JP2014231458A - Observation device - Google Patents

Observation device Download PDF

Info

Publication number
JP2014231458A
JP2014231458A JP2013113114A JP2013113114A JP2014231458A JP 2014231458 A JP2014231458 A JP 2014231458A JP 2013113114 A JP2013113114 A JP 2013113114A JP 2013113114 A JP2013113114 A JP 2013113114A JP 2014231458 A JP2014231458 A JP 2014231458A
Authority
JP
Japan
Prior art keywords
area
observation
luminance
low
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013113114A
Other languages
Japanese (ja)
Other versions
JP5752743B2 (en
Inventor
俊司 野口
Shunji Noguchi
俊司 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2013113114A priority Critical patent/JP5752743B2/en
Publication of JP2014231458A publication Critical patent/JP2014231458A/en
Application granted granted Critical
Publication of JP5752743B2 publication Critical patent/JP5752743B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an observation device and an observation method which enables simultaneous observation of objects having a contrast difference in one visual field.SOLUTION: Provided is an observation device used for observing a portion to be observed, where a high luminance part and a low luminance part exist mixed. The device includes: an observation means for observing an area of the high luminance part and an area of the low luminance part; an adjustment means for equalizing/approximating a light quantity of the area of the high luminance part with/to a light quantity of the area of the low luminance part; and a monitor means for allowing the observation means to observe both areas having each light quantity equalized/approximated by the adjustment means, and projecting both of these areas simultaneously.

Description

本発明は、観察装置および観察方法に関し、特に、単結晶育成装置における試料溶融・結晶育成部を観察する観察装置および観察方法に関する。   The present invention relates to an observation apparatus and an observation method, and more particularly to an observation apparatus and an observation method for observing a sample melting / crystal growth portion in a single crystal growth apparatus.

単結晶育成装置は、図9及び図10に示すように、対称形の2つの楕円面鏡81,82を有し、各々の一方の焦点F0,F0(図9参照)が一致するように対向結合させて加熱炉を構成する。この回転楕円面鏡81,82の内面、すなわち反射面は、赤外線を高反射率で反射させるために金めっき処理が施されている。各回転楕円面鏡81,82の他方の焦点F1,F2付近には、加熱源、例えば、ハロゲンランプ等の赤外線ランプ83,84が固定配置してある。各回転楕円面鏡81,82の一致した焦点F0(図10参照)には被加熱部85が位置し、上方から鉛直方向に延びる上結晶駆動軸86の下端に固定した原料棒87と、下方から鉛直方向に延びる下結晶駆動軸88の上端に固定された種結晶棒89とを突き合わせてある。前記上結晶駆動軸86および下結晶駆動軸88は、図示するように、保持部材90,91によって気密に保持され、図示しないサーボモータ等の駆動モータで回転自在、かつ、同期または相対速度を有して昇降自在に保持されている。   As shown in FIGS. 9 and 10, the single crystal growing apparatus has two symmetrical ellipsoidal mirrors 81 and 82, and faces each other so that one of the focal points F0 and F0 (see FIG. 9) coincides. Combined to form a heating furnace. The inner surfaces of the spheroid mirrors 81 and 82, that is, the reflection surfaces are subjected to gold plating in order to reflect infrared rays with high reflectivity. Near the other focal points F1 and F2 of the spheroid mirrors 81 and 82, heating sources, for example, infrared lamps 83 and 84 such as halogen lamps are fixedly arranged. A heated portion 85 is located at the coincident focal point F0 (see FIG. 10) of each of the spheroid mirrors 81 and 82, and a raw material rod 87 fixed to the lower end of the upper crystal drive shaft 86 extending vertically from above, A seed crystal rod 89 fixed to the upper end of the lower crystal drive shaft 88 extending in the vertical direction from the bottom. The upper crystal drive shaft 86 and the lower crystal drive shaft 88 are hermetically held by holding members 90 and 91 as shown in the figure, can be rotated by a drive motor such as a servo motor (not shown), and have a synchronous or relative speed. It is held up and down freely.

前記原料棒87および種結晶棒89が配置された空間m1を、赤外線ランプ83,84が配置された空間m2と区画して、単結晶育成室92を形成する透明な石英管93を設けて、上記単結晶育成室92に結晶育成に対して好適な不活性ガス等を充満させる。   A space m1 in which the raw material rod 87 and the seed crystal rod 89 are disposed is partitioned from a space m2 in which infrared lamps 83 and 84 are disposed, and a transparent quartz tube 93 that forms a single crystal growth chamber 92 is provided. The single crystal growth chamber 92 is filled with an inert gas suitable for crystal growth.

この単結晶育成装置によれば、回転楕円面鏡81,82の第1,第2の焦点F1,F2に配置された赤外線ランプ83,84から照射される赤外線を、上記回転楕円面鏡81,82で反射させ、共通の焦点F0に位置する被加熱部85に集光させて赤外線加熱する。この赤外線加熱による輻射エネルギーにより、被加熱部85の原料棒87の下端および種結晶棒89の上端を加熱溶融させながら、円滑に接触させることにより、原料棒87と種結晶棒89間の被加熱部85に溶融帯を形成させる。   According to this single crystal growing apparatus, the infrared rays irradiated from the infrared lamps 83 and 84 disposed at the first and second focal points F1 and F2 of the spheroid mirrors 81 and 82 are transmitted to the spheroid mirrors 81 and 82, respectively. The light is reflected by 82, condensed on the heated portion 85 located at the common focal point F0, and heated by infrared rays. By heating and melting the lower end of the raw material rod 87 and the upper end of the seed crystal rod 89 of the heated portion 85 by the radiation energy by the infrared heating, the heated portion between the raw material rod 87 and the seed crystal rod 89 is heated and melted. A melt zone is formed in the portion 85.

そして、下端に原料棒87を固定した上結晶駆動軸86と上端に種結晶棒89を固定した下結晶駆動軸88とを共に回転させ、かつ、同期または相対速度を有してゆっくり下方に向かって移動させることによって、原料棒87と種結晶棒89間の溶融帯94が次第に原料棒87側に移動し、その後、結晶が成長して単結晶が育成される。なお、図11における87aは原料棒87側の固液界面を示し、89aは種結晶棒89側の固液界面を示している。   Then, the upper crystal drive shaft 86 with the raw material rod 87 fixed to the lower end and the lower crystal drive shaft 88 with the seed crystal rod 89 fixed to the upper end are rotated together and slowly moved downward with synchronization or relative speed. Thus, the melting zone 94 between the raw material rod 87 and the seed crystal rod 89 gradually moves to the raw material rod 87 side, and then the crystal grows to grow a single crystal. In FIG. 11, 87a indicates a solid-liquid interface on the raw material rod 87 side, and 89a indicates a solid-liquid interface on the seed crystal rod 89 side.

前記単結晶育成装置では、加熱源に赤外線ランプ83,84を用いていた。これに対して、近年では、加熱源としてレーザ源を用いたものがある(特許文献1)。赤外線ランプなどの加熱源に比較して、レーザ源の全加熱エネルギーを直接、被加熱部に供給することができ、従来の回転楕円面鏡が不要で構成が著しく簡単になり、点検や保守も容易になる。また、レーザ源はレーザの直進性によりその配設位置が、従来の赤外線ランプのように回転楕円面鏡の一方の焦点に限定されないので、被加熱部から離隔して配設することが可能で、複数のレーザ源を被加熱部の周囲に配置することが容易に実現可能になる。   In the single crystal growing apparatus, infrared lamps 83 and 84 are used as a heating source. On the other hand, in recent years, a laser source is used as a heating source (Patent Document 1). Compared to a heating source such as an infrared lamp, the entire heating energy of the laser source can be supplied directly to the heated part, and the conventional spheroidal mirror is not required and the configuration is remarkably simplified, and inspection and maintenance are also possible. It becomes easy. Further, the laser source is not limited to one focal point of the spheroid mirror as in the case of a conventional infrared lamp due to the straightness of the laser, so it can be arranged away from the heated part. It becomes easy to arrange a plurality of laser sources around the heated portion.

特開2007−145629号公報JP 2007-145629 A

ところが、レーザ源による溶融の場合、集光された焦点のみ試料の溶融が行われることになる。このため、試料溶融部は発熱により高輝度となる。これに対して、結晶成長後の固化部(ファセット形成部)は発熱が無く低輝度である。また、可視反射光も存在しない。すなわち、図7に示すように、試料溶融部(溶融位置)100での光量が大であり、ファセット形成部101での光量はほぼ0である。   However, in the case of melting by a laser source, the sample is melted only at the focused focal point. For this reason, a sample fusion | melting part becomes high-intensity by heat_generation | fever. On the other hand, the solidified portion (facet forming portion) after crystal growth has no heat generation and has low luminance. There is no visible reflected light. That is, as shown in FIG. 7, the amount of light at the sample melting portion (melting position) 100 is large, and the amount of light at the facet forming portion 101 is almost zero.

このような状態において、試料溶融部100と固化部101とを同一カメラで観察しようとすると、コントラスト差が大きく、試料溶融部100と固化部101との同時観察を行えなかった。すなわち、図8に示すように、溶融部100のハレーション102により同時に観察することができない。この場合、溶融部100のハレーション102を抑える操作を行えば、固化部101が暗くなりすぎて観察できない。   In such a state, when the sample melting part 100 and the solidified part 101 are to be observed with the same camera, the contrast difference is large and simultaneous observation of the sample melting part 100 and the solidified part 101 cannot be performed. That is, as shown in FIG. 8, it cannot be observed simultaneously by the halation 102 of the melting part 100. In this case, if the operation of suppressing the halation 102 of the melting part 100 is performed, the solidified part 101 becomes too dark to be observed.

本発明は、上記課題に鑑みて、一視野内でコントラスト差のある対象物を同時観察が可能な観察装置および観察方法を提供する。   In view of the above problems, the present invention provides an observation apparatus and an observation method capable of simultaneously observing an object having a contrast difference within one field of view.

本発明の観察装置は、高輝度部と低輝度部とが混在する被観察部位を観察する観察装置であって、高輝度部のエリア及び低輝度部のエリアを観察する観察手段と、高輝度部のエリアの光量と低輝度部のエリアの光量を同一乃至近似させる調整手段と、調整手段にて光量が同一乃至近似された両エリアを観察手段に観察してこの両エリアを同時に映し出すモニタ手段とを備えたものである。   An observation apparatus according to the present invention is an observation apparatus that observes an observation site in which a high-luminance part and a low-luminance part are mixed, and includes an observation unit that observes an area of a high-luminance part and an area of a low-luminance part, Adjusting means for making the light amount of the area of the light area equal to or approximating the light amount of the area of the low-brightness area, and monitoring means for observing both areas where the light amount is the same or approximated by the adjusting means with the observation means, It is equipped with.

本発明の観察装置によれば、調整手段にて、高輝度部のエリアと低輝度部のエリアとも光量をほぼ同じにすることができる。観察手段にて、光量をほぼ同じとした高輝度部のエリアと低輝度部のエリアとの観察ができる。そして、モニタ手段にて、観察手段に観察された両エリアを同時に映し出すことができる。   According to the observation apparatus of the present invention, the amount of light can be made substantially the same in the area of the high luminance part and the area of the low luminance part by the adjusting means. With the observation means, it is possible to observe the area of the high luminance part and the area of the low luminance part with the same amount of light. Then, the monitor means can simultaneously project both areas observed by the observation means.

被観察部位内において、高輝度部のエリア又は低輝度部のエリアを指定するエリア指定手段を備え、前記調整手段がエリア指定手段にて指定されたエリアの光量を他方のエリアの光量に近づけて、観察手段にて、調整手段にて光量が調整されたエリアと、調整手段にて光量が調整されていないエリアとを観察するものであってもよい。   An area designating unit for designating a high-luminance area or a low-luminance area in the site to be observed is provided. The observation unit may observe the area where the light amount is adjusted by the adjustment unit and the area where the light amount is not adjusted by the adjustment unit.

調整手段は、観察手段を構成するカメラの感度を調整するものとできる。ここで、カメラとしては、CCDカメラやCMOSカメラで構成できる。カメラの感度を調整としては、フィルタ等を用いることができる。また、調整手段は、観察手段にて取り込んだ画像のソフト処理にて行うことも可能である。ソフト処理として、パソコン(パーソナルコンピュータ)にて行わせることができる。調整手段にて調整するエリアは高輝度部エリアであるのが好ましい。   The adjustment means can adjust the sensitivity of the camera constituting the observation means. Here, the camera can be composed of a CCD camera or a CMOS camera. A filter or the like can be used to adjust the sensitivity of the camera. The adjusting means can also be performed by software processing of the image captured by the observing means. Software processing can be performed by a personal computer. The area adjusted by the adjusting means is preferably a high brightness area.

本発明の観察方法は、高輝度部と低輝度部とが混在する被観察部位を観察する観察方法であって、高輝度部のエリアの光量と低輝度部のエリアの光量を同一乃至近似させた後、高輝度部のエリアと低輝度部のエリアとを同時に映し出すものである。   The observation method of the present invention is an observation method for observing a site to be observed in which a high-luminance part and a low-luminance part are mixed. Then, the area of the high luminance part and the area of the low luminance part are projected simultaneously.

この観察方法では、高輝度部のエリアの光量を低輝度部のエリアの光量に近づけた後、高輝度部のエリアと低輝度部のエリアとを同時に映し出すことができる。   In this observation method, after the amount of light in the area of the high luminance portion is brought close to the amount of light in the area of the low luminance portion, the area of the high luminance portion and the area of the low luminance portion can be projected simultaneously.

また、高輝度部と低輝度部とが混在する被観察部位を、単結晶育成装置における試料溶融・結晶育成部とすることができる。また、単結晶育成装置は、加熱手段としてレーザ光を用いることができる。   In addition, a site to be observed in which the high luminance portion and the low luminance portion are mixed can be used as the sample melting / crystal growing portion in the single crystal growing apparatus. The single crystal growing apparatus can use laser light as a heating means.

本発明では、観察手段に観察された両エリア(高輝度部のエリアと低輝度部のエリア)を、ほぼ同じ光量で同時に映し出すことができるので、一視野内でコントラスト差のある対象物(被観察部位)を同時観察することができる。   In the present invention, both areas (high brightness area and low brightness area) observed by the observation means can be projected simultaneously with substantially the same amount of light. (Observation site) can be observed simultaneously.

エリア指定手段にて指定されたエリアの光量を他方のエリアの光量に近づけるものでは、制御性に安定する。また、調整手段は、観察手段を構成するカメラの感度を調整することででき、観察手段にて取り込んだ画像のソフト処理にて行うことででき、調整手段を簡単に構成できる。   If the light quantity of the area designated by the area designation means is close to the light quantity of the other area, the controllability is stable. Further, the adjustment means can adjust the sensitivity of the camera constituting the observation means, can be performed by software processing of the image captured by the observation means, and the adjustment means can be configured easily.

単結晶育成装置において、加熱手段としてレーザ光を用いた場合、試料溶融部は発熱によって高輝度となり、結晶成長後の固化部(ファセット形成部)は発熱が無く低輝度となる。このため、高輝度部と低輝度部とが混在する被観察部位として、加熱手段としてレーザ光を用いた単結晶育成装置における試料溶融・結晶育成部に最適となる。   In the single crystal growth apparatus, when laser light is used as the heating means, the sample melting portion has high luminance due to heat generation, and the solidified portion (facet formation portion) after crystal growth has no heat generation and low luminance. For this reason, the observation site where the high luminance portion and the low luminance portion coexist is optimal for the sample melting / crystal growth portion in the single crystal growth apparatus using laser light as the heating means.

本発明の実施形態を示す観察装置の構成を示す簡略ブロック図である。It is a simplified block diagram which shows the structure of the observation apparatus which shows embodiment of this invention. 前記観察装置の要部断面図である。It is principal part sectional drawing of the said observation apparatus. 前記観察装置の要部断簡略平面図である。It is a principal part cutting simple top view of the said observation apparatus. 本発明の実施形態を示す観察方法を示す簡略ブロック図である。It is a simplified block diagram which shows the observation method which shows embodiment of this invention. 前記観察装置にて試料を観察している状態のモニタ画面図である。It is a monitor screen figure of the state which observes the sample with the said observation apparatus. 本発明の他の実施形態を示す観察装置の構成を示す簡略ブロック図である。It is a simplified block diagram which shows the structure of the observation apparatus which shows other embodiment of this invention. 試料溶融部を示す簡略斜視図である。It is a simplified perspective view which shows a sample fusion | melting part. 従来の観察方法で試料を観察している状態のモニタ画面図である。It is a monitor screen figure of the state which is observing a sample with the conventional observation method. 従来の単結晶育成装置の断面図である。It is sectional drawing of the conventional single crystal growth apparatus. 前記図9のD−D線断面図である。FIG. 10 is a sectional view taken along line DD of FIG. 9. 単結晶育成試料の溶融部乃至固化部を示す拡大図である。It is an enlarged view which shows the fusion | melting part thru | or the solidification part of the single crystal growth sample.

以下本発明の実施の形態を図1〜図6に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図2と図3とは、加熱手段としてレーザ光を用いる単結晶育成装置を示し、この場合、レーザ源11(11A,11B,11C,11D,11E)を図3に示すように、例えば周方向に沿って所定ピッチ(具体的には、72度ピッチ)で5機配設されている。レーザ光照射部14は、上方から鉛直方向に延びる上結晶駆動軸15の下端に固定した原料棒16と、下方から鉛直方向に延びる下結晶駆動軸17の上端に固定された種結晶棒18とを突き合わせたものである。前記上結晶駆動軸15および下結晶駆動軸17は、保持部材19,20によって気密に保持され、図示しないサーボモータ等の駆動モータで回転自在、かつ、同期あるいは非同期で、昇降自在に保持されている。   2 and 3 show a single crystal growing apparatus using laser light as a heating means. In this case, the laser source 11 (11A, 11B, 11C, 11D, 11E) is, for example, circumferentially as shown in FIG. Are arranged at a predetermined pitch (specifically, a pitch of 72 degrees). The laser beam irradiation unit 14 includes a raw material rod 16 fixed to the lower end of the upper crystal drive shaft 15 extending in the vertical direction from above, and a seed crystal rod 18 fixed to the upper end of the lower crystal drive shaft 17 extending in the vertical direction from below. Is a match. The upper crystal drive shaft 15 and the lower crystal drive shaft 17 are hermetically held by holding members 19 and 20, and are rotatably held by a drive motor such as a servo motor (not shown) and can be moved up and down synchronously or asynchronously. Yes.

前記原料棒16および種結晶棒18が配置された空間m1を、レーザ源11が配置された空間m2と区画して、単結晶育成室21を形成する透明な石英管22を設けて、上記単結晶育成室21に結晶育成に対して好適な雰囲気ガスを充満させている。   The space m1 in which the raw material rod 16 and the seed crystal rod 18 are disposed is partitioned from the space m2 in which the laser source 11 is disposed, and a transparent quartz tube 22 that forms a single crystal growth chamber 21 is provided. The crystal growth chamber 21 is filled with an atmosphere gas suitable for crystal growth.

前記の単結晶育成装置によれば、レーザ源11(11A,11B,11C,11D,11E)から照射されるレーザL(L1、L2,L3,L4,L5)を、被加熱部14に集中させてレーザ加熱する。そして、下端に原料棒16を固定した上結晶駆動軸15と上端に種結晶棒18を固定した下結晶駆動軸17とを回転させ、かつ、同期あるいは非同期で、ゆっくり下方に向かって移動させる。   According to the single crystal growing apparatus, the laser L (L1, L2, L3, L4, L5) irradiated from the laser source 11 (11A, 11B, 11C, 11D, 11E) is concentrated on the heated portion. And heat with laser. Then, the upper crystal drive shaft 15 having the raw material rod 16 fixed to the lower end and the lower crystal drive shaft 17 having the seed crystal rod 18 fixed to the upper end are rotated and moved slowly downward synchronously or asynchronously.

前記単結晶育成装置には、図1に示すように、試料溶融・結晶育成部(被加熱部14であって、非観察部位S)を観察する観察装置を備えている。観察装置は、試料溶融・結晶育成部を観察する観察手段26と、前記観察手段26における観察エリアに光量を調整する調整手段27と、観察手段26に観察された映し出すモニタ手段28とを備えたものである。すなわち、レーザ光照射によって、試料は、溶解部24と、結晶成形後の固化部(ファセット形成部)25とが形成される。   As shown in FIG. 1, the single crystal growth apparatus includes an observation apparatus for observing a sample melting / crystal growth part (the heated part 14 and the non-observation part S). The observation apparatus includes an observation unit 26 for observing the sample melting / crystal growth part, an adjustment unit 27 for adjusting the amount of light in the observation area of the observation unit 26, and a monitor unit 28 for displaying the image observed by the observation unit 26. Is. That is, the laser beam irradiation forms a melted portion 24 and a solidified portion (facet forming portion) 25 after crystal forming.

この場合、溶解部24は発熱により高輝度となり、固化部25は発熱がなく低輝度となる。このため、観察エリアには、図5に示すように、高輝度のエリアH1と、低輝度のエリアH2とがあり、この観察装置には、図1に示すように、エリアH1、H2を指定する指定手段30を備える。前記観察手段26は、図5に示す高輝度のエリアH1と、低輝度のエリアH2とを観察可能となっている。具体的には、CCDカメラやCMOSカメラ等で構成できる。指定手段30としては、CPU(Central Processing Unit)を中心としてROM(Read Only Memory)やRAM(Random Access Memory)等がバスを介して相互に接続されたマイクロコンピューターからなる制御手段にて構成できる。また、この制御手段には記憶手段が接続される。記憶手段としての記憶装置は、HDD(Hard Disc Drive)やDVD(Digital Versatile Disk)ドライブ、CD−R(Compact Disc-Recordable)ドライブ、EEPROM(Electronically Erasable and Programmable Read Only Memory)等からなる。なお、ROMには、CPUが実行するプログラムやデータが格納されている。   In this case, the melting portion 24 has high luminance due to heat generation, and the solidified portion 25 does not generate heat and has low luminance. Therefore, as shown in FIG. 5, the observation area includes a high-luminance area H1 and a low-luminance area H2. As shown in FIG. 1, the observation apparatus designates areas H1 and H2. The specifying means 30 is provided. The observation means 26 can observe the high luminance area H1 and the low luminance area H2 shown in FIG. Specifically, a CCD camera, a CMOS camera, or the like can be used. The designation means 30 can be configured by a control means comprising a microcomputer in which a ROM (Read Only Memory), a RAM (Random Access Memory), etc. are connected to each other via a bus with a central processing unit (CPU) as the center. A storage means is connected to the control means. A storage device as a storage means includes an HDD (Hard Disc Drive), a DVD (Digital Versatile Disk) drive, a CD-R (Compact Disc-Recordable) drive, an EEPROM (Electronically Erasable and Programmable Read Only Memory), or the like. The ROM stores programs executed by the CPU and data.

調整手段27が、図5に示す高輝度のエリアH1の光量を落とすものであり、CCDカメラやCMOSカメラ等で構成される観察手段26に付設される絞り用のフィルターをもって構成できる。すなわち、カメラの撮像素子の感度を落とすことになる。   The adjusting means 27 reduces the amount of light in the high-luminance area H1 shown in FIG. 5, and can be configured with a diaphragm filter attached to the observation means 26 composed of a CCD camera, a CMOS camera, or the like. That is, the sensitivity of the image sensor of the camera is reduced.

そして、調整手段27としては、高輝度のエリアH1の光量を落として、低輝度のエリアH2の光量に近づける。ここで、近づけるとは、観察手段26を構成するCCDカメラやCMOSカメラ等の一つの同一カメラで、高輝度のエリアH1と低輝度のエリアH2とが観察可能となればよい。このため、高輝度のエリアH1の光量と、低輝度のエリアH2の光量とが同一であっても、多少相違するものであってもよい。   And as the adjustment means 27, the light quantity of the high-luminance area H1 is reduced, and it approximates the light quantity of the low-luminance area H2. Here, the term “close” means that the high-luminance area H1 and the low-luminance area H2 can be observed with one same camera such as a CCD camera or a CMOS camera constituting the observation means 26. For this reason, the light amount of the high-luminance area H1 and the light amount of the low-luminance area H2 may be the same or slightly different.

モニタ手段28とは、図5に示すようなモニタ画面(ディスプレイ画面)Mを備えたものであり、観察手段26にて撮影された画像であって、調整手段27によって、光量が調整された画像がモニタ画面Mに表示される。   The monitor means 28 is provided with a monitor screen (display screen) M as shown in FIG. 5 and is an image taken by the observation means 26, and an image whose light amount has been adjusted by the adjusting means 27. Is displayed on the monitor screen M.

次に、前記のように構成された観察装置に用いた観察方法を図4を用いて説明する。観察手段26にて撮影された画像を映し出すモニタ画面M上において、前記指定手段30により、高輝度のエリアH1を指定する(ステップS1)。高輝度のエリアH1は、溶解部24を含むものである。その後、この高輝度のエリアH1の光量を調整する(ステップS2)。この場合、観察手段26を構成するカメラの撮像素子の感度を落すことになる。   Next, an observation method used in the observation apparatus configured as described above will be described with reference to FIG. On the monitor screen M on which the image taken by the observation means 26 is displayed, the designation means 30 designates a high-luminance area H1 (step S1). The high-luminance area H1 includes the dissolving portion 24. Thereafter, the amount of light in the high-luminance area H1 is adjusted (step S2). In this case, the sensitivity of the image sensor of the camera that constitutes the observation means 26 is reduced.

そして、この高輝度のエリアH1の光量を落とした画像を、観察手段26を構成するカメラに取り込み(ステップS3)、この画像をモニタ画面上に表示する(ステップS4)。   Then, an image in which the amount of light in the high-luminance area H1 is reduced is taken into the camera constituting the observation means 26 (step S3), and this image is displayed on the monitor screen (step S4).

このように、前記観察装置を用いた観察方法では、調整手段27には、高輝度部のエリアH1と低輝度部のエリアH2とも光量をほぼ同じにすることができる。観察手段26にて、光量をほぼ同じとした高輝度部のエリアH1と低輝度部のエリアH2との観察ができる。そして、モニタ手段28にて、観察手段26に観察された両エリアを同時に映し出すことができる。   Thus, in the observation method using the observation apparatus, the light intensity can be made substantially the same in the adjustment unit 27 in both the high-luminance area H1 and the low-luminance area H2. With the observation means 26, it is possible to observe the area H1 of the high luminance part and the area H2 of the low luminance part where the amount of light is substantially the same. Then, the monitor means 28 can project both areas observed by the observation means 26 at the same time.

このように、本発明では、観察手段26に観察された両エリア(高輝度部のエリアH1と低輝度部のエリアH2)をほぼ同一の光量で同時に映し出すことができるので、一視野内でのコントラスト差のある対象物(被観察部位S)を同時観察することができる。このため、作業者(オペレータ)は、溶解部24と結晶成形後の固化部(ファセット形成部)25とを同時に観察でき、これらの部位の状態を的確に把握できる。そして、この観察に基づいて、単結晶育成装置におけるレーザ光の照射エネルギーを調整したり、下端に原料棒16と下結晶駆動軸17との回転速度や下降速度を調整する。このため、安定して高精度に単結晶の育成が可能となる。   As described above, in the present invention, both areas (the high-luminance area H1 and the low-luminance area H2) observed by the observation means 26 can be projected simultaneously with substantially the same amount of light. It is possible to simultaneously observe an object (observed site S) having a contrast difference. For this reason, the operator (operator) can observe the melt | dissolving part 24 and the solidification part (facet formation part) 25 after crystal forming simultaneously, and can grasp | ascertain the state of these parts accurately. Based on this observation, the irradiation energy of the laser beam in the single crystal growth apparatus is adjusted, and the rotational speed and the descending speed of the raw material rod 16 and the lower crystal drive shaft 17 are adjusted at the lower end. For this reason, it is possible to grow a single crystal stably and with high accuracy.

エリア指定手段30にて指定されたエリアの光量を他方のエリアの光量に近づけるものでは、制御性に安定する。また、調整手段27は、観察手段26を構成するカメラの感度を調整するこができ、調整手段26を簡単に構成できる。   When the light quantity of the area designated by the area designation means 30 is close to the light quantity of the other area, the controllability is stable. Further, the adjusting means 27 can adjust the sensitivity of the camera constituting the observation means 26, and the adjusting means 26 can be easily configured.

このように、単結晶育成装置において、加熱手段としてレーザ光を用いた場合、試料溶融部は発熱によって高輝度となり、結晶成長後の固化部(ファセット形成部)は発熱が無く低輝度とたる。このため、高輝度部と低輝度部とが混在する被観察部位として、加熱手段としてレーザ光を用いた単結晶育成装置における試料溶融・結晶育成部に最適となる。   As described above, in the single crystal growth apparatus, when laser light is used as the heating means, the sample melting portion has high luminance due to heat generation, and the solidified portion (facet forming portion) after crystal growth has no heat generation and low luminance. For this reason, the observation site where the high luminance portion and the low luminance portion coexist is optimal for the sample melting / crystal growth portion in the single crystal growth apparatus using laser light as the heating means.

調整手段27として、観察手段26にて取り込んだ画像のソフト処理にて行うことができる。すなわち、図6に示すように、観察手段26を構成するカメラと、モニタ手段28との間に、パソコン(パーソナルコンピュータ)等からなる調整手段27を介在させたものであってもよい。そして、調整手段27に予めプログラムされたソフト演算処理手段によって、撮像素子の感度を落とす効果を奏するソフト処理を行うようにする。このように、ソフト処理にて行っても、調整手段26を簡単に構成できる。また、この調整手段27として、前記指定手段30を構成する制御手段にて構成してもよく、調整手段27にて構成したパソコンにて、前記指定手段30を構成してもよい。   The adjustment means 27 can be performed by software processing of the image captured by the observation means 26. That is, as shown in FIG. 6, an adjusting means 27 made up of a personal computer (personal computer) or the like may be interposed between the camera constituting the observation means 26 and the monitor means 28. Then, software processing that has the effect of reducing the sensitivity of the image sensor is performed by software arithmetic processing means pre-programmed in the adjusting means 27. In this way, the adjustment means 26 can be easily configured even by performing software processing. Further, the adjusting means 27 may be constituted by a control means constituting the specifying means 30, or the specifying means 30 may be constituted by a personal computer constituted by the adjusting means 27.

前記実施形態では、高輝度のエリアH1の光量の調整(下げる調整)を行っていたが、逆に、高輝度のエリアH1の光量を調整することなく、低輝度のエリアH2の光量を調整するようにしてもよい。すなわち、低輝度のエリアH2の光量を上げるようにしてもよい。このように、低輝度のエリアH2の光量を上げようにして、高輝度のエリアH1の光量と低輝度のエリアH2の光量とを同一乃至近似させるようにすれば、観察手段26を構成するCCDカメラやCMOSカメラ等の一つの同一カメラで、高輝度のエリアH1と低輝度のエリアH2とが観察可能となる。   In the above embodiment, the light amount of the high-luminance area H1 is adjusted (decreased). Conversely, the light amount of the low-luminance area H2 is adjusted without adjusting the light amount of the high-luminance area H1. You may do it. That is, the amount of light in the low-luminance area H2 may be increased. Thus, if the light quantity of the low-luminance area H2 is increased so that the light quantity of the high-luminance area H1 and the light quantity of the low-luminance area H2 are the same or approximate, the CCD constituting the observation means 26 A high brightness area H1 and a low brightness area H2 can be observed with one same camera such as a camera or a CMOS camera.

また、高輝度のエリアH1の光量と低輝度のエリアH2の光量との両者を調整するようにしてもよい。この場合でも、輝度のエリアH1の光量と低輝度のエリアH2の光量とを同一乃至近似させることができ、観察手段26を構成するCCDカメラやCMOSカメラ等の一つの同一カメラで、高輝度のエリアH1と低輝度のエリアH2とが観察可能となる。   Moreover, you may make it adjust both the light quantity of the area H1 of high brightness | luminance, and the light quantity of the area H2 of low brightness | luminance. Even in this case, the light quantity in the luminance area H1 and the light quantity in the low-luminance area H2 can be made the same or approximate, and the same camera such as a CCD camera or a CMOS camera constituting the observation means 26 can be used. The area H1 and the low brightness area H2 can be observed.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、使用するレーザとしては、固体レーザ、半導体レーザ、液体レーザ、又は気体レーザ等の種々のレーザを用いることができる。また、前記図2に示す単結晶育成装置では、レーザ源11が、試料の周方向に沿って72度ピッチで、5機配置されて、5方向からレーザ光を照射するものであったが、これに限るものではなく、試料の周りに配設されるレーザ源11の数の増減は任意である。   As described above, the embodiments of the present invention have been described. However, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, solid-state lasers, semiconductor lasers, liquid lasers, Alternatively, various lasers such as a gas laser can be used. Further, in the single crystal growth apparatus shown in FIG. 2, five laser sources 11 are arranged at a pitch of 72 degrees along the circumferential direction of the sample and irradiate laser light from five directions. The number of laser sources 11 arranged around the sample is not limited to this, and the number of laser sources 11 arranged around the sample is arbitrary.

また、本発明の観察装置としては、単結晶育成装置に限るものではなく、高輝度部と低輝度部とが混在する被観察部位を観察するものであればよく、例えば、溶接部(アーク溶接部)等の観察に用いてもよい。   In addition, the observation apparatus of the present invention is not limited to a single crystal growth apparatus, and may be any apparatus that observes an observation site in which a high luminance part and a low luminance part are mixed. For example, a welding part (arc welding) Part) and the like.

26 観察手段
27 調整手段
28 モニタ手段
30 指定手段
S 被観察部材
26 observation means 27 adjustment means 28 monitor means 30 designation means S member to be observed

Claims (10)

高輝度部と低輝度部とが混在する被観察部位を観察する観察装置であって、
高輝度部のエリア及び低輝度部のエリアを観察する観察手段と、
高輝度部のエリアの光量と低輝度部のエリアの光量を同一乃至近似させる調整手段と、
調整手段にて光量が同一乃至近似された両エリアを観察手段に観察してこの両エリアを同時に映し出すモニタ手段とを備えたことを特徴とする観察装置。
An observation apparatus for observing an observed site in which a high luminance part and a low luminance part are mixed,
Observation means for observing the area of the high luminance part and the area of the low luminance part,
An adjusting means for making the light amount of the area of the high luminance portion the same as or close to the light amount of the area of the low luminance portion;
An observation apparatus comprising: monitor means for observing both areas whose light amounts are the same or approximated by the adjusting means with the observation means and projecting both areas simultaneously.
被観察部位内において、高輝度部のエリア又は低輝度部のエリアを指定するエリア指定手段を備え、前記調整手段がエリア指定手段にて指定されたエリアの光量を他方のエリアの光量に近づけて、観察手段にて、調整手段にて光量が調整されたエリアと、調整手段にて光量が調整されていないエリアとを観察することを特徴とする請求項1に記載の観察装置。   An area designating unit for designating a high-luminance area or a low-luminance area in the site to be observed is provided, and the adjusting unit brings the light amount of the area designated by the area designating unit closer to the light amount of the other area. The observation apparatus according to claim 1, wherein the observation unit observes an area in which the light amount is adjusted by the adjustment unit and an area in which the light amount is not adjusted by the adjustment unit. 調整手段は、観察手段を構成するカメラの感度を調整することを特徴とする請求項1又は請求項2に記載の観察装置。   The observation device according to claim 1, wherein the adjustment unit adjusts sensitivity of a camera constituting the observation unit. 調整手段は、観察手段にて取り込んだ画像のソフト処理にて行うことを特徴とする請求項1又は請求項2に記載の観察装置。   The observation apparatus according to claim 1, wherein the adjustment unit performs software processing of an image captured by the observation unit. 調整手段にて調整するエリアは高輝度部エリアであることを特徴とする請求項1〜請求項4のいずれか1項に記載の観察装置。   The observation apparatus according to any one of claims 1 to 4, wherein the area to be adjusted by the adjusting means is a high brightness area. 高輝度部と低輝度部とが混在する被観察部位は、単結晶育成装置における試料溶融・結晶育成部であることを特徴とする請求項1〜請求項5のいずれか1項に記載の観察装置。   The observation site according to any one of claims 1 to 5, wherein the site to be observed in which the high luminance portion and the low luminance portion are mixed is a sample melting / crystal growth portion in a single crystal growth apparatus. apparatus. 前記単結晶育成装置は、加熱手段としてレーザ光を用いることを特徴とする請求項6に記載の観察装置。   The observation apparatus according to claim 6, wherein the single crystal growing apparatus uses laser light as heating means. 高輝度部と低輝度部とが混在する被観察部位を観察する観察方法であって、
高輝度部のエリアの光量と低輝度部のエリアの光量を同一乃至近似させた後、高輝度部のエリアと低輝度部のエリアとを同時に映し出すことを特徴とする観察方法。
An observation method for observing an observation site in which a high luminance part and a low luminance part are mixed,
An observation method, wherein the amount of light in the high-luminance portion area and the amount of light in the low-luminance portion area are made the same or approximate, and then the high-luminance portion area and the low-luminance portion area are projected simultaneously.
高輝度部のエリアの光量を低輝度部のエリアの光量に近づけた後、高輝度部のエリアと低輝度部のエリアとを同時に映し出すことを特徴とする請求項8に記載の観察方法。   9. The observation method according to claim 8, wherein after the amount of light in the area of the high luminance portion is made close to the amount of light in the area of the low luminance portion, the area of the high luminance portion and the area of the low luminance portion are projected simultaneously. 高輝度部と低輝度部とが混在する被観察部位は、単結晶育成装置における試料溶融・結晶育成部であり、この単結晶育成装置は、加熱手段としてレーザ光を用いることを特徴とする請求項8又は請求項9に記載の観察方法。   The site to be observed in which the high-intensity part and the low-intensity part coexist is the sample melting / crystal growth part in the single crystal growth apparatus, and this single crystal growth apparatus uses laser light as heating means. Item 10 or the observation method according to Item 9.
JP2013113114A 2013-05-29 2013-05-29 Observation device Expired - Fee Related JP5752743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113114A JP5752743B2 (en) 2013-05-29 2013-05-29 Observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113114A JP5752743B2 (en) 2013-05-29 2013-05-29 Observation device

Publications (2)

Publication Number Publication Date
JP2014231458A true JP2014231458A (en) 2014-12-11
JP5752743B2 JP5752743B2 (en) 2015-07-22

Family

ID=52125094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113114A Expired - Fee Related JP5752743B2 (en) 2013-05-29 2013-05-29 Observation device

Country Status (1)

Country Link
JP (1) JP5752743B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178571A (en) * 1984-09-26 1986-04-22 Ishikawajima Harima Heavy Ind Co Ltd Monitoring device for welding arc part
JPS63130271A (en) * 1986-11-20 1988-06-02 Olympus Optical Co Ltd Welding monitoring device
JPH11277231A (en) * 1998-03-26 1999-10-12 Kawasaki Heavy Ind Ltd Weld zone monitoring device
JP2001259883A (en) * 2000-03-10 2001-09-25 Minolta Co Ltd Observing device, monitoring device, welding equipment, and method of welding work
JP2001261478A (en) * 2000-03-14 2001-09-26 Nec Machinery Corp Device for growing single crystal
JP2009173485A (en) * 2008-01-24 2009-08-06 Crystal System:Kk Floating zone melting device
WO2011086851A1 (en) * 2010-01-15 2011-07-21 独立行政法人産業技術総合研究所 Device for single-crystal growth and method of single-crystal growth

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6178571A (en) * 1984-09-26 1986-04-22 Ishikawajima Harima Heavy Ind Co Ltd Monitoring device for welding arc part
JPS63130271A (en) * 1986-11-20 1988-06-02 Olympus Optical Co Ltd Welding monitoring device
JPH11277231A (en) * 1998-03-26 1999-10-12 Kawasaki Heavy Ind Ltd Weld zone monitoring device
JP2001259883A (en) * 2000-03-10 2001-09-25 Minolta Co Ltd Observing device, monitoring device, welding equipment, and method of welding work
JP2001261478A (en) * 2000-03-14 2001-09-26 Nec Machinery Corp Device for growing single crystal
JP2009173485A (en) * 2008-01-24 2009-08-06 Crystal System:Kk Floating zone melting device
WO2011086851A1 (en) * 2010-01-15 2011-07-21 独立行政法人産業技術総合研究所 Device for single-crystal growth and method of single-crystal growth

Also Published As

Publication number Publication date
JP5752743B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP5279727B2 (en) Floating zone melting device
JP5181396B2 (en) Single crystal growth apparatus and single crystal growth method
US20210268586A1 (en) Arithmetic device, detection system, modeling apparatus, arithmetic method, detection method, modeling method, arithmetic program, detection program, and modeling program
JP7196913B2 (en) Method and apparatus for measuring transmittance of quartz crucible
JP7240466B2 (en) 3D surveying device
JP2005294801A5 (en)
Souptel et al. Vertical optical floating zone furnace: principles of irradiation profile formation
JP2016199411A (en) Laser single crystal growth apparatus and single crystal
JP2011037640A (en) Apparatus and method for growing single crystal
JP5752743B2 (en) Observation device
Ren et al. An automated platform for in situ serial crystallography at room temperature
CN101978256B (en) Observational technique and device in stove
US9250196B2 (en) Imaging device, semiconductor manufacturing apparatus, and semiconductor manufacturing method
JP5767299B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP6424724B2 (en) Distance measuring method and distance measuring device
TW201013153A (en) Method and device for continuously measuring silicon island elevation
JP6866132B2 (en) Ophthalmic devices, control methods and programs for ophthalmic devices
JP6343093B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP3723715B2 (en) Single crystal growth equipment
US20190041728A1 (en) Portable system to create the display platform
CN104746136B (en) Laser monitoring and analysis system for lifting furnace
JPH0343237B2 (en)
JP2018024565A (en) Apparatus and method for manufacturing single crystal
JP6669355B2 (en) Floating zone melting equipment
JPH08208368A (en) Suspended zone melting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5752743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees