JP2014232831A - Thermoelectric element mounting vehicle - Google Patents

Thermoelectric element mounting vehicle Download PDF

Info

Publication number
JP2014232831A
JP2014232831A JP2013113735A JP2013113735A JP2014232831A JP 2014232831 A JP2014232831 A JP 2014232831A JP 2013113735 A JP2013113735 A JP 2013113735A JP 2013113735 A JP2013113735 A JP 2013113735A JP 2014232831 A JP2014232831 A JP 2014232831A
Authority
JP
Japan
Prior art keywords
thermoelectric element
heat
internal combustion
combustion engine
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013113735A
Other languages
Japanese (ja)
Inventor
田中 勉
Tsutomu Tanaka
田中  勉
義広 黒沢
Yoshihiro Kurosawa
義広 黒沢
裕志 那須
Hiroshi Nasu
裕志 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013113735A priority Critical patent/JP2014232831A/en
Publication of JP2014232831A publication Critical patent/JP2014232831A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric element mounting vehicle which efficiently absorbs heat energy.SOLUTION: A thermoelectric element 1 includes: a thermoelectric element body 11 where thermoelectric materials 11p, 11n are provided between a heat absorption part 112 and a heat radiation part 113; an attachment substrate 12 thermally connected with the heat absorption part; and a heat radiation member 13 thermally connected with the heat radiation part. The thermoelectric element 1 is bonded onto a front surface of an oil pan 22, which is located at the front side when the vehicle is viewed in a vehicle travel direction, or a rear surface 211 of an internal combustion engine 21 through an adhesive 15 containing a heat conductive metal.

Description

本発明は、熱電素子搭載車両に関するものである。   The present invention relates to a thermoelectric element-equipped vehicle.

吸熱要素とヒートシンクを有し、これらの間の温度勾配によって電気エネルギを発生する熱電発電機を、内燃機関に直接配置された車両が知られている(特許文献1)。   There is known a vehicle in which a thermoelectric generator that has a heat absorbing element and a heat sink and generates electric energy by a temperature gradient between them is directly arranged in an internal combustion engine (Patent Document 1).

特表2010−518796号公報Special table 2010-518996

しかしながら、上記従来の技術では、内燃機関等の熱エネルギ源へ熱電発電機を直接密着させる必要があるが、内燃機関の接触面の形状や接着材料等の熱伝導性により効率的に熱エネルギを得ることが難しいという問題がある。   However, in the above prior art, it is necessary to make the thermoelectric generator directly adhere to a thermal energy source such as an internal combustion engine. However, the thermal energy is efficiently transferred due to the shape of the contact surface of the internal combustion engine and the thermal conductivity of the adhesive material. There is a problem that it is difficult to obtain.

本発明が解決しようとする課題は、熱エネルギを効率的に吸熱できる熱電素子搭載車両を提供することである。   The problem to be solved by the present invention is to provide a thermoelectric element-equipped vehicle capable of efficiently absorbing heat energy.

本発明は、熱伝導性金属を含有する接着剤を介して熱電素子を内燃機関に接着することによって上記課題を解決する。   This invention solves the said subject by adhere | attaching a thermoelectric element to an internal combustion engine through the adhesive agent containing a heat conductive metal.

本発明によれば、熱伝導性金属を含有する接着剤を用いて熱電素子を内燃機関に接着するので、内燃機関に特別な加工を施すことなく、内燃機関の熱エネルギを熱電素子の吸熱部に効率的に吸熱することができる。   According to the present invention, since the thermoelectric element is bonded to the internal combustion engine using the adhesive containing the heat conductive metal, the heat energy of the internal combustion engine can be transferred to the heat absorbing portion of the thermoelectric element without performing special processing on the internal combustion engine. Can absorb heat efficiently.

本発明の熱電素子搭載車両に係る熱電素子の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the thermoelectric element which concerns on the thermoelectric element mounting vehicle of this invention. 図1Aの熱電素子に接続される温度センサユニットの一例を示す斜視図である。It is a perspective view which shows an example of the temperature sensor unit connected to the thermoelectric element of FIG. 1A. 図1Aの熱電素子を内燃機関のオイルパンに装着した状態を示す断面図である。It is sectional drawing which shows the state which mounted | wore the oil pan of the internal combustion engine with the thermoelectric element of FIG. 1A. 図1Aの熱電素子の他例を内燃機関のオイルパンに装着した状態を示す断面図である。It is sectional drawing which shows the state with which the other example of the thermoelectric element of FIG. 1A was mounted | worn with the oil pan of the internal combustion engine. 図2,3の熱電素子を装着する車両の一例を示す要部側面図である。It is a principal part side view which shows an example of the vehicle which mounts the thermoelectric element of FIG. 図4の車両の床裏を示す底面図である。It is a bottom view which shows the floor back of the vehicle of FIG. 図5のVI-VI線に沿う断面図である。It is sectional drawing which follows the VI-VI line of FIG. 図6のVII矢視図である。It is a VII arrow line view of FIG. 図6のVIII矢視図である。It is a VIII arrow line view of FIG. 熱電素子材料の発電効率特性を示すグラフである。It is a graph which shows the power generation efficiency characteristic of thermoelectric element material. 熱電素子の発電原理を説明するための図である。It is a figure for demonstrating the electric power generation principle of a thermoelectric element.

以下、本発明の一実施の形態を図面に基づいて説明する。
図1Aは本例の熱電素子1を示す分解斜視図、図1Bは温度センサユニット3を示す斜視図である。本例の熱電素子搭載車両1(以下、単に車両1ともいう。)は、市場に投入した自動車の走行環境データ、たとえばエンジンルーム内の温度データなどを収集するための温度センサユニット3が装着され、この温度センサユニット3の電源として熱電素子1が搭載されている。こうした各種データ収集のための測定ユニットは、実験車両などに一時的に搭載されることがあり、データ収集が終われば取り外される。したがって、測定ユニットの電源も、車載バッテリから供給するのではなく着脱可能な熱電素子1を用いると、バッテリケーブルの配策が不要で利便性がよい。このため、本例の車両1では、内燃機関21で生じる熱エネルギを利用して温度センサユニット3に供給する電力を発電する熱電素子1を搭載している。なお、本発明に係る熱電素子1の電力の供給先は温度センサユニット3にのみ限定されず、その他の電力負荷であってもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1A is an exploded perspective view showing the thermoelectric element 1 of this example, and FIG. 1B is a perspective view showing the temperature sensor unit 3. A thermoelectric element-equipped vehicle 1 (hereinafter also simply referred to as a vehicle 1) of this example is equipped with a temperature sensor unit 3 for collecting traveling environment data of an automobile put on the market, for example, temperature data in an engine room. The thermoelectric element 1 is mounted as a power source for the temperature sensor unit 3. Such a measurement unit for collecting various data may be temporarily mounted on an experimental vehicle or the like, and is removed when the data collection is completed. Therefore, if the thermoelectric element 1 which can be attached / detached instead of being supplied from the vehicle-mounted battery is used for the power of the measurement unit, no battery cable arrangement is required, which is convenient. For this reason, in the vehicle 1 of this example, the thermoelectric element 1 that generates electric power to be supplied to the temperature sensor unit 3 using the thermal energy generated in the internal combustion engine 21 is mounted. The power supply destination of the thermoelectric element 1 according to the present invention is not limited to the temperature sensor unit 3 and may be other power loads.

本例の熱電素子1は、図1A(熱電素子本体11の内部構造については図10参照)に示すように、吸熱部112と放熱部113との間に熱電材料11p,11nが設けられた熱電素子本体11と、吸熱部112に熱的に接続された装着基板12と、放熱部113に熱的に接続されたヒートシンク13とを有する。   As shown in FIG. 1A (refer to FIG. 10 for the internal structure of the thermoelectric element body 11), the thermoelectric element 1 of this example is a thermoelectric device in which thermoelectric materials 11p and 11n are provided between a heat absorbing portion 112 and a heat radiating portion 113. It has an element body 11, a mounting substrate 12 thermally connected to the heat absorbing part 112, and a heat sink 13 thermally connected to the heat radiating part 113.

熱電素子本体11の基本構造と発電原理を図10に示す。一般的に熱電素子は、熱起電力の異なる2種類の金属または半導体を接合した素子であって、両端に温度差を生じさせると起電力が生じるゼーベック効果を利用して発電する素子である。図10に示す例では、キャリアが正孔である3つのp型熱電材料11p(たとえばp型半導体)と、キャリアが電子である3つのn型熱電材料11n(たとえばn型半導体)を交互に並設してこれらを直列に接続し、各熱電材料11p,11nの一端に吸熱部112を設け、他端に放熱部113を設ける。   FIG. 10 shows the basic structure and power generation principle of the thermoelectric element body 11. In general, a thermoelectric element is an element in which two types of metals or semiconductors having different thermoelectromotive forces are joined, and generates power using the Seebeck effect in which an electromotive force is generated when a temperature difference is generated between both ends. In the example shown in FIG. 10, three p-type thermoelectric materials 11p (for example, p-type semiconductors) whose carriers are holes and three n-type thermoelectric materials 11n (for example, n-type semiconductors) whose carriers are electrons are alternately arranged in parallel. These are connected in series, the heat absorption part 112 is provided at one end of each thermoelectric material 11p, 11n, and the heat dissipation part 113 is provided at the other end.

そして、吸熱部112を内燃機関21に接続することにより当該吸熱部112に熱エネルギを供給するとともに、放熱部113にヒートシンク13を設けることにより当該放熱部113から熱エネルギを放出すると、p型熱電材料11pでは吸熱部112から放熱部113に向かって正孔が移動し(つまり放熱部113から吸熱部112に向かって電子が移動する)、n型熱電材料11nでは吸熱部112から放熱部113に向かって電子が移動する。これらp型熱電材料とn型熱電材料は、図10に示すように直列に接続されているので、左端のp型熱電材料11pから右端のn型熱電材料11nに向かって直列的に電子が移動する。その結果、2つの端子P1,P2間に電圧差が生じ、P1とP2を結ぶ回路114に反時計回りの電流が流れることになる。   When the heat absorption unit 112 is connected to the internal combustion engine 21 to supply heat energy to the heat absorption unit 112 and the heat dissipation unit 113 is provided with the heat sink 13 to release heat energy from the heat dissipation unit 113, a p-type thermoelectric In the material 11p, holes move from the heat absorbing portion 112 toward the heat radiating portion 113 (that is, electrons move from the heat radiating portion 113 toward the heat absorbing portion 112), and in the n-type thermoelectric material 11n, the heat absorbing portion 112 moves to the heat radiating portion 113. Electrons move toward. Since these p-type thermoelectric material and n-type thermoelectric material are connected in series as shown in FIG. 10, electrons move in series from the leftmost p-type thermoelectric material 11p toward the rightmost n-type thermoelectric material 11n. To do. As a result, a voltage difference is generated between the two terminals P1 and P2, and a counterclockwise current flows through the circuit 114 connecting P1 and P2.

熱電材料11p,11nとしては、ビスマス・テルル(BiTe)系、鉛・テルル(PbTe)系、コバルト・アンチモン(CoSb)系、シリコン・ゲルマニウム(SiGe)系、ランタン・テルル(LaTe)系などを例示できるが、図9に示すようにビスマス・テルル系熱電材料は、オイルパン22の温度である100〜140℃で最も発電効率がよいのでこれを用いることが望ましい。 As the thermoelectric materials 11p and 11n, bismuth tellurium (Bi 2 Te 3 ), lead / tellurium (PbTe), cobalt antimony (CoSb 3 ), silicon germanium (SiGe), lanthanum tellurium (La 3) Te 4 ) and the like can be exemplified. As shown in FIG. 9, the bismuth-tellurium-based thermoelectric material has the highest power generation efficiency at the oil pan 22 temperature of 100 to 140 ° C., and thus it is desirable to use this.

図1Aに戻り、熱電素子本体11の吸熱部112には、ナットなどのネジ孔(図1Aでは隠れている)にボルト121を螺合することにより装着基板12が固定されている。この装着基板12は、熱電素子本体11とヒートシンク13を支持できる程度の剛体であることが必要とされる。また後述するように、図1Aに示す裏面が内燃機関21の壁面やオイルパン22に接着され、ここからの熱エネルギを熱電素子本体11の吸熱部112に伝達する必要があるため、熱伝導性に富んだ材料、アルミニウム、鉄、銅などの金属から構成することが望ましい。なお、装着基板12は、図示するように平板状である必要はなく、内燃機関21の装着部位の形状に応じて適宜成形すればよい。   Returning to FIG. 1A, the mounting substrate 12 is fixed to the heat absorbing portion 112 of the thermoelectric element body 11 by screwing bolts 121 into screw holes such as nuts (hidden in FIG. 1A). The mounting substrate 12 is required to be a rigid body that can support the thermoelectric element body 11 and the heat sink 13. Further, as will be described later, the back surface shown in FIG. 1A is bonded to the wall surface of the internal combustion engine 21 and the oil pan 22, and it is necessary to transmit the heat energy from here to the heat absorbing portion 112 of the thermoelectric element body 11. It is desirable that the material is made of a metal rich in materials such as aluminum, iron and copper. Note that the mounting substrate 12 does not have to be flat as illustrated, and may be appropriately formed according to the shape of the mounting portion of the internal combustion engine 21.

熱電素子本体11の放熱部113には、ナットなどのネジ孔111にボルト131を螺合することによりヒートシンク13が固定されている。このヒートシンク13は、放熱部113から熱エネルギを放出する(放熱部113を冷却する)必要があるため、熱伝導性に富んだ材料、アルミニウム、鉄、銅などの金属から構成することが望ましい。なお、ヒートシンク13は、図6に示すように熱電素子1を内燃機関21のオイルパン22に装着する場合には、走行時の空気流に晒されるようにレイアウトすることが望ましい。また、同図に示すように内燃機関21の背面に装着する場合には、走行時の空気流が届かず空気が淀むため、ヒートシンク13の表面に放熱塗料を塗布することが好ましい。この放熱塗料とは、基材樹脂はアクリル系樹脂など特に限定されないが、熱放射率の高いシリカ、ジルコニア、炭化珪素、窒化アルミニウムなどを添加した塗料である。放熱塗料を塗布することにより、シートシンク13に伝わった熱が赤外線電磁波の形で放射されることになる。   The heat sink 13 is fixed to the heat radiation portion 113 of the thermoelectric element body 11 by screwing bolts 131 into screw holes 111 such as nuts. Since the heat sink 13 needs to release heat energy from the heat radiating portion 113 (cool the heat radiating portion 113), it is desirable that the heat sink 13 is made of a material having a high thermal conductivity, such as aluminum, iron, or copper. As shown in FIG. 6, the heat sink 13 is preferably laid out so as to be exposed to the air flow during traveling when the thermoelectric element 1 is mounted on the oil pan 22 of the internal combustion engine 21. Further, as shown in the figure, when mounting on the back surface of the internal combustion engine 21, it is preferable to apply a heat dissipating paint on the surface of the heat sink 13 because the air flow does not reach when traveling and the air stagnates. The heat-dissipating paint is a paint added with silica, zirconia, silicon carbide, aluminum nitride or the like having a high thermal emissivity, although the base resin is not particularly limited such as an acrylic resin. By applying the heat radiation paint, the heat transmitted to the sheet sink 13 is radiated in the form of infrared electromagnetic waves.

図1Bに示す温度センサユニット3は、温度センサと、当該温度センサで計測された温度データを送信する通信回路を含むマイクロチップと、二次電池がユニット化されてなり、その電源としての熱電素子1の出力端子14に電線31が接続される。電線31は温度センサユニット3を装着する部位と熱電素子1を装着する部位とを結ぶに必要な長さとされている。このように熱電素子1と温度センサユニット3を分離して構成することで、それぞれにとって最適な部位に装着することができ、またマイクロチップや二次電池といった耐熱性に問題がある部品を熱電素子1が装着される高熱部から離間させることができる。   A temperature sensor unit 3 shown in FIG. 1B includes a temperature sensor, a microchip including a communication circuit that transmits temperature data measured by the temperature sensor, and a secondary battery as a unit. An electric wire 31 is connected to one output terminal 14. The electric wire 31 has a length necessary for connecting a portion where the temperature sensor unit 3 is mounted and a portion where the thermoelectric element 1 is mounted. By separating the thermoelectric element 1 and the temperature sensor unit 3 from each other in this way, the thermoelectric element can be mounted at an optimum site for each, and a component having a problem of heat resistance such as a microchip or a secondary battery can be used. 1 can be separated from the high heat part to which 1 is mounted.

本例の熱電素子1は、図6に示すように内燃機関21の壁面やオイルパン22に接着剤15により接着される。本例で用いて好ましい接着剤15は、基材樹脂としてはエポキシ系樹脂やメタクリレート系樹脂など特に限定されないが、アルミニウムや銅など熱伝導率の高い金属が添加された接着剤(パテ材を含む)である。市販品としてITWデブコン社製HR−303パテ材や、ITWプレクサス社製構造用接着剤Mシリーズなどを例示することができる。こうした熱伝導性金属を含有する接着剤15を装着基板12及び/又は内燃機関21の壁面やオイルパン22に塗布し硬化させることにより、内燃機関21の熱エネルギを装着基板12に対して効率的に伝達することができる。   The thermoelectric element 1 of this example is bonded to the wall surface of the internal combustion engine 21 and the oil pan 22 with an adhesive 15 as shown in FIG. A preferable adhesive 15 used in this example is not particularly limited as an epoxy resin or a methacrylate resin as a base resin, but includes an adhesive (including a putty material) to which a metal having high thermal conductivity such as aluminum or copper is added. ). Examples of commercially available products include HR-303 putty material manufactured by ITW Debcon, and structural adhesive M series manufactured by ITW Plexus. The adhesive 15 containing such a heat conductive metal is applied to the mounting substrate 12 and / or the wall surface of the internal combustion engine 21 and the oil pan 22 and cured, whereby the thermal energy of the internal combustion engine 21 is efficiently applied to the mounting substrate 12. Can be communicated to.

なお、図3に示すように、装着基板12の接着面を凹凸状に加工してもよい。こうすることで、装着基板12の凸部は直接的に内燃機関21に接触する一方、凹部は接着剤15による接着効果を発揮するので、より効率的に熱エネルギを伝達することができる。   In addition, as shown in FIG. 3, you may process the adhesion surface of the mounting substrate 12 in uneven | corrugated shape. By doing so, the convex portion of the mounting substrate 12 directly contacts the internal combustion engine 21, while the concave portion exhibits an adhesive effect by the adhesive 15, so that heat energy can be transmitted more efficiently.

次に熱電素子1の装着部位について説明する。図4は本例の熱電素子1を装着する車両2を示すフロント部側面図、図5はエンジンルームを床裏から見た底面図、図6は図5のVI-VI線に沿う断面図、図7は図6のVII矢視図、図8は図6のVIII矢視図である。   Next, the mounting part of the thermoelectric element 1 will be described. 4 is a side view of the front portion of the vehicle 2 on which the thermoelectric element 1 of this example is mounted, FIG. 5 is a bottom view of the engine room as seen from behind the floor, and FIG. 6 is a sectional view taken along the line VI-VI in FIG. 7 is a view taken along arrow VII in FIG. 6, and FIG. 8 is a view taken along arrow VIII in FIG.

図5のエンジンルームの床裏を示す図において、21が内燃機関の底面、22がオイルパン、23がフロントクロスメンバ、24がエンジンアンダーカバー(ハーフタイプ)である。また、図6において、25がエンジンアンダーカバー(古タイプ)、26がラヂエータである。本例の熱電素子1は、図6に示すように、車両進行方向前側のオイルパン22の前面(ここに装着する熱電素子を1Aと称する)か、あるいは車両進行方向後側の内燃機関21の背面211(ここに装着する熱電素子を1Bと称する)に装着される。   In the figure showing the floor behind the engine room in FIG. 5, 21 is a bottom surface of the internal combustion engine, 22 is an oil pan, 23 is a front cross member, and 24 is an engine under cover (half type). In FIG. 6, 25 is an engine undercover (old type), and 26 is a radiator. As shown in FIG. 6, the thermoelectric element 1 of this example is a front surface of the oil pan 22 on the front side in the vehicle traveling direction (the thermoelectric element attached here is referred to as 1A) or the internal combustion engine 21 on the rear side in the vehicle traveling direction. It is attached to the rear surface 211 (the thermoelectric element attached here is referred to as 1B).

オイルパン22の前面に装着した熱電素子1Aを図7に示し、内燃機関21の背面211に装着した熱電素子1Bを図8に示す。なお、図6において、実線で示すハーフタイプのエンジンアンダーカバー24は、フロントクロスメンバ23から内燃機関21の前部に至る範囲に設けられ、飛び石等による内燃機関21の損傷を防止する部品である。これに対して、点線で示すフルタイプのエンジンアンダーカバー25は、フロントクロスメンバ23から内燃機関21の後部までの範囲に設けられ、同じく飛び石等による内燃機関21の損傷を防止する部品である。   A thermoelectric element 1A attached to the front surface of the oil pan 22 is shown in FIG. 7, and a thermoelectric element 1B attached to the rear surface 211 of the internal combustion engine 21 is shown in FIG. In FIG. 6, a half-type engine under cover 24 shown by a solid line is provided in a range from the front cross member 23 to the front portion of the internal combustion engine 21, and is a component that prevents damage to the internal combustion engine 21 due to a stepping stone or the like. . On the other hand, the full-type engine under cover 25 indicated by a dotted line is provided in a range from the front cross member 23 to the rear part of the internal combustion engine 21, and is a component that similarly prevents damage to the internal combustion engine 21 due to a stepping stone or the like.

オイルパン22の前面に装着した熱電素子1Aにあっては、図6に示すように、エンジンアンダーカバー24又は25による陰部に接着されている。これにより、熱電素子1Aに対するチッピングを防止することができる。また、図6に示すように、オイルパン22の前面は、ラヂエータ26を通過した走行時の空気流が最も多く流れる流路に位置するのでヒートシンク13による放熱部113の冷却能力が高く、これにより発電量も増加することになる。   As shown in FIG. 6, the thermoelectric element 1 </ b> A mounted on the front surface of the oil pan 22 is bonded to the shadow of the engine under cover 24 or 25. Thereby, chipping with respect to the thermoelectric element 1A can be prevented. Further, as shown in FIG. 6, the front surface of the oil pan 22 is located in a flow path through which the air flow during traveling that has passed through the radiator 26 flows most, so that the heat sink 13 has a high cooling capacity by the heat sink 13. Power generation will also increase.

これに対して、内燃機関21の背面211に装着した熱電素子1Bにあっては、チッピングによる損傷を受け難い一方、走行時の空気流が淀むためヒートシンク13による放熱部113の冷却能力が劣る。しかしながら、上述したとおりヒートシンク13に放熱塗料を塗布するなどすることにより放熱部113の冷却能力を補うことができる。   On the other hand, the thermoelectric element 1B mounted on the rear surface 211 of the internal combustion engine 21 is not easily damaged by chipping. On the other hand, since the air flow during running is stagnant, the cooling ability of the heat radiating portion 113 by the heat sink 13 is inferior. However, the cooling capability of the heat radiation part 113 can be supplemented by applying a heat radiation paint to the heat sink 13 as described above.

以上のとおり、本例の熱電素子搭載車両によれば以下の効果を奏する。
(1)本例では、熱伝導性金属を含有する接着剤15を介して熱電素子1を熱源に接着するので、熱源の熱エネルギを効率的に吸熱部112に伝達することができ、その結果、発電量を増加させることができる。また、接着剤15による固定であるため、装着時は脱落しないがデータ収集が終了すれば取り外すことができるので、内燃機関21などに特別な加工を施す必要もない。
As described above, the thermoelectric element-equipped vehicle of this example has the following effects.
(1) In this example, since the thermoelectric element 1 is bonded to the heat source via the adhesive 15 containing the heat conductive metal, the heat energy of the heat source can be efficiently transmitted to the heat absorbing unit 112, and as a result. The amount of power generation can be increased. In addition, since it is fixed by the adhesive 15, it does not fall off at the time of mounting, but it can be removed when the data collection is completed, so there is no need to perform special processing on the internal combustion engine 21 or the like.

(2)本例では、図3に示すように装着基板12の装着面を凹凸状に加工しているので、凸部は直接的に内燃機関21に接触する一方、凹部は接着剤15による接着効果を発揮する。これにより、より効率的に熱エネルギを伝達することができる。 (2) In this example, as shown in FIG. 3, the mounting surface of the mounting substrate 12 is processed into a concavo-convex shape, so that the convex portion directly contacts the internal combustion engine 21 while the concave portion is bonded by the adhesive 15. Demonstrate the effect. Thereby, heat energy can be transmitted more efficiently.

(3)本例では、熱電素子1Aを車両進行方向前側のオイルパン22の前面に装着するので、ラヂエータ26を通過した走行時の空気流が最も多く流れる流路に位置し、ヒートシンク13による放熱部113の冷却能力が高く、これにより発電量が増加する。 (3) In this example, since the thermoelectric element 1A is mounted on the front surface of the oil pan 22 on the front side in the vehicle traveling direction, the thermoelectric element 1A is positioned in the flow path through which the air flow during traveling that has passed through the radiator 26 flows most. The cooling capacity of the part 113 is high, and this increases the amount of power generation.

(4)本例では、熱電素子1Aをエンジンアンダーカバー24又は25による陰部に接着するので、熱電素子1Aに対するチッピングを防止することができる。 (4) In this example, since the thermoelectric element 1A is adhered to the shadow of the engine under cover 24 or 25, chipping with respect to the thermoelectric element 1A can be prevented.

(5)本例では、熱電素子1Bを内燃機関21の背面211に装着するので、チッピングによる損傷を受け難い。また、走行時の空気流が淀むためヒートシンク13による放熱部113の冷却能力が劣るが、ヒートシンク13に放熱塗料を塗布することにより放熱部113の冷却能力を補うことができる。 (5) In this example, since the thermoelectric element 1B is mounted on the back surface 211 of the internal combustion engine 21, it is difficult to be damaged by chipping. In addition, since the air flow during running is stagnant, the cooling capacity of the heat radiating portion 113 by the heat sink 13 is inferior, but the cooling capacity of the heat radiating portion 113 can be supplemented by applying a heat radiating paint to the heat sink 13.

(6)本例では、熱電素子1と温度センサユニット3を分離して構成するので、それぞれにとって最適な部位に装着することができ、またマイクロチップや二次電池といった耐熱性に問題がある部品を熱電素子1が装着される高熱部から離間させることができる。 (6) In this example, since the thermoelectric element 1 and the temperature sensor unit 3 are separately configured, the thermoelectric element 1 and the temperature sensor unit 3 can be mounted at optimal sites for each, and there is a problem with heat resistance such as a microchip or a secondary battery. Can be separated from the high-heat part to which the thermoelectric element 1 is mounted.

上記ヒートシンク13は本発明に係る放熱部材に相当する。   The heat sink 13 corresponds to a heat radiating member according to the present invention.

1,1A,1B…熱電素子
11…熱電素子本体
11p,11n…熱電材料
111…ネジ孔
112…吸熱部
113…放熱部
12…装着基板
121…ボルト
13…ヒートシンク
131…ボルト
14…出力端子
2…車両
21…内燃機関
211…背面
22…オイルパン
23…フロントクロスメンバ
24…エンジンアンダーカバー(ハーフタイプ)
25…エンジンアンダーカバー(フルタイプ)
26…ラヂエータ
3…温度センサユニット
31…電線
DESCRIPTION OF SYMBOLS 1,1A, 1B ... Thermoelectric element 11 ... Thermoelectric element main body 11p, 11n ... Thermoelectric material 111 ... Screw hole 112 ... Heat absorption part 113 ... Heat sink part 12 ... Mounting board 121 ... Bolt 13 ... Heat sink 131 ... Bolt 14 ... Output terminal 2 ... Vehicle 21 ... Internal combustion engine 211 ... Back 22 ... Oil pan 23 ... Front cross member 24 ... Engine under cover (half type)
25 ... Engine under cover (full type)
26 ... Radiator 3 ... Temperature sensor unit 31 ... Electric wire

Claims (7)

吸熱部と放熱部との間に熱電材料が設けられた熱電素子本体と、前記吸熱部に熱的に接続された装着基板と、前記放熱部に熱的に接続された放熱部材とを有する熱電素子が、熱伝導性金属を含有する接着剤を介して内燃機関に接着されている熱電素子搭載車両。   A thermoelectric element having a thermoelectric element body provided with a thermoelectric material between the heat absorbing part and the heat radiating part, a mounting substrate thermally connected to the heat absorbing part, and a heat radiating member thermally connected to the heat radiating part. A thermoelectric element-equipped vehicle in which the element is bonded to the internal combustion engine via an adhesive containing a heat conductive metal. 前記装着基板の装着面は、凹凸状に形成されている請求項1に記載の熱電素子搭載車両。   The thermoelectric element-equipped vehicle according to claim 1, wherein a mounting surface of the mounting substrate is formed in an uneven shape. 前記熱電素子は、車両進行方向前側の前記内燃機関のオイルパンの前面に接着されている請求項1に記載の熱電素子搭載車両。   The thermoelectric element-equipped vehicle according to claim 1, wherein the thermoelectric element is bonded to a front surface of an oil pan of the internal combustion engine on the front side in the vehicle traveling direction. 前記熱電素子は、前記オイルパンの前面であってエンジンアンダーカバーによる陰部に接着されている請求項3に記載の熱電素子搭載車両。   The thermoelectric element-equipped vehicle according to claim 3, wherein the thermoelectric element is adhered to a front portion of the oil pan and a shadow portion by an engine undercover. 前記熱電素子は、車両進行方向後側の前記内燃機関の背面に接着されている請求項1に記載の熱電素子搭載車両。   The thermoelectric element-equipped vehicle according to claim 1, wherein the thermoelectric element is bonded to a back surface of the internal combustion engine on the rear side in the vehicle traveling direction. 前記放熱部材は、放熱性塗料が塗布されている請求項1〜5のいずれか一項に記載の熱電素子搭載車両。   The thermoelectric element-equipped vehicle according to any one of claims 1 to 5, wherein the heat dissipating member is coated with a heat dissipating paint. 前記熱電素子の出力端子に、電線を介して電力負荷部品が接続されている請求項1〜6のいずれか一項に記載の熱電素子搭載車両。   The thermoelectric element-equipped vehicle according to any one of claims 1 to 6, wherein a power load component is connected to an output terminal of the thermoelectric element via an electric wire.
JP2013113735A 2013-05-30 2013-05-30 Thermoelectric element mounting vehicle Pending JP2014232831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113735A JP2014232831A (en) 2013-05-30 2013-05-30 Thermoelectric element mounting vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113735A JP2014232831A (en) 2013-05-30 2013-05-30 Thermoelectric element mounting vehicle

Publications (1)

Publication Number Publication Date
JP2014232831A true JP2014232831A (en) 2014-12-11

Family

ID=52126042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113735A Pending JP2014232831A (en) 2013-05-30 2013-05-30 Thermoelectric element mounting vehicle

Country Status (1)

Country Link
JP (1) JP2014232831A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181845A (en) * 2019-04-23 2020-11-05 東洋インキScホールディングス株式会社 Thermoelectric conversion member, thermoelectric conversion element, and thermoelectric conversion device
JP2021093474A (en) * 2019-12-12 2021-06-17 いすゞ自動車株式会社 Power generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181845A (en) * 2019-04-23 2020-11-05 東洋インキScホールディングス株式会社 Thermoelectric conversion member, thermoelectric conversion element, and thermoelectric conversion device
JP7354577B2 (en) 2019-04-23 2023-10-03 東洋インキScホールディングス株式会社 Thermoelectric conversion members, thermoelectric conversion elements, and thermoelectric conversion devices
JP2021093474A (en) * 2019-12-12 2021-06-17 いすゞ自動車株式会社 Power generator

Similar Documents

Publication Publication Date Title
JP5714077B2 (en) Cooling device for connecting conductor and power conversion device using the same
JP2018536273A (en) Power battery pack and electric vehicle having the same
US20110000516A1 (en) Flexible assemblies with integrated thermoelectric modules suitable for use in extracting power from or dissipating heat from fluid conduits
EP1594173A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2006294935A (en) High efficiency and low loss thermoelectric module
WO2004001865A1 (en) Thermoelectric element and electronic component module and portable electronic apparatus using it
JP4131029B2 (en) Thermoelectric conversion module
JP6430781B2 (en) Thermoelectric module
JP2014232831A (en) Thermoelectric element mounting vehicle
WO2012091048A1 (en) Thermoelectric conversion member
CN108987359B (en) Heat sink and heat sink assembly
KR101753322B1 (en) Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same
CN109286319A (en) DC-DC converter
WO2018158979A1 (en) Thermoelectric conversion device
GB2381377A (en) Thermoelectric power generation device
JP6278879B2 (en) Thermoelectric module
WO2018158980A1 (en) Thermoelectric conversion device
KR101205093B1 (en) Heat Radiation Device for Photovolatic Power Generation Micro-Inverter
JP2014110245A (en) Thermoelectric conversion device
JP2011082272A (en) Thermoelectric cooling device
KR101673456B1 (en) Heat absorption structure having heat spread bands in a thermoelectric generator module
JP2014116476A (en) Cooling/heating device
JP2019029504A (en) Thermoelectric conversion device
US20230251001A1 (en) Graphene thermal conductivity using highly conductive isotropic cladding
JP2017152618A (en) Thermoelectric module and manufacturing method thereof and thermoelectric device