JP2014233154A - Distribution system monitoring system and distribution system monitoring device - Google Patents

Distribution system monitoring system and distribution system monitoring device Download PDF

Info

Publication number
JP2014233154A
JP2014233154A JP2013113143A JP2013113143A JP2014233154A JP 2014233154 A JP2014233154 A JP 2014233154A JP 2013113143 A JP2013113143 A JP 2013113143A JP 2013113143 A JP2013113143 A JP 2013113143A JP 2014233154 A JP2014233154 A JP 2014233154A
Authority
JP
Japan
Prior art keywords
voltage
distribution
consumer
distribution line
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013113143A
Other languages
Japanese (ja)
Inventor
小坂 葉子
Yoko Kosaka
葉子 小坂
岩渕 一徳
Kazunori Iwabuchi
一徳 岩渕
廣政 勝利
Katsutoshi Hiromasa
勝利 廣政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013113143A priority Critical patent/JP2014233154A/en
Publication of JP2014233154A publication Critical patent/JP2014233154A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations

Abstract

PROBLEM TO BE SOLVED: To make it possible to inexpensively and accurately monitor voltage of a high-voltage distribution line by using measurement information from a smart meter on the user side.SOLUTION: A distribution system monitoring system according to an embodiment comprises: a plurality of smart meters for measuring electric energy of users; a measurement apparatus for measuring electric energy and voltage of the secondary side of a distribution substation; collection means for collecting the electric energy of the users measured by the smart meters, and the electric energy and voltage of the secondary side of the distribution substation measured by the measurement apparatus on the secondary side of the distribution substation; high-voltage distribution line voltage estimation means for estimating voltage of a high-voltage distribution line by performing power flow calculation on the basis of impedance of a high-voltage distribution line from the distribution substation to an observation point, which is an installation location of a pole transformer, a total value of electric energy of the users at the observation point, and electric energy and voltage on the secondary side of the distribution substation.

Description

本発明の実施形態は、配電系統の状態を監視する配電系統監視システム及び配電系統監視装置に関する。   Embodiments described herein relate generally to a distribution system monitoring system and a distribution system monitoring apparatus that monitor the state of a distribution system.

一般に配電系統は、配電用変電所から引き出された複数の高圧配電線により構成され、高圧配電線から柱上変圧器を介して低圧配電線へ電圧を降下し需要家へ電力を供給している。柱上変圧器には複数の需要家が接続されている。従来、配電系統の信頼性確保、適正電圧維持、電力の品質維持、円滑な系統運用操作のため、系統監視を行い変電所電圧、フィーダ電流等の系統状況を把握している。   Generally, a distribution system is composed of a plurality of high-voltage distribution lines drawn from a distribution substation, and supplies power to consumers by dropping the voltage from the high-voltage distribution line to the low-voltage distribution line via a pole transformer. . Multiple customers are connected to the pole transformer. Conventionally, in order to ensure the reliability of the distribution system, maintain appropriate voltage, maintain power quality, and smoothly operate the system, system monitoring is performed to grasp the system status such as substation voltage and feeder current.

ところが、近年、配電系統への再生可能エネルギーの導入が進んでおり、配電系統の運用目標の維持、管理が複雑化している。特に、系統電圧は、配電系統へ太陽光発電などの自家発電装置の導入が進んでおり、分散電源からの逆潮流により系統電圧が上昇し、電圧が適正範囲から逸脱する可能性が出てくる。   However, in recent years, the introduction of renewable energy into the distribution system has progressed, and the maintenance and management of the operation targets of the distribution system have become complicated. In particular, the introduction of in-house power generators such as solar power generation to the distribution system is progressing, and the system voltage rises due to reverse power flow from the distributed power supply, and the voltage may deviate from the appropriate range. .

そこで、非特許文献1では、高圧側配電線にセンサー付き開閉器を設置して配電系統の電圧分布を推定する方法が検討されている。   Therefore, Non-Patent Document 1 discusses a method of estimating a voltage distribution of a distribution system by installing a switch with a sensor on a high-voltage side distribution line.

また、将来、スマートメータが各需要家に設置されるようになれば、高価なセンサー付き開閉器を設置する代わりに、配電系統の監視に利用することも考えられる。例えば、特許文献1及び特許文献2には、メータデータに基づいて配電系統電圧を決定する方法が提案されている。   In the future, if smart meters are installed at each consumer, it may be used to monitor the distribution system instead of installing expensive switches with sensors. For example, Patent Literature 1 and Patent Literature 2 propose a method for determining a distribution system voltage based on meter data.

特開2012−182990号公報JP 2012-182990 A 特表2012−515521号公報Special table 2012-515521 gazette 特開平09−46935号公報JP 09-46935 A

電力中央研究所報告 報告書番号:R04011「センサー開閉器情報に基づく配電系統の電圧推定法」Report of the Central Research Institute of Electric Power Industry Report No. R04011 “Voltage Estimation Method for Distribution System Based on Sensor Switch Information” 小向俊彦・色川彰一・加藤政一著、「セメスター大学講義 電力システム工学」、丸善株式会社、1999年9月、pp.35−44Toshihiko Komukai, Shoichi Irokawa, Masakazu Kato, “Lecture on Power System Engineering at Semester University”, Maruzen Co., Ltd., September 1999, pp. 35-44 電力中央研究所報告 総合報告:102「電力系統の状態推定法の開発」Central Research Laboratory Report: 102 “Development of Power System State Estimation Method” 電気工学ハンドブック第6版,30編 配電,p.1378 表37Electrical Engineering Handbook 6th edition, edition 30 Power distribution, p.1378 Table 37

しかしながら、これらの提案は、柱上変圧器の二次側の電圧・電流の同期フェーザ量を用いて一次側の電圧を決定する。同期フェーザ量を計測するためは、高精度な同期信号やGPS(Global Positioning System)等の付加と高速サンプリング計測が必要となり、一般的なスマートメータよりもコストが高くなる。   However, these proposals determine the voltage on the primary side using the synchronized phasor amount of the voltage and current on the secondary side of the pole transformer. In order to measure the amount of synchronized phasors, it is necessary to add a high-accuracy synchronization signal, GPS (Global Positioning System), etc., and high-speed sampling measurement, which is more expensive than a general smart meter.

一方、検針業務の自動化を主目的とする一般的なスマートメータは、通信インフラの制約から時間分解能や時刻同期性が低い。さらに、計測データは、低圧側の需要家端での計測であるため、引き込み線、低圧配電線、柱上変圧器の損失によって監視対象とする高圧配電線の状態と差分を生じる、といった課題がある。   On the other hand, general smart meters whose main purpose is to automate meter reading work have low time resolution and time synchronism due to communication infrastructure limitations. Furthermore, since the measurement data is measured at the customer end on the low voltage side, there is a problem that a difference occurs between the state of the high voltage distribution line to be monitored due to the loss of the lead-in line, the low voltage distribution line, and the pole transformer. is there.

本実施形態の目的は、需要家側のスマートメータの計測情報を利用して、低コストで精度良く高圧配電線の電圧を監視できる配電系統監視システム及び配電系統監視装置を提供することにある。   An object of the present embodiment is to provide a distribution system monitoring system and a distribution system monitoring apparatus that can accurately monitor the voltage of a high-voltage distribution line at low cost by using measurement information of a smart meter on the customer side.

本実施形態に係る配電系統監視システムは、配電用変電所から引き出された高圧配電線から柱上変圧器を介して複数の需要家へ電力を供給する配電系統を監視するシステムであって、前記需要家の電力量を計測する複数のスマートメータと、前記配電用変電所の二次側の電力量及び電圧を計測する計測器と、前記スマートメータで計測される需要家の電力量と、前記配電用変電所の二次側の計測器で計測される配電用変電所二次側の電力量及び電圧とを収集する収集手段と、前記柱上変圧器の設置個所を観測点として、前記配電用変電所から前記観測点までの高圧配電線のインピーダンスと前記観測点における前記需要家の電力量の合計値と前記配電用変電所の二次側の電力量及び電圧とをもとに電力潮流計算を行い、前記高圧配電線の電圧を推定する高圧配電線電圧推定手段とを具備するものである。   The distribution system monitoring system according to the present embodiment is a system for monitoring a distribution system that supplies electric power to a plurality of consumers from a high-voltage distribution line drawn out from a distribution substation via a pole transformer, A plurality of smart meters that measure the amount of power of the consumer, a measuring device that measures the amount of power and voltage on the secondary side of the distribution substation, the amount of power of the consumer that is measured by the smart meter, Collecting means for collecting the electric energy and voltage on the secondary side of the distribution substation measured by the secondary side measuring instrument of the distribution substation, and the distribution point using the installation location of the pole transformer as an observation point Power flow based on the impedance of the high-voltage distribution line from the power substation to the observation point, the total amount of power of the customer at the observation point, and the power and voltage on the secondary side of the distribution substation Calculate the voltage of the high-voltage distribution line Those comprising a high-voltage distribution line voltage estimating means for estimating.

第1実施形態に係る配電系統監視システムを示す図。The figure which shows the power distribution system monitoring system which concerns on 1st Embodiment. 第1実施形態に係る配電系統の一例を示す図。The figure which shows an example of the power distribution system which concerns on 1st Embodiment. 第1実施形態に係る配電系統監視装置の処理手順を示すフローチャート。The flowchart which shows the process sequence of the power distribution system monitoring apparatus which concerns on 1st Embodiment. 第2実施形態に係る配電系統の一例を示す図。The figure which shows an example of the power distribution system which concerns on 2nd Embodiment. 第2実施形態に係る配電系統監視装置の処理手順を示すフローチャート。The flowchart which shows the process sequence of the power distribution system monitoring apparatus which concerns on 2nd Embodiment. 第3実施形態に係る配電系統監視装置の処理手順を示すフローチャート。The flowchart which shows the process sequence of the power distribution system monitoring apparatus which concerns on 3rd Embodiment. 第4実施形態に係る配電系統の一例を示す図。The figure which shows an example of the power distribution system which concerns on 4th Embodiment. 第4実施形態に係る配電系統監視装置の処理手順を示すフローチャート。The flowchart which shows the process sequence of the power distribution system monitoring apparatus which concerns on 4th Embodiment.

以下、図面を参照しながら本実施形態に係る配電系統監視システム及び配電系統監視装置を説明する。   Hereinafter, a distribution system monitoring system and a distribution system monitoring apparatus according to the present embodiment will be described with reference to the drawings.

(第1実施形態)
図1は、第1実施形態に係る配電系統監視システムの構成を示す図である。
図1に示す配電系統監視システムは、配電用変電所2から引き出された複数の高圧配電線3から柱上変圧器4を介して複数の低圧系の需要家5へ電力を供給している配電系統の状態を監視する。配電系統監視システムは、配電用変電所2の二次側の電力量を計測する計測器7と、各需要家5の電力量を計測するスマートメータ6と、高圧配電線3の状態を監視する配電系統監視装置1とを有する。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a power distribution system monitoring system according to the first embodiment.
The distribution system monitoring system shown in FIG. 1 distributes power from a plurality of high-voltage distribution lines 3 drawn out from a distribution substation 2 to a plurality of low-voltage customers 5 via pole transformers 4. Monitor system status. The distribution system monitoring system monitors the state of the measuring device 7 that measures the amount of power on the secondary side of the distribution substation 2, the smart meter 6 that measures the amount of power of each consumer 5, and the high-voltage distribution line 3. A distribution system monitoring device 1;

配電系統監視装置1は、スマートメータ6および変電所計測器7の計測情報を通信インフラ8を介して収集する収集部101、高圧配電線の接続情報及びインピーダンス等を含む配電系統設備情報と、収集部101で収集した計測情報とを記憶する記憶部102、高圧配電線3の各観測点iにおける電圧V1,V2,V3,…(高圧側配電線電圧Vi)を推定する高圧配電線電圧推定部103、及び高圧配電線電圧の推定結果を表示する表示部104を有する。   The distribution system monitoring device 1 collects the measurement information of the smart meter 6 and the substation measuring instrument 7 via the communication infrastructure 8, the distribution system facility information including the connection information and impedance of the high-voltage distribution line, and the collection Storage unit 102 that stores measurement information collected by unit 101, and high-voltage distribution line voltage estimation unit that estimates voltages V1, V2, V3,... (High-voltage distribution line voltage Vi) at each observation point i of high-voltage distribution line 3 103 and a display unit 104 for displaying the estimation result of the high-voltage distribution line voltage.

図2に、第1実施形態に係る配電系統の一例を示す。上位系統から送電されてきた電力は、配電用変電所2で電圧が6.6kVへ変圧され、高圧配電線3と柱上変圧器4を介して負荷へと配電される。図2には、柱上変圧器4から下位の負荷群として、需要家毎に設置されるスマートメータ6を示す。計測器7は、配電用変電所の6.6kV側の電力量P、電圧V0を制御周期毎に収集する。配電用変電所2から高圧配電線の電圧観測点V1,V2,V3までのインピーダンスZ1,Z2,Z3は、予め記憶部102に保持されている。図2に示すように、各スマートメータ6は、需要家毎の電力量Pm11,Pm12,Pm13及び力率Pf1を所定時間毎に計測する。   FIG. 2 shows an example of the power distribution system according to the first embodiment. The electric power transmitted from the host system is transformed into a voltage of 6.6 kV at the distribution substation 2 and distributed to the load via the high-voltage distribution line 3 and the pole transformer 4. FIG. 2 shows a smart meter 6 installed for each consumer as a load group below the pole transformer 4. The measuring instrument 7 collects the power P and voltage V0 on the 6.6 kV side of the distribution substation for each control period. Impedances Z1, Z2, and Z3 from the distribution substation 2 to the voltage observation points V1, V2, and V3 of the high-voltage distribution line are held in the storage unit 102 in advance. As shown in FIG. 2, each smart meter 6 measures the electric energy Pm11, Pm12, Pm13 and power factor Pf1 for every consumer for every predetermined time.

第1実施形態に係る配電系統監視装置1の動作について説明する。図3は、第1実施形態に係る配電系統監視装置の処理手順の一例を示すフローチャートである。
図1のように構成される配電系統監視装置1において、収集部101は、需要家5のスマートメータ6で計測した電力量及び力率と、配電用変電所2の計測器7で計測した電力量及び電圧を、通信インフラ8を介して収集する(ステップS101)。次に、高圧配電線電圧推定部103は、記憶部102の高圧配電線の接続情報及びインピーダンスと、ステップS101で収集した配電用変電所2の電力量及び電圧と各需要家の電力量及び力率とを用いて、高圧側配電線電圧Viを推定する(ステップS201)。
The operation of the distribution system monitoring apparatus 1 according to the first embodiment will be described. FIG. 3 is a flowchart illustrating an example of a processing procedure of the power distribution system monitoring apparatus according to the first embodiment.
In the distribution system monitoring apparatus 1 configured as shown in FIG. 1, the collection unit 101 uses the power amount and power factor measured by the smart meter 6 of the consumer 5 and the power measured by the measuring instrument 7 of the distribution substation 2. The quantity and voltage are collected via the communication infrastructure 8 (step S101). Next, the high voltage distribution line voltage estimation unit 103 stores the connection information and impedance of the high voltage distribution line in the storage unit 102, the power amount and voltage of the distribution substation 2 collected in step S101, and the power amount and power of each consumer. The high-voltage side distribution line voltage Vi is estimated using the rate (step S201).

なお、配電用変電所2の二次側の計測データ及びスマートメータ6の計測データが所定時間の積算電力量[Wh]である場合には、所定時間で平均化した電力[W]に換算すればよい。柱上変圧器4の設置個所を電圧観測点iとし、各スマートメータ6で収集する電力を柱上変圧器毎に合計して用いる(例えば、図2では、P1=Pm11+Pm12+Pm13)。スマートメータ6から力率または無効電力を収集できない場合には、力率の想定値を用いて無効電力を算出する。この電圧観測点の電力Pi,QiをPQ指定として与え、配電用変電所2の電力P0,電圧V0をPV指定として与え、電力潮流計算によって各電圧観測点Viの電圧を解くことができる(例えば、非特許文献2を参照)。   In addition, when the measurement data on the secondary side of the distribution substation 2 and the measurement data of the smart meter 6 are the integrated electric energy [Wh] for a predetermined time, the power is converted into the electric power [W] averaged over the predetermined time. That's fine. The installation location of the pole transformer 4 is a voltage observation point i, and the power collected by each smart meter 6 is used in total for each pole transformer (for example, in FIG. 2, P1 = Pm11 + Pm12 + Pm13). When the power factor or reactive power cannot be collected from the smart meter 6, the reactive power is calculated using the assumed value of the power factor. The power Pi and Qi of this voltage observation point are given as PQ designation, the power P0 and voltage V0 of the distribution substation 2 are given as PV designation, and the voltage of each voltage observation point Vi can be solved by power flow calculation (for example, Non-patent document 2).

さらに、スマートメータ6の計測データの時間分解能や時刻非同期、低圧系配電線損失などの不確定要素を考慮した推定方法として、従来、基幹系統で用いられる状態推定を適用できる(例えば、非特許文献3、特許文献3を参照)。   Furthermore, as an estimation method that takes into account uncertain factors such as time resolution of the measurement data of the smart meter 6, time asynchronousness, and low-voltage distribution line loss, state estimation conventionally used in a backbone system can be applied (for example, non-patent literature) 3, see Patent Document 3).

配電系統の状態変数xを、全観測点における電圧の大きさと位相角としたとき、式(1)のベクトルであらわせる。

Figure 2014233154
When the state variable x of the power distribution system is defined as the voltage magnitude and the phase angle at all observation points, it is represented by the vector of Expression (1).
Figure 2014233154

配電用変電所2の電力P0,電圧V0及び柱上変圧器毎に合計したスマートメータ6で収集する電力を観測変数zとすると、(2)式のベクトルであらわせる。

Figure 2014233154
When the power P0, the voltage V0 of the distribution substation 2 and the power collected by the smart meter 6 totaled for each pole transformer are assumed to be an observation variable z, it can be expressed by a vector of equation (2).
Figure 2014233154

状態変数xと観測変数zの関係は、観測に伴う誤差をvであらわすと、(3)式のようになる。

Figure 2014233154
The relationship between the state variable x and the observation variable z is expressed by equation (3), where v is the error associated with the observation.
Figure 2014233154

誤差ベクトルvの統計的性質を白色雑音と仮定すると、状態変数xの最適推定値は、(4)式を最小化するxとして、重み付き最小二乗法で解くことができる。

Figure 2014233154
Assuming that the statistical property of the error vector v is white noise, the optimum estimated value of the state variable x can be solved by the weighted least square method as x that minimizes the equation (4).
Figure 2014233154

表示部104は、以上のように推定した高圧配電線電圧Viを表示する(ステップS301)。   The display unit 104 displays the high-voltage distribution line voltage Vi estimated as described above (step S301).

以上述べたように第1実施形態によれば、高圧配電線に高価な高精度センサを新規に設置しないでも、各需要家のスマートメータの計測情報を活用して配電系統の電圧分布を得ることが可能となり、配電系統全体の電圧管理に用いることができる。   As described above, according to the first embodiment, even if an expensive high-precision sensor is not newly installed on the high-voltage distribution line, the voltage distribution of the distribution system can be obtained by utilizing the measurement information of each customer's smart meter. Can be used for voltage management of the entire distribution system.

(第2実施形態)
第2実施形態に係る配電系統監視システムを、図4及び図5を用いて説明する。なお、第2実施形態のシステム構成は、第1実施形態と同様であるため図1を用いるものとする。また、図4及び図5において、第1実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
(Second Embodiment)
A power distribution system monitoring system according to the second embodiment will be described with reference to FIGS. 4 and 5. Since the system configuration of the second embodiment is the same as that of the first embodiment, FIG. 1 is used. 4 and 5, the same parts as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図4は、第2実施形態に係る配電系統の一例を示したものである。第2実施形態では、図4に示すように、各スマートメータ6は、需要家毎の電力量Pm11,Pm12,Pm13、電圧Vm1及び力率Pf1を所定時間毎に計測する。また、記憶部102には、低圧側設備情報(柱上変圧器インピーダンス、低圧配電線インピーダンス、引込線インピーダンス)が予め記憶される。上記第1実施形態の高圧側配電線電圧Viの計算において、さらに低圧系配電線損失Plossを考慮すると、P1=Pm11+Pm12+Pm13+Ploss1と示すことができる。そこで、第2実施形態では、スマートメータ6の計測データと低圧側設備情報とを用いて低圧系配電線損失Plossによる電圧降下VLを求め、高圧側配電線3から需要家までの低圧側電圧降下に基づく電圧Vi’を用いて、高圧側配電線電圧Viを補正する。   FIG. 4 shows an example of a power distribution system according to the second embodiment. In 2nd Embodiment, as shown in FIG. 4, each smart meter 6 measures electric energy Pm11, Pm12, Pm13, voltage Vm1, and power factor Pf1 for every consumer for every predetermined time. In addition, the storage unit 102 stores low-voltage-side facility information (post transformer impedance, low-voltage distribution line impedance, and lead-in line impedance) in advance. In the calculation of the high-voltage distribution line voltage Vi in the first embodiment, when the low-voltage distribution line loss Ploss is further considered, it can be expressed as P1 = Pm11 + Pm12 + Pm13 + Ploss1. Therefore, in the second embodiment, the voltage drop VL due to the low-voltage distribution line loss Ploss is obtained using the measurement data of the smart meter 6 and the low-voltage side equipment information, and the low-voltage side voltage drop from the high-voltage distribution line 3 to the consumer. Is used to correct the high-voltage distribution line voltage Vi.

図5は、第2実施形態に係る配電系統監視装置の処理手順の一例を示すフローチャートである。図1のように構成される配電系統監視装置1において、収集部101は、需要家5のスマートメータ6で計測した電力量、電圧、及び力率と、配電用変電所2の計測器7で計測した電力量及び電圧を、通信インフラ8を介して収集する(ステップS101)。   FIG. 5 is a flowchart illustrating an example of a processing procedure of the power distribution system monitoring apparatus according to the second embodiment. In the distribution system monitoring apparatus 1 configured as shown in FIG. 1, the collection unit 101 includes the power amount, voltage, and power factor measured by the smart meter 6 of the consumer 5 and the measuring device 7 of the distribution substation 2. The measured electric energy and voltage are collected via the communication infrastructure 8 (step S101).

ステップS201と同様に、高圧配電線電圧推定部103は、記憶部102の高圧配電線の接続情報及びインピーダンスと、ステップS101で収集した配電用変電所2の電力量及び電圧と各需要家の電力量及び力率とを用いて高圧側配電線電圧Viを推定する(ステップS202)。   Similarly to step S201, the high-voltage distribution line voltage estimation unit 103 is configured to connect the high-voltage distribution line connection information and impedance in the storage unit 102, the power amount and voltage of the distribution substation 2 collected in step S101, and the power of each customer. The high-voltage distribution line voltage Vi is estimated using the quantity and the power factor (step S202).

次に、ステップS101で収集した各需要家の電力量及び電圧と低圧側設備情報(柱上変圧器インピーダンス、低圧配電線インピーダンス、引込線インピーダンス)を用いて高圧側配電線から需要家までの低圧側電圧降下に基づく電圧Vi’を計算する(ステップS203)。低圧側設備情報が不明な場合には、一般的なデータを用いて計算することができる。一般的な電圧降下の配分例として、柱上変圧器2%、低圧配電線3%、引込線3%がある(非特許文献4を参照)。あるいは、低圧側インピーダンスZ’を得ることが可能であれば、(5)式から低圧系配電線損失による電圧降下VLを求める。

Figure 2014233154
Next, the low-voltage side from the high-voltage distribution line to the consumer using the power amount and voltage and low-voltage equipment information (post transformer impedance, low-voltage distribution line impedance, lead-in line impedance) collected in step S101. A voltage Vi ′ based on the voltage drop is calculated (step S203). When the low-pressure side equipment information is unknown, it can be calculated using general data. As an example of distribution of a general voltage drop, there are a pole transformer 2%, a low voltage distribution line 3%, and a lead-in line 3% (see Non-Patent Document 4). Alternatively, if it is possible to obtain the low-voltage side impedance Z ′, the voltage drop VL due to the low-voltage distribution line loss is obtained from the equation (5).
Figure 2014233154

スマートメータ6から力率を収集できない場合には想定値を用いてもよい。電流Iをスマートメータ6から収集できる場合には、スマートメータ6の計測データを用いる。   An assumed value may be used when the power factor cannot be collected from the smart meter 6. When the current I can be collected from the smart meter 6, the measurement data of the smart meter 6 is used.

したがって、高圧側配電線3から需要家までの低圧側電圧降下に基づく電圧Vi’は、(6)式となる。

Figure 2014233154
Therefore, the voltage Vi ′ based on the low-voltage side voltage drop from the high-voltage side distribution line 3 to the consumer is expressed by equation (6).
Figure 2014233154

そして、ステップS202で求めた高圧側配電線電圧ViとステップS203で求めた低圧側電圧降下に基づく電圧Vi’との差異が最小となるように、スマートメータ6の計測データの時間分解能や時刻非同期、低圧系配電線損失などの不確定要素を考慮して補正を行う(ステップS401)。例えば、(7)式が最小となるよう、電力潮流方程式、各需要家の力率、また利用可能であれば契約容量を制約条件として、低圧側設備情報(柱上変圧器インピーダンス、低圧配電線インピーダンス、引込線インピーダンス)あるいは低圧側インピーダンスZ’を補正し、低圧系配電線損失Ploss及び低圧系配電線損失による電圧降下VLを修正する。

Figure 2014233154
Then, the time resolution and time asynchronousness of the measurement data of the smart meter 6 are minimized so that the difference between the high-voltage side distribution line voltage Vi obtained in step S202 and the voltage Vi ′ based on the low-voltage side voltage drop obtained in step S203 is minimized. Then, correction is performed in consideration of uncertain factors such as low-voltage distribution line loss (step S401). For example, the power flow equation, the power factor of each consumer, and contract capacity if available, using the power flow equation (7) as a constraint, the low-voltage side equipment information (pole transformer impedance, low-voltage distribution line) Impedance, lead-in line impedance) or low-voltage side impedance Z ′ is corrected, and voltage drop VL due to low-voltage distribution line loss Ploss and low-voltage distribution line loss is corrected.
Figure 2014233154

以上述べたように第2実施形態によれば、高圧配電線に高価な高精度センサを新規に設置しないでも、各需要家のスマートメータの計測情報を活用して配電系統の電圧分布を得ることが可能となり、配電系統全体の電圧管理に用いることができる。低圧系配電線損失Ploss及び低圧系配電線損失による電圧降下VLを確定できる十分な精度の低圧側配電設備情報を収集するのは困難であることが多いため、本実施形態によってスマートメータの計測データの時間分解能や時刻非同期、低圧系配電線損失などの不確定要素を補正し精度を向上させることができる。   As described above, according to the second embodiment, the voltage distribution of the distribution system can be obtained using the measurement information of each customer's smart meter without newly installing an expensive high-precision sensor on the high-voltage distribution line. Can be used for voltage management of the entire distribution system. In many cases, it is difficult to collect low-voltage distribution line information with sufficient accuracy that can determine the voltage drop VL due to the low-voltage distribution line loss Ploss and the low-voltage distribution line loss. The accuracy can be improved by correcting uncertain elements such as time resolution, asynchronous time, and low-voltage distribution line loss.

(第3実施形態)
第3実施形態に係る配電系統監視システムを、図6を用いて説明する。第3実施形態では、実際には負荷は時々刻々と変化しているため、負荷変動に対しての補正を考慮する。なお、第3実施形態のシステム構成及び配電系統は、第2実施形態と同様であるため図1及び図4を用いるものとする。また、図6において、第2実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
(Third embodiment)
A distribution system monitoring system according to the third embodiment will be described with reference to FIG. In the third embodiment, since the load actually changes every moment, the correction for the load fluctuation is considered. In addition, since the system configuration | structure and power distribution system of 3rd Embodiment are the same as that of 2nd Embodiment, it shall use FIG.1 and FIG.4. Moreover, in FIG. 6, the same code | symbol is attached | subjected to the part same as 2nd Embodiment, and the overlapping description is abbreviate | omitted.

図6は、第3実施形態に係る配電系統監視装置の処理手順の一例を示すフローチャートである。所定の複数時刻断面について、第2実施形態と同様に、ステップS101からステップS202、ステップS203までの処理を行い、高圧配電線電圧推定値Viと、高圧配電線から需要家までの低圧側電圧降下に基づく電圧Vi’とを求める。そして、複数時刻断面についてViとVi’との差異を最小とする修正量を求める(ステップS402)。たとえば、(8)式が最小となるよう、電力潮流方程式、各需要家の力率、また利用可能であれば契約容量を制約条件として、低圧系配電線損失Plossを調整し、電力量を修正する。

Figure 2014233154
FIG. 6 is a flowchart illustrating an example of a processing procedure of the distribution system monitoring apparatus according to the third embodiment. Similar to the second embodiment, the processing from step S101 to step S202 and step S203 is performed for a predetermined plurality of time sections, and the high voltage distribution line voltage estimated value Vi and the low voltage side voltage drop from the high voltage distribution line to the consumer And a voltage Vi ′ based on the above. Then, a correction amount that minimizes the difference between Vi and Vi ′ for a plurality of time sections is obtained (step S402). For example, adjust the low-voltage distribution line loss Ploss by adjusting the power flow equation, the power factor of each customer, and contract capacity if available, so that Eq. (8) is minimized. To do.
Figure 2014233154

以上述べたように第3実施形態によれば、高価な高精度センサを新規に設置しないでも、負荷変動を含む複数の時刻断面における各需要家のスマートメータの計測情報を活用して配電系統の電圧分布を得ることが可能となり、配電系統全体の電圧管理に用いることができる。低圧系配電線損失Ploss及び低圧系配電線損失による電圧降下VLを確定できる十分な精度の低圧側配電設備情報を収集するのは困難であることが多いため、本実施形態によってスマートメータの計測データの時間分解能や時刻非同期、低圧系配電線損失、負荷変動などの不確定要素を補正し精度を向上させることができる。   As described above, according to the third embodiment, even if an expensive high-precision sensor is not newly installed, the measurement information of each customer's smart meter at a plurality of time sections including load fluctuations is utilized to A voltage distribution can be obtained and used for voltage management of the entire distribution system. In many cases, it is difficult to collect low-voltage distribution line information with sufficient accuracy that can determine the voltage drop VL due to the low-voltage distribution line loss Ploss and the low-voltage distribution line loss. The accuracy can be improved by correcting uncertain elements such as time resolution, time asynchronization, low-voltage distribution line loss, and load fluctuation.

(第4実施形態)
第4実施形態に係る配電系統監視システムを、図7及び図8を用いて説明する。第4実施形態では、盗電などによりスマートメータで計測されない未計測電力がある場合に、その未計測電力を有する地点を推定する。なお、第4実施形態のシステム構成は第2実施形態と同様であるため図1を用いるものとする。また、図7及び図8において、第2実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。
(Fourth embodiment)
A distribution system monitoring system according to the fourth embodiment will be described with reference to FIGS. 7 and 8. In 4th Embodiment, when there exists unmeasured electric power which is not measured with a smart meter by theft etc., the point which has the unmeasured electric power is estimated. Since the system configuration of the fourth embodiment is the same as that of the second embodiment, FIG. 1 is used. Moreover, in FIG.7 and FIG.8, the same code | symbol is attached | subjected to the part same as 2nd Embodiment, and the overlapping description is abbreviate | omitted.

図7は、第4実施形態に係る配電系統の一例を示したものである。第4実施形態では、図7に示すように、各スマートメータ6は、需要家毎の電力量Pm11,Pm12,Pm13、電圧Vm1及び力率Pf1を所定時間毎に計測する。上記第2実施形態の高圧側配電線電圧Viの計算において、さらに未計測電力Ptheftを考慮すると、P1=Pm11+Pm12+Pm13+Ploss1+Ptheftと示すことができる。そこで、第4実施形態では、未計測電力Ptheftを各観測点iに割り付けて高圧配電線電圧推定値Viを求め、低圧側電圧降下に基づく電圧Vi’との差異を最小とする修正量を求めることにより未計測電力ありの地点を推定する。   FIG. 7 shows an example of a power distribution system according to the fourth embodiment. In the fourth embodiment, as shown in FIG. 7, each smart meter 6 measures the power amounts Pm11, Pm12, Pm13, voltage Vm1, and power factor Pf1 for each consumer every predetermined time. In the calculation of the high-voltage distribution line voltage Vi in the second embodiment, when the unmeasured power Ptheft is further considered, it can be expressed as P1 = Pm11 + Pm12 + Pm13 + Ploss1 + Ptheft. Therefore, in the fourth embodiment, the unmeasured power Ptheft is assigned to each observation point i to obtain the high voltage distribution line voltage estimated value Vi, and the correction amount that minimizes the difference from the voltage Vi ′ based on the low voltage drop is obtained. Thus, a point with unmeasured power is estimated.

図8は、第4実施形態に係る配電系統監視装置の処理手順の一例を示すフローチャートである。第2実施形態と同様に、収集部101は、需要家5のスマートメータ6で計測した電力量、電圧、及び力率と、配電用変電所2の計測器7で計測した電力量及び電圧を、通信インフラ8を介して収集する(ステップS101)。   FIG. 8 is a flowchart illustrating an example of a processing procedure of the power distribution system monitoring apparatus according to the fourth embodiment. As in the second embodiment, the collection unit 101 uses the power amount, voltage, and power factor measured by the smart meter 6 of the consumer 5 and the power amount and voltage measured by the measuring device 7 of the distribution substation 2. Collect via the communication infrastructure 8 (step S101).

次に、高圧配電線電圧推定部103は、(9)式のように全需要家スマートメータ6の電力量の合計値と全配電線損失を配電用変電所電力P0から差し引き、予め設定された閾値と比較する。(9)式のPtheftが閾値よりも大きい場合には、盗電などの未計測電力があると判断する(ステップS501)。

Figure 2014233154
Next, the high voltage distribution line voltage estimation unit 103 subtracts the total value of the electric energy of all the consumer smart meters 6 and the total distribution line loss from the distribution substation power P0 as shown in the equation (9), and is set in advance. Compare with threshold. If Ptheft in equation (9) is greater than the threshold, it is determined that there is unmeasured power such as stealing (step S501).
Figure 2014233154

未計測データありの場合、(9)式の未計測電力Ptheftを任意の観測点iに割り付けて(ステップS502)、電力潮流計算を行い高圧配電線電圧推定値Viを推定する(ステップS202)。そして、第2実施形態と同様に、高圧配電線3から需要家までの低圧側電圧降下に基づく電圧Vi’を求め、ViとVi’の差異を最小とする修正量を求める(ステップS401)。修正量は、第2実施形態で示した手法によって求めることができる。全ノードに未計測電力Ptheftの割り付けが完了すると(ステップS503)、修正量が最小の割り付け地点を未計測電力ありの地点と推定する(ステップS504)。   When there is unmeasured data, the unmeasured power Ptheft of the equation (9) is assigned to an arbitrary observation point i (step S502), and power flow calculation is performed to estimate the high-voltage distribution line voltage estimated value Vi (step S202). Then, similarly to the second embodiment, the voltage Vi ′ based on the low voltage drop from the high voltage distribution line 3 to the consumer is obtained, and the correction amount that minimizes the difference between Vi and Vi ′ is obtained (step S401). The correction amount can be obtained by the method shown in the second embodiment. When the allocation of the unmeasured power Ptheft to all nodes is completed (step S503), the allocation point with the smallest correction amount is estimated as a point with unmeasured power (step S504).

以上述べたように、第4実施形態によれば、高価な高精度センサを新規に設置しないでも、各需要家のスマートメータの計測情報を活用して配電系統の電圧分布を得ることが可能となり、配電系統全体の電圧管理に用いることができる。また盗電等がある場合に、盗電地点を推定することが可能となる。   As described above, according to the fourth embodiment, it is possible to obtain the voltage distribution of the distribution system by utilizing the measurement information of each customer's smart meter without newly installing an expensive high-precision sensor. It can be used for voltage management of the entire distribution system. In addition, when there is a power theft, it is possible to estimate a power theft point.

なお、いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…配電系統監視装置、2…配電用変電所、3…高圧配電線、4…柱上変圧器、5…需要家、6…スマートメータ、7…配電用変電所計測器、8…通信インフラ、101…収集部、102…記憶部、103…高圧配電線電圧推定部、104…表示部。   DESCRIPTION OF SYMBOLS 1 ... Distribution system monitoring apparatus, 2 ... Distribution substation, 3 ... High voltage distribution line, 4 ... Pole transformer, 5 ... Consumer, 6 ... Smart meter, 7 ... Distribution substation measuring instrument, 8 ... Communication infrastructure DESCRIPTION OF SYMBOLS 101 ... Collecting part 102 ... Memory | storage part 103 ... High voltage distribution line voltage estimation part 104 ... Display part.

Claims (12)

配電用変電所から引き出された高圧配電線から変圧機器を介して複数の需要家へ電力を供給する配電系統を監視するシステムであって、
前記需要家の電力量を計測する複数のスマートメータと、
前記配電用変電所の二次側の電気量を計測する計測器と、
前記スマートメータで計測される需要家の電力量と、前記配電用変電所の二次側の計測器で計測される配電用変電所二次側の電気量とを収集する収集手段と、
前記変圧機器の設置個所を観測点として、前記配電用変電所から前記観測点までの高圧配電線のインピーダンスと前記観測点における前記需要家の電力量の合計値と前記配電用変電所の二次側の電気量とをもとに電力潮流計算を行い、前記高圧配電線の電圧を推定する高圧配電線電圧推定手段と
を具備することを特徴とする配電系統監視システム。
A system for monitoring a distribution system that supplies power from a high-voltage distribution line drawn from a distribution substation to a plurality of consumers via a transformer,
A plurality of smart meters for measuring the electric energy of the consumer;
A measuring instrument for measuring the amount of electricity on the secondary side of the distribution substation;
Collecting means for collecting the amount of electric power of the consumer measured by the smart meter and the amount of electricity on the secondary side of the distribution substation measured by the secondary side measuring instrument of the distribution substation;
With the installation location of the transformer as an observation point, the impedance of the high-voltage distribution line from the distribution substation to the observation point, the total value of the electric energy of the consumer at the observation point, and the secondary of the distribution substation A distribution system monitoring system comprising: a high voltage distribution line voltage estimating means for calculating a power flow based on the amount of electricity on the side and estimating a voltage of the high voltage distribution line.
前記高圧配電線電圧推定手段は、前記観測点における電圧の大きさ及び位相角を状態変数とし、前記観測点における前記需要家の電力量の合計値と前記配電用変電所の二次側の電気量とを観測変数とし、観測に伴う誤差を白色雑音と仮定して状態推定により前記状態変数の最適値を解くことをさらに特徴とする請求項1に記載の配電系統監視システム。   The high-voltage distribution line voltage estimation means uses the voltage magnitude and phase angle at the observation point as state variables, and the total value of the electric energy of the consumer at the observation point and the electric power on the secondary side of the distribution substation. The distribution system monitoring system according to claim 1, further comprising: solving the optimum value of the state variable by state estimation assuming that the quantity is an observation variable and an error associated with the observation is white noise. 前記収集手段は、さらに前記スマートメータで計測される前記需要家の電圧を収集し、
前記観測点から前記需要家までの低圧配電線のインピーダンスと前記観測点における前記需要家の電力量の合計値とから前記観測点から前記需要家までの電圧降下を算出し、前記電圧降下と前記需要家の電圧とに基づく電圧を算出する低圧側電圧降下算出手段と、
前記高圧配電線電圧推定手段で推定される電圧と前記低圧側電圧降下算出手段により算出される電圧との差を最小とするように前記観測点における前記低圧配電線のインピーダンスまたは前記需要家の電力量の合計値を補正する補正手段と
をさらに具備することを特徴とする請求項1又は2に記載の配電系統監視システム。
The collecting means further collects the consumer voltage measured by the smart meter,
The voltage drop from the observation point to the consumer is calculated from the impedance of the low-voltage distribution line from the observation point to the consumer and the total amount of power of the consumer at the observation point, and the voltage drop and the Low voltage side voltage drop calculating means for calculating a voltage based on the voltage of the consumer;
The impedance of the low-voltage distribution line at the observation point or the power of the consumer so as to minimize the difference between the voltage estimated by the high-voltage distribution line voltage estimation means and the voltage calculated by the low-voltage side voltage drop calculation means The distribution system monitoring system according to claim 1, further comprising correction means for correcting the total value of the quantities.
前記収集手段は、複数の時刻について、前記スマートメータで計測される需要家の電力量と、前記計測器で計測される配電用変電所二次側の電気量とを収集し、
前記補正手段は、複数の時刻における前記高圧配電線電圧推定手段で推定される電圧と前記低圧側電圧降下算出手段により算出される電圧との差の積算値を最小とするように前記観測点における前記低圧配電線のインピーダンスまたは前記需要家の電力量の合計値を補正することを特徴とする請求項3に記載の配電系統監視システム。
The collection means, for a plurality of times, collects the amount of electricity of the consumer measured by the smart meter and the amount of electricity on the secondary side of the distribution substation measured by the measuring instrument,
The correction unit is configured to minimize the integrated value of the difference between the voltage estimated by the high-voltage distribution line voltage estimation unit and the voltage calculated by the low-voltage side voltage drop calculation unit at a plurality of times. The distribution system monitoring system according to claim 3, wherein an impedance of the low-voltage distribution line or a total value of electric power of the consumer is corrected.
前記高圧配電線電圧推定手段は、前記配電用変電所の二次側の電力量から前記配電用変電所全体の前記需要家の電力量の合計値と前記配電系統全体の配電線損失とを差し引いた値が閾値よりも大きい場合に未計測電力量があるものとみなし、
前記高圧配電線電圧推定手段で推定される電圧と、前記低圧側電圧降下算出手段により算出される電圧との差を最小とするような地点へ前記未計測電力量を割り付ける未計測電力量地点推定手段をさらに具備することを特徴とする請求項3に記載の配電系統監視システム。
The high-voltage distribution line voltage estimation means subtracts a total value of the customer's power amount of the entire distribution substation and a distribution line loss of the entire distribution system from the secondary side energy amount of the distribution substation. If the measured value is greater than the threshold value,
Unmeasured power amount point estimation that assigns the unmeasured power amount to a point that minimizes the difference between the voltage estimated by the high-voltage distribution line voltage estimation unit and the voltage calculated by the low-voltage side voltage drop calculation unit The distribution system monitoring system according to claim 3, further comprising means.
配電用変電所から引き出された高圧配電線から変圧機器を介して複数の需要家へ電力を供給する配電系統を監視するシステムであって、
前記需要家の電気量を計測する複数のスマートメータと、
前記スマートメータで計測される需要家の電気量を収集する収集手段と、
前記変圧機器の設置個所を観測点として、前記観測点から前記需要家までの低圧配電線のインピーダンスと前記観測点における前記需要家の電力量の合計値とから前記観測点から前記需要家までの電圧降下を算出し、前記電圧降下と前記需要家の電圧とに基づく電圧を算出する低圧側電圧降下算出手段と
を具備することを特徴とする配電系統監視システム。
A system for monitoring a distribution system that supplies power from a high-voltage distribution line drawn from a distribution substation to a plurality of consumers via a transformer,
A plurality of smart meters for measuring the amount of electricity of the consumer;
A collecting means for collecting the amount of electricity of the consumer measured by the smart meter;
From the observation point to the consumer as the observation point of the installation location of the transformer equipment, from the impedance of the low-voltage distribution line from the observation point to the consumer and the total value of the power of the consumer at the observation point A power distribution system monitoring system comprising: a low voltage side voltage drop calculating means for calculating a voltage drop and calculating a voltage based on the voltage drop and the voltage of the consumer.
配電用変電所から引き出された高圧配電線から変圧機器を介して複数の需要家へ電力を供給する配電系統を監視する装置であって、
前記需要家毎のスマートメータで計測される需要家の電力量と、前記配電用変電所の二次側の計測器で計測される配電用変電所二次側の電気量とを収集する収集手段と、
前記変圧機器の設置個所を観測点として、前記配電用変電所から前記観測点までの高圧配電線のインピーダンスと前記観測点における前記需要家の電力量の合計値と前記配電用変電所の二次側の電気量とをもとに電力潮流計算を行い、前記高圧配電線の電圧を推定する高圧配電線電圧推定手段と
を具備することを特徴とする配電系統監視装置。
A device for monitoring a distribution system that supplies power to a plurality of consumers via a transformer from a high-voltage distribution line drawn from a distribution substation,
Collecting means for collecting the amount of electric power of the consumer measured by the smart meter for each consumer and the amount of electricity on the secondary side of the distribution substation measured by the secondary side measuring instrument of the distribution substation When,
With the installation location of the transformer as an observation point, the impedance of the high-voltage distribution line from the distribution substation to the observation point, the total value of the electric energy of the consumer at the observation point, and the secondary of the distribution substation A distribution system monitoring apparatus comprising: high-voltage distribution line voltage estimation means for performing power flow calculation based on the amount of electricity on the side and estimating a voltage of the high-voltage distribution line.
前記高圧配電線電圧推定手段は、前記観測点における電圧の大きさ及び位相角を状態変数とし、前記観測点における前記需要家の電力量の合計値と前記配電用変電所の二次側の電気量とを観測変数とし、観測に伴う誤差を白色雑音と仮定して状態推定により前記状態変数の最適値を解くことをさらに特徴とする請求項7に記載の配電系統監視装置。   The high-voltage distribution line voltage estimation means uses the voltage magnitude and phase angle at the observation point as state variables, and the total value of the electric energy of the consumer at the observation point and the electric power on the secondary side of the distribution substation. The distribution system monitoring apparatus according to claim 7, further comprising: solving the optimum value of the state variable by state estimation assuming that the quantity is an observation variable and an error associated with the observation is white noise. 前記スマートメータは、さらに前記需要家の電圧を計測し、
前記収集手段は、前記スマートメータで計測される前記需要家の電圧を収集し、
前記変圧機器から前記需要家までの電圧降下に基づいて前記高圧配電線の電圧を算出する低圧側電圧降下算出手段と、
前記高圧配電線電圧推定手段で推定される電圧と前記低圧側電圧降下算出手段により算出される電圧との差を最小とするように前記観測点における前記低圧配電線のインピーダンスまたは前記需要家の電力量の合計値を補正する補正手段と
をさらに具備することを特徴とする請求項7又は8に記載の配電系統監視装置。
The smart meter further measures the voltage of the consumer,
The collecting means collects the voltage of the consumer measured by the smart meter,
Low voltage side voltage drop calculating means for calculating the voltage of the high voltage distribution line based on the voltage drop from the transformer to the consumer;
The impedance of the low-voltage distribution line at the observation point or the power of the consumer so as to minimize the difference between the voltage estimated by the high-voltage distribution line voltage estimation means and the voltage calculated by the low-voltage side voltage drop calculation means The distribution system monitoring apparatus according to claim 7, further comprising a correction unit that corrects the total value of the quantities.
前記収集手段は、複数の時刻について、前記スマートメータで計測される需要家の電力量と、前記計測器で計測される配電用変電所二次側の電気量とを収集し、
前記補正手段は、複数の時刻において、前記高圧配電線電圧推定手段で推定される電圧と前記低圧側電圧降下算出手段により算出される電圧との差を最小とするように前記観測点における前記低圧配電線のインピーダンスまたは前記需要家の電力量の合計値を補正することを特徴とする請求項9に記載の配電系統監視装置。
The collection means, for a plurality of times, collects the amount of electricity of the consumer measured by the smart meter and the amount of electricity on the secondary side of the distribution substation measured by the measuring instrument,
The correction unit is configured to reduce the difference between the voltage estimated by the high-voltage distribution line voltage estimation unit and the voltage calculated by the low-voltage side voltage drop calculation unit at a plurality of times. The distribution system monitoring apparatus according to claim 9, wherein an impedance of a distribution line or a total value of electric power of the customer is corrected.
前記高圧配電線電圧推定手段は、前記配電用変電所の二次側の電力量から前記配電用変電所全体の前記需要家の電力量の合計値と前記配電系統全体の配電線損失とを差し引いた値が閾値よりも大きい場合に未計測電力量があるものとみなし、
前記高圧配電線電圧推定手段で推定される電圧と、前記低圧側電圧降下算出手段により算出される電圧との差を最小とするような地点へ前記未計測電力量を割り付ける未計測電力量地点推定手段をさらに具備することを特徴とする請求項9に記載の配電系統監視装置。
The high-voltage distribution line voltage estimation means subtracts a total value of the customer's power amount of the entire distribution substation and a distribution line loss of the entire distribution system from the secondary side energy amount of the distribution substation. If the measured value is greater than the threshold value,
Unmeasured power amount point estimation that assigns the unmeasured power amount to a point that minimizes the difference between the voltage estimated by the high-voltage distribution line voltage estimation unit and the voltage calculated by the low-voltage side voltage drop calculation unit The distribution system monitoring apparatus according to claim 9, further comprising means.
配電用変電所から引き出された高圧配電線から変圧機器を介して複数の需要家へ電力を供給する配電系統を監視する装置であって、
前記需要家側のスマートメータで計測される前記需要家の電気量を収集する収集手段と、
前記変圧機器の設置個所を観測点として、前記観測点から前記需要家までの低圧配電線のインピーダンスと前記観測点における前記需要家の電力量の合計値とから前記観測点から前記需要家までの電圧降下を算出し、前記電圧降下と前記需要家の電圧とに基づく電圧を算出する低圧側電圧降下算出手段と
を具備することを特徴とする配電系統監視装置。
A device for monitoring a distribution system that supplies power to a plurality of consumers via a transformer from a high-voltage distribution line drawn from a distribution substation,
A collecting means for collecting the amount of electricity of the consumer measured by the smart meter on the consumer side;
From the observation point to the consumer as the observation point of the installation location of the transformer equipment, from the impedance of the low-voltage distribution line from the observation point to the consumer and the total value of the power of the consumer at the observation point A power distribution system monitoring apparatus comprising: a low voltage side voltage drop calculating means for calculating a voltage drop and calculating a voltage based on the voltage drop and the voltage of the consumer.
JP2013113143A 2013-05-29 2013-05-29 Distribution system monitoring system and distribution system monitoring device Pending JP2014233154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113143A JP2014233154A (en) 2013-05-29 2013-05-29 Distribution system monitoring system and distribution system monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113143A JP2014233154A (en) 2013-05-29 2013-05-29 Distribution system monitoring system and distribution system monitoring device

Publications (1)

Publication Number Publication Date
JP2014233154A true JP2014233154A (en) 2014-12-11

Family

ID=52126258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113143A Pending JP2014233154A (en) 2013-05-29 2013-05-29 Distribution system monitoring system and distribution system monitoring device

Country Status (1)

Country Link
JP (1) JP2014233154A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217826A (en) * 2015-05-19 2016-12-22 中国電力株式会社 Electric power measurement system
JP6132994B1 (en) * 2016-05-24 2017-05-24 三菱電機株式会社 Distribution system state estimation device and distribution system state estimation method
WO2017155047A1 (en) * 2016-03-11 2017-09-14 株式会社東芝 Power distribution monitoring control system
JP2019154133A (en) * 2018-03-02 2019-09-12 東京電力ホールディングス株式会社 Method and system for obtaining voltage of high-voltage main line
CN112308732A (en) * 2020-10-21 2021-02-02 国网冀北电力有限公司计量中心 Intelligent management platform for line loss of transformer area based on artificial intelligence and data interaction simulation technology
EP3968040A4 (en) * 2019-06-21 2022-12-21 Siemens Aktiengesellschaft Abnormal electricity use recognition method and device, and computer readable storage medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217826A (en) * 2015-05-19 2016-12-22 中国電力株式会社 Electric power measurement system
WO2017155047A1 (en) * 2016-03-11 2017-09-14 株式会社東芝 Power distribution monitoring control system
JP6132994B1 (en) * 2016-05-24 2017-05-24 三菱電機株式会社 Distribution system state estimation device and distribution system state estimation method
JP2019154133A (en) * 2018-03-02 2019-09-12 東京電力ホールディングス株式会社 Method and system for obtaining voltage of high-voltage main line
EP3968040A4 (en) * 2019-06-21 2022-12-21 Siemens Aktiengesellschaft Abnormal electricity use recognition method and device, and computer readable storage medium
CN112308732A (en) * 2020-10-21 2021-02-02 国网冀北电力有限公司计量中心 Intelligent management platform for line loss of transformer area based on artificial intelligence and data interaction simulation technology

Similar Documents

Publication Publication Date Title
JP2014233154A (en) Distribution system monitoring system and distribution system monitoring device
CN100431232C (en) Estimating of power transmission net state
US9292794B2 (en) Voltage-based clustering to infer connectivity information in smart grids
Samarakoon et al. Use of delayed smart meter measurements for distribution state estimation
US10908198B2 (en) Determining meter phase using interval voltage measurements
JP5638546B2 (en) Load estimation device
JP6045769B1 (en) Power generation amount estimation device, distribution system, and power generation amount estimation method
JP6209951B2 (en) Transformer connection phase determination device, method, and program
RU2635849C2 (en) Device and method of voltage and power determination of every phase in medium voltage network
JP2013044752A (en) Phase identification system and method
WO2017071614A1 (en) Method for operating energy consumption metering system and energy consumption metering system
US20150168465A1 (en) Method and apparatus for electric power system distribution state estimations
JP2015109737A (en) Power distribution system monitoring device
JP2017221040A (en) Power distribution system monitoring device
JP6287306B2 (en) Power estimation apparatus, power estimation method, and program
US11100595B2 (en) Electric power system pricing with energy packets
JP2015161541A (en) Transformer connection phase determination device, transformer connection phase determination method, and transformer connection phase determination program
JP5322716B2 (en) Distributed power output estimation apparatus and method for distribution system
KR101039037B1 (en) Live current ratio ratio error checking method by measuring current waveform similarity
Echternacht et al. Optimized positioning of measurements in distribution grids
KR101254846B1 (en) Apparatus for measuring generation power and load power for power generation system
JP2016039652A (en) Power distribution grid management apparatus, power distribution grid system, and power distribution grid management method
US10067167B2 (en) Method and apparatus for precision phasor measurements through a medium-voltage distribution transformer
JP2015078937A (en) Correcting accumulated power in utility meters
US20210011061A1 (en) Harmonics Measurement in Power Grids