JP2014231805A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2014231805A
JP2014231805A JP2013113896A JP2013113896A JP2014231805A JP 2014231805 A JP2014231805 A JP 2014231805A JP 2013113896 A JP2013113896 A JP 2013113896A JP 2013113896 A JP2013113896 A JP 2013113896A JP 2014231805 A JP2014231805 A JP 2014231805A
Authority
JP
Japan
Prior art keywords
fuel injection
combustion
fuel
ignition
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013113896A
Other languages
Japanese (ja)
Other versions
JP6008796B2 (en
Inventor
公典 甲村
Kiminori Komura
公典 甲村
森田 照義
Teruyoshi Morita
照義 森田
北村 徹
Toru Kitamura
徹 北村
正信 高沢
Masanobu Takazawa
正信 高沢
雅季 鈴木
Masaki Suzuki
雅季 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013113896A priority Critical patent/JP6008796B2/en
Publication of JP2014231805A publication Critical patent/JP2014231805A/en
Application granted granted Critical
Publication of JP6008796B2 publication Critical patent/JP6008796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device for an internal combustion engine that can secure transition from spark ignition combustion to compression ignition combustion for stable combustion and that can maintain good exhaust characteristics.SOLUTION: Fuel for spark combustion to increase a gas temperature TGAS in a combustion chamber is injected by a direct-injection fuel injection valve 6D and spark ignition is performed by an ignition plug 7. A lower limit value of spark fuel injection amount QTRG is set so that the gas temperature TGAS can be increased to a temperature TCIG enabling compression ignition by spark ignition combustion of the injected fuel. An upper limit value of the spark fuel injection amount QTRG is set so that NOx discharge amount MNOx is a predetermined upper limit value or less. The spark fuel injection amount QTRG [mm/st] is set to satisfy the following formula: V×8×10≤QTRG≤3.7/N, where V indicates exhaust amount [cc] per cylinder and N indicates the number of cylinders.

Description

本発明は、内燃機関の制御装置に関し、特に燃焼室内に燃料を噴射する筒内燃料噴射弁及び点火プラグを備え、燃焼室内に供給される混合気を圧縮着火させる圧縮着火燃焼モードでの運転が可能な内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to an operation in a compression ignition combustion mode that includes an in-cylinder fuel injection valve that injects fuel into a combustion chamber and an ignition plug and compresses and ignites an air-fuel mixture supplied into the combustion chamber. The present invention relates to a control device for a possible internal combustion engine.

特許文献1には、燃焼室内に燃料を噴射する筒内燃料噴射弁及び点火プラグを備え、燃焼室内に供給される混合気を、点火プラグによる点火によって局所的に燃焼させ、燃焼室内の混合気温度を上昇させて混合気全体を圧縮着火させる圧縮着火燃焼モードでの運転を行う内燃機関の制御装置が示されている。この装置によれば、例えば機関の高負荷運転領域では、点火プラグによる火花点火燃焼モードでの運転が行われ、所定の部分負荷運転領域において上記圧縮着火燃焼モードでの運転が行われる。   In Patent Document 1, an in-cylinder fuel injection valve for injecting fuel into a combustion chamber and an ignition plug are provided, and an air-fuel mixture supplied into the combustion chamber is locally combusted by ignition by the ignition plug, and an air-fuel mixture in the combustion chamber is obtained. There is shown a control device for an internal combustion engine that operates in a compression ignition combustion mode in which the temperature of the mixture is increased to compress and ignite the entire mixture. According to this device, for example, in the high load operation region of the engine, the operation in the spark ignition combustion mode by the spark plug is performed, and in the predetermined partial load operation region, the operation in the compression ignition combustion mode is performed.

特開2002−161780号公報JP 2002-161780 A

特許文献1に示される装置では、局所的な燃焼を発生させるために筒内燃料噴射弁によって噴射する燃料量については具体的な開示がなく、局所的な第1段階の火花着火燃焼から圧縮着火による第2段階の燃焼へ確実に移行させ、常に安定した燃焼を得るためには、より具体的な検討が必要であった。また、安定した燃焼を得るために燃料噴射量を増加させると、NOx排出量が増加するという弊害があるため、燃料噴射量の設定においてはこの点も考慮する必要がある。   In the apparatus shown in Patent Document 1, there is no specific disclosure about the amount of fuel injected by the in-cylinder fuel injection valve in order to generate local combustion, and compression ignition is performed from local first-stage spark ignition combustion. In order to make sure to shift to the second stage of combustion and always obtain stable combustion, a more specific study was necessary. Further, if the fuel injection amount is increased in order to obtain stable combustion, there is a detrimental effect that the NOx emission amount increases. Therefore, this point needs to be taken into consideration when setting the fuel injection amount.

本発明は上述した点に着目してなされたものであり、火花着火燃焼から圧縮着火燃焼へ確実に移行させて安定した燃焼を実現するとともに、良好な排気特性を維持することができる内燃機関の制御装置を提供することを目的とする。   The present invention has been made by paying attention to the above-mentioned points, and is an internal combustion engine capable of stably shifting from spark ignition combustion to compression ignition combustion to achieve stable combustion and maintaining good exhaust characteristics. An object is to provide a control device.

上記目的を達成するため請求項1に記載の発明は、吸気ポート(2a)に燃料を噴射するポート燃料噴射手段(6P)と、燃焼室内に燃料を噴射する筒内燃料噴射手段(6D)と、燃焼室内に設けられた点火手段(7)とを備え、前記燃焼室内に供給される燃料と空気の混合気を圧縮着火させる圧縮着火燃焼モードでの運転が可能な内燃機関の制御装置において、前記圧縮着火燃焼モードにおいて、前記筒内燃料噴射手段(6D)によって圧縮上死点近傍において燃料噴射を実行し、該噴射された燃料を前記点火手段(7)を用いて着火させることにより前記混合気の温度(TGAS)を上昇させ、該温度上昇によって前記混合気を圧縮着火させる燃焼制御手段を備え、前記筒内燃料噴射手段による1行程当たりの燃料噴射量QTRG[mm3/st]は下記式(A)を満たすように設定されることを特徴とする:
V×8×10-4≦QTRG≦3.7/N (A)
ここで、Vは1気筒当たりの排気量[cc],Nは前記機関の気筒数である。
In order to achieve the above object, the invention described in claim 1 includes port fuel injection means (6P) for injecting fuel into the intake port (2a), and in-cylinder fuel injection means (6D) for injecting fuel into the combustion chamber. An internal combustion engine control device comprising an ignition means (7) provided in the combustion chamber and capable of operating in a compression ignition combustion mode for compressing and igniting a mixture of fuel and air supplied into the combustion chamber; In the compression ignition combustion mode, the in-cylinder fuel injection means (6D) performs fuel injection in the vicinity of compression top dead center, and the injected fuel is ignited using the ignition means (7), thereby mixing the fuel. Combustion control means for raising the temperature of the gas (TGAS) and compressing and igniting the air-fuel mixture by the temperature rise is provided, and the fuel injection amount QTRG [mm] per stroke by the in-cylinder fuel injection means 3 / st] is set to satisfy the following formula (A):
V × 8 × 10 −4 ≦ QTRG ≦ 3.7 / N (A)
Here, V is the displacement [cc] per cylinder, and N is the number of cylinders of the engine.

この構成によれば、燃料噴射量QTRGを下限値(V×8×10-4)以上とすることで、圧縮着火燃焼への確実な移行を実現する熱量を発生させることができ、上限値(3.7/N)以下とすることで、発熱量が大きくなってNOx排出量が増加することを抑制できる。その結果、最小限の燃料噴射量で安定した圧縮着火燃焼を実現するとともに良好な排気特性を維持し、それによって燃費の向上効果も得ることができる。 According to this configuration, by setting the fuel injection amount QTRG to a lower limit value (V × 8 × 10 −4 ) or more, it is possible to generate a heat amount that realizes a reliable transition to compression ignition combustion, and an upper limit value ( 3.7 / N) or less, it is possible to suppress an increase in the amount of generated heat and an increase in the NOx emission amount. As a result, it is possible to achieve stable compression ignition combustion with a minimum fuel injection amount and maintain good exhaust characteristics, thereby obtaining an effect of improving fuel consumption.

請求項2に記載の発明は、請求項1に記載の内燃機関の制御装置において、前記燃料噴射量QTRGの下限値は、燃焼時の発熱量によって筒内ガス温度(TGAS)が50[°K]上昇するように設定されることを特徴とする。   According to a second aspect of the present invention, in the control device for an internal combustion engine according to the first aspect, the lower limit value of the fuel injection amount QTRG is such that the in-cylinder gas temperature (TGAS) is 50 [° K depending on the amount of heat generated during combustion. ] It is set to rise.

この構成によれば、筒内ガス温度を50[°K]上昇させることによって、安定した圧縮着火燃焼を実現することが可能となる。   According to this configuration, it is possible to realize stable compression ignition combustion by increasing the in-cylinder gas temperature by 50 [° K].

請求項3に記載の発明は、請求項1または2に記載の内燃機関の制御装置において、前記筒内燃料噴射手段と前記点火手段との距離L[mm]は、下記式(B)により設定されることを特徴とする:
L=−7×N+61 (B)。
According to a third aspect of the present invention, in the control device for an internal combustion engine according to the first or second aspect, a distance L [mm] between the in-cylinder fuel injection means and the ignition means is set by the following formula (B): Characterized by:
L = -7 * N + 61 (B).

この構成によれば、筒内燃料噴射手段と点火手段との距離L[mm]が式(B)を用いて設定されるので、燃料噴射量QTRGを上限値(3.7/N)以下としてNOx排出量を抑制しつつ火花着火燃焼を確実に発生させることができる。   According to this configuration, since the distance L [mm] between the in-cylinder fuel injection means and the ignition means is set using the formula (B), the fuel injection amount QTRG is set to the upper limit value (3.7 / N) or less. Spark ignition combustion can be reliably generated while suppressing NOx emission.

本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図である。It is a figure which shows the structure of the internal combustion engine concerning one Embodiment of this invention, and its control apparatus. 燃料噴射弁(6D,6P)の配置を示す図である。It is a figure which shows arrangement | positioning of a fuel injection valve (6D, 6P). 圧縮着火運転を行うエンジン運転領域(HCCI)を示す図である。It is a figure which shows the engine operation area | region (HCCI) which performs compression ignition operation. 圧縮行程における燃焼室内のガス温度(TGAS)の推移を示すタイムチャートである。It is a time chart which shows transition of the gas temperature (TGAS) in a combustion chamber in a compression stroke. 1気筒当たりの排気量Vと直噴燃料噴射量の下限値(QTRGMIN)との関係を示す図である。It is a figure which shows the relationship between the exhaust amount V per cylinder, and the lower limit (QTRGMIN) of the direct injection fuel injection amount. 火花着火による発熱量(HQTRG)とNOx発生量(MNOx)との関係を示す図である。It is a figure which shows the relationship between the emitted-heat amount (HQTRG) by spark ignition, and NOx generation amount (MNOx). 気筒数(N)と、直噴燃料噴射量の上限値(QTRGMAX)との関係を示す図である。It is a figure which shows the relationship between the number of cylinders (N) and the upper limit (QTRGMAX) of the direct injection fuel injection amount. 筒内燃料噴射弁(6D)と点火プラグ(7)との距離(L)の設定手法を説明するための図である。It is a figure for demonstrating the setting method of the distance (L) of a cylinder fuel injection valve (6D) and a spark plug (7).

以下本発明の実施の形態を図面を参照して説明する。
図1は、本発明の一実施形態にかかる内燃機関とその制御装置の構成を示す図である。図1において、4気筒を有する内燃機関(以下単に「エンジン」という)1は、吸気弁及び排気弁と、これらを駆動するカムを備えるとともに、弁作動特性可変機構40を備えている。弁作動特性可変機構40は、吸気弁の弁リフト量(最大リフト量)及び開角(開弁期間)を、高速用作動特性と低速用作動特性とに切り換える吸気弁リフト量可変機構と、排気弁の弁リフト量(最大リフト量)及び開角(開弁期間)を、高速用作動特性と低速用作動特性とに切り換える排気弁リフト量可変機構と、吸気弁を駆動するカムの、クランク軸回転角度を基準とした作動位相を連続的に変更することにより、吸気弁の作動位相を変更する吸気弁作動位相可変機構と、排気弁を駆動するカムの、クランク軸回転角度を基準とした作動位相を連続的に変更することにより排気弁の作動位相と変更する排気弁作動位相可変機構とを有する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an internal combustion engine and its control device according to an embodiment of the present invention. In FIG. 1, an internal combustion engine (hereinafter simply referred to as “engine”) 1 having four cylinders includes an intake valve and an exhaust valve, a cam for driving them, and a valve operation characteristic variable mechanism 40. The variable valve operation characteristic mechanism 40 includes an intake valve lift variable mechanism that switches a valve lift amount (maximum lift amount) and an opening angle (valve opening period) of the intake valve between a high-speed operation characteristic and a low-speed operation characteristic; Exhaust valve lift amount variable mechanism that switches the valve lift amount (maximum lift amount) and opening angle (valve opening period) between high speed operation characteristics and low speed operation characteristics, and the crankshaft of the cam that drives the intake valve The intake valve operating phase variable mechanism that changes the operating phase of the intake valve by continuously changing the operating phase based on the rotation angle, and the cam that drives the exhaust valve, based on the crankshaft rotation angle It has an exhaust valve operating phase variable mechanism that changes the operating phase of the exhaust valve by changing the phase continuously.

エンジン1の吸気通路2の途中にはスロットル弁3が配されている。スロットル弁3には、スロットル弁3を駆動するアクチュエータ8が接続されており、アクチュエータ8は、電子制御ユニット(以下「ECU」という)5によりその作動が制御される。   A throttle valve 3 is arranged in the intake passage 2 of the engine 1. An actuator 8 that drives the throttle valve 3 is connected to the throttle valve 3, and the operation of the actuator 8 is controlled by an electronic control unit (hereinafter referred to as “ECU”) 5.

エンジン1は、各気筒の吸気弁の少し上流側に気筒毎に設けられ、吸気通路2の吸気ポート内に燃料を噴射するポート燃料噴射弁6Pと、各気筒の燃焼室内に直接燃料を噴射する筒内燃料噴射弁6Dとを備えている。各噴射弁6P,6Dは図示しない燃料ポンプに接続されていると共にECU5に電気的に接続されて当該ECU5からの信号により開弁時期(燃料噴射時期)及び開弁時間(燃料噴射時間)が制御される。エンジン1の各気筒の点火プラグ7は、ECU5に接続されており、ECU5は点火プラグ7に点火信号を供給し、点火時期制御を行う。   The engine 1 is provided for each cylinder slightly upstream of the intake valve of each cylinder, and a port fuel injection valve 6P that injects fuel into the intake port of the intake passage 2 and directly injects fuel into the combustion chamber of each cylinder. And an in-cylinder fuel injection valve 6D. Each injection valve 6P, 6D is connected to a fuel pump (not shown) and is electrically connected to the ECU 5, and the valve opening timing (fuel injection timing) and the valve opening time (fuel injection time) are controlled by signals from the ECU 5. Is done. The ignition plug 7 of each cylinder of the engine 1 is connected to the ECU 5, and the ECU 5 supplies an ignition signal to the ignition plug 7 to perform ignition timing control.

スロットル弁3の上流側には、吸入空気量GAIR[g/sec]を検出する吸入空気量センサ11及び吸気温TAを検出する吸気温センサ12が設けられている。また、スロットル弁3にはスロットル弁開度THを検出するスロットル弁開度センサ13が連結されている。スロットル弁3の下流には吸気圧PBAを検出する吸気圧センサ14が取付けられており、エンジン1の本体には、エンジン冷却水温TWを検出するエンジン冷却水温センサ15が取り付けられている。エンジン1の各気筒の燃焼室には燃焼室内の圧力(筒内圧)PCYLを検出する筒内圧センサ16が設けられている。さらに、エンジン1の排気通路4には、及び排気温度TEを検出する排気温センサ18が設けられている。これらのセンサ11〜16、18の検出信号は、ECU5に供給される。なお、排気通路4には排気浄化装置(図示せず)が設けられている。   An intake air amount sensor 11 that detects the intake air amount GAIR [g / sec] and an intake air temperature sensor 12 that detects the intake air temperature TA are provided on the upstream side of the throttle valve 3. The throttle valve 3 is connected to a throttle valve opening sensor 13 for detecting the throttle valve opening TH. An intake pressure sensor 14 for detecting the intake pressure PBA is attached downstream of the throttle valve 3, and an engine coolant temperature sensor 15 for detecting the engine coolant temperature TW is attached to the main body of the engine 1. An in-cylinder pressure sensor 16 for detecting a pressure (in-cylinder pressure) PCYL in the combustion chamber is provided in the combustion chamber of each cylinder of the engine 1. Further, an exhaust temperature sensor 18 for detecting the exhaust temperature TE is provided in the exhaust passage 4 of the engine 1. Detection signals from these sensors 11 to 16 and 18 are supplied to the ECU 5. The exhaust passage 4 is provided with an exhaust purification device (not shown).

ECU5には、エンジン1の回転に同期する角度パラメータを検出する回転角度パラメータ検出部17が接続されており、回転角度パラメータ検出部17は、エンジン1のクランク軸(図示せず)の回転角度を検出するクランク角度位置センサ、エンジン1の吸気弁を駆動するカムが固定された吸気カム軸の回転角度を検出する吸気カム角度位置センサ、及びエンジン1の排気弁を駆動するカムが固定された排気カム軸の回転角度を検出する排気カム角度位置センサを有する。回転角度パラメータ検出部17により、クランク軸の回転角度及び各カム軸の回転角度に応じた信号がECU5に供給される。クランク角度位置センサは、一定クランク角周期毎(例えば6度周期)に発生するパルス(以下「CRKパルス」という)と、クランク軸の所定角度位置を特定するパルスと、各気筒の吸入行程開始時の上死点(TDC)で発生するパルス(以下「TDCパルス」という)とを出力する。これらのパルスは、燃料噴射時期、点火時期等の各種タイミング制御及びエンジン回転数(エンジン回転速度)NEの検出に使用される。吸気カム角度位置センサ及び排気カム角度位置センサは、それぞれ吸気カム軸及び排気カム軸が所定角度(例えば1度)回転する毎にパルスを出力する。吸気カム角度位置センサの出力と、クランク角度位置センサより出力との相対関係から、吸気弁の作動位相が検出され、排気カム角度位置センサの出力と、クランク角度位置センサより出力との相対関係から、排気弁の作動位相が検出される。   The ECU 5 is connected to a rotation angle parameter detection unit 17 that detects an angle parameter synchronized with the rotation of the engine 1. The rotation angle parameter detection unit 17 determines the rotation angle of a crankshaft (not shown) of the engine 1. Crank angle position sensor to detect, intake cam angle position sensor to detect the rotation angle of the intake cam shaft to which the cam that drives the intake valve of the engine 1 is fixed, and exhaust to which the cam that drives the exhaust valve of the engine 1 is fixed An exhaust cam angle position sensor that detects the rotation angle of the cam shaft is provided. A signal corresponding to the rotation angle of the crankshaft and the rotation angle of each camshaft is supplied to the ECU 5 by the rotation angle parameter detector 17. The crank angle position sensor includes a pulse (hereinafter referred to as “CRK pulse”) generated at every constant crank angle cycle (for example, a cycle of 6 degrees), a pulse for specifying a predetermined angular position of the crankshaft, and the start of the intake stroke of each cylinder. And a pulse generated at the top dead center (TDC) (hereinafter referred to as “TDC pulse”). These pulses are used for various timing controls such as fuel injection timing and ignition timing, and detection of engine speed (engine speed) NE. The intake cam angle position sensor and the exhaust cam angle position sensor output a pulse each time the intake cam shaft and the exhaust cam shaft rotate by a predetermined angle (for example, 1 degree). From the relative relationship between the output of the intake cam angle position sensor and the output from the crank angle position sensor, the operation phase of the intake valve is detected, and from the relative relationship between the output of the exhaust cam angle position sensor and the output from the crank angle position sensor The operating phase of the exhaust valve is detected.

ECU5には、エンジン1によって駆動される車両のアクセルペダルの踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ31、当該車両の走行速度(車速)VPを検出する車速センサ32、及び大気圧PAを検出する大気圧センサ33が接続されている。これらのセンサ31〜33の検出信号は、ECU5に供給される。   The ECU 5 includes an accelerator sensor 31 for detecting an accelerator pedal depression amount (hereinafter referred to as “accelerator pedal operation amount”) AP of a vehicle driven by the engine 1 and a vehicle speed sensor 32 for detecting a traveling speed (vehicle speed) VP of the vehicle. , And an atmospheric pressure sensor 33 for detecting the atmospheric pressure PA is connected. Detection signals of these sensors 31 to 33 are supplied to the ECU 5.

弁作動特性可変機構40は、吸気弁及び排気弁の最大リフト量及び開角(以下単に「リフト量」という)を、高速用作動特性と低速用作動特性とに切り換えるためのリフト量制御アクチュエータと、吸気弁及び排気弁の作動位相を連続的に変更するの作動位相制御アクチュエータとを備えており、それらの制御アクチュエータの作動は、ECU5により制御される。弁作動特性可変機構40としては、例えば特許2619696号公報、特開2008−106654号公報などに示される公知の動弁機構を使用することができる。   The variable valve operation characteristic mechanism 40 includes a lift amount control actuator for switching the maximum lift amount and the opening angle (hereinafter simply referred to as “lift amount”) of the intake valve and the exhaust valve between the high speed operation characteristic and the low speed operation characteristic. And an operation phase control actuator for continuously changing the operation phases of the intake valve and the exhaust valve, and the operation of these control actuators is controlled by the ECU 5. As the valve operating characteristic variable mechanism 40, for example, a known valve operating mechanism disclosed in Japanese Patent No. 2619696, Japanese Patent Application Laid-Open No. 2008-106654, and the like can be used.

なお、図示は省略しているが排気の一部を排気通路4から吸気通路2に還流する排気還流機構が設けられている。   Although not shown, an exhaust gas recirculation mechanism that recirculates part of the exhaust gas from the exhaust passage 4 to the intake passage 2 is provided.

ECU5は各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される演算プログラム及び演算結果等を記憶する記憶回路のほか、各種アクチュエータ、燃料噴射弁6P,6D、点火プラグ7に駆動信号を供給する出力回路を備えている。   The ECU 5 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, etc., and a central processing unit (hereinafter referred to as “CPU”). In addition to a storage circuit that stores a calculation program executed by the CPU, a calculation result, and the like, an output circuit that supplies drive signals to various actuators, fuel injection valves 6P and 6D, and a spark plug 7 is provided.

ECU5のCPUは、上記センサの検出信号に応じて、スロットル弁3の開度制御、燃料噴射制御(燃料噴射弁6P,6Dによる燃料噴射時期及び燃料噴射時間の制御)、点火時期制御、及び吸気弁及び排気弁の作動特性制御を行う。   The CPU of the ECU 5 controls the opening degree of the throttle valve 3, the fuel injection control (control of the fuel injection timing and the fuel injection time by the fuel injection valves 6P and 6D), the ignition timing control, and the intake air according to the detection signal of the sensor. Controls the operating characteristics of valves and exhaust valves.

図2は、ポート燃料噴射弁6P、筒内燃料噴射弁6D及び点火プラグ7の取り付け位置を説明するための図であり、ポート燃料噴射弁6Pは、吸気ポート2a内に燃料を噴射可能に、吸気弁21の少し上流側に配置され、筒内燃料噴射弁6Dは吸気弁21の近傍であって、点火プラグ7から距離Lを隔てた位置に配置され、点火プラグ7はエンジン1の気筒1aの頂部に配置されている。筒内燃料噴射弁6Dは、図に破線で示すように点火プラグ7に向けて燃料を噴射できる位置に単一の燃料噴射孔を有する。距離Lは、燃料噴射孔から点火プラグ7の放電電極までの距離として定義される。   FIG. 2 is a view for explaining the mounting positions of the port fuel injection valve 6P, the in-cylinder fuel injection valve 6D, and the spark plug 7. The port fuel injection valve 6P can inject fuel into the intake port 2a. The in-cylinder fuel injection valve 6D is disposed in the vicinity of the intake valve 21 and at a distance L from the spark plug 7, and the spark plug 7 is disposed in the cylinder 1a of the engine 1. It is arrange | positioned at the top. The in-cylinder fuel injection valve 6D has a single fuel injection hole at a position where fuel can be injected toward the spark plug 7 as indicated by a broken line in the drawing. The distance L is defined as the distance from the fuel injection hole to the discharge electrode of the spark plug 7.

本実施形態では、エンジン運転状態に応じて、前述した圧縮着火燃焼モードによる運転と、通常の火花点火燃焼モードによる運転とを切り換えて実行する。以下の説明では圧縮着火燃焼モードによる運転を「HCCI(Homogeneous Charge Compression Ignition)運転」といい、火花点火燃焼モードによる運転を「SI(Spark Ignition)運転」という。HCCI運転では、火花点火によって発生する局所的な燃焼(以下「火種燃焼」という)によって混合気(筒内ガス)の温度を上昇させて圧縮着火燃焼を発生させる運転が行われる。また、HCCI運転では、吸排気弁のリフト量を低速用作動特性に設定して内部排気還流量を増加させ、火花点火前の筒内ガス温度を高める制御が行われる。HCCI運転を行うことにより燃焼温度を低下させ、粒子状物質及びNOxの排出量を低減することができる。   In the present embodiment, the operation in the compression ignition combustion mode described above and the operation in the normal spark ignition combustion mode are switched and executed according to the engine operating state. In the following description, the operation in the compression ignition combustion mode is referred to as “HCCI (Homogeneous Charge Compression Ignition) operation”, and the operation in the spark ignition combustion mode is referred to as “SI (Spark Ignition) operation”. In the HCCI operation, an operation is performed in which the temperature of the air-fuel mixture (cylinder gas) is raised by local combustion generated by spark ignition (hereinafter referred to as “fire type combustion”) to generate compression ignition combustion. Further, in the HCCI operation, control is performed to increase the in-cylinder gas temperature before spark ignition by setting the lift amount of the intake / exhaust valve to the low speed operation characteristic to increase the internal exhaust gas recirculation amount. By performing the HCCI operation, the combustion temperature can be lowered, and the emission amount of particulate matter and NOx can be reduced.

図4は、エンジン回転数NE及びエンジン1の要求トルクTRQによって定義されるエンジン運転領域を示す図であり、HCCI運転を行う運転領域は、比較的低負荷の運転領域であり、ハッチングを付して示されている。HCCI運転領域以外の領域は、SI運転領域である。要求トルクTRQは、アクセルペダル操作量APにほぼ比例するように設定される。   FIG. 4 is a diagram showing an engine operation region defined by the engine speed NE and the required torque TRQ of the engine 1. The operation region in which the HCCI operation is performed is an operation region of a relatively low load and hatched. Is shown. The area other than the HCCI operation area is the SI operation area. The required torque TRQ is set so as to be substantially proportional to the accelerator pedal operation amount AP.

HCCI運転では、圧縮上死点近傍において火種燃焼が行われるように、筒内燃料噴射弁6Dによる燃料噴射及び点火プラグ7による点火が行われる。火種燃焼を行うための、筒内燃料噴射弁6Dによる燃料噴射量(以下「火種燃料噴射量」という)QTRGは、圧縮着火燃焼を確実に発生させることができる値に設定され、要求トルクTRQに応じて必要となる燃料は、ポート燃料噴射弁6Pによる燃料噴射によって供給される。   In the HCCI operation, fuel injection by the in-cylinder fuel injection valve 6D and ignition by the spark plug 7 are performed so that fire type combustion is performed in the vicinity of the compression top dead center. The fuel injection amount (hereinafter referred to as “fire type fuel injection amount”) QTRG by the in-cylinder fuel injection valve 6D for performing the ignition type combustion is set to a value that can reliably generate the compression ignition combustion, and the required torque TRQ The fuel required accordingly is supplied by fuel injection by the port fuel injection valve 6P.

火種燃料噴射量QTRGの最適な設定手法、及び火種燃料噴射量QTRGと関連する筒内燃料噴射弁6Dと点火プラグ7との距離L(図2参照)の最適な設定手法について、以下に説明する。   The optimum setting method of the fire type fuel injection amount QTRG and the optimum setting method of the distance L (see FIG. 2) between the in-cylinder fuel injection valve 6D and the spark plug 7 related to the fire type fuel injection amount QTRG will be described below. .

図4は、圧縮行程における燃焼室内のガス温度TGASの推移を示すタイムチャート(横軸はクランク角度CA,「0」は圧縮上死点に対応する)であり、実線は圧縮による温度上昇特性を示し、破線は火種燃焼によって発生する熱に起因する温度上昇特性を示す。図4に示すTCIGが、確実に圧縮着火が発生するガス温度TGASを示しており、ガス温度TGASが上昇温度DTRISE以上高くなるように、火種燃焼による発熱量HQTRGを設定することにより、圧縮着火燃焼を確実に発生させることができる。図4に示すCAIGが圧縮着火時期に相当する。   FIG. 4 is a time chart showing the transition of the gas temperature TGAS in the combustion chamber in the compression stroke (the horizontal axis is the crank angle CA, “0” corresponds to the compression top dead center), and the solid line shows the temperature rise characteristics due to compression. The broken line shows the temperature rise characteristic due to the heat generated by the fire type combustion. TCIG shown in FIG. 4 indicates the gas temperature TGAS at which the compression ignition is surely generated, and the compression ignition combustion is performed by setting the calorific value HQTRG by the fire type combustion so that the gas temperature TGAS becomes higher than the rising temperature DTRIS. Can be reliably generated. The CAIG shown in FIG. 4 corresponds to the compression ignition timing.

そこで本実施形態では、火種燃焼を発生させる火種燃料噴射量QTRGの下限値QTRGMIN[mm3/st]を下記式(1)により設定する。[mm3/st]は、1行程当たりの燃料噴射体積を示す単位である。本実施形態では、圧縮行程で1回の噴射が行われるので、1回の噴射によって噴射される燃料の体積を示す。
QTRGMIN=V×8×10-4 (1)
ここで、Vは1気筒当たりの排気量[cc]である。
Therefore, in the present embodiment, the lower limit value QTRGMIN [mm 3 / st] of the fire type fuel injection amount QTRG that causes the fire type combustion is set by the following equation (1). [Mm 3 / st] is a unit indicating the fuel injection volume per stroke. In the present embodiment, since one injection is performed in the compression stroke, the volume of fuel injected by one injection is shown.
QTRGMIN = V × 8 × 10 −4 (1)
Here, V is the displacement [cc] per cylinder.

図5は、上記上昇温度DRTRISEを50°Kとして求められた排気量Vと下限値QTRGMINとの関係を示す図であり、この図に示す関係を数式で表すことにより、式(1)が得られる。   FIG. 5 is a diagram showing the relationship between the displacement V V and the lower limit value QTRGMIN obtained when the rising temperature DRTRISE is 50 ° K. By expressing the relationship shown in this diagram with a mathematical expression, the expression (1) is obtained. It is done.

火種燃料噴射量QTRGを下限値QTRGMIN以上に設定することによって、着火時期CAIGにおいて安定して圧縮着火燃焼を発生させることができる。   By setting the fire type fuel injection amount QTRG to be equal to or greater than the lower limit value QTRGMIN, compression ignition combustion can be stably generated at the ignition timing CAIG.

次に火種燃料噴射量QTRGの上限値QTRGMAXの設定手法を説明する。本実施形態では、火種燃焼に起因する単位時間当たりのNOx排出量MNOx[mg/sec]がNOx排出量上限値MNOxLH以下となるように上限値QTRGMAXを設定する。   Next, a method for setting the upper limit value QTRGMAX of the fire type fuel injection amount QTRG will be described. In the present embodiment, the upper limit value QTRGMAX is set so that the NOx emission amount MNOx [mg / sec] per unit time resulting from fire type combustion is equal to or less than the NOx emission amount upper limit value MNOxLH.

図6は、火種燃焼による発熱量HQTRG[J]とNOx排出量MNOxとの関係を示す図であり、発熱量HQTRGが増加するほどNOx排出量MNOxが増加する。現状のNOx排出量上限値MNOxLHは、JC08モードの走行で0.12[mg/sec]であるので、発熱量HQTRGは、図6から明らかなように1気筒当たり25[J]以下とする必要がある。すなわち、エンジン全体では100[J]以下とする必要があることから、気筒数をNとすると、上限値QTRGMAXは下記式(2)で与えられる。式(2)は、燃料1[mm3]当たりの発熱量を27.0[J]として得られたものである。図7は式(2)の関係を図示したものである。
QTRGMAX=3.7/N (2)
FIG. 6 is a diagram showing the relationship between the calorific value HQTRG [J] and NOx emission amount MNOx due to fire type combustion, and the NOx emission amount MNOx increases as the calorific value HQTRG increases. Since the current NOx emission amount upper limit value MNOxLH is 0.12 [mg / sec] in traveling in the JC08 mode, the calorific value HQTRG needs to be 25 [J] or less per cylinder as is apparent from FIG. There is. That is, since the engine as a whole needs to be 100 [J] or less, when the number of cylinders is N, the upper limit value QTRGMAX is given by the following equation (2). Equation (2) is obtained with a calorific value per 1 [mm 3 ] of fuel of 27.0 [J]. FIG. 7 illustrates the relationship of equation (2).
QTRGMAX = 3.7 / N (2)

以上のことから、火種燃料噴射量QTRGは下記式(3)を満たすように設定することにより、安定して圧縮着火燃焼を発生させるとともにNOx排出量MNOxをNOx排出量上限値MNOxLH以下に抑制することが可能となる。
V×8×10-4≦QTRG≦3.7/N (3)
From the above, by setting the fire type fuel injection amount QTRG so as to satisfy the following formula (3), the compression ignition combustion is stably generated and the NOx emission amount MNOx is suppressed to the NOx emission amount upper limit value MNOxLH or less. It becomes possible.
V × 8 × 10 −4 ≦ QTRG ≦ 3.7 / N (3)

次に筒内燃料噴射弁6Dと点火プラグ7との距離Lの設定手法について説明する。
図8(a)は、距離Lと発熱量HQTRGとの関係を示す図(4気筒エンジン)である。距離Lが増加するほど、筒内燃料噴射弁6Dのペネトレーション確保の観点から噴射量QTRGを増加させる必要があるため、発熱量HQTRGが増加する。図8(a)に示す関係は、下記式(4)で表すことができる。
HQTRG=10-4×L4−0.0084×L3+0.26×L2
−3.1×L+26.5 (4)
Next, a method for setting the distance L between the in-cylinder fuel injection valve 6D and the spark plug 7 will be described.
FIG. 8A is a diagram (four-cylinder engine) showing the relationship between the distance L and the heat generation amount HQTRG. As the distance L increases, it is necessary to increase the injection amount QTRG from the viewpoint of ensuring the penetration of the in-cylinder fuel injection valve 6D, so the heat generation amount HQTRG increases. The relationship shown in FIG. 8A can be expressed by the following formula (4).
HQTRG = 10 −4 × L 4 −0.0084 × L 3 + 0.26 × L 2
−3.1 × L + 26.5 (4)

また上述したようにNOx排出量MNOxを抑制する観点から下記式(5)を満たす必要がある。
HQTRG≦100/N (5)
式(4)及び(5)から、距離Lは下記式(6)で示されるように設定する必要がある。
L≦−7×N+61 (6)
Further, as described above, it is necessary to satisfy the following formula (5) from the viewpoint of suppressing the NOx emission amount MNOx.
HQTRG ≦ 100 / N (5)
From the equations (4) and (5), the distance L needs to be set as shown by the following equation (6).
L ≦ −7 × N + 61 (6)

距離Lは短すぎると火花点火による着火が起きにくくなることから、下記式(6a)で示すように式(6)の上限の値に設定することが望ましい。
L=−7×N+61 (6a)
If the distance L is too short, ignition by spark ignition is difficult to occur, so it is desirable to set the upper limit value of the equation (6) as shown in the following equation (6a).
L = −7 × N + 61 (6a)

図8(b)は、距離LとNOx排出量MNOxとの関係を示す図であり、4気筒エンジンでは、式(6a)によって算出される33[mm]に設定することによって、NOx排出量MNOxを0.12[mg/sec]以下となることが確認できる。   FIG. 8B is a diagram showing the relationship between the distance L and the NOx emission amount MNOx. In a four-cylinder engine, the NOx emission amount MNOx is set to 33 [mm] calculated by the equation (6a). Can be confirmed to be 0.12 [mg / sec] or less.

以上のように本実施形態では、火種燃料噴射量QTRGを下限値QTRGMIN(V×8×10-4)以上とすることで、圧縮着火燃焼への確実な移行を実現する温度上昇を発生させることができ、上限値QTRGMAX(3.7/N)以下とすることで、発熱量が大きくなってNOx発生量が増加することを抑制できる。その結果、最小限の燃料噴射量で安定した圧縮着火燃焼を実現するとともに良好な排気特性を維持し、それによって燃費の向上効果も得ることができる。 As described above, in the present embodiment, by setting the fire type fuel injection amount QTRG to the lower limit value QTRGMIN (V × 8 × 10 −4 ) or more, a temperature increase that realizes a reliable transition to compression ignition combustion is generated. By setting the upper limit value QTRGMAX (3.7 / N) or less, it is possible to suppress an increase in the amount of generated heat and an increase in the amount of NOx generated. As a result, it is possible to achieve stable compression ignition combustion with a minimum fuel injection amount and maintain good exhaust characteristics, thereby obtaining an effect of improving fuel consumption.

また火種燃料噴射量QTRGを下限値QTRGMIN以上とすることにより、燃焼室内のガス温度TGASを50[°K]上昇させ、安定した圧縮着火燃焼を実現することが可能となる。   Further, by setting the fire type fuel injection amount QTRG to be equal to or higher than the lower limit value QTRGMIN, the gas temperature TGAS in the combustion chamber is raised by 50 [° K], and stable compression ignition combustion can be realized.

また筒内燃料噴射弁6Dと点火プラグ7との距離L[mm]を式(6a)を用いて設定するようにしたので、燃料噴射量QTRGを上限値QTRGMAX(3.7/N)以下としてNOx排出量を抑制しつつ火花による火種燃焼を確実に発生させることができる。   Further, since the distance L [mm] between the in-cylinder fuel injection valve 6D and the spark plug 7 is set using the equation (6a), the fuel injection amount QTRG is set to the upper limit value QTRGMAX (3.7 / N) or less. It is possible to reliably generate spark combustion by sparks while suppressing NOx emissions.

本実施形態では、筒内燃料噴射弁6Dが筒内燃料噴射手段に相当し、点火プラグ7が点火手段に相当し、ECU5が燃焼制御手段を構成する。   In the present embodiment, the in-cylinder fuel injection valve 6D corresponds to the in-cylinder fuel injection means, the spark plug 7 corresponds to the ignition means, and the ECU 5 constitutes the combustion control means.

なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態では4気筒エンジンの例を示したが、気筒数をNで示した通り、気筒数に拘わらず本発明の適用が可能である。また本発明の構成は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどにも適用が可能である。   The present invention is not limited to the embodiment described above, and various modifications can be made. For example, in the above-described embodiment, an example of a four-cylinder engine is shown. However, as indicated by N, the present invention can be applied regardless of the number of cylinders. The configuration of the present invention can also be applied to a marine vessel propulsion engine such as an outboard motor having a vertical crankshaft.

1 内燃機関
2 吸気通路
2a 吸気ポート
5 電子制御ユニット(燃焼制御手段)
6D 筒内燃料噴射弁(筒内燃料噴射手段)
6P ポート燃料噴射弁
7 点火プラグ(点火手段)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Intake passage 2a Intake port 5 Electronic control unit (combustion control means)
6D In-cylinder fuel injection valve (in-cylinder fuel injection means)
6P port fuel injection valve 7 Spark plug (ignition means)

Claims (3)

吸気ポートに燃料を噴射するポート燃料噴射手段と、燃焼室内に燃料を噴射する筒内燃料噴射手段と、燃焼室内に設けられた点火手段とを備え、前記燃焼室内に供給される燃料と空気の混合気を圧縮着火させる圧縮着火燃焼モードでの運転が可能な内燃機関の制御装置において、
前記圧縮着火燃焼モードにおいて、前記筒内燃料噴射手段によって圧縮上死点近傍において燃料噴射を実行し、該噴射された燃料を前記点火手段を用いて着火させることにより前記混合気の温度を上昇させ、該温度上昇によって前記混合気を圧縮着火させる燃焼制御手段を備え、
前記筒内燃料噴射手段による1行程当たりの燃料噴射量QTRG[mm3/st]は下記式を満たすように設定されることを特徴とする内燃機関の制御装置:
V×8×10-4≦QTRG≦3.7/N
ここで、Vは1気筒当たりの排気量[cc],Nは前記機関の気筒数である。
Port fuel injection means for injecting fuel into the intake port, in-cylinder fuel injection means for injecting fuel into the combustion chamber, and ignition means provided in the combustion chamber, the fuel and air supplied to the combustion chamber In a control device for an internal combustion engine capable of operating in a compression ignition combustion mode for compressing and igniting an air-fuel mixture,
In the compression ignition combustion mode, fuel injection is performed in the vicinity of compression top dead center by the in-cylinder fuel injection means, and the injected fuel is ignited by using the ignition means to raise the temperature of the air-fuel mixture. A combustion control means for compressing and igniting the air-fuel mixture by the temperature rise,
A control device for an internal combustion engine, wherein the fuel injection amount QTRG [mm 3 / st] per stroke by the in-cylinder fuel injection means is set to satisfy the following formula:
V × 8 × 10 −4 ≦ QTRG ≦ 3.7 / N
Here, V is the displacement [cc] per cylinder, and N is the number of cylinders of the engine.
前記燃料噴射量QTRGの下限値は、燃焼時の発熱量によって筒内ガス温度が50[°K]上昇するように設定されることを特徴とする請求項1に記載の内燃機関の制御装置。   2. The control device for an internal combustion engine according to claim 1, wherein the lower limit value of the fuel injection amount QTRG is set so that the in-cylinder gas temperature is increased by 50 [° K] according to the amount of heat generated during combustion. 前記筒内燃料噴射手段と前記点火手段との距離L[mm]は、下記式により設定されることを特徴とする請求項1または2に記載の内燃機関の制御装置:
L=−7×N+61。
The control device for an internal combustion engine according to claim 1 or 2, wherein a distance L [mm] between the in-cylinder fuel injection means and the ignition means is set by the following equation:
L = −7 × N + 61.
JP2013113896A 2013-05-30 2013-05-30 Control device for internal combustion engine Expired - Fee Related JP6008796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113896A JP6008796B2 (en) 2013-05-30 2013-05-30 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113896A JP6008796B2 (en) 2013-05-30 2013-05-30 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014231805A true JP2014231805A (en) 2014-12-11
JP6008796B2 JP6008796B2 (en) 2016-10-19

Family

ID=52125335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113896A Expired - Fee Related JP6008796B2 (en) 2013-05-30 2013-05-30 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6008796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626013A (en) * 2017-03-16 2018-10-09 福特环球技术公司 Method and system for fuel injector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288067A (en) * 1998-02-23 1998-10-27 Denso Corp Exhaust emission control device of internal combustion engine
JP2002161780A (en) * 2000-10-03 2002-06-07 Avl List Gmbh Operation system in internal combustion engine which is operated by self-ignitable fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10288067A (en) * 1998-02-23 1998-10-27 Denso Corp Exhaust emission control device of internal combustion engine
JP2002161780A (en) * 2000-10-03 2002-06-07 Avl List Gmbh Operation system in internal combustion engine which is operated by self-ignitable fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108626013A (en) * 2017-03-16 2018-10-09 福特环球技术公司 Method and system for fuel injector

Also Published As

Publication number Publication date
JP6008796B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
US9784207B2 (en) Control apparatus for internal combustion engine
JP5548029B2 (en) Control device for internal combustion engine
JP2008291720A (en) Control device for internal combustion engine
JP2009019538A (en) Control device for cylinder injection type internal combustion engine
JP2012087708A (en) Control device for cylinder injection gasoline engine
JP2018091267A (en) Controller of internal combustion engine
JP5765493B2 (en) Ignition device and ignition method for internal combustion engine
US10495021B2 (en) Engine control device
JP2011153562A (en) Control device of spark ignition engine
JP2018040263A (en) Control device for internal combustion engine
US20150114355A1 (en) Method and apparatus for controlling combustion of engine having mixed combustion mode
JP6549551B2 (en) Control device for internal combustion engine
EP2270324B1 (en) Control device for internal combustion engine
WO2015151482A1 (en) Injection control device for cylinder-injection-type internal combustion engine
JP2007064187A (en) Knock suppression device for internal combustion engine
JP6008796B2 (en) Control device for internal combustion engine
JP6221901B2 (en) Engine control device
JP5543843B2 (en) Control device for internal combustion engine
JP2010196581A (en) Fuel injection control device of internal combustion engine
JP4105019B2 (en) Control device for internal combustion engine
JP5445421B2 (en) Premixed compression self-ignition engine
JP6179441B2 (en) Engine control device
JP2012002076A (en) Device for control of internal combustion engine
JP2015004343A (en) Control device of direct injection engine
JP6283959B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6008796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees