したところ、若干褐色に着色していたがLiPF6と同定され有機溶媒に不溶性のリチウム塩の濃度は1.2重量%であった。続いて回収したLiPF6結晶から300gを分取し900gの無水HFに溶解し再結晶を行った。析出した結晶を濾過してN2雰囲気下、60℃で乾燥して135gの結晶を得た。得られたLiPF6結晶中の電解質用有機溶媒に不溶性のリチウム塩の濃度は600ppmであり、結晶の着色は認められなかった。したがって、得られたLiPF6は、不溶性のリチウム塩の濃度が低く抑えられた高品質のものであるといえる。なお、上記精製操作は前記実施例1〜4と同様に行った。
また、実施例7は図1に示す装置1を用いて処理を行ったが、例えば、図2に示す装置1aを用いても実施可能である。
When 1.2 kg of the dried crystals in the evaporator 2 were taken out and analyzed, the concentration of the lithium salt which was identified as LiPF 6 but insoluble in the organic solvent was 1.2% by weight. Subsequently, 300 g was collected from the recovered LiPF 6 crystals, dissolved in 900 g of anhydrous HF, and recrystallized. The precipitated crystals were filtered and dried at 60 ° C. under N 2 atmosphere to obtain 135 g of crystals. The concentration of lithium salt insoluble in the organic solvent for electrolyte in the obtained LiPF 6 crystal was 600 ppm, and no coloration of the crystal was observed. Therefore, it can be said that the obtained LiPF 6 is of high quality with a low concentration of insoluble lithium salt. In addition, the said refinement | purification operation was performed similarly to the said Examples 1-4.
Moreover, although Example 7 performed the process using the apparatus 1 shown in FIG. 1, it can implement also using the apparatus 1a shown in FIG. 2, for example.

参考例
縦60mm、横100mm、厚さ20μmのアルミニウム集電体の表裏にコバルト酸リチウムをポリフッ化ビニリデンをバインダーとして片面80μmずつ塗工した正極と縦60mm、横100mm、厚さ15μmの銅集電体の表裏にポリフッ化ビニリデンをバインダーとして片面92.5μmずつ塗工した負極をそれぞれ乾燥した後にEC30容量%、DMC10容量%、EMC(エチルメチルカーボネート)40容量%、DEC20容量%、からなる混合溶媒1リットルにLiPF6を1モル溶解した電解液を正極と負極合わせて1.33g含浸した。前記電解液を含浸した正極と負極を容器に移し新たに20gのDMCを加え容器に37kHzの超音波を10分間印加した。印加後、正極と負極を取り出し容器に残った溶液を分析した。その分析結果と含浸量に対して溶液中に抽出された各成分の回収率を表4に示す。
Reference Example 60 mm long, 100 mm wide, 20 μm thick aluminum current collector with lithium cobaltate coated on each side 80 μm of polyvinylidene fluoride as a binder and 60 mm long, 100 mm wide, 15 μm thick copper current collector A mixed solvent comprising 30% by volume of EC, 10% by volume of DMC, 40% by volume of EMC (ethyl methyl carbonate), and 20% by volume of DEC after drying a negative electrode coated with 92.5 μm on one side using polyvinylidene fluoride as a binder on both sides of the body An electrolytic solution in which 1 mol of LiPF 6 was dissolved in 1 liter was impregnated with 1.33 g of the positive electrode and the negative electrode together. The positive electrode and negative electrode impregnated with the electrolytic solution were transferred to a container, 20 g of DMC was newly added, and 37 kHz ultrasonic waves were applied to the container for 10 minutes. After the application, the positive electrode and the negative electrode were taken out and the solution remaining in the container was analyzed. Table 4 shows the recovery rate of each component extracted in the solution with respect to the analysis result and the amount of impregnation.

Figure 2014235945
Figure 2014235945

表4の結果より、解体した電池部材を適当な有機溶媒に浸漬させることで、前記電池部材に含浸された有機溶媒およびリチウム塩を効率よく抽出することができることがわかる。   From the results of Table 4, it can be seen that the organic solvent and the lithium salt impregnated in the battery member can be efficiently extracted by immersing the disassembled battery member in an appropriate organic solvent.

1 1a 1b 1c 1d 1e 回収装置
2 蒸発器
3 凝縮器
4 連結管
5 廃電解液の供給口
6 廃電解液の加熱手段
7 晶析させたリチウム塩の取り出し口
8 気化した有機溶媒の排出口
9 バルブ
10 温度計
11 排出口
12 気化した有機溶媒の供給口
13 気化した有機溶媒の冷却手段
14 液化した有機溶媒の排出口
15 不凝縮ガス及び/又は未凝縮ガスの排出口
16 不凝縮ガス及び/又は未凝縮ガスの排気手段
17 圧力計
18 排出口
19 流量計
20 排気管
21a 還流管
21b 還流管
22 バイパス管
23 PF5又はBF3の添加手段
24 不活性ガスの供給口
25 未凝縮ガストラップ
26 バイパス管
27 ガス分析装置
28 不凝縮ガス及び/又は未凝縮ガスの供給口
1 1a 1b 1c 1d 1e Recovery device 2 Evaporator 3 Condenser 4 Connecting pipe 5 Waste electrolyte supply port 6 Waste electrolyte heating means 7 Crystallized lithium salt outlet 8 Evaporated organic solvent outlet 9 Valve 10 Thermometer 11 Discharge port 12 Supply port for vaporized organic solvent 13 Cooling means for vaporized organic solvent 14 Discharge port for liquefied organic solvent 15 Discharge port for non-condensable gas and / or uncondensed gas 16 Non-condensable gas and / or Or exhaust means for uncondensed gas 17 pressure gauge 18 outlet 19 flow meter 20 exhaust pipe 21a reflux pipe 21b reflux pipe 22 bypass pipe 23 PF 5 or BF 3 addition means 24 inert gas supply port 25 uncondensed gas trap 26 Bypass pipe 27 Gas analyzer 28 Non-condensable gas and / or uncondensed gas supply port

Claims (11)

有機溶媒とリチウム電池及び/又はリチウムイオン電池の電解質であるリチウム塩とを含む廃電解液を蒸発器にて加熱濃縮してリチウム塩を晶析させると同時に、凝縮器にて前記蒸発器で蒸発させた有機溶媒を凝縮して回収するに際し、
前記蒸発器と前記凝縮器とを連通させて密閉可能な1つの系とし、
前記凝縮器内の不凝縮ガスの系外への排出量を制御しつつ、蒸発器において廃電解液を加熱して有機溶媒を蒸発させ、かつ、凝縮器において蒸発器にて蒸発させた有機溶媒を凝縮させることを特徴とする廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法。
A waste electrolyte containing an organic solvent and a lithium salt as an electrolyte of a lithium battery and / or a lithium ion battery is heated and concentrated in an evaporator to crystallize the lithium salt, and at the same time, evaporated in the evaporator in a condenser. When the collected organic solvent is condensed and recovered,
The evaporator and the condenser are communicated to form a single sealable system,
The organic solvent evaporated by heating the waste electrolyte in the evaporator and evaporating the organic solvent while controlling the discharge amount of the non-condensable gas in the condenser to the outside of the system. A method for simultaneously recovering a lithium salt for an electrolyte and an organic solvent from a waste electrolyte solution characterized by condensing water.
前記凝縮器内の不凝縮ガスの系外への排出量を、廃電解液中の電解質の当初量の10質量%以下に制御する請求項1に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法。   2. The lithium salt for electrolyte and the organic material from the waste electrolyte solution according to claim 1, wherein the discharge amount of the non-condensable gas in the condenser is controlled to 10% by mass or less of the initial amount of the electrolyte in the waste electrolyte solution. A method of simultaneously collecting the solvent. 前記凝縮器に不凝縮ガス及び/又は未凝縮ガスを系外へ排出可能な排気手段が設けられた請求項1または2に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法。   The method for simultaneously recovering an electrolyte lithium salt and an organic solvent from a waste electrolyte solution according to claim 1 or 2, wherein the condenser is provided with an exhaust means capable of discharging non-condensable gas and / or uncondensed gas out of the system. . 前記排気手段に未凝縮ガスを捕捉して不凝縮ガスを抽出する手段がさらに設けられた請求項3に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法。   4. The method for simultaneously recovering an electrolyte lithium salt and an organic solvent from a waste electrolyte solution according to claim 3, further comprising means for capturing uncondensed gas and extracting non-condensable gas in the exhaust means. 前記凝縮器内の不凝縮ガス及び/又は未凝縮ガスを蒸発器内に還流させる請求項1〜4いずれかに記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法。   The method for simultaneously recovering a lithium salt for an electrolyte and an organic solvent from a waste electrolyte solution according to any one of claims 1 to 4, wherein uncondensed gas and / or uncondensed gas in the condenser is refluxed into the evaporator. 前記リチウム塩がLiPF6又はLiBF4であり、前記系の系外からPF5又はBF3をそれぞれ前記系内に添加する請求項1〜5いずれかに記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法。 The lithium salt for electrolyte from the waste electrolyte solution according to any one of claims 1 to 5, wherein the lithium salt is LiPF 6 or LiBF 4 and PF 5 or BF 3 is added to the system from outside the system. A method of simultaneously recovering an organic solvent. 前記廃電解液が少なくとも有機溶媒と電解質用リチウム塩とを含む電解液を含有及び/又は付着した電池部材で構成される使用済みリチウム電池及び/又はリチウムイオン電池を放電させた後解体し、前記電池部材に前記電解質用リチウム塩を含まない有機溶媒を加え、該有機溶媒中に前記電解液を抽出させて得られる液である請求項1〜6いずれかに記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法。   Disposing the used lithium battery and / or lithium ion battery after discharging the used lithium battery and / or the battery member containing and / or adhering an electrolyte solution containing at least an organic solvent and an electrolyte lithium salt, It is a liquid obtained by adding the organic solvent which does not contain the said lithium salt for electrolytes to a battery member, and extracting the said electrolyte solution in this organic solvent, The lithium for electrolytes from the waste electrolyte solution in any one of Claims 1-6 A method of simultaneously recovering salt and organic solvent. 前記蒸発器へ低沸点の有機溶媒及び/又は廃電解液中の高沸点溶媒成分と最低沸点共沸混合物を形成することができる有機溶媒を添加する請求項1〜7いずれかに記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する方法。   The waste electrolysis according to any one of claims 1 to 7, wherein a low boiling organic solvent and / or an organic solvent capable of forming a minimum boiling azeotrope with a high boiling solvent component in the waste electrolyte is added to the evaporator. A method of simultaneously recovering a lithium salt for electrolyte and an organic solvent from a liquid. 有機溶媒とリチウム電池及び/又はリチウムイオン電池の電解質であるリチウム塩とを含む廃電解液を加熱して有機溶媒を蒸発させリチウム塩を晶析させる蒸発器と、
前記蒸発器にて蒸発した有機溶媒を凝縮させて回収する凝縮器と、
前記蒸発器と前記凝縮器とを連通させて密閉可能な一つの系を形成する連結管とを備え、
前記凝縮器が該凝縮器内にある不凝縮ガス及び/又は未凝縮ガスを系外へ排出可能な排気手段を有し、
前記蒸発器において蒸発させた有機溶媒を前記凝縮器にて凝縮させつつ、前記排気手段による系内の不凝縮ガスの系外への排出量を制御する制御手段を有することを特徴とする廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する装置。
An evaporator that heats a waste electrolyte containing an organic solvent and a lithium salt that is an electrolyte of a lithium battery and / or a lithium ion battery to evaporate the organic solvent and crystallize the lithium salt;
A condenser for condensing and recovering the organic solvent evaporated in the evaporator;
A connecting pipe that connects the evaporator and the condenser to form a single sealable system;
The condenser has exhaust means capable of discharging non-condensable gas and / or uncondensed gas in the condenser to the outside of the system;
Waste electrolysis characterized by having control means for controlling the discharge amount of non-condensable gas in the system to the outside by the exhaust means while condensing the organic solvent evaporated in the evaporator in the condenser A device that simultaneously recovers lithium salt for electrolyte and organic solvent from the liquid.
前記排気手段に未凝縮ガスを捕捉して不凝縮ガスを抽出する手段がさらに設けられた請求項9に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する装置。   The apparatus for simultaneously recovering an electrolyte lithium salt and an organic solvent from a waste electrolyte solution according to claim 9, further comprising means for capturing uncondensed gas and extracting non-condensable gas in the exhaust means. 前記凝縮器内の不凝縮ガス及び/又は未凝縮ガスを前記蒸発器内に還流させるための還流手段、
前記系の系外からPF5又はBF3を前記系内に添加する添加手段、
蒸発器へ低沸点の有機溶媒及び/又は廃電解液中の高沸点溶媒成分と最低沸点共沸混合物を形成することができる有機溶媒を供給する溶媒供給手段
のいずれか1つ以上を更に備える請求項10に記載の廃電解液から電解質用リチウム塩と有機溶媒を同時に回収する装置。
A reflux means for refluxing non-condensable gas and / or uncondensed gas in the condenser into the evaporator;
An adding means for adding PF 5 or BF 3 into the system from outside the system;
The apparatus further comprises any one or more of solvent supply means for supplying the evaporator with a low boiling point organic solvent and / or an organic solvent capable of forming a minimum boiling point azeotrope with the high boiling point solvent component in the waste electrolyte. Item 11. An apparatus for simultaneously recovering a lithium salt for electrolyte and an organic solvent from the waste electrolyte solution according to Item 10.
JP2013118204A 2012-12-20 2013-06-04 Method and apparatus for simultaneously recovering lithium salt for electrolyte and organic solvent from waste electrolyte Expired - Fee Related JP5360328B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013118204A JP5360328B1 (en) 2013-06-04 2013-06-04 Method and apparatus for simultaneously recovering lithium salt for electrolyte and organic solvent from waste electrolyte
PCT/JP2013/082199 WO2014097861A1 (en) 2012-12-20 2013-11-29 Method and device for producing lithium salt for electrolyte for lithium cell and/or lithium ion cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118204A JP5360328B1 (en) 2013-06-04 2013-06-04 Method and apparatus for simultaneously recovering lithium salt for electrolyte and organic solvent from waste electrolyte

Publications (2)

Publication Number Publication Date
JP5360328B1 JP5360328B1 (en) 2013-12-04
JP2014235945A true JP2014235945A (en) 2014-12-15

Family

ID=49850298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118204A Expired - Fee Related JP5360328B1 (en) 2012-12-20 2013-06-04 Method and apparatus for simultaneously recovering lithium salt for electrolyte and organic solvent from waste electrolyte

Country Status (1)

Country Link
JP (1) JP5360328B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105390765A (en) * 2015-12-07 2016-03-09 深圳市沃特玛电池有限公司 Recovery method for electrolyte solution of lithium ion battery
KR101812378B1 (en) * 2014-12-23 2017-12-26 주식회사 엘지화학 Apparatus for injecting electrolyte for secondary battery
CN109473747A (en) * 2018-09-11 2019-03-15 天能电池集团有限公司 A kind of waste and old lithium ion battery dismantling recovery method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022695A1 (en) 2014-06-18 2015-12-25 Rhodia Operations PROCESS FOR RECOVERING AN ELECTROLYTE SALT
CN108905261A (en) * 2018-09-18 2018-11-30 迪茗(上海)智能科技有限公司 A kind of organic solvent gas vacuum recovery system and method
CN109509931A (en) * 2018-12-25 2019-03-22 哈尔滨巴特瑞资源再生科技有限公司 A kind of lithium battery electrolytes eliminating equipment and method
CN111816947B (en) * 2020-07-08 2024-02-27 山东电亮亮信息科技有限公司 Harmless removal process and device for waste lithium battery electrolyte and use method
CN113471515A (en) * 2021-06-30 2021-10-01 广州市浩立生物科技有限公司 Method for recycling lithium battery electrolyte by combining supercritical extraction rectification and molecular distillation
CN115498305B (en) * 2022-11-18 2023-02-28 广东正德工业科技股份有限公司 Lithium battery solvent recovery device based on green membrane separation technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310414A (en) * 1998-04-27 1999-11-09 Mitsui Chem Inc Production of highly pure lithium carbonate
JP2003157913A (en) * 2001-08-20 2003-05-30 Ind Technol Res Inst Collection method of metal in wasted lithium ion cell
JP2005022925A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Method and device for producing lithium salt
JP2010202552A (en) * 2009-03-02 2010-09-16 Mitsubishi Chemicals Corp Crystallizer for aromatic carboxylic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310414A (en) * 1998-04-27 1999-11-09 Mitsui Chem Inc Production of highly pure lithium carbonate
JP2003157913A (en) * 2001-08-20 2003-05-30 Ind Technol Res Inst Collection method of metal in wasted lithium ion cell
JP2005022925A (en) * 2003-07-02 2005-01-27 Toyota Motor Corp Method and device for producing lithium salt
JP2010202552A (en) * 2009-03-02 2010-09-16 Mitsubishi Chemicals Corp Crystallizer for aromatic carboxylic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812378B1 (en) * 2014-12-23 2017-12-26 주식회사 엘지화학 Apparatus for injecting electrolyte for secondary battery
CN105390765A (en) * 2015-12-07 2016-03-09 深圳市沃特玛电池有限公司 Recovery method for electrolyte solution of lithium ion battery
CN109473747A (en) * 2018-09-11 2019-03-15 天能电池集团有限公司 A kind of waste and old lithium ion battery dismantling recovery method

Also Published As

Publication number Publication date
JP5360328B1 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5360328B1 (en) Method and apparatus for simultaneously recovering lithium salt for electrolyte and organic solvent from waste electrolyte
JP2014123460A (en) Method of simultaneously recovering lithium salt for electrolyte and organic solvent from waste electrolyte, and device therefor
WO2014097861A1 (en) Method and device for producing lithium salt for electrolyte for lithium cell and/or lithium ion cell
JP5845955B2 (en) Method for producing lithium hexafluorophosphate concentrate
WO2014155784A1 (en) Method for processing fluorine-containing electrolyte solution
JP4442129B2 (en) Lithium battery, manufacturing method and processing method thereof
JP2019513717A (en) Phosphorus-containing modified ionic liquid
JP2012216539A (en) Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery
CN108808156B (en) Method for recovering electrolyte in waste lithium ion battery
KR102396069B1 (en) Crystallization of Lithium bis(oxalate)borate and Manufacturing method of the same with high-purity
WO2010146710A1 (en) Method for producing tetrafluoroborate
WO2010082261A1 (en) Method for producing positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5862094B2 (en) Method for producing lithium hexafluorophosphate concentrate
JP6124001B2 (en) Treatment method for fluorine-containing electrolyte
JP2005197149A (en) Lithium battery processing method
CN113636533B (en) Preparation method of lithium difluorophosphate
CN115196654B (en) Synthesis device of liquid lithium hexafluorophosphate and application thereof
CN106829908B (en) A kind of preparation method of difluorophosphate and the non-aqueous electrolyte for lithium ion cell containing difluorophosphate
JP2010269947A (en) Apparatus and method for producing lithium-containing composite oxide
CN114039116A (en) Comprehensive recycling and regenerating method for waste electrolyte of lithium ion battery
JP5609283B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP4333234B2 (en) Method and apparatus for producing lithium salt
JP5532181B1 (en) Method and apparatus for producing lithium salt for electrolyte of lithium battery and / or lithium ion battery
CN216777931U (en) Vacuum purification device of methyl pyrrolidone waste liquid
CN115557872A (en) NMP waste liquid recovery treatment method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 5360328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees