JP2014234794A - Geothermal power generation method and geothermal power generation system - Google Patents

Geothermal power generation method and geothermal power generation system Download PDF

Info

Publication number
JP2014234794A
JP2014234794A JP2013118013A JP2013118013A JP2014234794A JP 2014234794 A JP2014234794 A JP 2014234794A JP 2013118013 A JP2013118013 A JP 2013118013A JP 2013118013 A JP2013118013 A JP 2013118013A JP 2014234794 A JP2014234794 A JP 2014234794A
Authority
JP
Japan
Prior art keywords
heat medium
well
power generation
reservoir
geothermal power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013118013A
Other languages
Japanese (ja)
Other versions
JP6153774B2 (en
Inventor
山本 肇
Hajime Yamamoto
肇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2013118013A priority Critical patent/JP6153774B2/en
Publication of JP2014234794A publication Critical patent/JP2014234794A/en
Application granted granted Critical
Publication of JP6153774B2 publication Critical patent/JP6153774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PROBLEM TO BE SOLVED: To provide a geothermal power generation method capable of reliably recovering a heat medium pressed into a reservoir in a high temperature rock body and improving power generation efficiency.SOLUTION: A geothermal power generation method allows a power generator 50 to generate electricity with a heat medium pressed into and recovered from a reservoir B1 formed in a high temperature rock body B through a single well 10. The geothermal power generation method comprises the steps to: press the heat medium made of supercritical fluid into the reservoir B1 through the well 10; heat the heat medium in the reservoir B1 with ground heat by shielding an interior of the well 10; recover the heat medium from the reservoir B1 through the well 10 by opening the interior thereof; and generate electricity with a turbine 51 of the power generator 50 driven by the heat medium recovered through the well 10.

Description

本発明は、地熱発電方法および地熱発電システムに関する。   The present invention relates to a geothermal power generation method and a geothermal power generation system.

地熱を利用した発電方法としては、地盤内に貯留された熱水を利用する方法の他に、地盤内の高温岩体に形成された貯留層に注入井を通じて水を供給する段階と、地熱により貯留層内で水を加熱する段階と、貯留層内から生産井を通じて熱水を回収する段階と、熱水によって発電装置のタービンを駆動させる段階と、を備えているものがある。   In addition to the method of using hot water stored in the ground, the power generation method using geothermal includes the stage of supplying water through the injection well to the reservoir formed in the hot rock body in the ground, There is one that includes a step of heating water in the reservoir, a step of recovering hot water from the reservoir through a production well, and a step of driving the turbine of the power generation device by the hot water.

前記したいずれの発電方法でも熱水の一部が蒸発により損失するとともに、地盤内の熱水の採取により、周辺の温泉等の地熱資源の熱水量や温度に影響を与える可能性がある。   In any of the above-described power generation methods, a part of hot water is lost due to evaporation, and collection of hot water in the ground may affect the amount and temperature of hot water of a geothermal resource such as a nearby hot spring.

そこで、従来の地熱発電方法としては、図4に示すように、高温岩体Bの貯留層100に注入井110から二酸化炭素や液体の超臨界流体からなる熱媒体を圧入し、その熱媒体を生産井120から回収して、発電装置50のタービン51を駆動させているものがある(例えば、特許文献1参照)。   Therefore, as a conventional geothermal power generation method, as shown in FIG. 4, a heat medium made of carbon dioxide or a liquid supercritical fluid is injected from the injection well 110 into the reservoir 100 of the high temperature rock body B, and the heat medium is used. Some are recovered from the production well 120 and drive the turbine 51 of the power generation device 50 (see, for example, Patent Document 1).

二酸化炭素を用いた地熱発電方法では、熱媒体の損失を抑えるとともに、周辺の地熱資源への影響を防ぐことができる。また、二酸化炭素は高温高圧下(温度31度以上、圧力7.3MPa以上)の超臨界状態では水と混合し難いため、鉱物スケールの生成を抑えることができる。   In the geothermal power generation method using carbon dioxide, the loss of the heat medium can be suppressed and the influence on the surrounding geothermal resources can be prevented. Further, since carbon dioxide is difficult to mix with water in a supercritical state under high temperature and high pressure (temperature of 31 ° C. or higher and pressure of 7.3 MPa or higher), generation of mineral scale can be suppressed.

特開昭56−148690号公報JP 56-148690 A

従来の二酸化炭素を用いた地熱発電方法では、図4に示すように、注入井110および生産井120の二つの井戸を用いており、注入井110から貯留層100に圧入した熱媒体を、別の場所に設置された生産井120から回収している。この構成では、注入井110と生産井120との間の地盤の連続性(流体の浸透性)が低い場合に、熱媒体の回収量が少なくなるという問題がある。   In the conventional geothermal power generation method using carbon dioxide, as shown in FIG. 4, two wells of the injection well 110 and the production well 120 are used, and the heat medium press-fitted into the reservoir 100 from the injection well 110 is separated. It is collected from the production well 120 installed at the location. In this configuration, when the ground continuity (fluid permeability) between the injection well 110 and the production well 120 is low, there is a problem that the recovery amount of the heat medium is reduced.

本発明は、前記した問題を解決し、高温岩体の貯留層に圧入した超臨界流体からなる熱媒体を確実に回収することができ、発電効率を高めることができる地熱発電方法および地熱発電システムを提供することを課題とする。   The present invention solves the above-described problems, can reliably recover a heat medium composed of a supercritical fluid press-fitted into a reservoir of a high-temperature rock body, and can improve a power generation efficiency and a geothermal power generation system It is an issue to provide.

前記課題を解決するため、本発明は、地盤内の高温岩体に形成された貯留層に単一の井戸を通じて熱媒体を圧入および回収することで発電装置を発電させる地熱発電方法であって、前記貯留層に前記井戸を通じて超臨界流体からなる前記熱媒体を圧入する段階と、前記井戸の内部を遮断し、地熱により前記貯留層内で前記熱媒体を加熱する段階と、前記井戸の内部を開放し、前記貯留層内から前記井戸を通じて前記熱媒体を回収する段階と、前記井戸から回収した前記熱媒体によって前記発電装置のタービンを駆動して発電する段階と、を備えている。   In order to solve the above-mentioned problem, the present invention is a geothermal power generation method for generating a power generation device by injecting and recovering a heat medium through a single well into a reservoir formed in a hot rock body in the ground, Pressurizing the heat medium made of a supercritical fluid into the reservoir through the well, blocking the inside of the well, heating the heat medium in the reservoir by geothermal heat, and the inside of the well And releasing the heat medium from the reservoir through the well and driving the turbine of the power generation device with the heat medium recovered from the well to generate electric power.

また、本発明は、地熱発電システムであって、地盤内の高温岩体に形成された貯留層に通じる井戸と、前記井戸の内部を遮断および開放する開閉手段と、前記井戸に超臨界流体からなる熱媒体を供給する供給装置と、タービンの駆動により発電する発電装置と、を備え、前記井戸から回収した前記熱媒体によって前記タービンを駆動するように構成されている。   The present invention is also a geothermal power generation system, wherein a well leading to a reservoir formed in a hot rock body in the ground, an opening / closing means for blocking and opening the inside of the well, and a supercritical fluid in the well And a power generation device that generates electric power by driving the turbine, and is configured to drive the turbine by the heat medium recovered from the well.

本発明の地熱発電方法および地熱発電システムでは、超臨界流体からなる熱媒体を井戸から貯留層に圧入し、その熱媒体を同じ井戸を通じて貯留層から回収している。このように、単一の井戸を用いて貯留層の同じ場所で熱媒体を圧入および回収しているため、地盤の連続性が低い場合でも、貯留層に圧入した熱媒体を確実に回収することができる。   In the geothermal power generation method and geothermal power generation system of the present invention, a heat medium made of a supercritical fluid is pressed into a reservoir from a well, and the heat medium is recovered from the reservoir through the same well. Thus, since the heat medium is injected and recovered at the same location in the reservoir using a single well, the heat medium injected into the reservoir can be reliably recovered even when the ground continuity is low. Can do.

前記した地熱発電方法において、前記貯留層に複数の前記井戸が設け、前記各井戸のそれぞれを通じて前記貯留層に前記熱媒体を圧入および回収するように構成し、前記各井戸を通じて前記貯留層内から順次に前記熱媒体を回収することで、タービンを連続して駆動することが望ましい。   In the geothermal power generation method described above, a plurality of the wells are provided in the reservoir, and the heat medium is press-fitted and recovered into the reservoir through each of the wells. It is desirable to continuously drive the turbine by sequentially collecting the heat medium.

前記した地熱発電方法および地熱発電方法において、熱媒体が二酸化炭素の超臨界流体である場合には、二酸化炭素の超臨界流体は水と混合し難いため、鉱物スケールの生成を抑えることができる。また、二酸化炭素の超臨界流体は、粘性が小さいとともに、地盤内において浮力および膨張力が大きいため、地盤内から井戸を通じて熱媒体を確実に回収することができる。さらに、貯留層に圧入された二酸化炭素の一部が地中に固定化されることで、大気中の二酸化炭素の削減に寄与することができる。   In the above-described geothermal power generation method and geothermal power generation method, when the heat medium is a supercritical fluid of carbon dioxide, the supercritical fluid of carbon dioxide is difficult to mix with water, and therefore generation of mineral scale can be suppressed. In addition, since the supercritical fluid of carbon dioxide has low viscosity and large buoyancy and expansion force in the ground, the heat medium can be reliably recovered from the ground through the well. Furthermore, a part of the carbon dioxide injected into the reservoir is fixed in the ground, which can contribute to the reduction of carbon dioxide in the atmosphere.

本発明の地熱発電方法および地熱発電システムでは、単一の井戸を用いて貯留層に熱媒体を圧入および回収しているため、貯留層に圧入した熱媒体を確実に回収することができ、発電効率を高めることができる。   In the geothermal power generation method and geothermal power generation system of the present invention, the heat medium is press-fitted and recovered into the reservoir using a single well, so the heat medium press-fitted into the reservoir can be reliably recovered, and power generation Efficiency can be increased.

本実施形態の地熱発電システムおよび地熱発電方法を示した図であり、第一貯留層に熱媒体を圧入し、第三貯留層から熱媒体を回収する段階の構成図である。It is the figure which showed the geothermal power generation system and the geothermal power generation method of this embodiment, and is a block diagram of the step which press-fits a heat medium to a 1st storage layer, and collect | recovers a heat medium from a 3rd storage layer. 本実施形態の地熱発電システムおよび地熱発電方法を示した図であり、第三貯留層に熱媒体を圧入し、第二貯留層から熱媒体を回収する段階の構成図である。It is the figure which showed the geothermal power generation system and geothermal power generation method of this embodiment, and is a block diagram of the step which press-fits a heat medium to a 3rd storage layer, and collect | recovers a heat medium from a 2nd storage layer. 本実施形態の地熱発電システムおよび地熱発電方法を示した図であり、第二貯留層に熱媒体を圧入し、第一貯留層から熱媒体を回収する段階の構成図である。It is the figure which showed the geothermal power generation system and geothermal power generation method of this embodiment, and is a block diagram of the step which press-fits a heat medium to a 2nd storage layer, and collect | recovers a heat medium from a 1st storage layer. 従来の地熱発電方法を示した構成図である。It is the block diagram which showed the conventional geothermal power generation method.

本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
本実施形態の地熱発電システム1は、図1に示すように、地盤A内の高温岩体Bに形成された三つの貯留層B1,B2,B3にそれぞれ通じる三つの井戸10,20,30と、井戸10,20,30に設けられた開閉手段11,21,31と、各井戸10,20,30に熱媒体を供給する供給装置40と、タービン51を有する発電装置50と、を備えている。
Embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, the geothermal power generation system 1 of the present embodiment includes three wells 10, 20, 30 that respectively connect to the three reservoirs B 1, B 2, B 3 formed in the high-temperature rock body B in the ground A. Open / close means 11, 21, 31 provided in the wells 10, 20, 30, a supply device 40 for supplying a heat medium to each of the wells 10, 20, 30, and a power generator 50 having a turbine 51. Yes.

地盤A内の高温岩体Bは、地中のマグマによって加熱されている岩盤であり、地熱発電システム1の熱源となる部位である。
高温岩体Bには三つの貯留層B1,B2,B3が形成されている。貯留層B1,B2,B3は、岩盤に人工的な割れ目群を形成した領域であり、流体を貯留可能となっている。なお、岩盤に自然に形成された割れ目群をそのまま貯留層として利用することもできる。
A high-temperature rock body B in the ground A is a rock that is heated by underground magma, and serves as a heat source for the geothermal power generation system 1.
Three reservoirs B1, B2, and B3 are formed in the high-temperature rock body B. The reservoirs B1, B2, and B3 are regions in which artificial cracks are formed in the rock, and can store fluid. In addition, the crack group naturally formed in the bedrock can be used as a reservoir as it is.

第一井戸10は、地面から第一貯留層B1に亘って削孔された井戸である。第一井戸10の地面側の開口部は、供給管12によって供給装置40に連結されるとともに、送出管13によって発電装置50のタービン51に連結されている。供給管12および送出管13には開閉弁12a,13aが設けられている。   The first well 10 is a well drilled from the ground over the first reservoir B1. The opening on the ground side of the first well 10 is connected to the supply device 40 by the supply pipe 12 and is connected to the turbine 51 of the power generation device 50 by the delivery pipe 13. The supply pipe 12 and the delivery pipe 13 are provided with on-off valves 12a and 13a.

第二井戸20は地面から第二貯留層B2に亘って削孔された井戸であり、第三井戸30は地面から第三貯留層B3に亘って削孔された井戸である。
第二井戸20および第三井戸30は、第一井戸10と同様に、供給管22,32によって供給装置40に連結されるとともに、送出管23,33によってタービン51に連結されている。供給管22,32には開閉弁22a,32aが設けられるとともに、送出管23,33には開閉弁23a,33aが設けられている。
The second well 20 is a well drilled from the ground to the second reservoir B2, and the third well 30 is a well drilled from the ground to the third reservoir B3.
Similarly to the first well 10, the second well 20 and the third well 30 are connected to the supply device 40 by supply pipes 22 and 32 and are connected to the turbine 51 by delivery pipes 23 and 33. The supply pipes 22 and 32 are provided with on-off valves 22a and 32a, and the delivery pipes 23 and 33 are provided with on-off valves 23a and 33a.

開閉手段11,21,31は、各井戸10,20,30の内部を遮断および開放するものである。開閉手段11,21,31は、プラグ、パッカーおよび開閉弁等の装置である。開閉手段11,21,31を閉じて、各井戸10,20,30の内部を遮断することで、貯留層B1,B2,B3は閉塞された領域となる。   The opening / closing means 11, 21, 31 are for blocking and opening the inside of each well 10, 20, 30. The opening / closing means 11, 21, 31 are devices such as plugs, packers, and opening / closing valves. The reservoirs B1, B2, and B3 are closed regions by closing the opening and closing means 11, 21, and 31 and blocking the insides of the wells 10, 20, and 30.

供給装置40は、二酸化炭素の超臨界流体からなる熱媒体を各供給管12,22,32に供給するものである。なお、供給装置40は、還元管41によってタービン51に連結されており、タービン51から還元管41を通じて熱媒体が供給される。
二酸化炭素の超臨界流体とは、二酸化炭素を高温高圧下(温度31度以上、圧力7.3MPa以上)の超臨界状態にしたものである。二酸化炭素は超臨界状態では気体と液体の両方の性質を有する流体となる。なお、二酸化炭素の超臨界流体は水と混合し難い。
The supply device 40 supplies a heat medium made of a supercritical fluid of carbon dioxide to each of the supply pipes 12, 22, and 32. The supply device 40 is connected to a turbine 51 by a reduction pipe 41, and a heat medium is supplied from the turbine 51 through the reduction pipe 41.
The supercritical fluid of carbon dioxide is obtained by bringing carbon dioxide into a supercritical state under high temperature and high pressure (temperature of 31 ° C. or higher, pressure of 7.3 MPa or higher). Carbon dioxide is a fluid having both gas and liquid properties in the supercritical state. Carbon dioxide supercritical fluid is difficult to mix with water.

発電装置50は、タービン51の羽根を回転させることで発電するものである。本実施形態の発電装置50では、各貯留層B1,B2,B3から回収された熱媒体を、タービン51の羽根に吹き付けることで、羽根が回転するように構成されている。   The power generation device 50 generates power by rotating the blades of the turbine 51. The power generation device 50 according to the present embodiment is configured such that the blades rotate by blowing the heat medium recovered from the respective reservoirs B1, B2, and B3 to the blades of the turbine 51.

次に、前記した地熱発電システム1を用いた地熱発電方法について説明する。
最初に第一井戸10を用いた発電について説明し、その後、三つの井戸10,20,30を組み合わせた発電について説明する。
Next, a geothermal power generation method using the above-described geothermal power generation system 1 will be described.
First, power generation using the first well 10 will be described, and then power generation combining the three wells 10, 20, and 30 will be described.

まず、図1に示すように、供給管12の開閉弁12aを開くとともに、送出管13の開閉弁13aを閉じる。そして、第一井戸10の開閉手段11を開いた状態で、供給装置40から供給管12を通じて第一井戸10に熱媒体を供給し、第一貯留層B1に熱媒体を貯留させる。   First, as shown in FIG. 1, the on-off valve 12a of the supply pipe 12 is opened and the on-off valve 13a of the delivery pipe 13 is closed. And in the state which opened and closed the means 11 of the 1st well 10, a heat medium is supplied to the 1st well 10 through the supply pipe | tube 12 from the supply apparatus 40, and a 1st storage layer B1 is made to store a heat medium.

供給装置40から所定量の熱媒体を第一井戸10に供給したら、図2に示すように、供給装置40から第一井戸10への熱媒体の供給を停止するとともに、開閉手段11を閉じて第一貯留層B1内に熱媒体を閉じ込める。そして、第一貯留層B1内の熱媒体は地熱により加熱される。   When a predetermined amount of the heat medium is supplied from the supply device 40 to the first well 10, as shown in FIG. 2, the supply of the heat medium from the supply device 40 to the first well 10 is stopped and the opening / closing means 11 is closed. A heat medium is confined in the first reservoir B1. The heat medium in the first reservoir B1 is heated by geothermal heat.

所定時間が経過した後に、図3に示すように、供給管12の開閉弁12aを閉じるとともに、送出管13の開閉弁13aを開ける。そして、開閉手段11を開くと、加熱された熱媒体は、体積を膨張させながら第一井戸10内に流入する。   After a predetermined time has elapsed, as shown in FIG. 3, the on-off valve 12a of the supply pipe 12 is closed and the on-off valve 13a of the delivery pipe 13 is opened. When the opening / closing means 11 is opened, the heated heat medium flows into the first well 10 while expanding its volume.

第一井戸10に流入した熱媒体は、送出管13を通じてタービン51内に噴出し、タービン51の羽根に吹き付けられる。そして、熱媒体の圧力によってタービン51の羽根が回転して発電装置50が発電する。   The heat medium flowing into the first well 10 is jetted into the turbine 51 through the delivery pipe 13 and blown to the blades of the turbine 51. And the blade | wing of the turbine 51 rotates with the pressure of a heat medium, and the electric power generating apparatus 50 generates electric power.

なお、熱媒体は、タービン51に吹き付けられた後に、還元管41を通じて供給装置40に還元され、再度、供給管12,22,32を通じて各井戸10,20,30に供給される。   The heat medium is blown to the turbine 51, then reduced to the supply device 40 through the reduction pipe 41, and supplied again to the wells 10, 20, and 30 through the supply pipes 12, 22, and 32.

図1から図3に示すように、前記した第一井戸10を用いた発電と同様に、供給装置40から第二井戸20および第三井戸30を通じて貯留層B2,B3に熱媒体を供給するとともに、貯留層B2,B3内で加熱された熱媒体を第二井戸20および第三井戸30を通じて回収し、その熱媒体によってタービン51を駆動させて発電する。   As shown in FIGS. 1 to 3, similarly to the power generation using the first well 10, the heating medium is supplied from the supply device 40 to the reservoirs B <b> 2 and B <b> 3 through the second well 20 and the third well 30. The heat medium heated in the reservoirs B2 and B3 is collected through the second well 20 and the third well 30, and the turbine 51 is driven by the heat medium to generate electric power.

本実施形態の地熱発電方法では、三つの井戸10,20,30を組み合わせて発電している。
図1に示すように、第一貯留層B1に第一井戸10を通じて熱媒体を圧入している間に、第二貯留層B2では熱媒体を加熱するとともに、第三貯留層B3から第三井戸30を通じてタービン51に熱媒体を供給して発電する。
In the geothermal power generation method of the present embodiment, power is generated by combining three wells 10, 20, and 30.
As shown in FIG. 1, while the heat medium is being pressed into the first reservoir B1 through the first well 10, the second reservoir B2 heats the heat medium and the third reservoir B3 to the third well. A heat medium is supplied to the turbine 51 through 30 to generate power.

続いて、図2に示すように、第一貯留層B1で熱媒体を加熱している間に、第三貯留層B3に熱媒体を供給するとともに、第二貯留層B2から第二井戸20を通じてタービン51に熱媒体を供給して発電する。   Subsequently, as shown in FIG. 2, while heating the heat medium in the first reservoir B <b> 1, the heat medium is supplied to the third reservoir B <b> 3 and from the second reservoir B <b> 2 through the second well 20. A heat medium is supplied to the turbine 51 to generate power.

さらに、図3に示すように、第一貯留層B1から第一井戸10を通じてタービン51に熱媒体を供給して発電している間に、第二貯留層B2に熱媒体を供給するとともに、第三貯留層B3では熱媒体を加熱する。   Furthermore, as shown in FIG. 3, while supplying a heat medium from the first reservoir B1 to the turbine 51 through the first well 10 to generate power, the heat medium is supplied to the second reservoir B2, In the three reservoirs B3, the heat medium is heated.

このように、三つの井戸10,20,30を通じて、各貯留層B1,B2,B3から順次に熱媒体を回収することで、タービン51を連続して駆動することができ、発電装置50において発電を継続することができる。   Thus, the turbine 51 can be continuously driven by sequentially recovering the heat medium from the reservoirs B1, B2, and B3 through the three wells 10, 20, and 30, and the power generator 50 generates power. Can continue.

以上のような地熱発電方法および地熱発電システム1では、図1に示すように、二酸化炭素の超臨界流体からなる熱媒体を用いているため、熱媒体の損失を抑えるとともに、周辺の地熱資源への影響を防ぐことができる。また、二酸化炭素の超臨界流体は水と混合し難いため、井戸10,20,30における鉱物スケールの生成を抑えることができる。また、二酸化炭素の超臨界流体は、粘性が小さいとともに、地盤A内において浮力および膨張力が大きいため、地盤A内から井戸10,20,30を通じて熱媒体を確実に回収することができる。さらに、貯留層B1,B2,B3に圧入された二酸化炭素の一部が地中に固定化されることで、大気中の二酸化炭素の削減に寄与することができる。   In the geothermal power generation method and the geothermal power generation system 1 as described above, as shown in FIG. 1, since a heat medium made of a supercritical fluid of carbon dioxide is used, the loss of the heat medium is suppressed and the surrounding geothermal resources are reduced. Can prevent the influence. Further, since the supercritical fluid of carbon dioxide is difficult to mix with water, the generation of mineral scale in the wells 10, 20, and 30 can be suppressed. In addition, since the supercritical fluid of carbon dioxide has low viscosity and large buoyancy and expansion force in the ground A, the heat medium can be reliably recovered from the ground A through the wells 10, 20, and 30. Furthermore, a part of the carbon dioxide injected into the reservoirs B1, B2, and B3 is fixed in the ground, which can contribute to the reduction of carbon dioxide in the atmosphere.

また、本実施形態の地熱発電方法および地熱発電システム1では、二酸化炭素の超臨界流体からなる熱媒体を井戸10,20,30から貯留層B1,B2,B3に圧入し、その熱媒体を同じ井戸10,20,30を通じて貯留層B1,B2,B3から回収している。
このように、単一の井戸10,20,30を用いて、貯留層B1,B2,B3の同じ場所で熱媒体を圧入および回収しているため、地盤の連続性が低い場合でも、貯留層B1,B2,B3に圧入した熱媒体を確実に回収することができ、発電効率を高めることができる。
Further, in the geothermal power generation method and the geothermal power generation system 1 of the present embodiment, a heat medium made of a supercritical fluid of carbon dioxide is press-fitted into the reservoirs B1, B2, and B3 from the wells 10, 20, and 30, and the heat medium is the same. It is recovered from the reservoirs B1, B2, B3 through the wells 10, 20, 30.
Thus, since the heat medium is press-fitted and recovered at the same place in the reservoirs B1, B2, and B3 using the single wells 10, 20, and 30, the reservoir is used even when the ground continuity is low. The heat medium press-fitted into B1, B2, and B3 can be reliably recovered, and the power generation efficiency can be increased.

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく、その趣旨を逸脱しない範囲で適宜に変更が可能である。
本実施形態では、図1に示すように、三つの井戸10,20,30を用いているが、井戸の数は限定されるものではなく、例えば、三つ以上または一つの井戸を用いて発電することもできる。
The embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
In this embodiment, as shown in FIG. 1, three wells 10, 20, and 30 are used. However, the number of wells is not limited. For example, power generation is performed using three or more wells or one well. You can also

1 地熱発電システム
7 圧力
10 第一井戸
11 開閉手段
12,22,32 供給管
13,23,33 送出管
20 第二井戸
30 第三井戸
40 供給装置
41 還元管
50 発電装置
51 タービン
A 地盤
B 高温岩体
B1 第一貯留層
B2 第二貯留層
B3 第三貯留層
DESCRIPTION OF SYMBOLS 1 Geothermal power generation system 7 Pressure 10 1st well 11 Opening / closing means 12, 22, 32 Supply pipe 13,23,33 Delivery pipe 20 Second well 30 Third well 40 Supply apparatus 41 Reduction pipe 50 Power generation apparatus 51 Turbine A Ground B High temperature Rock body B1 1st reservoir B2 2nd reservoir B3 3rd reservoir

Claims (5)

地盤内の高温岩体に形成された貯留層に単一の井戸を通じて熱媒体を圧入および回収することで発電装置を発電させる地熱発電方法であって、
前記貯留層に前記井戸を通じて超臨界流体からなる前記熱媒体を圧入する段階と、
前記井戸の内部を遮断し、地熱により前記貯留層内で前記熱媒体を加熱する段階と、
前記井戸の内部を開放し、前記貯留層内から前記井戸を通じて前記熱媒体を回収する段階と、
前記井戸から回収した前記熱媒体によって前記発電装置のタービンを駆動して発電する段階と、を備えていることを特徴とする地熱発電方法。
A geothermal power generation method for generating power by generating and generating a heat medium by pressing and collecting a heat medium through a single well in a reservoir formed in a hot rock body in the ground,
Press-fitting the heat medium comprising a supercritical fluid through the well into the reservoir;
Shutting off the interior of the well and heating the heating medium in the reservoir by geothermal heat;
Opening the inside of the well and recovering the heat medium from the reservoir through the well; and
And a step of generating electric power by driving a turbine of the power generation device with the heat medium recovered from the well.
前記貯留層には、複数の前記井戸が設けられ、
前記各井戸のそれぞれを通じて前記貯留層に前記熱媒体を圧入および回収するように構成されており、
前記各井戸を通じて前記貯留層内から順次に前記熱媒体を回収することを特徴とする請求項1に記載の地熱発電方法。
The reservoir is provided with a plurality of the wells,
It is configured to press-fit and collect the heat medium into the reservoir through each of the wells,
The geothermal power generation method according to claim 1, wherein the heat medium is sequentially recovered from the reservoir through the wells.
前記熱媒体は、二酸化炭素の超臨界流体であることを特徴とする請求項1または請求項2に記載の地熱発電方法。   The geothermal power generation method according to claim 1, wherein the heat medium is a supercritical fluid of carbon dioxide. 地盤内の高温岩体に形成された貯留層に通じる井戸と、
前記井戸の内部を遮断および開放する開閉手段と、
前記井戸に超臨界流体からなる熱媒体を供給する供給装置と、
タービンの駆動により発電する発電装置と、を備え、
前記井戸から回収した前記熱媒体によって前記タービンを駆動させることを特徴とする地熱発電システム。
A well leading to a reservoir formed in a hot rock body in the ground,
Opening and closing means for blocking and opening the inside of the well;
A supply device for supplying a heat medium comprising a supercritical fluid to the well;
A power generation device that generates electric power by driving a turbine,
The geothermal power generation system, wherein the turbine is driven by the heat medium recovered from the well.
前記熱媒体は、二酸化炭素の超臨界流体であることを特徴とする請求項4に記載の地熱発電システム。   The geothermal power generation system according to claim 4, wherein the heat medium is a supercritical fluid of carbon dioxide.
JP2013118013A 2013-06-04 2013-06-04 Geothermal power generation method and geothermal power generation system Active JP6153774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013118013A JP6153774B2 (en) 2013-06-04 2013-06-04 Geothermal power generation method and geothermal power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013118013A JP6153774B2 (en) 2013-06-04 2013-06-04 Geothermal power generation method and geothermal power generation system

Publications (2)

Publication Number Publication Date
JP2014234794A true JP2014234794A (en) 2014-12-15
JP6153774B2 JP6153774B2 (en) 2017-06-28

Family

ID=52137673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013118013A Active JP6153774B2 (en) 2013-06-04 2013-06-04 Geothermal power generation method and geothermal power generation system

Country Status (1)

Country Link
JP (1) JP6153774B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025730A (en) * 2015-07-17 2017-02-02 株式会社大林組 Geothermal heat extraction method and geothermal heat extraction system
WO2019151443A1 (en) * 2018-02-05 2019-08-08 国立研究開発法人産業技術総合研究所 Crushing method and depressurizing device used for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504470A (en) * 2004-06-23 2008-02-14 ビー. カーレット ハリー Deep Geothermal Reservoir Development and Production Method (Cross-Reference for Related Applications) This application is filed in US Provisional Patent Application No. 60 / 582,626, filed June 23, 2004, and US Provisional Application, filed February 7, 2005. The entire disclosure of patent application 60 / 650,667 is claimed and incorporated herein by reference.
JP2008248837A (en) * 2007-03-30 2008-10-16 Central Res Inst Of Electric Power Ind Geothermal power generation method and system
JP2015517054A (en) * 2012-04-27 2015-06-18 ウィリアム・ライリー Hydro and geothermal energy systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504470A (en) * 2004-06-23 2008-02-14 ビー. カーレット ハリー Deep Geothermal Reservoir Development and Production Method (Cross-Reference for Related Applications) This application is filed in US Provisional Patent Application No. 60 / 582,626, filed June 23, 2004, and US Provisional Application, filed February 7, 2005. The entire disclosure of patent application 60 / 650,667 is claimed and incorporated herein by reference.
JP2008248837A (en) * 2007-03-30 2008-10-16 Central Res Inst Of Electric Power Ind Geothermal power generation method and system
JP2015517054A (en) * 2012-04-27 2015-06-18 ウィリアム・ライリー Hydro and geothermal energy systems and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025730A (en) * 2015-07-17 2017-02-02 株式会社大林組 Geothermal heat extraction method and geothermal heat extraction system
WO2019151443A1 (en) * 2018-02-05 2019-08-08 国立研究開発法人産業技術総合研究所 Crushing method and depressurizing device used for same
US11326433B2 (en) 2018-02-05 2022-05-10 National Institute Of Advanced Industrial Science And Technology Fracturing method and depressurizing device used for same

Also Published As

Publication number Publication date
JP6153774B2 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
EP2841689B1 (en) Hydropower and geothermal energy system and methods
JP4972752B2 (en) Geothermal power generation method and system
CN107939621B (en) S-CO based on geothermal energy of heating dry rock of fin sleeve 2 Power generation system and method
JP4927136B2 (en) Geothermal power generation equipment
JP2021107712A (en) Process and method of producing geothermal power
US5515679A (en) Geothermal heat mining and utilization
JP2016118078A (en) Promotion method of geothermal heat extraction and geothermal heat extraction promotion type closed loop circulation geothermal power generation system
JP2020067027A (en) Geothermal power generation system using underground heat exchanger
CL2010001430A1 (en) System and method for generating electricity using geothermal heat, which includes; a heat utilization component that has a closed cycle heat extraction system, an electricity generation component; and an insulation inserted in the well; and geothermal heat extraction system and method.
US20150330670A1 (en) System and method for utilizing oil and gas wells for geothermal power generation
CN103743580A (en) Enhanced geothermal system development test device
CN109185083A (en) A kind of supercritical carbon dioxide system for geothermal production of electricity and electricity-generating method
JP6153774B2 (en) Geothermal power generation method and geothermal power generation system
WO2016057765A1 (en) Thermally assisted oil production wells
CN203658074U (en) Enhancement-mode geothermal system exploitation test apparatus
CN104863654B (en) A kind of supercritical carbon dioxide underground heat quarrying apparatus and method
WO2011101964A1 (en) Geothermal power generation apparatus and method for using ultrahigh-pressure hot water in geothermal power generation
CN104453815A (en) Thermal recovery antipollution pipe column
CN204854059U (en) Ground heat utilization collection system
CN104124897A (en) Well oil extraction and water injection thermoelectric power generating method
CN105114045A (en) CCUS system for extracting oil based on gas lifting method and application thereof
CN105004082A (en) Terrestrial heat utilizing and collecting device
CN204783491U (en) Organic working medium power generation system of geothermol power
JPWO2018159594A1 (en) Methane gas recovery method and low carbon dioxide power generation method, and methane gas recovery system and low carbon dioxide power generation system
KR20120078759A (en) Heating medium with co2 and geothermal power generation method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6153774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250