JP2014231633A - Substrate holder - Google Patents

Substrate holder Download PDF

Info

Publication number
JP2014231633A
JP2014231633A JP2013113819A JP2013113819A JP2014231633A JP 2014231633 A JP2014231633 A JP 2014231633A JP 2013113819 A JP2013113819 A JP 2013113819A JP 2013113819 A JP2013113819 A JP 2013113819A JP 2014231633 A JP2014231633 A JP 2014231633A
Authority
JP
Japan
Prior art keywords
thin film
substrate
substrate holder
insulating thin
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013113819A
Other languages
Japanese (ja)
Inventor
温 下元
Atsushi Shimomoto
温 下元
拓治 小向
Takuji Komukai
拓治 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2013113819A priority Critical patent/JP2014231633A/en
Publication of JP2014231633A publication Critical patent/JP2014231633A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To hold a substrate so that a film thickness of a thin film on a substrate surface is not caused to have ununiformity even when the thin film is formed on a substrate holder by sputtering.SOLUTION: A substrate holder 1A includes an opening 1a, holds a substrate 2 such that a substrate surface 2a is exposed to the opening 1a and faces a target 4, and includes an insulation thin film 10 having a film thickness of nm order on a surface of the substrate holder.

Description

本発明は、基板上にnmオーダーの薄膜をスパッタリング成膜する際に当該基板を保持する基板ホルダに関するものである。   The present invention relates to a substrate holder that holds a substrate when a thin film of the order of nm is formed on the substrate by sputtering.

図6を参照して従来の基板ホルダを説明する。図6(a)は、基板ホルダの斜視図であり、図6(b)は図6(a)のA−A線断面図である。   A conventional substrate holder will be described with reference to FIG. 6A is a perspective view of the substrate holder, and FIG. 6B is a cross-sectional view taken along line AA in FIG. 6A.

従来の基板ホルダ1は、アルミニウム、ステンレス、等の導電材料で形成され、その中央に円形に貫通した開口部1aを有する。この基板ホルダ1において、前記開口部1aの裏面側周縁に、円形に凹んだ基板載置部1bが設けられており、この基板載置部1bに基板が載置されて保持される(特許文献1参照。)。   The conventional substrate holder 1 is made of a conductive material such as aluminum or stainless steel, and has an opening 1a penetrating circularly at the center. In this substrate holder 1, a circularly recessed substrate placement portion 1 b is provided at the periphery on the back surface side of the opening 1 a, and the substrate is placed and held on this substrate placement portion 1 b (Patent Literature). 1).

図7は、基板ホルダ1を用いるスパッタリング装置のスパッタガン3を示す。真空チャンバ内に、基板ホルダ1とスパッタガン3とが対向配置され、基板2は、基板ホルダ1の基板載置部1bに保持され、スパッタガン3の凹部3aにターゲット4が配置され、スパッタガン3は電源5に接続される。   FIG. 7 shows a sputtering gun 3 of a sputtering apparatus using the substrate holder 1. In the vacuum chamber, the substrate holder 1 and the sputter gun 3 are disposed to face each other, the substrate 2 is held by the substrate mounting portion 1b of the substrate holder 1, and the target 4 is disposed in the concave portion 3a of the sputter gun 3. 3 is connected to a power source 5.

スパッタリング時、電源5により基板ホルダ1とスパッタガン3との間に電圧が印加されて、ターゲット4近傍の領域に図示略の磁場発生装置で磁場が形成される。   During sputtering, a voltage is applied between the substrate holder 1 and the sputter gun 3 by the power source 5, and a magnetic field is formed in a region near the target 4 by a magnetic field generator (not shown).

この状態で真空チャンバ内部にアルゴンガスが導入されると、アルゴンガスによるプラズマ6が、基板ホルダとスパッタガン3との空間に発生する。プラズマ6が発生すると、プラズマ6中のアルゴンイオンがターゲット4に衝突し、ターゲット4がスパッタリングされ、ターゲット4からスパッタ粒子が基板2の表面2aに向けて飛び出し、基板2の表面2aにスパッタ粒子が堆積され、基板2の表面2aに薄膜が形成される。   When argon gas is introduced into the vacuum chamber in this state, plasma 6 by argon gas is generated in the space between the substrate holder and the sputter gun 3. When the plasma 6 is generated, argon ions in the plasma 6 collide with the target 4, the target 4 is sputtered, sputtered particles jump out from the target 4 toward the surface 2 a of the substrate 2, and sputtered particles are generated on the surface 2 a of the substrate 2. As a result, a thin film is formed on the surface 2 a of the substrate 2.

特開2001−026866号公報JP 2001-026866 A

しかしながら、前記スパッタリングにおいては、スパッタガン3によるスパッタリングが繰り返されると、プラズマ6により、図7の要部拡大図である図8で示すように、スパッタ粒子で基板2の表面2aに薄膜7が成膜される以外に、基板ホルダ1の表面2aにおいて開口部1aの周囲領域1cにも薄膜8が成膜される。   However, in the sputtering, when sputtering by the sputter gun 3 is repeated, the thin film 7 is formed on the surface 2a of the substrate 2 by the sputter particles as shown in FIG. 8 which is an enlarged view of the main part of FIG. In addition to the film formation, a thin film 8 is also formed on the surface 2a of the substrate holder 1 in the peripheral region 1c of the opening 1a.

この薄膜8は、抵抗値が不均一であるため、電圧印加時の基板2および基板ホルダ1を含めた全体の電位が変化し、基板2の表面電位が不均一となって、スパッタ粒子の飛翔軌道が所要の軌道から曲げられるなどして、基板2の表面2aに成膜される薄膜7の膜厚に分布が発生する。   Since the thin film 8 has a non-uniform resistance value, the entire potential including the substrate 2 and the substrate holder 1 when a voltage is applied changes, the surface potential of the substrate 2 becomes non-uniform, and the sputtered particles fly. A distribution occurs in the film thickness of the thin film 7 formed on the surface 2a of the substrate 2, for example, when the track is bent from the required track.

そのため、スパッタリングが繰り返されると、基板ホルダ1表面から成膜8を除去する必要があり、この除去に、研磨、洗浄、ビーズブラスト、洗浄、加熱といった多数の処理が必要となり、手間と時間と工費とを要する。   Therefore, when sputtering is repeated, it is necessary to remove the film 8 from the surface of the substrate holder 1, and this removal requires a number of processes such as polishing, washing, bead blasting, washing, and heating. It takes.

本発明は、上記に鑑みてなされたものであり、スパッタリングにより、基板ホルダに薄膜が形成されても、基板表面の薄膜にはその膜厚に分布が発生しないように基板を保持できる基板ホルダを提供することを目的としている。   The present invention has been made in view of the above, and even if a thin film is formed on the substrate holder by sputtering, a substrate holder that can hold the substrate so that the thin film on the surface of the substrate does not have a distribution in the film thickness is provided. It is intended to provide.

本発明に係る基板ホルダは、 スパッタリング装置のターゲットと当該基板ホルダの表面との間の空間にプラズマが発生中に前記ターゲットからのスパッタ粒子により基板の表面上に薄膜をnmオーダーの膜厚で成膜する際に当該基板を保持する導電性の基板ホルダであって、前記基板より小さい貫通径で表裏面を貫通した開口部と、前記開口部の裏面側周縁に設けられ前記基板をその表面が前記ターゲットに露出状態で載置する基板載置部と、を有し、少なくとも前記プラズマの照射領域と同等以上の領域面積でもって前記開口部の表面側周縁領域に絶縁薄膜をnmオーダーの膜厚で設けた、ことを特徴とする。   In the substrate holder according to the present invention, a thin film having a film thickness of nm order is formed on the surface of the substrate by sputtered particles from the target while plasma is generated in the space between the target of the sputtering apparatus and the surface of the substrate holder. A conductive substrate holder for holding the substrate when filming, an opening penetrating the front and back surfaces with a smaller penetrating diameter than the substrate, and a surface of the substrate provided on the rear surface side periphery of the opening portion A substrate mounting portion that is exposed on the target, and an insulating thin film is formed in the order of nm on the surface side peripheral region of the opening with a region area at least equal to or larger than the plasma irradiation region. It is provided by the above.

本発明によれば、前記開口部の周縁領域にnmオーダーの絶縁薄膜を設けたので、スパッタリングが繰り返されて、基板表面だけでなく、前記絶縁薄膜上にも薄膜が成膜されても、絶縁薄膜により、基板表面の電位は影響されない。その結果、基板の表面に、分布なく薄膜を成膜することができる。   According to the present invention, since the insulating thin film in the order of nm is provided in the peripheral region of the opening, the sputtering is repeated, so that the thin film is formed not only on the surface of the substrate but also on the insulating thin film. The potential on the substrate surface is not affected by the thin film. As a result, a thin film can be formed on the surface of the substrate without distribution.

さらに、本発明では、絶縁薄膜上の薄膜は基板の表面電位に影響を及ぼさないので、当該薄膜を基板ホルダから除去する作業が不要となり、その除去に要する手間と時間と工費とを削減することができる。   Furthermore, in the present invention, since the thin film on the insulating thin film does not affect the surface potential of the substrate, there is no need to remove the thin film from the substrate holder, thereby reducing the labor, time and cost required for the removal. Can do.

さらに、本発明では、絶縁薄膜の膜厚をnmオーダーとしたので、基板ホルダと絶縁薄膜との熱膨張率の相違で絶縁薄膜が剥離したり、ひび割れたりして絶縁破壊されることを防止できる。   Further, in the present invention, since the thickness of the insulating thin film is set to the nm order, it is possible to prevent the insulating thin film from being peeled off or cracked due to the difference in thermal expansion coefficient between the substrate holder and the insulating thin film. .

好ましくは、前記基板の表面上に薄膜の膜厚は、50nm以下であり、前記絶縁薄膜の膜厚は、100nm以下である。   Preferably, the thickness of the thin film on the surface of the substrate is 50 nm or less, and the thickness of the insulating thin film is 100 nm or less.

絶縁薄膜を膜厚100nm以下とすることで、前記熱膨張率の相違で絶縁薄膜が剥離したり、ひび割れたりして絶縁破壊されることを、より効果的に防止できる。   By setting the thickness of the insulating thin film to 100 nm or less, it is possible to more effectively prevent the insulating thin film from being peeled off or cracked due to the difference in coefficient of thermal expansion.

好ましくは、前記絶縁薄膜が前記開口部の内周面にも設けられる。   Preferably, the insulating thin film is also provided on the inner peripheral surface of the opening.

前記絶縁薄膜を基板ホルダの表面以外に開口部の内周面にも設けると、この内周面に薄膜が成膜されずに済み、基板ホルダに成膜された薄膜による、基板表面全体の電位への影響はより軽減され、基板表面に、より高精度に薄膜を成膜することができる。   If the insulating thin film is provided not only on the surface of the substrate holder but also on the inner peripheral surface of the opening, it is not necessary to form a thin film on the inner peripheral surface, and the potential of the entire substrate surface due to the thin film formed on the substrate holder. As a result, the thin film can be formed on the substrate surface with higher accuracy.

本発明によれば、スパッタリングにより、基板ホルダ表面の絶縁薄膜に薄膜が成膜されても、この薄膜により基板および基板ホルダを含めた電位に変化が生じることがないので、基板表面に高精度に薄膜を成膜することができ、また、絶縁薄膜の表面に堆積した薄膜を除去する作業も不要化し、その除去作業に要していた手間、時間、コストを削減することができる。さらに、本発明によれば、絶縁薄膜の膜厚がnmオーダーであるので、絶縁薄膜と基板ホルダとの熱膨張率の差で絶縁薄膜が剥離したり、ひび割れたりして絶縁破壊されることを防止することができる。   According to the present invention, even if a thin film is formed on the insulating thin film on the surface of the substrate holder by sputtering, the thin film does not change the potential including the substrate and the substrate holder. A thin film can be formed, and an operation for removing the thin film deposited on the surface of the insulating thin film is not required, and labor, time, and cost required for the removal operation can be reduced. Furthermore, according to the present invention, since the thickness of the insulating thin film is on the order of nm, the insulating thin film is peeled off or cracked due to the difference in thermal expansion coefficient between the insulating thin film and the substrate holder. Can be prevented.

本発明の実施形態に係る基板ホルダの斜視図である。It is a perspective view of the substrate holder which concerns on embodiment of this invention. 図1のB−B線の断面図である。It is sectional drawing of the BB line of FIG. (a)本発明の実施形態による基板ホルダを用いたスパッタリングにより基板への成膜状態の説明のための図、(b)は前記(a)の要部の拡大図、(c)は従来の基板ホルダを用いた場合の前記(b)に対応する拡大図である。(A) The figure for demonstrating the film-forming state to a board | substrate by sputtering using the substrate holder by embodiment of this invention, (b) is an enlarged view of the principal part of said (a), (c) is conventional. It is an enlarged view corresponding to said (b) at the time of using a substrate holder. (a)は、本発明の他の実施形態の基板ホルダの断面図、(b)は前記(a)の平面図である。(A) is sectional drawing of the substrate holder of other embodiment of this invention, (b) is a top view of said (a). 本発明のさらに他の実施形態の基板ホルダの断面図である。It is sectional drawing of the substrate holder of other embodiment of this invention. (a)は、従来の基板ホルダの斜視図、(b)は前記(a)のA−A線の断面図である。(A) is a perspective view of the conventional board | substrate holder, (b) is sectional drawing of the AA line of said (a). 従来の基板ホルダによるスパッタリングの説明に用いる図である。It is a figure used for description of sputtering by the conventional substrate holder. 図7の要部拡大図である。It is a principal part enlarged view of FIG.

以下、添付した図面を参照して、本発明の実施形態に係る基板ホルダを説明する。図1および図2を参照して、本発明の実施形態に係る基板ホルダを説明する。図1は、基板ホルダの斜視図、図2は、図1のB−B線の断面図である。これらの図において、図6と対応する部分に同一の符号を付す。この基板ホルダで保持される基板は、nmオーダーの膜厚で薄膜が成膜される。   Hereinafter, a substrate holder according to an embodiment of the present invention will be described with reference to the accompanying drawings. With reference to FIG. 1 and FIG. 2, the substrate holder which concerns on embodiment of this invention is demonstrated. FIG. 1 is a perspective view of a substrate holder, and FIG. 2 is a cross-sectional view taken along line BB in FIG. In these drawings, parts corresponding to those in FIG. A thin film is formed on the substrate held by the substrate holder with a film thickness on the order of nm.

基板ホルダ1Aは、ステンレス等の導電材料からなり、その中央に円形に表裏面を基板より小さい貫通径で貫通した開口部1aを有すると共に、開口部1aの裏面側周縁には、円形に凹んだ段差形状の基板載置部1bが形成されている。   The substrate holder 1A is made of a conductive material such as stainless steel, and has an opening 1a that penetrates the front and back surfaces in a circular shape with a smaller penetration diameter than the substrate at the center, and is circularly recessed at the periphery on the back surface side of the opening 1a. A stepped substrate mounting portion 1b is formed.

基板ホルダ1Aは、表面1cの全体にアルミナ、窒化チタン、等の金属系材料からなる絶縁薄膜10が形成されている。絶縁薄膜10は、スパッタリング装置のスパッタリングにより成膜してもよいし、その他の成膜手法で成膜してもよく、特に限定されない。   In the substrate holder 1A, an insulating thin film 10 made of a metal material such as alumina or titanium nitride is formed on the entire surface 1c. The insulating thin film 10 may be formed by sputtering using a sputtering apparatus, or may be formed by another film forming method, and is not particularly limited.

基板ホルダ1Aにおいては、前記説明したスパッタリングに際しては基板2の表面2aにスパッタ粒子が堆積されるだけでなく、基板ホルダ1Aの表面1cに形成した絶縁薄膜10上にも薄膜が形成される。   In the substrate holder 1A, not only the sputtered particles are deposited on the surface 2a of the substrate 2 but also a thin film is formed on the insulating thin film 10 formed on the surface 1c of the substrate holder 1A.

しかし、絶縁薄膜10上の薄膜は、当該絶縁薄膜10により基板ホルダ1Aとは電気的に絶縁されているので、絶縁薄膜10上の薄膜が基板2および基板ホルダ1Aを含め、それら表面電位に影響を及ぼすことはない。   However, since the thin film on the insulating thin film 10 is electrically insulated from the substrate holder 1A by the insulating thin film 10, the thin film on the insulating thin film 10 includes the substrate 2 and the substrate holder 1A and affects their surface potential. Will not affect.

絶縁薄膜10の領域面積は、基板2裏面全体に設けられており、スパッタリングによる前記プラズマの照射領域の面積より大きい。また、絶縁薄膜10は、nmオーダーの膜厚で基板ホルダ1Aの表面1cに均等な膜厚で成膜されている。基板にスパッタリングで成膜される膜厚が50nm以下であると、絶縁薄膜10の膜厚は、好ましくは、100nm以下である。   The area of the insulating thin film 10 is provided on the entire back surface of the substrate 2 and is larger than the area of the plasma irradiation area by sputtering. The insulating thin film 10 is formed with a uniform film thickness on the surface 1c of the substrate holder 1A with a film thickness on the order of nm. When the film thickness formed by sputtering on the substrate is 50 nm or less, the film thickness of the insulating thin film 10 is preferably 100 nm or less.

図3を参照して基板2上への成膜について説明する。図3の(a)は基板ホルダ1Aを用いたスパッタリングにより基板2への成膜状態の説明のための図、図3の(b)は前記(a)の要部の拡大図である。また、図3の(c)は従来の基板ホルダを用いた場合の前記(b)に対応する拡大図である。図3の(a)(b)を参照して、基板載置部1bに基板2が載置される。次いで、図8で説明したようにスパッタリングにおいて、プラズマが照射されると共に、スパッタガンによりスパッタリングが行われ、ターゲットからのスパッタ粒子で基板2の表面2aに薄膜7が成膜されると共に、基板ホルダ1の表面2aにおいて開口部1aの周囲領域1cにおける絶縁薄膜10上にも図示略の薄膜が成膜される。   The film formation on the substrate 2 will be described with reference to FIG. FIG. 3A is a view for explaining a film formation state on the substrate 2 by sputtering using the substrate holder 1A, and FIG. 3B is an enlarged view of the main part of FIG. FIG. 3C is an enlarged view corresponding to FIG. 3B when a conventional substrate holder is used. With reference to FIGS. 3A and 3B, the substrate 2 is placed on the substrate platform 1b. Next, as described with reference to FIG. 8, in sputtering, plasma is irradiated and sputtering is performed by a sputtering gun, and a thin film 7 is formed on the surface 2a of the substrate 2 with sputtered particles from the target. A thin film (not shown) is also formed on the insulating thin film 10 in the peripheral region 1c of the opening 1a on the surface 2a.

絶縁薄膜10上に薄膜が形成され、その薄膜の抵抗値が不均等であっても、絶縁薄膜10により、その薄膜と基板ホルダ1Aとは絶縁されているので、前記薄膜により基板2および基板ホルダ1Aを含めた全体の電位が変化することはない。その結果、基板2の表面電位は均等となり、ターゲットから飛び出すスパッタ粒子の飛翔軌道は所要軌道から曲げられないので、基板2の表面2a上の薄膜20は膜厚均等に成膜される。この場合、図3(b)に示すように、薄膜20の外周縁Aの狭い領域においても薄膜20の膜厚は均一化されている。   Even if a thin film is formed on the insulating thin film 10 and the resistance value of the thin film is not uniform, the thin film and the substrate holder 1A are insulated from each other by the insulating thin film 10. The entire potential including 1A does not change. As a result, the surface potential of the substrate 2 becomes uniform, and the flight trajectory of the sputtered particles that jump out of the target is not bent from the required trajectory, so that the thin film 20 on the surface 2a of the substrate 2 is formed evenly. In this case, as shown in FIG. 3B, the film thickness of the thin film 20 is uniform even in a narrow region of the outer peripheral edge A of the thin film 20.

なお、従来の基板ホルダでは、その表面に絶縁薄膜が形成されていないので、基板ホルダ表面上にスパッタリングより成膜される薄膜の抵抗値が不均等であり、これにより、前述したように基板2の表面電位が不均等となって、図3(c)に示すように、基板2の表面2a上の薄膜20Aは、部位B1において膜厚不均一となったり、特に薄膜20aの外周縁B2の狭い領域において膜厚が不均一となったりする。   In the conventional substrate holder, since the insulating thin film is not formed on the surface thereof, the resistance value of the thin film formed by sputtering on the surface of the substrate holder is not uniform. As shown in FIG. 3C, the thin film 20A on the surface 2a of the substrate 2 has a non-uniform film thickness at the portion B1, and particularly the outer peripheral edge B2 of the thin film 20a. The film thickness may be non-uniform in a narrow region.

以上により、本実施形態の基板ホルダ1Aを用いると、基板2上に薄膜20をその全体に対して均一にスパッタリングにより成膜することができるうえ、前記スパッタリングで絶縁薄膜10上に同時に成膜された薄膜を除去する作業が不要であり、従来の薄膜の除去作業に要していた手間と時間と工費とを削減することができる。   As described above, when the substrate holder 1A of the present embodiment is used, the thin film 20 can be uniformly formed on the entire substrate 2 by sputtering and simultaneously formed on the insulating thin film 10 by the sputtering. Therefore, the work for removing the thin film is unnecessary, and the labor, time, and cost required for the conventional thin film removal work can be reduced.

なお、絶縁薄膜10は、基板ホルダ1Aの表面1c全体に形成されているが、絶縁薄膜10は、その表面1c全体に形成する必要は必ずしもなく、例えば、図4の(a)(b)で示すように、スパッタリング装置による前記プラズマの照射領域の面積S1と同等かそれ以上の領域面積S2で絶縁薄膜10を形成してもよい。   The insulating thin film 10 is formed on the entire surface 1c of the substrate holder 1A. However, the insulating thin film 10 is not necessarily formed on the entire surface 1c. For example, in FIGS. As shown, the insulating thin film 10 may be formed with a region area S2 equal to or larger than the area S1 of the plasma irradiation region by the sputtering apparatus.

さらに、基板ホルダ1Aの表面1cにおいて、絶縁薄膜10は、図5で示すように、開口部1bの内周面1eにも、表面1cに設けた絶縁薄膜10に連続した形態で絶縁薄膜10aを形成してもよい。絶縁薄膜10,10aの厚さは、特に限定されない。   Further, on the surface 1c of the substrate holder 1A, as shown in FIG. 5, the insulating thin film 10 is formed on the inner peripheral surface 1e of the opening 1b in a form continuous with the insulating thin film 10 provided on the surface 1c. It may be formed. The thickness of the insulating thin films 10 and 10a is not particularly limited.

以上説明したように、本実施形態によれば、基板ホルダ1Aの表面全体に絶縁薄膜10を設けたので、スパッタリングが繰り返されて、基板2の表面だけでなく、基板ホルダ1Aの表面の絶縁薄膜10上にも抵抗率不定の薄膜が成膜されるものの、この薄膜は、基板2および基板ホルダ1Aを含めた表面全体の電位に影響を及ぼさなくなる。その結果、基板2の表面に、スパッタリングで必要な薄膜を均等な膜厚で成膜することができる。   As described above, according to the present embodiment, since the insulating thin film 10 is provided on the entire surface of the substrate holder 1A, the sputtering is repeated, so that the insulating thin film not only on the surface of the substrate 2 but also on the surface of the substrate holder 1A. Although a thin film having an indefinite resistivity is also formed on the thin film 10, this thin film does not affect the potential of the entire surface including the substrate 2 and the substrate holder 1A. As a result, a thin film necessary for sputtering can be formed on the surface of the substrate 2 with a uniform film thickness.

また、本実施形態では、スパッタリングの繰り返しにより、基板ホルダ1Aの絶縁薄膜10上に成膜されても、 その成膜は、表面全体の電位に影響しないので、基板ホルダ1Aの絶縁薄膜10上から薄膜を除去する作業が不要となり、従来の薄膜の除去作業に要していた手間と時間と工費とを削減することができるようになる。   In this embodiment, even if the film is formed on the insulating thin film 10 of the substrate holder 1A by repeating sputtering, the film formation does not affect the potential of the entire surface. The operation of removing the thin film is not necessary, and the labor, time, and cost required for the conventional thin film removing operation can be reduced.

さらに、本実施形態では、基板2の表面にスパッタリングで成膜される薄膜の膜厚50nmに対して、絶縁薄膜10が100nm以下の薄膜であるので、金属製である基板ホルダ1Aとの熱膨張率が大きく相違していても、絶縁薄膜10は剥離したり、ひび割れしたりして、絶縁破壊が発生するおそれがなくなり、長期にわたり安定して基板2を保持することができる。   Furthermore, in this embodiment, since the insulating thin film 10 is a thin film having a thickness of 100 nm or less with respect to a thin film thickness of 50 nm formed by sputtering on the surface of the substrate 2, thermal expansion with the substrate holder 1A made of metal is performed. Even if the rates differ greatly, the insulating thin film 10 is peeled off or cracked, and there is no risk of dielectric breakdown, and the substrate 2 can be held stably over a long period of time.

その薄膜を基板ホルダから除去する作業が不要となり、その除去作業に要していた手間と時間と工費とを削減することができるようになる。   There is no need to remove the thin film from the substrate holder, and the labor, time, and cost required for the removal work can be reduced.

なお、基板に下地膜としてAl薄膜を成膜し、そのAl薄膜上にFe薄膜を成膜してCNT(カーボンナノチューブ)成長用の基板とする場合、本実施形態の基板ホルダ1Aを用いると前記Al薄膜およびFe薄膜のいずれもその全体にわたり均一に成膜できるので、従来の基板ホルダを用いる場合よりも、同一面積の基板上に対して長さが一定のCNTの収量を、増大できる。   When an Al thin film is formed on the substrate as a base film and an Fe thin film is formed on the Al thin film to form a substrate for CNT (carbon nanotube) growth, the substrate holder 1A of the present embodiment is used to Since both the Al thin film and the Fe thin film can be uniformly formed over the whole, it is possible to increase the yield of CNTs having a constant length on a substrate having the same area as compared with the case of using a conventional substrate holder.

1A 基板ホルダ
1a 開口部
1b 基板載置部
1c 表面
10 絶縁薄膜
1A Substrate holder 1a Opening 1b Substrate mounting portion 1c Surface 10 Insulating thin film

Claims (3)

スパッタリング装置のターゲットと当該基板ホルダの表面との間の空間にプラズマが発生中に前記ターゲットからのスパッタ粒子により基板の表面上に薄膜をnmオーダーの膜厚で成膜する際に当該基板を保持する導電性の基板ホルダであって、
前記基板より小さい貫通径で表裏面を貫通した開口部と、
前記開口部の裏面側周縁に設けられ前記基板をその表面が前記ターゲット側に露出するように載置させる基板載置部と、
を有し、
少なくとも前記プラズマの照射領域と同等以上の領域面積でもって前記開口部の表面側周縁領域に絶縁薄膜をnmオーダーの膜厚で設けた、ことを特徴とする基板ホルダ。
While the plasma is generated in the space between the target of the sputtering apparatus and the surface of the substrate holder, the substrate is held when a thin film is deposited on the surface of the substrate with a film thickness of the order of nm by the sputtered particles from the target. A conductive substrate holder that comprises:
An opening that penetrates the front and back surfaces with a smaller diameter than the substrate;
A substrate mounting portion that is provided on the rear surface side periphery of the opening and places the substrate such that the surface thereof is exposed to the target side;
Have
A substrate holder, wherein an insulating thin film is provided in a film thickness on the order of nm in the peripheral region on the surface side of the opening with a region area equal to or greater than the plasma irradiation region.
前記基板の表面上に薄膜の膜厚は、50nm以下であり、前記絶縁薄膜の膜厚は、100nm以下である、請求項1に記載の基板ホルダ。   The substrate holder according to claim 1, wherein the thickness of the thin film on the surface of the substrate is 50 nm or less, and the thickness of the insulating thin film is 100 nm or less. 前記絶縁薄膜が前記開口部の内周面にも設けられている請求項1または2に記載の基板ホルダ。   The substrate holder according to claim 1, wherein the insulating thin film is also provided on an inner peripheral surface of the opening.
JP2013113819A 2013-05-30 2013-05-30 Substrate holder Pending JP2014231633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113819A JP2014231633A (en) 2013-05-30 2013-05-30 Substrate holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113819A JP2014231633A (en) 2013-05-30 2013-05-30 Substrate holder

Publications (1)

Publication Number Publication Date
JP2014231633A true JP2014231633A (en) 2014-12-11

Family

ID=52125209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113819A Pending JP2014231633A (en) 2013-05-30 2013-05-30 Substrate holder

Country Status (1)

Country Link
JP (1) JP2014231633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629467B2 (en) 2016-06-14 2020-04-21 Samsung Electronics Co., Ltd. Electrostatic chuck and plasma apparatus for processing substrates having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629467B2 (en) 2016-06-14 2020-04-21 Samsung Electronics Co., Ltd. Electrostatic chuck and plasma apparatus for processing substrates having the same

Similar Documents

Publication Publication Date Title
JP5286351B2 (en) Magnetron sputtering apparatus and magnetron sputtering method
TWI553141B (en) A method of processing a substrate in a physical vapor deposition (pvd) chamber and a method of forming a tungsten containing layer atop a substrate
WO2011158828A1 (en) Sputtering film forming device, and adhesion preventing member
JP2007035623A (en) Apparatus in which plasma activity is raised
JP5607760B2 (en) CVD apparatus and CVD method
JP5654939B2 (en) Deposition equipment
JP2020502806A (en) Semiconductor manufacturing component including SiC vapor deposited layer and method of manufacturing the same
JP5280589B1 (en) Method for regenerating tantalum coil for sputtering and tantalum coil obtained by the method
JPWO2010070845A1 (en) Sputtering apparatus and sputtering method
TW201621073A (en) Particle reduction in a deposition chamber using thermal expansion coefficient compatible coating
JP2014231633A (en) Substrate holder
JP2008240112A (en) Magnetron sputtering apparatus and manufacturing method of semiconductor device
JP6824701B2 (en) Film formation method and film deposition equipment
JP2008266665A (en) Film-forming apparatus
JP2002115051A (en) Bias sputtering device
KR101890634B1 (en) Ion beam processing device, electrode assembly, and electrode assembly cleaning method
US9556509B2 (en) Vapour deposition
WO2015194031A1 (en) Plasma cvd device and method for producing magnetic recording medium
US11174546B2 (en) Film formation method
TWI632246B (en) Chamber pasting method in a pvd chamber for reactive re-sputtering dielectric material
JP3778501B2 (en) Sputtering apparatus and sputtering method
JP2013048143A (en) Plasma processing apparatus and plasma processing method
JP6078171B2 (en) Plasma assisted physical vapor deposition source
JP2016069714A (en) Substrate holder, and film deposition apparatus equipped with the same
JP2022530158A (en) Anode for PVD treatment

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150518