JP2014229783A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device Download PDF

Info

Publication number
JP2014229783A
JP2014229783A JP2013109085A JP2013109085A JP2014229783A JP 2014229783 A JP2014229783 A JP 2014229783A JP 2013109085 A JP2013109085 A JP 2013109085A JP 2013109085 A JP2013109085 A JP 2013109085A JP 2014229783 A JP2014229783 A JP 2014229783A
Authority
JP
Japan
Prior art keywords
light emitting
light
semiconductor light
led element
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013109085A
Other languages
Japanese (ja)
Inventor
明彦 半谷
Akihiko Hanya
明彦 半谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2013109085A priority Critical patent/JP2014229783A/en
Publication of JP2014229783A publication Critical patent/JP2014229783A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve high rendition effects using light in accordance with a mode of irradiation light enriched in variety by changing an irradiation direction or a hue of the irradiation light in response to heat generation when lighting of a semiconductor light-emitting element that serves as a light emission source, and to downsize a device in which a semiconductor light-emitting device is mounted.SOLUTION: One side ends of paired lead electrodes 3 and 4 which are arranged in parallel with each other, are accommodated with a transparent cover 5 including a first light-emitting plane 5a and a second light-emitting plane 5b in an air-tight state. In the one end side of one lead electrode 3 accommodated within the transparent cover 5 in the air-tight state, a predetermined length from a distal end is made to serve as a thermal displacement part 3a formed of a thermal displacement member of a bimetal structure where two kinds of metal members with different coefficients of thermal expansion are bonded, and a semiconductor light-emitting element 2 that serves as a light emission source is mounted on a top face of the distal end of the thermal displacement part 3a.

Description

本発明は、半導体発光装置に関するものであり、詳しくは、発光源となる半導体発光素子の点灯時の発熱に応じて光の照射方向や色相を変えることが可能な半導体発光装置に関する。   The present invention relates to a semiconductor light-emitting device, and more particularly, to a semiconductor light-emitting device capable of changing the light irradiation direction and hue in accordance with heat generated when a semiconductor light-emitting element serving as a light-emitting source is turned on.

従来、この種(特に、半導体発光素子の灯時の発熱に応じて光の照射方向を変える)の半導体発光装置としては、例えば、特許文献1に「換気装置」として図11〜図13に示す構成のものが開示されている。   Conventionally, as a semiconductor light-emitting device of this type (particularly, the direction of light irradiation is changed according to the heat generated during the lighting of the semiconductor light-emitting element), for example, Patent Document 1 shows “ventilator” as shown in FIGS. A configuration is disclosed.

それは、建築物に設置された換気装置80の、建築物の壁85を貫通して室内90と室外95を連通するダクト81を開閉する開閉手段82を、形状記憶材料で形成した変位可能な可動部83と可動部83に搭載したLED光源84で構成したものである。   That is, the opening / closing means 82 that opens and closes the duct 81 that passes through the wall 85 of the building and communicates with the indoor 90 and the outdoor 95 of the ventilation device 80 installed in the building is formed of a shape memory material and can be displaced. The LED light source 84 is mounted on the part 83 and the movable part 83.

可動部83は、LED光源84の点灯時の発熱によって逆変態開始温度以上の温度に加熱されたときには、図11に示す第1の状態となってダクト81の開度が最大となって換気の効率が最高となり、逆変態開始温度未満の温度に冷却されたときは、LED光源84の重量及び可動部83の自重によって図12及び図13に示す第2の状態となる。   When the movable portion 83 is heated to a temperature equal to or higher than the reverse transformation start temperature by the heat generated when the LED light source 84 is turned on, the movable portion 83 is in the first state shown in FIG. When the efficiency reaches its maximum and is cooled to a temperature lower than the reverse transformation start temperature, the second state shown in FIGS. 12 and 13 is obtained due to the weight of the LED light source 84 and the weight of the movable portion 83.

可動部83は、温度が逆変態開始温度よりも低ければ低いほど撓み量(変形量)が大きくなり、図13に示すダクト81の状態は図12に示すダクト81の状態よりも可動部83の温度が低いときの状態を示している。   As the temperature of the movable portion 83 is lower than the reverse transformation start temperature, the amount of deflection (deformation amount) increases, and the state of the duct 81 shown in FIG. 13 is higher than that of the duct 81 shown in FIG. This shows the state when the temperature is low.

この場合、可動部83の冷却は、ダクト81内に流入する外気によって行われ、外気の温度が比較的高い場合(例えば、夏季)は、可動部83の冷却が抑制されて可動部83が第1の状態となってダクト81の開度が最大となり、室内90に外気が最大に取り入れられる。一方、外気の温度が比較的低い場合(例えば、冬季)は、可動部83の冷却が促進されて可動部83がLED光源84の重量及び可動部83の自重によって第2の状態となってダクト81の開度が第1の状態よりも小さくなり、それによって、暖房で暖められた室内90の空気がダクト81を介して室外95に流出するのが防止されると同時に冷えた外気が室内90に流入するのが防止されることにより、室内90が快適な環境に保たれる。   In this case, the cooling of the movable portion 83 is performed by the outside air flowing into the duct 81. When the temperature of the outside air is relatively high (for example, in summer), the cooling of the movable portion 83 is suppressed, and the movable portion 83 is 1, the opening degree of the duct 81 is maximized, and the outside air is taken into the room 90 at the maximum. On the other hand, when the temperature of the outside air is relatively low (for example, in winter), the cooling of the movable portion 83 is promoted, and the movable portion 83 becomes the second state due to the weight of the LED light source 84 and the dead weight of the movable portion 83. The opening degree of 81 is smaller than that in the first state, whereby the air in the room 90 heated by heating is prevented from flowing out to the outdoor 95 through the duct 81, and at the same time, the cooled outdoor air is discharged from the indoor 90. By being prevented from flowing into the room 90, the room 90 is maintained in a comfortable environment.

また、LED光源84からの出射光は、室内90及び室外95に対して間接照明として機能して美的効果や癒し効果が得られると共に防犯効果も得られ、換気装置80の作動表示用のパイロットランプとしての機能及びダクト81の開度の程度を示す表示機能も有している。   In addition, the emitted light from the LED light source 84 functions as indirect illumination for the indoor 90 and the outdoor 95 to obtain an aesthetic effect and a healing effect, as well as a crime prevention effect, and a pilot lamp for displaying the operation of the ventilator 80. And a display function indicating the degree of opening of the duct 81.

特開2007−315679号公報JP 2007-315679 A

ところで、上記特許文献1で開示された換気装置80は、例えば、ダクト81の開閉手段82を構成する可動部83に複数のLED光源84を搭載した場合、複数のLED光源84の夫々からの出射光は、可動部83の変位によっていずれも同一の方向に向けて照射されることになり、しかも色相は変化することはない。すなわち、複数のLED光源84は可動部83単位で出射光の照射方向を変化させるに過ぎず、光の演出効果が乏しい。その上、可動部83が、可動部83上に取り付けられるLED光源84以外の電子部品(図示せず)の発熱に付随して変動することがあり、演出効果の制御が問題になることがあった。   By the way, the ventilator 80 disclosed in the above-mentioned patent document 1 has a plurality of LED light sources 84 mounted on the movable portion 83 constituting the opening / closing means 82 of the duct 81, for example. The incident light is irradiated in the same direction by the displacement of the movable portion 83, and the hue does not change. That is, the plurality of LED light sources 84 merely change the irradiation direction of the emitted light in units of the movable portion 83, and the light effect is poor. In addition, the movable part 83 may fluctuate with the heat generation of electronic components (not shown) other than the LED light source 84 mounted on the movable part 83, and the control of the rendering effect may become a problem. It was.

また、可動部83は変位領域(変位空間)を必要とするため、換気装置80の小型化を阻害するものとなる。   Moreover, since the movable part 83 requires a displacement area | region (displacement space), size reduction of the ventilation apparatus 80 will be inhibited.

そこで、本発明は上記問題に鑑みて創案なされたもので、その目的とするところは、発光源となる半導体発光素子の点灯時の発熱に応じて照射光の照射方向や色相を変えることを可能としてバリエーションに富んだ照射光の態様によって光による高い演出効果を実現すると共に、半導体発光装置を搭載した機器の小型化を可能にすることにある。   Therefore, the present invention was devised in view of the above problems, and the object of the present invention is to change the irradiation direction and hue of the irradiation light according to the heat generated when the semiconductor light emitting element as the light source is turned on. As a result, it is possible to realize a high stage effect by light according to a variety of irradiation light modes and to reduce the size of a device equipped with a semiconductor light emitting device.

上記課題を解決するために、本発明の請求項1に記載された発明は、複数のリード電極と、前記複数のリード電極の少なくとも1つに実装された半導体発光素子と、前記半導体発光素子を含む前記複数のリード電極の夫々の一端側が気密に収容された、前記半導体発光素子からの出射光が透過する複数の光出射面を有する透明カバーと、を備え、前記半導体発光素子が実装されたリード電極は、前記一端側の先端から所定の長さまでが熱膨張率の異なる2種類の金属部材を接合したバイメタル構造の熱変位部材で形成されていると共に、前記半導体発光素子が前記熱変位部材上に実装されていることを特徴とするものである。   In order to solve the above-described problem, the invention described in claim 1 of the present invention includes a plurality of lead electrodes, a semiconductor light emitting element mounted on at least one of the plurality of lead electrodes, and the semiconductor light emitting element. A transparent cover having a plurality of light emitting surfaces through which light emitted from the semiconductor light emitting element is transmitted, wherein one end side of each of the plurality of lead electrodes is hermetically accommodated, and the semiconductor light emitting element is mounted The lead electrode is formed of a heat displacement member having a bimetal structure in which two kinds of metal members having different coefficients of thermal expansion are joined from the tip on the one end side to a predetermined length, and the semiconductor light emitting element is the heat displacement member. It is characterized by being implemented above.

また、本発明の請求項2に記載された発明は、請求項1において、前記透明カバーの前記複数の光出射面の少なくとも1つには、前記半導体発光素子からの出射光で励起されて波長変換した光を放出する波長変換部材を有していることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, at least one of the plurality of light exit surfaces of the transparent cover is excited by the light emitted from the semiconductor light emitting element and has a wavelength. It has the wavelength conversion member which discharge | releases the converted light, It is characterized by the above-mentioned.

また、本発明の請求項3に記載された発明は、請求項1又は請求項2において、前記波長変換部材を有する光出射面が複数の場合、波長変換した光の色相が同一の1種類の波長変換部材又は光の色相が異なる2種類以上の波長変換部材で構成されていることを特徴とするものである。   Further, in the invention described in claim 3 of the present invention, when there are a plurality of light emitting surfaces having the wavelength conversion member in claim 1 or 2, the single color having the same hue of the wavelength-converted light is provided. It is composed of two or more types of wavelength conversion members having different wavelength conversion members or light hues.

また、本発明の請求項4に記載された発明は、請求項1〜請求項3のいずれかにおいて、前記半導体発光素子が複数の場合、発光色が同一の1種類の半導体発光素子又は発光色が異なる2種類以上の半導体発光素子で構成されていることを特徴とするものである。   Further, in the invention described in claim 4 of the present invention, in any one of claims 1 to 3, when there are a plurality of the semiconductor light emitting elements, one kind of semiconductor light emitting element or light emitting color having the same emission color is provided. It is characterized by being composed of two or more types of semiconductor light emitting elements having different values.

また、本発明の請求項5に記載された発明は、請求項1〜請求項4のいずれかにおいて、前記透明カバー内には、不活性ガス又は不活性液体のいずれかが封入されていることを特徴とするものである。   Further, in the invention described in claim 5 of the present invention, in any one of claims 1 to 4, either the inert gas or the inert liquid is sealed in the transparent cover. It is characterized by.

本発明の半導体発光装置は、発光源となる半導体発光素子を、熱膨張率の異なる2種類の金属部材を接合したバイメタル構造の熱変位部材上に実装することにより半導体発光素子の発光時の発熱量のみに応じて熱変位部材が変位して半導体発光素子の光軸方向が変わり、それによって照射光の照射方向が変わるようにした。   The semiconductor light-emitting device of the present invention mounts a semiconductor light-emitting element serving as a light-emitting source on a heat-displacement member having a bimetallic structure in which two types of metal members having different thermal expansion coefficients are joined, thereby generating heat during light emission of the semiconductor light-emitting element. The thermal displacement member is displaced according to the amount alone, and the optical axis direction of the semiconductor light emitting element is changed, thereby changing the irradiation direction of the irradiation light.

更に、半導体発光素子の光軸が向く方向の所定方向に波長変換部材を配置して、半導体発光素子の発光色とは異なる色相の照射光が照射されるようにした。   Further, the wavelength conversion member is arranged in a predetermined direction in which the optical axis of the semiconductor light emitting element faces, so that irradiation light having a hue different from the emission color of the semiconductor light emitting element is irradiated.

その結果、光の演出効果のバリエーションを豊富にし、その効果を容易に制御し、さらには、半導体発光装置を搭載した機器の小型化を可能にした。   As a result, there are many variations of the light effects, which can be controlled easily, and further downsizing of devices equipped with semiconductor light-emitting devices is possible.

第1の実施形態の状態を示す上面図である。It is a top view which shows the state of 1st Embodiment. 図1の側断面図である。It is a sectional side view of FIG. 第1の実施形態の他の状態を示す上面図である。It is a top view which shows the other state of 1st Embodiment. 図3の側断面図である。FIG. 4 is a side sectional view of FIG. 3. 第2の実施形態の状態を示す側断面図である。It is a sectional side view which shows the state of 2nd Embodiment. 第2の実施形態の他の状態を示す側断面図である。It is a sectional side view which shows the other state of 2nd Embodiment. 第3の実施形態の状態を示す側断面図である。It is a sectional side view which shows the state of 3rd Embodiment. 第3の実施形態の他の状態を示す側断面図である。It is a sectional side view which shows the other state of 3rd Embodiment. 第4の実施形態の状態を示す側断面図である。It is a sectional side view which shows the state of 4th Embodiment. 第4の実施形態の他の状態を示す側断面図である。It is a sectional side view which shows the other state of 4th Embodiment. 従来例の説明図である。It is explanatory drawing of a prior art example. 同じく、従来例の説明図である。Similarly, it is explanatory drawing of a prior art example. 同じく、従来例の説明図である。Similarly, it is explanatory drawing of a prior art example.

以下、この発明の好適な実施形態を図1〜図10を参照しながら、詳細に説明する(同一部分については同じ符号を付す)。尚、以下に述べる実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの実施形態に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. 1 to 10 (the same parts are denoted by the same reference numerals). The embodiments described below are preferable specific examples of the present invention, and thus various technically preferable limitations are given. However, the scope of the present invention particularly limits the present invention in the following description. Unless stated to the effect, the present invention is not limited to these embodiments.

図1〜図4は、本発明の半導体発光装置に係わる第1の実施形態を説明する図であり、そのうち、図1は発光源の半導体発光素子に通電電流が流れていないか、あるいは相対的に通電電流が少ないときの状態を示す上面図、図2は図1の側断面図であり、図3は発光源の半導体発光素子の通電電流が相対的に多いときの状態を示す上面図、図4は図3の側断面図である。   1 to 4 are diagrams for explaining a first embodiment relating to a semiconductor light emitting device of the present invention. Of these, FIG. FIG. 2 is a side cross-sectional view of FIG. 1, and FIG. 3 is a top view showing a state when the conduction current of the semiconductor light emitting element of the light source is relatively large. 4 is a side sectional view of FIG.

図1及び図2より、本実施形態の半導体発光装置1は、発光源となる半導体発光素子(具体的には、例えばLED素子、以下「LED素子」と呼称する)2、LED素子2に通電する一対のリード電極3、4、LED素子2及び一対のリード電極3、4の夫々の一端側を気密に収容する透明カバー5、及び透明カバー5内に封入された封入材6を備えている。   1 and 2, the semiconductor light emitting device 1 of the present embodiment energizes a semiconductor light emitting element (specifically, for example, an LED element, hereinafter referred to as “LED element”) 2 and an LED element 2 as a light source. A pair of lead electrodes 3, 4, the LED element 2, and a transparent cover 5 that hermetically accommodates one end sides of the pair of lead electrodes 3, 4, and an encapsulant 6 enclosed in the transparent cover 5. .

一対のリード電極3、4は、いずれも金属製で一部分を除いて互いに所定の間隔で平行に並設されており、一方のリード電極3は、透明カバー5内に気密に収容された一端側が先端から所定の長さまでを熱膨張率の異なる2種類の金属部材を接合したバイメタル構造の熱変位部材で形成され、それ以外の部分はバイメタル構造を有しない熱伝導性が良好な1種類の金属部材で形成されている。他方のリード電極4は、全長に亘ってバイメタル構造を有しない熱伝導性が良好な1種類の金属部材で形成されている。   The pair of lead electrodes 3 and 4 are all made of metal and are arranged in parallel with each other at a predetermined interval except for a part. One lead electrode 3 has one end side that is airtightly accommodated in the transparent cover 5. One type of metal with good thermal conductivity that has a bimetallic structure formed by joining two types of metal members with different thermal expansion coefficients from the tip to a predetermined length, and the other parts do not have a bimetallic structure It is formed with a member. The other lead electrode 4 is formed of a single metal member having a good thermal conductivity that does not have a bimetal structure over its entire length.

リード電極3の、バイメタル構造の熱変位部材で形成された熱変位部3aは、リード電極3に対して対向するリード電極4側に向かって延設されており、相対的に熱膨張率の大きい金属部材3aaが下側に位置し、相対的に熱膨張率の小さい金属部材3abが上側に位置している。   A thermal displacement portion 3a formed of a bimetallic thermal displacement member of the lead electrode 3 extends toward the lead electrode 4 facing the lead electrode 3, and has a relatively high coefficient of thermal expansion. The metal member 3aa is located on the lower side, and the metal member 3ab having a relatively low coefficient of thermal expansion is located on the upper side.

熱変位部3aを構成する金属部材3abの先端部上面には、電導性接合部材(図示せず)を介して発光源のLED素子2が実装され、LED素子2の下部電極とリード電極3が電気的に接続されている。導電性接合部材には、例えば、銀ペースト、銀錫ペースト、はんだ或いは金属バンプ等が用いられる。   The LED element 2 of the light emitting source is mounted on the top surface of the tip of the metal member 3ab constituting the thermal displacement part 3a via a conductive bonding member (not shown), and the lower electrode of the LED element 2 and the lead electrode 3 are connected to each other. Electrically connected. For example, a silver paste, a silver tin paste, solder, or a metal bump is used for the conductive bonding member.

また、一端部がLED素子2の上部電極に接合されたボンディングワイヤ7の他端部がリード電極4の上端面に接合されてLED素子2の上部電極とリード電極4が電気的に接続されている。ボンディングワイヤ7には、例えば、金あるいはアルミニウム等の導電性及び電極接合性が良好な金属材料が用いられる。   Also, the other end of the bonding wire 7 whose one end is bonded to the upper electrode of the LED element 2 is bonded to the upper end surface of the lead electrode 4 so that the upper electrode of the LED element 2 and the lead electrode 4 are electrically connected. Yes. For the bonding wire 7, for example, a metal material having good conductivity and electrode bonding property such as gold or aluminum is used.

透明カバー5は、ガラス、ポリカーボネート樹脂、シリコーン樹脂等で形成され、上方に位置する平面状の第1光出射面5aと第1光出射面5aの外周縁部から斜め下方に延びる環状傾斜面からなる第2光出射面5bを有しており、リード電極3の熱変位部3a側、リード電極4のボンディングワイヤ7の接合側、LED素子2及びボンディングワイヤ7を気密に収容している。したがって、リード電極3、4の夫々の他端側は、透明カバー5の下面を気密に貫通して外部に導出している。   The transparent cover 5 is formed of glass, polycarbonate resin, silicone resin, or the like, and includes a planar first light emitting surface 5a located above and an annular inclined surface extending obliquely downward from the outer peripheral edge of the first light emitting surface 5a. The second light emitting surface 5b is formed, and the lead electrode 3 side of the heat displacement part 3a, the bonding side of the bonding wire 7 of the lead electrode 4, the LED element 2 and the bonding wire 7 are accommodated in an airtight manner. Therefore, the other end side of each of the lead electrodes 3 and 4 is led out through the lower surface of the transparent cover 5 in an airtight manner.

気密封止された透明カバー5内は、不活性ガス及び不活性液体のいずれか又は両方で満たされている。この場合、不活性ガス及び不活性液体はいずれも、電気的に絶縁性を有し、LED素子2の組成材料との反応を生じることがなく、LED素子2からの出射光を吸収することがなく、且つ熱伝導性が良好な材料が用いられる。   The hermetically sealed transparent cover 5 is filled with either or both of an inert gas and an inert liquid. In this case, both the inert gas and the inert liquid are electrically insulating, do not cause a reaction with the composition material of the LED element 2, and can absorb the emitted light from the LED element 2. And a material having good thermal conductivity is used.

具体的には、不活性ガスとしては、例えば窒素ガス、あるいはヘリウムガス、アルゴンガス及びクリプトンガス等の希ガスが用いられ、不活性液体としては、例えば、エーテル、アルコール、エチレングリコール及びフッ素系不活性液体が用いられる。   Specifically, as the inert gas, for example, nitrogen gas or a rare gas such as helium gas, argon gas, and krypton gas is used, and as the inert liquid, for example, ether, alcohol, ethylene glycol, and fluorine-based inert gas. An active liquid is used.

透明カバー5内を上記不活性ガス及び不活性液体のいずれか又は両方で満たすことにより、LED素子2の点灯時(発光時)の発熱を効率よく放熱してLED素子2の温度上昇を抑制し、よってLED素子2の温度上昇に起因するLED素子2の発光効率の低減による発光光量の減少を抑えると共に、同様にLED素子2の温度上昇に起因するLED素子2の劣化による素子寿命の短縮を抑制する。   By filling the transparent cover 5 with either or both of the above inert gas and inert liquid, the LED element 2 can be efficiently radiated to suppress the temperature rise of the LED element 2 when the LED element 2 is turned on (light emission). Therefore, while suppressing the decrease in the amount of emitted light due to the decrease in the light emission efficiency of the LED element 2 due to the temperature increase of the LED element 2, similarly, the element life is shortened due to the deterioration of the LED element 2 due to the temperature increase of the LED element 2. Suppress.

同時に、LED素子2の通電電流を変化させたときに、LED素子2を実装したリード電極3の熱変位部3aの温度が電流の変化に迅速に追随して変わり、それに伴い変位量の変化も電流の変化に対応して遅延が少なくなる。特に、通電電流が低減する方向に向かうときに顕著な効果を奏する。   At the same time, when the energization current of the LED element 2 is changed, the temperature of the thermal displacement portion 3a of the lead electrode 3 on which the LED element 2 is mounted quickly changes following the change of the current, and the change in the amount of displacement also changes accordingly. There is less delay in response to current changes. In particular, there is a remarkable effect when the current is reduced.

LED素子2に対する通電電流が相対的に少ないときの状態の上記半導体発光装置1においては、LED素子2の点灯時(発光時)の発熱が相対的に少ないためにLED素子2を実装したリード電極3の熱変位部3aの温度上昇も相対的に少なく、熱変位部3aの変位量も相対的に少ない。   In the semiconductor light emitting device 1 in a state where the energization current to the LED element 2 is relatively small, the lead electrode on which the LED element 2 is mounted because the heat generation when the LED element 2 is lit (during light emission) is relatively small. 3 is relatively small, and the amount of displacement of the thermal displacement portion 3a is relatively small.

そのため、熱変位部3aは、リード電極3に対して対向するリード電極4側に向かってほぼ垂直に且つほぼ平面状に延びた状態となっており、熱変位部3aの金属部材3abの先端部上面に実装されたLED素子2はその光軸Xが上方の、透明カバー5の第1光出射面5aの方向を向いている。したがって、LED素子2からの出射光は、透明カバー5の第1光出射面5aを透過して照射光LとしてLED素子2の直上方向に向けて照射される。   Therefore, the thermal displacement portion 3a extends in a substantially vertical and substantially planar manner toward the lead electrode 4 facing the lead electrode 3, and the tip portion of the metal member 3ab of the thermal displacement portion 3a. The LED element 2 mounted on the upper surface is directed toward the first light emitting surface 5a of the transparent cover 5 with the optical axis X on the upper side. Therefore, the emitted light from the LED element 2 passes through the first light emitting surface 5a of the transparent cover 5 and is irradiated as the irradiation light L in the direction directly above the LED element 2.

一方、LED素子2に対する通電電流が相対的に多いときの状態の半導体発光装置1においては、図3及び図4にあるように、LED素子2の点灯時(発光時)の発熱が相対的に多いためにLED素子2を実装したリード電極3の熱変位部3aの温度上昇も相対的に多い。そのため、熱変位部3aは、下側に位置する相対的に熱膨張率の大きい金属部材3aaが、上側に位置する相対的に熱膨張率の小さい金属部材3abの側(上方)に向かって湾曲状に変位(湾曲変位)する。   On the other hand, in the semiconductor light emitting device 1 in a state where the energization current to the LED element 2 is relatively large, as shown in FIGS. 3 and 4, the heat generation when the LED element 2 is lit (during light emission) is relatively. Therefore, the temperature rise of the thermal displacement portion 3a of the lead electrode 3 on which the LED element 2 is mounted is relatively large. Therefore, in the thermal displacement portion 3a, the metal member 3aa having a relatively high coefficient of thermal expansion located on the lower side is curved toward the side (upper side) of the metal member 3ab having a relatively low coefficient of thermal expansion located on the upper side. Displacement (curvature displacement).

すると、熱変位部3aの金属部材3abの先端部上面に実装されたLED素子2はその光軸Xが斜め上方の、透明カバー5の第2光出射面5bの方向に向く。したがって、LED素子2からの出射光は、透明カバー5の第2光出射面5bを透過して照射光LとしてLED素子2の斜め上方に向けて照射される。   Then, the LED element 2 mounted on the top surface of the distal end portion of the metal member 3ab of the thermal displacement portion 3a faces the second light emitting surface 5b of the transparent cover 5 with the optical axis X obliquely upward. Therefore, the emitted light from the LED element 2 passes through the second light emitting surface 5 b of the transparent cover 5 and is irradiated as an irradiation light L toward the obliquely upper side of the LED element 2.

以上のように第1の実施形態は、半導体発光装置1の発光源となるLED素子2を実装するLED実装部(熱変位部3a)を、熱膨張率の異なる2種類の金属部材3aa、3abを接合したバイメタル構造とし、同時に、LED素子2を収納する透明カバー5に第1光出射面5aと第2光出射面5bの2つの光出射面を設けた。   As described above, in the first embodiment, the LED mounting portion (thermal displacement portion 3a) for mounting the LED element 2 serving as the light source of the semiconductor light emitting device 1 is replaced with two types of metal members 3aa and 3ab having different thermal expansion coefficients. At the same time, the transparent cover 5 that houses the LED element 2 was provided with two light emitting surfaces, a first light emitting surface 5a and a second light emitting surface 5b.

そして、LED素子点灯(発光)時の通電電流を制御することによりLED素子2の発熱量が変わり、それに伴う熱変位部3aの温度変化によって該熱変位部3a湾曲変位量が変わる。その結果、熱変位部3a上に実装されたLED素子2の光軸方向が変わってLED素子2からの出射光が、透明カバー5の第1光出射面5a及び第2光出射面5bのいずれかから出射することになる。   Then, the amount of heat generated by the LED element 2 changes by controlling the energization current when the LED element is turned on (light emission), and the amount of curvature displacement of the thermal displacement portion 3a changes due to the accompanying temperature change of the thermal displacement portion 3a. As a result, the direction of the optical axis of the LED element 2 mounted on the thermal displacement portion 3a is changed, and the emitted light from the LED element 2 is transmitted to either the first light emitting surface 5a or the second light emitting surface 5b of the transparent cover 5. It will be emitted from.

つまり、LED素子2の通電電流を制御することにより、半導体発光装置1の照射光の照射方向を変えることができる。これにより、半導体発光装置1による光の演出効果を簡単に実現することができる。   That is, the irradiation direction of the irradiation light of the semiconductor light emitting device 1 can be changed by controlling the energization current of the LED element 2. Thereby, the effect of the light by the semiconductor light-emitting device 1 is easily realizable.

なお、熱変位部3aを構成する金属材料3aa、3abは、LED素子2に所定の通電電流を流した時の点灯(発光)時の発熱と、そのときのLED素子2からの出射光による所望の照射方向とを考慮して設定される。   Note that the metal materials 3aa and 3ab constituting the thermal displacement portion 3a are desired to be generated by light generation (light emission) when a predetermined energization current is passed through the LED element 2 and light emitted from the LED element 2 at that time. Is set in consideration of the irradiation direction.

図5及び図6は、本発明の半導体発光装置に係わる第2の実施形態を説明する図であり、そのうち、図5は発光源のLED素子に通電電流が流れていないか、あるいは相対的に通電電流が少ないときの状態を示す側断面図であり、図6は発光源のLED素子の通電電流が相対的に多いときの状態を示す側断面図である。   5 and 6 are diagrams illustrating a second embodiment of the semiconductor light emitting device according to the present invention. Of these, FIG. FIG. 6 is a side sectional view showing a state when the energization current is small, and FIG. 6 is a side sectional view showing a state when the energization current of the LED element of the light source is relatively large.

第2の実施形態は、上記第1の実施形態に対して、透明カバー5の第1光出射面5a及び第2光出射面5bのうち一方の光出射面(第2の実施形態の場合は第1光出射面5a)の内面に例えば蛍光体等の波長変換部材8を有している。図5及び図6において、波長変換部材8は第1光出射面5aの内面に塗布され、塗布された波長変換部材8はLED素子2の出射光に励起されて所望の波長変換光を放出する。   The second embodiment is different from the first embodiment in that one of the first light emitting surface 5a and the second light emitting surface 5b of the transparent cover 5 (in the case of the second embodiment). A wavelength conversion member 8 such as a phosphor is provided on the inner surface of the first light emitting surface 5a). 5 and 6, the wavelength conversion member 8 is applied to the inner surface of the first light exit surface 5a, and the applied wavelength conversion member 8 is excited by the light emitted from the LED element 2 and emits the desired wavelength converted light. .

具体的には、LED素子2に青色光を発光する青色LED素子2(B)を用い、波長変換部材8に、青色LED素子2(B)の出射光の青色光に励起されて青色光の補色となる黄色光に波長変換する黄色蛍光体を用いた。   Specifically, the blue LED element 2 (B) that emits blue light is used as the LED element 2, and the wavelength conversion member 8 is excited by the blue light emitted from the blue LED element 2 (B) to emit blue light. A yellow phosphor that converts the wavelength to a complementary yellow light was used.

すると、LED素子2(B)に対する通電電流が相対的に少ないときの状態の半導体発光装置1(図5参照)においては、上記第1の実施形態と同様に、熱変位部3aが、リード電極3に対して対向するリード電極4側に向かってほぼ垂直に且つほぼ平面状に延びた状態となっており、熱変位部3aの金属部材3abの先端部上面に実装された青色LED素子2(B)はその光軸Xが上方の、透明カバー5の第1光出射面5aの方向を向く。したがって、LED素子2(B)からの出射光は、透明カバー5の第1光出射面5aを透過して照射光LとしてLED素子2(B)の直上方向に向けて照射される。   Then, in the semiconductor light emitting device 1 (see FIG. 5) in a state where the energization current to the LED element 2 (B) is relatively small, the thermal displacement portion 3a is a lead electrode as in the first embodiment. The blue LED element 2 is mounted on the top surface of the tip of the metal member 3ab of the thermal displacement portion 3a, extending substantially vertically and substantially flatly toward the side of the lead electrode 4 facing the surface 3. B) points in the direction of the first light exit surface 5a of the transparent cover 5 whose optical axis X is above. Therefore, the emitted light from the LED element 2 (B) is transmitted through the first light emitting surface 5a of the transparent cover 5 and irradiated as the irradiation light L in the direction directly above the LED element 2 (B).

このとき、透明カバー5の第1光出射面5aの内面には黄色蛍光体からなる波長変換部材8が塗布されており、第1光出射面5aからの照射光Lは、青色LED素子2(B)から発せられた青色光の一部が黄色蛍光体を励起することにより波長変換された黄色光と、青色LED素子2(B)から発せられた青色光の一部との加法混色によって白色光となる。   At this time, the wavelength conversion member 8 made of a yellow phosphor is applied to the inner surface of the first light emitting surface 5a of the transparent cover 5, and the irradiation light L from the first light emitting surface 5a is the blue LED element 2 ( B) is a white color obtained by additive color mixing of yellow light, which is part of the blue light emitted from B) and wavelength-converted by exciting the yellow phosphor, and part of the blue light emitted from the blue LED element 2 (B). It becomes light.

一方、LED素子2(B)に対する通電電流が相対的に多いときの状態の半導体発光装置1(図6参照)においては、上記第1の実施形態と同様に、熱変位部3aは、下側に位置する相対的に熱膨張率の大きい金属部材3aaが、上側に位置する相対的に熱膨張率の小さい金属部材3abの側(上方)に向かって湾曲状に変位(湾曲変位)し、熱変位部3aの金属部材3abの先端部上面に実装されたLED素子2(B)はその光軸Xが斜め上方の、透明カバー5の第2光出射面5bの方向に向く。したがって、LED素子2(B)からの出射光は、透明カバー5の第2光出射面5bを透過して照射光LとしてLED素子2(B)の斜め上方に向けて照射される。   On the other hand, in the semiconductor light emitting device 1 (see FIG. 6) in a state where the energization current to the LED element 2 (B) is relatively large, the thermal displacement portion 3a is located on the lower side as in the first embodiment. The metal member 3aa having a relatively large coefficient of thermal expansion located at the position is displaced in a curved shape (curved displacement) toward the side (upper side) of the metal member 3ab having a relatively small coefficient of thermal expansion located on the upper side. The LED element 2 (B) mounted on the top surface of the tip of the metal member 3ab of the displacement portion 3a is directed in the direction of the second light emitting surface 5b of the transparent cover 5 whose optical axis X is obliquely upward. Therefore, the emitted light from the LED element 2 (B) is transmitted through the second light emitting surface 5b of the transparent cover 5 and irradiated as an irradiation light L obliquely upward of the LED element 2 (B).

このとき、透明カバー5の第2光出射面5bは波長変換部材が塗布されておらず、第2光出射面5bからの照射光Lは、青色LED素子2(B)から発せられた青色光がそのまま照射される。   At this time, the wavelength conversion member is not applied to the second light emitting surface 5b of the transparent cover 5, and the irradiation light L from the second light emitting surface 5b is blue light emitted from the blue LED element 2 (B). Is irradiated as it is.

以上のように第2の実施形態は、半導体発光装置1の発光源となるLED素子を青色光を発光する青色LED素子2(B)として該青色LED素子2(B)を実装するLED実装部(熱変位部3a)を、熱膨張率の異なる2種類の金属部材3aa、3abを接合したバイメタル構造とし、同時に、青色LED素子2(B)を収容する透明カバー5に第1光出射面5aと第2光出射面5bの2つの光出射面を設けると共に、そのうち一方の光出射面(第2の実施形態の場合は第1光出射面5a)の内面に例えば蛍光体等の波長変換部材8を塗布した。   As described above, in the second embodiment, an LED mounting portion that mounts a blue LED element 2 (B) as a blue LED element 2 (B) that emits blue light is used as an LED element that is a light source of the semiconductor light emitting device 1. The (thermal displacement portion 3a) has a bimetallic structure in which two types of metal members 3aa and 3ab having different thermal expansion coefficients are joined, and at the same time, the first light emitting surface 5a is placed on the transparent cover 5 that houses the blue LED element 2 (B). And a second light emitting surface 5b, and a wavelength conversion member such as a phosphor on the inner surface of one of the light emitting surfaces (first light emitting surface 5a in the case of the second embodiment). 8 was applied.

そして、LED素子点灯(発光)時の通電電流を制御することにより青色LED素子2(B)の発熱量が変わり、それに伴う熱変位部3aの温度変化によって該熱変位部3aの湾曲変位量が変わる。その結果、熱変位部3a上に実装された青色LED素子2(B)の光軸方向が変わってLED素子2(B)からの出射光が、透明カバー5の第1光出射面5aからの白色光及び第2光出射面5bからの青色光のいずれかとして照射される。   Then, the amount of heat generated by the blue LED element 2 (B) is changed by controlling the energization current when the LED element is turned on (light emission), and the amount of bending displacement of the thermal displacement part 3 a is changed by the temperature change of the thermal displacement part 3 a. change. As a result, the optical axis direction of the blue LED element 2 (B) mounted on the thermal displacement part 3 a is changed, and the emitted light from the LED element 2 (B) is emitted from the first light emitting surface 5 a of the transparent cover 5. Irradiated as either white light or blue light from the second light exit surface 5b.

つまり、LED素子2(B)の通電電流を制御することにより、半導体発光装置1の照射光の照射方向と共に色相も変えることができる。これにより、第2の実施形態の半導体発光装置1による光の演出効果を、第1の実施形態の半導体発光装置1による光の演出効果よりも更に高めることができる。   That is, by controlling the energization current of the LED element 2 (B), the hue can be changed together with the irradiation direction of the irradiation light of the semiconductor light emitting device 1. Thereby, the light effect by the semiconductor light emitting device 1 of the second embodiment can be further enhanced than the light effect by the semiconductor light emitting device 1 of the first embodiment.

なお、熱変位部3aを構成する金属材料3aa、3abは、第1の実施形態と同様に、LED素子2(B)に所定の通電電流を流した時の点灯(発光)時の発熱と、そのときのLED素子2(B)からの出射光による所望の照射方向とを考慮して設定される。また、図5及び図6において、波長変換部材8は第1光出射面5aの内面に塗布されているが、これに限定されない。波長変換部材8を光出射面の外側に配置することも可能であり、光出射面を構成する材料が波長変換部材を含んでいてもよい。   In addition, the metal materials 3aa and 3ab constituting the thermal displacement portion 3a are similar to the first embodiment, and heat generation during lighting (light emission) when a predetermined energization current is passed through the LED element 2 (B), It is set in consideration of the desired irradiation direction by the light emitted from the LED element 2 (B) at that time. 5 and 6, the wavelength conversion member 8 is applied to the inner surface of the first light exit surface 5a, but the present invention is not limited to this. It is also possible to arrange the wavelength conversion member 8 outside the light exit surface, and the material constituting the light exit surface may include the wavelength conversion member.

図7及び図8は、本発明の半導体発光装置に係わる第3の実施形態を説明する図であり、そのうち、図7は発光源のLED素子に通電電流が流れていないか、あるいは相対的に通電電流が少ないときの状態を示す側断面図であり、図8は発光源のLED素子の通電電流が相対的に多いときの状態を示す側断面図である。   7 and 8 are diagrams for explaining a third embodiment relating to the semiconductor light emitting device of the present invention. Among them, FIG. 7 shows that no current flows in the LED element of the light emitting source, or relatively FIG. 8 is a side cross-sectional view showing a state when the energization current is small, and FIG. 8 is a side cross-sectional view showing a state when the energization current of the LED element of the light emitting source is relatively large.

第3の実施形態は図7より、上記第1の実施形態に対して、一対のリード電極3、4の夫々は、透明カバー5内に気密に収容された一端側が先端から所定の長さまでを熱膨張率の異なる2種類の金属部材を接合したバイメタル構造の熱変位部材で形成され、それ以外の部分はバイメタル構造を有しない熱伝導性が良好な1種類の金属部材で形成されている。   FIG. 7 shows that the third embodiment is different from the first embodiment in that each of the pair of lead electrodes 3, 4 is airtightly accommodated in the transparent cover 5 from the tip to a predetermined length. It is formed of a thermal displacement member having a bimetallic structure in which two types of metal members having different thermal expansion coefficients are joined, and the other portions are formed of a single type of metal member having no thermal conductivity and having no bimetallic structure.

リード電極3、4の夫々の、バイメタル構造の熱変位部材で形成された熱変位部3a、4aは、先端部同士が互いに対向するように延設されており、熱変位部3aは相対的に熱膨張率の大きい金属部材3aaが上側に位置し、相対的に熱膨張率の小さい金属部材3abが下側に位置しており、熱変位部4aは相対的に熱膨張率の大きい金属部材4aaが上側に位置し、相対的に熱膨張率の小さい金属部材4abが下側に位置している。   The thermal displacement portions 3a and 4a formed of bimetal-structured thermal displacement members of the lead electrodes 3 and 4 are extended so that the tip portions face each other, and the thermal displacement portion 3a is relatively The metal member 3aa having a large coefficient of thermal expansion is located on the upper side, the metal member 3ab having a relatively small coefficient of thermal expansion is located on the lower side, and the metal member 4aa having a relatively large coefficient of thermal expansion is located on the thermal displacement portion 4a. Is located on the upper side, and the metal member 4ab having a relatively low coefficient of thermal expansion is located on the lower side.

熱変位部3aを構成する金属部材3aa及び熱変位部4aを構成する金属部材4aaの夫々の先端部上面には、電導性接合部材(図示せず)を介して発光源のLED素子2a、2bが実装され、LED素子2aの下部電極とリード電極3及び、LED素子2bの下部電極とリード電極4が電気的に接続されている。導電性接合部材には、例えば、銀ペースト、銀錫ペースト、はんだ或いは金属バンプ等が用いられる。   The LED elements 2a and 2b of the light emitting source are provided on the top surfaces of the respective distal ends of the metal member 3aa constituting the thermal displacement portion 3a and the metal member 4aa constituting the thermal displacement portion 4a via a conductive bonding member (not shown). Are mounted, and the lower electrode of the LED element 2a and the lead electrode 3 and the lower electrode of the LED element 2b and the lead electrode 4 are electrically connected. For example, a silver paste, a silver tin paste, solder, or a metal bump is used for the conductive bonding member.

また、一端部がLED素子2aの上部電極に接合されたボンディングワイヤ7の他端部がリード電極4の熱変位部4aの金属部材4aaの上端面に接合されてLED素子2aの上部電極とリード電極4が電気的に接続されており、同様に、一端部がLED素子2bの上部電極に接合されたボンディングワイヤ7の他端部がリード電極3の熱変位部3aの金属部材3aaの上端面に接合されてLED素子2bの上部電極とリード電極3が電気的に接続されている。ボンディングワイヤ7には、例えば、金あるいはアルミニウム等の導電性及び電極接合性が良好な金属材料が用いられる。   Also, the other end of the bonding wire 7 whose one end is bonded to the upper electrode of the LED element 2a is bonded to the upper end surface of the metal member 4aa of the thermal displacement portion 4a of the lead electrode 4, and the upper electrode and the lead of the LED element 2a are connected. Similarly, the electrode 4 is electrically connected, and similarly, the other end of the bonding wire 7 whose one end is joined to the upper electrode of the LED element 2 b is the upper end surface of the metal member 3 aa of the thermal displacement portion 3 a of the lead electrode 3. The upper electrode of the LED element 2b and the lead electrode 3 are electrically connected. For the bonding wire 7, for example, a metal material having good conductivity and electrode bonding property such as gold or aluminum is used.

そこで、夫々のLED素子2a、2bに対する通電電流が相対的に少ないときの状態の上記半導体発光装置1においては、各LED素子2a、2bの点灯時(発光時)の発熱が相対的に少ないためにLED素子2aを実装したリード電極3の熱変位部3a及びLED素子2bを実装したリード電極4の熱変位部4aの温度上昇も相対的に少なく、熱変位部3a、4aの変位量も相対的に少ない。   Therefore, in the semiconductor light emitting device 1 in a state where the energization current to each of the LED elements 2a and 2b is relatively small, the heat generation when the LED elements 2a and 2b are turned on (during light emission) is relatively small. The temperature increase of the thermal displacement portion 3a of the lead electrode 3 on which the LED element 2a is mounted and the thermal displacement portion 4a of the lead electrode 4 on which the LED element 2b is mounted is relatively small, and the displacement amount of the thermal displacement portions 3a, 4a is also relatively There are few.

そのため、リード電極3、4の夫々の熱変位部3a、4aは、先端部同士が互いに対向するように延設された状態となっており、各熱変位部3a、4aの夫々の金属部材3aa、4aaの先端部上面に実装されたLED素子2a、2bはその光軸Xa、Xbが上方の、透明カバー5の第1光出射面5aの方向を向いている。したがって、LED素子2a、2bからの出射光は、透明カバー5の第1光出射面5aを透過して照射光Lとして夫々LED素子2a、2bの直上方向に向けて照射される。   Therefore, the thermal displacement portions 3a and 4a of the lead electrodes 3 and 4 are in a state of extending so that the tip portions face each other, and the respective metal members 3aa of the thermal displacement portions 3a and 4a. The LED elements 2a and 2b mounted on the top surface of the tip end of 4aa are oriented in the direction of the first light emitting surface 5a of the transparent cover 5 with their optical axes Xa and Xb being upward. Therefore, the emitted light from the LED elements 2a and 2b passes through the first light emitting surface 5a of the transparent cover 5 and is irradiated as the irradiation light L toward the direction directly above the LED elements 2a and 2b, respectively.

一方、LED素子2に対する通電電流が相対的に多いときの状態の半導体発光装置1(図8参照)においては、各LED素子2a、2bの点灯時(発光時)の発熱が相対的に多いために夫々のLED素子2a、2bを実装したリード電極3の熱変位部3a及びリード電極4の熱変位部4aの温度上昇も相対的に多い。そのため、熱変位部3aは、上側に位置する相対的に熱膨張率の大きい金属部材3aaが、下側に位置する相対的に熱膨張率の小さい金属部材3abの側(下方)に向かって湾曲状に変位(湾曲変位)し、熱変位部4aは、上側に位置する相対的に熱膨張率の大きい金属部材4aaが、下側に位置する相対的に熱膨張率の小さい金属部材4abの側(下方)に向かって湾曲状に変位(湾曲変位)する。   On the other hand, in the semiconductor light-emitting device 1 (see FIG. 8) in a state where the energization current to the LED element 2 is relatively large, heat is generated when the LED elements 2a and 2b are lit (during light emission). Moreover, the temperature rises of the thermal displacement portion 3a of the lead electrode 3 and the thermal displacement portion 4a of the lead electrode 4 on which the LED elements 2a and 2b are mounted are relatively large. Therefore, in the thermal displacement portion 3a, the metal member 3aa having a relatively high thermal expansion coefficient positioned on the upper side is curved toward the side (downward) of the metal member 3ab having a relatively low thermal expansion coefficient positioned on the lower side. The metal member 4aa having a relatively high coefficient of thermal expansion located on the upper side is located on the side of the metal member 4ab having a relatively low coefficient of thermal expansion located on the lower side. Displace (curve displacement) in a curved shape toward (downward).

すると、熱変位部3aの金属部材3aaの先端部上面に実装されたLED素子2aはその光軸Xaが斜め上方の、透明カバー5の第2光出射面5bの方向に向く。したがって、LED素子2aからの出射光は、透明カバー5の第2光出射面5bを透過して照射光LaとしてLED素子2の斜め上方に向けて照射される。   Then, the LED element 2a mounted on the top surface of the tip of the metal member 3aa of the thermal displacement part 3a faces the second light emitting surface 5b of the transparent cover 5 with the optical axis Xa obliquely upward. Therefore, the emitted light from the LED element 2a passes through the second light emitting surface 5b of the transparent cover 5 and is irradiated obliquely upward of the LED element 2 as irradiation light La.

また、熱変位部4aの金属部材4aaの先端部上面に実装されたLED素子2bはその光軸Xbが透明カバー5の中心軸Z方向(言い換えると、リード電極3、4の互いに平行に並設された部分の並設方向)に対してLED素子2aの光軸Xa方向と反対方向の斜め上方の、透明カバー5の第2光出射面5bの方向に向く。したがって、LED素子2bからの出射光は、透明カバー5の第2光出射面5bを透過して照射光LbとしてLED素子2bの、LED素子2aの照射光Laの照射方向と反対方向の斜め上方に向けて照射される。   The LED element 2b mounted on the top surface of the tip of the metal member 4aa of the thermal displacement part 4a has an optical axis Xb in the direction of the central axis Z of the transparent cover 5 (in other words, the lead electrodes 3 and 4 are arranged in parallel to each other. The direction of the second light emitting surface 5b of the transparent cover 5 is obliquely upward in the direction opposite to the direction of the optical axis Xa of the LED element 2a. Therefore, the emitted light from the LED element 2b passes through the second light emitting surface 5b of the transparent cover 5 and is obliquely upward in the direction opposite to the irradiation direction of the irradiation light La of the LED element 2a of the LED element 2b as irradiation light Lb. Irradiated towards.

以上のように第3の実施形態は、半導体発光装置1の発光源となる2つのLED素子2a、2bを実装する各LED実装部(熱変位部3a、4a)の夫々を、熱膨張率の異なる2種類の金属部材3aa、3ab及び金属材料4aa、4abを接合したバイメタル構造とし、同時に、LED素子2a、2bを収容する透明カバー5に第1光出射面5aと第2光出射面5bの2つの光出射面を設けた。   As described above, in the third embodiment, each of the LED mounting portions (thermal displacement portions 3a and 4a) on which the two LED elements 2a and 2b serving as the light emitting source of the semiconductor light emitting device 1 are mounted has a coefficient of thermal expansion. Two different types of metal members 3aa and 3ab and metal materials 4aa and 4ab are joined together, and at the same time, the first light emitting surface 5a and the second light emitting surface 5b are formed on the transparent cover 5 that houses the LED elements 2a and 2b. Two light exit surfaces were provided.

そして、LED素子点灯(発光)時の通電電流を制御することにより各LED素子2a、2bの発熱量が変わり、それに伴う熱変位部3a、4aの温度変化によって該熱変位部3a、4aの夫々の湾曲変位量が変わる。その結果、熱変位部3a、4a上に実装されたLED素子2a、2bの光軸方向が変わってLED素子2a、2bからの出射光が、透明カバー5の第1光出射面5a及び第2光出射面5bのいずれかから出射することになる。   The amount of heat generated by each LED element 2a, 2b is changed by controlling the energization current when the LED element is turned on (light emission), and the thermal displacement portions 3a, 4a are respectively changed by the temperature change of the thermal displacement portions 3a, 4a. The amount of bending displacement changes. As a result, the optical axis directions of the LED elements 2a and 2b mounted on the thermal displacement portions 3a and 4a are changed, and the emitted light from the LED elements 2a and 2b is changed into the first light emitting surface 5a and the second light emitting surface 5a of the transparent cover 5. The light is emitted from one of the light exit surfaces 5b.

つまり、夫々のLED素子2a、2bの通電電流を制御することにより、半導体発光装置1の2つ照射光La、Lbの照射方向を個別に変えることができる。これにより、第1の実施形態の半導体発光装置1による光の演出効果よりも更に高めることができる。   That is, the irradiation directions of the two irradiation lights La and Lb of the semiconductor light emitting device 1 can be individually changed by controlling the energization currents of the respective LED elements 2a and 2b. Thereby, it can further heighten rather than the presentation effect of the light by the semiconductor light-emitting device 1 of 1st Embodiment.

なお、夫々の熱変位部3a、4aを構成する金属材料3aa、3ab及び金属材料4aa、4abは、各LED素子2a、2bに所定の通電電流を流した時の点灯(発光)時の発熱と、そのときのLED素子2a、2bからの出射光による所望の照射方向とを考慮して設定される。   Note that the metal materials 3aa, 3ab and the metal materials 4aa, 4ab constituting the respective thermal displacement portions 3a, 4a are heat generated during lighting (light emission) when a predetermined energization current is passed through the LED elements 2a, 2b. In this case, it is set in consideration of a desired irradiation direction by light emitted from the LED elements 2a and 2b.

図9及び図10は、本発明の半導体発光装置に係わる第4の実施形態を説明する図であり、そのうち、図9は発光源のLED素子に通電電流が流れていないか、あるいは相対的に通電電流が少ないときの状態を示す側断面図であり、図10は発光源のLED素子の通電電流が相対的に多いときの状態を示す側断面図である。   FIGS. 9 and 10 are diagrams for explaining a fourth embodiment of the semiconductor light emitting device of the present invention. Among them, FIG. 9 shows that an energizing current does not flow in the LED element of the light emitting source or is relatively. FIG. 10 is a side cross-sectional view showing a state when the energization current is small, and FIG. 10 is a side cross-sectional view showing a state when the energization current of the LED element of the light source is relatively large.

第4の実施形態は、上記第3の実施形態に対して、透明カバー5の第1光出射面5a及び第2光出射面5bのうち一方の光出射面(第4の実施形態の場合は第2光出射面5b)の内面に例えば蛍光体等の波長変換部材8を塗布すると共に、2つのLED素子2a、2bに、その出射光が波長変換部材8を励起して所望の波長の波長変換光を放出させる種類のものを用いた。   The fourth embodiment is different from the third embodiment in that one of the first light emitting surface 5a and the second light emitting surface 5b of the transparent cover 5 (in the case of the fourth embodiment). A wavelength conversion member 8 such as a phosphor is applied to the inner surface of the second light emission surface 5b), and the emitted light excites the wavelength conversion member 8 on the two LED elements 2a and 2b to generate a wavelength having a desired wavelength. A type that emits converted light was used.

具体的には、夫々のLED素子2a、2bに青色光を発光する青色LED素子2a(B)、2b(B)用い、波長変換部材8に、各青色LED素子2a(B)、2b(B)の出射光の青色光に励起されて青色光の補色となる黄色光に波長変換する黄色蛍光体を用いた。   Specifically, the blue LED elements 2a (B) and 2b (B) that emit blue light are used for the respective LED elements 2a and 2b, and the blue LED elements 2a (B) and 2b (B) are used for the wavelength conversion member 8. The yellow phosphor that is wavelength-converted to yellow light that is excited by the blue light of the emitted light and becomes a complementary color of the blue light is used.

すると、LED素子2a(B)、2b(B)に対する通電電流が相対的に少ない状態の半導体発光装置1(図9参照)においては、上記第3の実施形態と同様に、リード電極3、4の夫々の熱変位部3a、4aは、先端部同士が互いに対向するように延設された状態となっており、各熱変位部3a、4aの夫々の金属部材3aa、4aaの先端部上面に実装されたLED素子2a(B)、2b(B)はその光軸Xa、Xbが上方の、透明カバー5の第1光出射面5aの方向を向いている。したがって、LED素子2a(B)、2b(B)からの出射光(青色光)は、透明カバー5の第1光出射面5aを透過して照射光Lとして夫々LED素子2a(B)、2b(B)の直上方向に向けて照射される。   Then, in the semiconductor light emitting device 1 (see FIG. 9) in a state where the energization current to the LED elements 2a (B) and 2b (B) is relatively small, the lead electrodes 3 and 4 are the same as in the third embodiment. Each of the thermal displacement portions 3a, 4a is extended so that the tip portions thereof face each other, and is formed on the top surface of the tip portion of each metal member 3aa, 4aa of each thermal displacement portion 3a, 4a. The mounted LED elements 2a (B) and 2b (B) have their optical axes Xa and Xb facing upward and directed toward the first light emitting surface 5a of the transparent cover 5. Therefore, the emitted light (blue light) from the LED elements 2a (B) and 2b (B) is transmitted through the first light emitting surface 5a of the transparent cover 5 as the irradiation light L, and the LED elements 2a (B) and 2b, respectively. Irradiated in the direction directly above (B).

一方、LED素子2a(B)、2b(B)に対する通電電流が相対的に多いときの状態の半導体発光装置1(図10参照)においては、各LED素子2a(B)、2b(B)の点灯時(発光時)の発熱が相対的に多いために夫々のLED素子2a(B)、2b(B)を実装したリード電極3の熱変位部3a及びリード電極4の熱変位部4aの温度上昇も相対的に多い。そのため、熱変位部3aは、上側に位置する相対的に熱膨張率の大きい金属部材3aaが、下側に位置する相対的に熱膨張率の小さい金属部材3abの側(下方)に向かって湾曲状に変位(湾曲変位)し、熱変位部4aは、上側に位置する相対的に熱膨張率の大きい金属部材4aaが、下側に位置する相対的に熱膨張率の小さい金属部材4abの側(下方)に向かって湾曲状に変位(湾曲変位)する。   On the other hand, in the semiconductor light emitting device 1 (see FIG. 10) in a state where the energization current for the LED elements 2a (B) and 2b (B) is relatively large, the LED elements 2a (B) and 2b (B) Since the heat generation at the time of lighting (during light emission) is relatively large, the temperature of the thermal displacement portion 3a of the lead electrode 3 and the thermal displacement portion 4a of the lead electrode 4 on which the respective LED elements 2a (B) and 2b (B) are mounted. Rise is also relatively high. Therefore, in the thermal displacement portion 3a, the metal member 3aa having a relatively high thermal expansion coefficient positioned on the upper side is curved toward the side (downward) of the metal member 3ab having a relatively low thermal expansion coefficient positioned on the lower side. The metal member 4aa having a relatively high coefficient of thermal expansion located on the upper side is located on the side of the metal member 4ab having a relatively low coefficient of thermal expansion located on the lower side. Displace (curve displacement) in a curved shape toward (downward).

すると、熱変位部3aの金属部材3aaの先端部上面に実装されたLED素子2a(B)はその光軸Xaが斜め上方の、透明カバー5の第2光出射面5bの方向に向く。したがって、LED素子2a(B)からの出射光は、透明カバー5の第2光出射面5bを透過して照射光LaとしてLED素子2a(B)の斜め上方に向けて照射される。   Then, the LED element 2a (B) mounted on the top surface of the tip of the metal member 3aa of the thermal displacement portion 3a is directed in the direction of the second light emitting surface 5b of the transparent cover 5 whose optical axis Xa is obliquely upward. Therefore, the emitted light from the LED element 2a (B) is transmitted through the second light emission surface 5b of the transparent cover 5 and irradiated as an irradiation light La obliquely upward of the LED element 2a (B).

また、熱変位部4aの金属部材4aaの先端部上面に実装されたLED素子2b(B)はその光軸Xbが透明カバー5の中心軸Z方向(言い換えると、リード電極3、4の互いに平行に並設された部分の並設方向)に対してLED素子2a(B)の光軸Xa方向と反対方向の斜め上方の、透明カバー5の第2光出射面5bの方向に向く。したがって、LED素子2b(B)からの出射光は、透明カバー5の第2光出射面5bを透過して照射光LbとしてLED素子2b(B)の、LED素子2a(B)の照射光Laの照射方向と反対方向の斜め上方に向けて照射される。   The LED element 2b (B) mounted on the top surface of the tip of the metal member 4aa of the thermal displacement part 4a has an optical axis Xb in the direction of the central axis Z of the transparent cover 5 (in other words, the lead electrodes 3 and 4 are parallel to each other). Toward the second light exit surface 5b of the transparent cover 5, which is obliquely above the direction opposite to the optical axis Xa direction of the LED element 2a (B). Therefore, the emitted light from the LED element 2b (B) passes through the second light emitting surface 5b of the transparent cover 5 and is irradiated as the irradiated light Lb. The irradiated light La of the LED element 2a (B) of the LED element 2b (B). Irradiation is performed obliquely upward in the direction opposite to the irradiation direction.

このとき、透明カバー5の第2光出射面5aの内面には黄色蛍光体からなる波長変換部材8が塗布されており、第2光出射面5bからの照射光La、Lbは、夫々の青色LED素子2a(B)、2b(B)から発せられた青色光の一部が黄色蛍光体を励起することにより波長変換された黄色光と、夫々の青色LED素子2a(B)、2b(B)から発せられた青色光の一部との加法混色によって白色光となる。   At this time, the wavelength conversion member 8 made of a yellow phosphor is applied to the inner surface of the second light emitting surface 5a of the transparent cover 5, and the irradiation lights La and Lb from the second light emitting surface 5b are respectively blue. The blue light emitted from the LED elements 2a (B) and 2b (B) is partly converted into yellow light by exciting the yellow phosphor, and the blue LED elements 2a (B) and 2b (B ) To produce white light by additive color mixing with a portion of the blue light emitted from.

以上のように第4の実施形態は、半導体発光装置1の発光源となる2つのLED素子を青色光を発光する青色LED素子2a(B)、2b(B)として該青色LED素子2a(B)、2b(B)を実装するLED実装部(熱変位部3a、4a)の夫々を、熱膨張率の異なる2種類の金属部材3aa、3ab及び金属材料4aa、4abを接合したバイメタル構造とし、同時に、青色LED素子2a(B)、2b(B)を収容する透明カバー5に第1光出射面5aと第2光出射面5bの2つの光出射面を設けると共に、そのうち一方の光出射面(第4の実施形態の場合は第2光出射面5b)の内面に例えば蛍光体等の波長変換部材8を塗布した。   As described above, in the fourth embodiment, the blue LED elements 2a (B) and 2b (B) that emit blue light are used as the two LED elements that serve as the light emitting sources of the semiconductor light emitting device 1. ) Each of the LED mounting portions (thermal displacement portions 3a, 4a) for mounting 2b (B) has a bimetallic structure in which two types of metal members 3aa, 3ab and metal materials 4aa, 4ab having different thermal expansion coefficients are joined, At the same time, the transparent cover 5 that accommodates the blue LED elements 2a (B) and 2b (B) is provided with two light emitting surfaces, a first light emitting surface 5a and a second light emitting surface 5b, and one of these light emitting surfaces. For example, in the case of the fourth embodiment, a wavelength conversion member 8 such as a phosphor is applied to the inner surface of the second light emitting surface 5b.

そして、LED素子点灯(発光)時の通電電流を制御することにより各青色LED素子2a(B)、2b(B)の発熱量が変わり、それに伴う熱変位部3a、4aの温度変化によって該熱変位部3a、4aの夫々の湾曲変位量が変わる。その結果、熱変位部3a、4a上に実装された青色LED素子2a(B)、2b(B)の光軸方向が変わってLED素子2a(B)、2b(B)からの出射光が、透明カバー5の第1光出射面5aからの青色光及び第2光出射面5bからの白色光のいずれかとして照射される。   Then, the amount of heat generated by each blue LED element 2a (B), 2b (B) is changed by controlling the energization current when the LED element is lit (light emission), and the heat is changed by the temperature change of the thermal displacement portions 3a, 4a. The amount of bending displacement of each of the displacement portions 3a and 4a changes. As a result, the optical axis direction of the blue LED elements 2a (B) and 2b (B) mounted on the thermal displacement portions 3a and 4a changes, and the emitted light from the LED elements 2a (B) and 2b (B) The light is emitted as either blue light from the first light exit surface 5a of the transparent cover 5 or white light from the second light exit surface 5b.

つまり、夫々のLED素子2a(B)、2b(B)の通電電流を制御することにより、半導体発光装置1の2つ照射光の照射方向と共に色相も個別に変えることができる。これにより、本実施形態の半導体発光装置1による光の演出効果を、第1〜3の実施形態の半導体発光装置1による光の演出効果よりも更に高めることができる。   That is, by controlling the energization currents of the respective LED elements 2a (B) and 2b (B), the hue can be individually changed together with the irradiation direction of the two irradiation lights of the semiconductor light emitting device 1. Thereby, the light effect by the semiconductor light emitting device 1 of the present embodiment can be further enhanced than the light effect by the semiconductor light emitting device 1 of the first to third embodiments.

なお、夫々の熱変位部3a、4aを構成する金属材料3aa、3ab及び金属材料4aa、4abは、各LED素子2a(B)、2b(B)に所定の通電電流を流した時の点灯(発光)時の発熱と、そのときのLED素子2a(B)、2b(B)からの出射光による所望の照射方向とを考慮して設定される。   The metal materials 3aa, 3ab and the metal materials 4aa, 4ab constituting the respective thermal displacement portions 3a, 4a are turned on when a predetermined energization current is passed through the LED elements 2a (B), 2b (B) ( It is set in consideration of the heat generated during the light emission) and the desired irradiation direction by the light emitted from the LED elements 2a (B) and 2b (B) at that time.

なお、上記実施形態1〜4の説明に用いた図の中の符号10は、半導体発光装置1を実装したプリント基板を示している。   In addition, the code | symbol 10 in the figure used for description of the said Embodiment 1-4 has shown the printed circuit board which mounted the semiconductor light-emitting device 1. FIG.

以上、実施形態1〜4を例に説明したように本発明の半導体発光装置は、発光源のLED素子の通電電流を制御する(変える)ことにより、照射光の照射方向、色相、及び配光特性(波長変換部材が光の拡散作用を有するため、LED素子からの出射光が波長変換部材を透過した場合と透過しない場合により配光特性が変わる)のいずれか又はそれらの組み合わせを変えることができる。そのため、LED素子の通電電流を変えるだけでバリエーションに富んだ照射光の態様によって光による多彩な演出効果を実現することができる。   As described above, the semiconductor light-emitting device of the present invention controls (changes) the energization current of the LED element of the light-emitting source as described in the first to fourth embodiments, so that the irradiation direction, hue, and light distribution of the irradiation light are controlled. Changing one of the characteristics (the light distribution characteristic varies depending on whether the light emitted from the LED element is transmitted through the wavelength converting member or not), or a combination thereof, because the wavelength converting member has a light diffusing action. it can. Therefore, a variety of effects by light can be realized by changing the energization current of the LED element, and by various forms of irradiation light.

なお、上記実施形態1〜4の構成以外に、波長変換部材を塗布しない光出射面をレンズ構造にして該光出射面を透過する光の配光特性を制御する構成、複数の光出射面の全てに同一種類の波長変換部材を塗布する構造、複数の光出射面の夫々に互いに異なる種類の波長変換部材を塗布する構成、実装された複数のLED素子の夫々を互いに異なる発光色を有する素子とする構成も可能であり、それらの組み合わせの構成も可能である。   In addition to the configurations of the first to fourth embodiments described above, a configuration in which a light exit surface not coated with a wavelength conversion member is used as a lens structure to control light distribution characteristics of light transmitted through the light exit surface, a plurality of light exit surfaces A structure in which the same type of wavelength conversion member is applied to all, a structure in which different types of wavelength conversion members are applied to each of the plurality of light exit surfaces, and an element having different emission colors for each of the plurality of mounted LED elements It is also possible to have a configuration, and a combination thereof is also possible.

更に、本発明の半導体発光装置は、通電電流によってLED素子の光軸方向を変える熱変位部が該半導体発光装置内に設けられている。したがって、本発明の半導体発光装置を搭載した機器(例えば、照明機器等)には変位領域(変位空間)を必要としない。そのため、本半導体発光装置を搭載した機器の小型化に寄与するものとなる。   Furthermore, in the semiconductor light emitting device of the present invention, a thermal displacement portion that changes the optical axis direction of the LED element by an energizing current is provided in the semiconductor light emitting device. Therefore, a displacement region (displacement space) is not required for a device (for example, a lighting device) on which the semiconductor light emitting device of the present invention is mounted. Therefore, it contributes to the downsizing of equipment equipped with this semiconductor light emitting device.

1… 半導体発光装置
2… 半導体発光素子(LED素子)
… 青色LED素子
2a… 半導体発光素子(LED素子)
2b… 半導体発光素子(LED素子)
3… リード電極
3a… 熱変位部
3aa… 金属部材
3ab… 金属部材
4… リード電極
4a… 熱変位部
4aa… 金属部材
4ab… 金属部材
5… 透明カバー
5a… 第1光出射面
5b… 第2光出射面
6… 封入材
7… ボンディングワイヤ
8… 波長変換部材
10… プリント基板
DESCRIPTION OF SYMBOLS 1 ... Semiconductor light-emitting device 2 ... Semiconductor light-emitting element (LED element)
2 B ... Blue LED element 2a ... Semiconductor light emitting element (LED element)
2b ... Semiconductor light emitting device (LED device)
DESCRIPTION OF SYMBOLS 3 ... Lead electrode 3a ... Thermal displacement part 3aa ... Metal member 3ab ... Metal member 4 ... Lead electrode 4a ... Thermal displacement part 4aa ... Metal member 4ab ... Metal member 5 ... Transparent cover 5a ... 1st light-projection surface 5b ... 2nd light Outgoing surface 6 ... Encapsulant 7 ... Bonding wire 8 ... Wavelength conversion member 10 ... Printed circuit board

Claims (5)

複数のリード電極と、
前記複数のリード電極の少なくとも1つに実装された半導体発光素子と、
前記半導体発光素子を含む前記複数のリード電極の夫々の一端側が気密に収容された、前記半導体発光素子からの出射光が透過する複数の光出射面を有する透明カバーと、を備え、
前記半導体発光素子が実装されたリード電極は、前記一端側の先端から所定の長さまでが熱膨張率の異なる2種類の金属部材を接合したバイメタル構造の熱変位部材で形成されていると共に、前記半導体発光素子が前記熱変位部材上に実装されていることを特徴とする半導体発光装置。
A plurality of lead electrodes;
A semiconductor light emitting device mounted on at least one of the plurality of lead electrodes;
A transparent cover having a plurality of light emitting surfaces through which light emitted from the semiconductor light emitting element is transmitted, wherein one end side of each of the plurality of lead electrodes including the semiconductor light emitting element is hermetically accommodated, and
The lead electrode on which the semiconductor light emitting element is mounted is formed of a thermal displacement member having a bimetallic structure in which two types of metal members having different coefficients of thermal expansion are joined from the tip on the one end side to a predetermined length. A semiconductor light emitting device, wherein a semiconductor light emitting element is mounted on the thermal displacement member.
前記透明カバーの前記複数の光出射面の少なくとも1つには、前記半導体発光素子からの出射光で励起されて波長変換した光を放出する波長変換部材を有していることを特徴とする請求項1に記載の半導体発光装置。   At least one of the plurality of light exit surfaces of the transparent cover includes a wavelength conversion member that emits light that has been excited by the light emitted from the semiconductor light emitting element and converted in wavelength. Item 14. The semiconductor light emitting device according to Item 1. 前記波長変換部材を有する光出射面が複数の場合、波長変換した光の色相が同一の1種類の波長変換部材又は光の色相が異なる2種類以上の波長変換部材で構成されていることを特徴とする請求項1又は請求項2に記載の半導体発光装置。   When there are a plurality of light exit surfaces having the wavelength conversion member, the light conversion surface is composed of one type of wavelength conversion member having the same hue of wavelength-converted light or two or more types of wavelength conversion members having different hues of light. The semiconductor light-emitting device according to claim 1 or 2. 前記半導体発光素子が複数の場合、発光色が同一の1種類の半導体発光素子又は発光色が異なる2種類以上の半導体発光素子で構成されていることを特徴とする請求項1〜請求項3のいずれかに記載の半導体発光装置。   4. When there are a plurality of the semiconductor light emitting elements, the semiconductor light emitting element includes one type of semiconductor light emitting element having the same emission color or two or more types of semiconductor light emitting elements having different emission colors. The semiconductor light-emitting device in any one. 前記透明カバー内には、不活性ガス又は不活性液体のいずれかが封入されていることを特徴とする請求項1〜請求項4のいずれかに記載の半導体発光装置。   5. The semiconductor light emitting device according to claim 1, wherein either an inert gas or an inert liquid is sealed in the transparent cover.
JP2013109085A 2013-05-23 2013-05-23 Semiconductor light-emitting device Pending JP2014229783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013109085A JP2014229783A (en) 2013-05-23 2013-05-23 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013109085A JP2014229783A (en) 2013-05-23 2013-05-23 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2014229783A true JP2014229783A (en) 2014-12-08

Family

ID=52129359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013109085A Pending JP2014229783A (en) 2013-05-23 2013-05-23 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2014229783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050411A (en) * 2015-09-02 2017-03-09 株式会社東芝 Optical semiconductor device, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050411A (en) * 2015-09-02 2017-03-09 株式会社東芝 Optical semiconductor device, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP5689136B2 (en) Solid light emitter package including a plurality of light emitters
US8587011B2 (en) Light-emitting device, light-emitting module, and lamp
US20130141892A1 (en) Lamp and lighting apparatus
WO2012060049A1 (en) Light emitting device, bulb-type lamp, and illuminating device
JP2010250962A (en) Light-emitting module and lighting fixture
WO2012060058A1 (en) Light-bulb shaped lamp and illumination device
JP2012099726A (en) Led module and led lamp
JP2009170759A (en) Light-emitting device and lighting apparatus incorporating same
JP2008300570A (en) Light emitting device
US20140084777A1 (en) Light emitting device and illumination apparatus
JP2004172578A (en) Light-emitting device
US10403797B2 (en) Light-emitting device and illumination apparatus
JP5333488B2 (en) LED lighting device
US10823346B2 (en) LED module, LED light fixture and method for production thereof
JP2013191685A (en) Light-emitting device and luminaire using the same
JPWO2020075789A1 (en) Transparent sealing member and optical parts
JP2014229783A (en) Semiconductor light-emitting device
JP2012174939A (en) Light-emitting device
JP6560902B2 (en) LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE SAME
JP2015133455A (en) Light-emitting device, illumination light source, and luminaire
JP6551009B2 (en) Light source device
JP2018156966A (en) Light-emitting device and illumination device
WO2010123051A1 (en) Light-emitting device
JP4928013B1 (en) Light emitting device, light emitting module and lamp
JP2017059756A (en) Light-emitting device