JP2014228288A - Decontamination method for contaminated solid and decontamination apparatus for contaminated solid - Google Patents

Decontamination method for contaminated solid and decontamination apparatus for contaminated solid Download PDF

Info

Publication number
JP2014228288A
JP2014228288A JP2013105704A JP2013105704A JP2014228288A JP 2014228288 A JP2014228288 A JP 2014228288A JP 2013105704 A JP2013105704 A JP 2013105704A JP 2013105704 A JP2013105704 A JP 2013105704A JP 2014228288 A JP2014228288 A JP 2014228288A
Authority
JP
Japan
Prior art keywords
oxalic acid
acid solution
decontamination
contaminated
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013105704A
Other languages
Japanese (ja)
Other versions
JP5770218B2 (en
Inventor
督 村上
Osamu Murakami
督 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NUCLEAR SAFETY TECHNOLOGY CENTER
NUCLEAR SAFETY TECHNOLOGY CT
Original Assignee
NUCLEAR SAFETY TECHNOLOGY CENTER
NUCLEAR SAFETY TECHNOLOGY CT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NUCLEAR SAFETY TECHNOLOGY CENTER, NUCLEAR SAFETY TECHNOLOGY CT filed Critical NUCLEAR SAFETY TECHNOLOGY CENTER
Priority to JP2013105704A priority Critical patent/JP5770218B2/en
Publication of JP2014228288A publication Critical patent/JP2014228288A/en
Application granted granted Critical
Publication of JP5770218B2 publication Critical patent/JP5770218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a decontamination method and a decontamination apparatus enabling radioactive cesium to be easily removed with a high decontamination rate from a contaminated solid such as a soil and a sludge contaminated by the radioactive cesium.SOLUTION: The decontamination method is provided for decontaminating a contaminated solid such as a soil and a sludge contaminated by a radioactive cesium by removing the radioactive cesium from the contaminated solid, and the decontamination method includes: a contaminated solid charging step of charging a contaminated solid into a decontamination machine; an oxalic acid solution charging step of charging an oxalic acid solution into a vessel; a hydrothermal reaction condition setting step of sealing the vessel and setting an interior of the vessel under a hydrothermal reaction condition; an elution step of eluting the radioactive cesium into the oxalic acid solution under the hydrothermal reaction condition; and an oxalic acid solution discharge step of discharging the oxalic acid solution from the vessel, performed in this order. Thereby, the radioactive cesium is removed from the solid, and after that, a neutralizer charging step of charging a neutralizer into the vessel and a neutralizer discharging step of discharging the neutralizer from the vessel are performed, and finally, the solid decontaminated and remained in the vessel is recycled as the soil.

Description

本発明は、放射性セシウムで汚染された土壌や汚泥などの汚染固体からセシウムを回収して除染する方法、及び、汚染固体からセシウムを回収して除染する装置に関する。   The present invention relates to a method for recovering and decontaminating cesium from contaminated solids such as soil and sludge contaminated with radioactive cesium, and an apparatus for recovering and decontaminating cesium from contaminated solids.

原子力発電所の事故などにより放射性物質が大量に放出され、放射性物質により土壌汚染などが生じるおそれがある。土壌汚染の原因となる放射性物質としては、ヨウ素131、セシウム134、セシウム137がある。この中で土壌汚染の原因として特に問題になるのがセシウム134とセシウム137である。セシウム134は半減期が約2年、セシウム137は半減期が約30年であり、ヨウ素131の約8日と比較して半減期が長い。また、セシウム134及びセシウム137(以下、セシウム134及びセシウム137を合わせて放射性セシウムと称す。)は、周期表のアルカリ金属に属しており化学的性質は同じであるため水に非常に溶けやすく、放射性セシウムで汚染された土壌で栽培された野菜や根菜類にも取り込まれる危険がある。よって、汚染された土壌や汚泥の除染としては、放射性セシウムを除去して除染する方法が求められる。   A large amount of radioactive material may be released due to an accident at a nuclear power plant, etc., and there may be soil contamination caused by the radioactive material. Examples of radioactive substances that cause soil contamination include iodine 131, cesium 134, and cesium 137. Among these, cesium 134 and cesium 137 are particularly problematic as causes of soil contamination. Cesium 134 has a half-life of about 2 years, and cesium 137 has a half-life of about 30 years, which is longer than that of iodine 131, which is about 8 days. In addition, cesium 134 and cesium 137 (hereinafter, cesium 134 and cesium 137 are collectively referred to as radioactive cesium) belong to the alkali metal of the periodic table and have the same chemical properties, so they are very soluble in water. There is also a risk of being taken up by vegetables and root vegetables grown in soil contaminated with radioactive cesium. Therefore, as a decontamination method for contaminated soil and sludge, a method for decontamination by removing radioactive cesium is required.

原子力発電所内で使用される金属等の機器に吸着した放射性セシウムを除去して除染する方法に関しては様々な提案がなされている。しかしながら、放射性セシウムは、プラス1価の陽イオンを有し、土壌や汚泥に含まれる粘土質の鉱物に強固に吸着するという特性を持っている。よって、原子力発電所内で使用される放射性セシウムの除去方法をそのまま土壌や汚泥に適用しても、期待していたような効果が得られないことがある。   Various proposals have been made regarding methods for removing radioactive cesium adsorbed on equipment such as metals used in nuclear power plants and decontaminating them. However, radioactive cesium has a positive monovalent cation and has a characteristic of being strongly adsorbed to clay minerals contained in soil and sludge. Therefore, even if the method for removing radioactive cesium used in nuclear power plants is applied to soil and sludge as it is, the expected effect may not be obtained.

放射性物質で汚染された土壌や汚泥などの除染方法としては、例えば特許文献1では、放射性セシウムに対して吸着性を有する吸着剤に磁性体を担持させる工程と、放射性セシウムで汚染された固体に前記吸着剤を添加し、前記固体中の放射性セシウムを前記吸着剤に吸着させる工程と、前記磁性体が担持された前記吸着剤を磁力によって分離除去する工程と、を具える放射性セシウム汚染固体の処理方法が提案されている。   As a decontamination method for soil or sludge contaminated with radioactive substances, for example, in Patent Document 1, a magnetic substance is supported on an adsorbent having an adsorptivity to radioactive cesium, and a solid contaminated with radioactive cesium. Adding the adsorbent to the adsorbent, adsorbing the radioactive cesium in the solid to the adsorbent, and separating and removing the adsorbent carrying the magnetic material by magnetic force. A processing method has been proposed.

特許文献2では、汚染土を磨砕機で半自生・自生湿式磨砕して、磨砕土のスラリーを得、前記磨砕土のスラリーを、液体サイクロンに連続的に供給して、汚染土のスラリーを液体サイクロンからオーバーフローさせる一方、除染土のスラリーを液体サイクロンからアンダーフローさせて分級し、前記汚染土のスラリーに、捕収剤を含む浮選剤を添加して浮選機に連続的に供給することにより、浮選機の上部から放射性セシウムが濃縮された浮上物を浮上回収する一方、下部からアンダーフロー水を回収する方法が提案されている。   In Patent Document 2, the contaminated soil is subjected to semi-autogenous / autogenous wet grinding with a grinder to obtain a ground slurry, and the ground soil slurry is continuously supplied to the hydrocyclone to obtain the contaminated soil slurry. While overflowing from the hydrocyclone, the decontaminated soil slurry is underflowed from the hydrocyclone and classified, and a flotation agent containing a collection agent is added to the contaminated soil slurry and continuously supplied to the flotation machine. Thus, a method has been proposed in which the levitated material enriched with radioactive cesium is levitated and recovered from the upper part of the flotation machine, while the underflow water is recovered from the lower part.

特開2013−24812号公報JP 2013-24812 A 特開2013−64690号公報JP2013-64690A

上述したように、汚染された土壌や汚泥などの汚染固体から放射性物質を除去する方法についていくつかの提案がなされているが、その数は非常に少ない。原子力の技術分野では、原子力発電所から放射性物質が漏れ出すことがないように開発を進めているため、放射性物質が土壌や汚泥に漏れ出すことは前提としていないからである。   As described above, some proposals have been made on methods for removing radioactive substances from contaminated solids such as contaminated soil and sludge, but the number is very small. This is because, in the technical field of nuclear energy, development is proceeding so that radioactive materials do not leak from nuclear power plants, and therefore it is not assumed that radioactive materials leak into soil or sludge.

上記特許文献1や特許文献2の提案でも土壌や汚泥の放射線レベルを下げることができるが、より簡単にでき、そして、より除染率の高い除染方法や除染装置が求められている。   Although the proposals in Patent Document 1 and Patent Document 2 can also reduce the radiation level of soil and sludge, there is a need for a decontamination method and apparatus that can be simplified and have a higher decontamination rate.

本発明は、放射性セシウムで汚染された土壌や汚泥などの汚染固体から簡単且つ高い除染率で放射性セシウムを除去できる除染方法、及び、除染装置を提供することを目的としている。   An object of the present invention is to provide a decontamination method and a decontamination apparatus that can easily remove radioactive cesium from contaminated solids such as soil and sludge contaminated with radioactive cesium at a high decontamination rate.

本発明は、放射性セシウムにより汚染された土壌や汚泥などの汚染固体から放射性セシウムを除去して除染する汚染固体の除染方法であって、除染機の容器に汚染固体を投入する汚染固体投入工程と、前記容器にシュウ酸溶液を投入するシュウ酸溶液投入工程と、前記容器を密封し、前記容器内を水熱反応条件下に設定する水熱反応条件設定工程と、水熱反応条件下で前記シュウ酸溶液に前記放射性セシウムを溶出させる溶出工程と、前記容器から前記シュウ酸溶液を排出するシュウ酸溶液排出工程と、を順に行うことを特徴とする。   The present invention is a method for decontaminating contaminated solids by removing radioactive cesium from contaminated solids such as soil and sludge contaminated with radioactive cesium, and introducing the contaminated solids into a container of a decontamination machine A charging step, a oxalic acid solution charging step for charging the oxalic acid solution into the container, a hydrothermal reaction condition setting step for sealing the container and setting the inside of the container under hydrothermal reaction conditions, and a hydrothermal reaction condition An elution step of eluting the radioactive cesium into the oxalic acid solution and a oxalic acid solution discharging step of discharging the oxalic acid solution from the container are sequentially performed.

また、本発明は、放射性セシウムにより汚染された土壌や汚泥などの汚染固体から放射性セシウムを除去して除染する汚染固体の除染装置であって、汚染固体及びシュウ酸溶液が投入される外殻と内殻を有する二重構造の容器を備えた除染機と、前記容器の外殻と内殻の間に水蒸気を注入して前記容器内を水熱反応条件下に設定する蒸気ボイラーと、を少なくとも備え、水熱反応条件下で前記シュウ酸溶液に前記放射性セシウムを溶出させ、前記容器から前記シュウ酸溶液を排出することで前記汚染固体の除染を行うことを特徴とする。   The present invention also relates to a decontamination apparatus for contaminated solids that removes radioactive cesium from decontaminated solids such as soil and sludge contaminated with radioactive cesium, and to which the contaminated solids and oxalic acid solution are introduced. A decontamination machine having a double-structure container having a shell and an inner shell, and a steam boiler for injecting steam between the outer shell and the inner shell of the container to set the interior of the container under hydrothermal reaction conditions The radioactive cesium is eluted in the oxalic acid solution under hydrothermal reaction conditions, and the contaminated solid is decontaminated by discharging the oxalic acid solution from the container.

本発明によれば、水熱反応条件下で汚染固体とシュウ酸を反応させることにより、高い除染率の実現が可能な汚染固体の除染方法及び除染装置を提供できる。   According to the present invention, it is possible to provide a decontamination method and a decontamination apparatus for contaminated solids that can achieve a high decontamination rate by reacting the contaminated solids with oxalic acid under hydrothermal reaction conditions.

本発明の実施の形態に係る汚染固体の除染装置の機能ブロック図である。It is a functional block diagram of the decontamination apparatus of the contaminated solid which concerns on embodiment of this invention. 上記除染装置の除染機の外観模式図である。It is an external appearance schematic diagram of the decontamination machine of the said decontamination apparatus. 上記除染装置の除染機の容器の一部を破断した断面模式図である。It is the cross-sectional schematic diagram which fractured | ruptured a part of container of the decontamination machine of the said decontamination apparatus. 本発明の実施の形態に係る汚染固体の除染方法のフローチャートである。It is a flowchart of the decontamination method of the contaminated solid which concerns on embodiment of this invention. 水熱反応条件についての説明図である。It is explanatory drawing about hydrothermal reaction conditions. 汚染固体とシュウ酸溶液の固液比(質量比)と除染率との関係を示すグラフである。It is a graph which shows the relationship between the solid-liquid ratio (mass ratio) of a contaminated solid and an oxalic acid solution, and a decontamination rate. シュウ酸溶液の濃度と除染率との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of an oxalic acid solution, and a decontamination rate. 除染処理時の温度と除染率との関係を示すグラフである。It is a graph which shows the relationship between the temperature at the time of a decontamination process, and a decontamination rate. 除染処理の時間と除染率との関係を示すグラフである。It is a graph which shows the relationship between the time of a decontamination process, and a decontamination rate. 汚染固体の種類と除染率との関係を示すグラフである。It is a graph which shows the relationship between the kind of contaminated solid, and a decontamination rate. 除染処理の回数と除染率との関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of a decontamination process, and a decontamination rate. 除染に使用する溶離剤と除染率との関係を示すグラフである。It is a graph which shows the relationship between the eluent used for decontamination, and a decontamination rate.

以下、本発明の実施形態を図に基づいて詳細に述べる。図1は、本実施の形態に係る汚染固体の除染装置1のブロック図であり、図2は、除染機2の外観模式図であり、図3は、除染機2の容器31の一部を破断した断面模式図である。本実施形態は、放射性セシウムで汚染された土壌や汚泥などの汚染固体を除染する方法及び装置に関するものであり、水熱反応条件化で汚染固体とシュウ酸(HOOC?COOH)を混合し、放射性セシウムを除去することを特徴とする。以下、除染方法及び除染装置について詳しく述べる。なお、放射性セシウムで汚染された土壌や汚泥を汚染固体、除染後の固体を除染済み固体、土壌や汚泥のみを呼ぶときには単に固体と称す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a decontamination device 1 for contaminated solids according to the present embodiment, FIG. 2 is a schematic external view of a decontamination machine 2, and FIG. 3 shows a container 31 of the decontamination machine 2. It is the cross-sectional schematic diagram which fractured | ruptured one part. The present embodiment relates to a method and apparatus for decontaminating contaminated solids such as soil and sludge contaminated with radioactive cesium, mixing contaminated solids and oxalic acid (HOOC? COOH) under hydrothermal reaction conditions, It is characterized by removing radioactive cesium. Hereinafter, the decontamination method and the decontamination apparatus will be described in detail. Note that soil and sludge contaminated with radioactive cesium are referred to as contaminated solids, solids after decontamination are referred to as decontaminated solids, and only soil and sludge are referred to as solids.

図1に示すように、本実施形態における除染装置1は、除染機2と、廃液処理装置4と、蒸気ボイラー5と、電源装置6と、を備える。さらに、除染装置1は、シュウ酸タンク11、中和剤タンク12、過酸化水素水タンク13、灯油タンク14、回収シュウ酸タンク21、除染廃液タンク22、セシウム入廃液タンク23を備える。   As shown in FIG. 1, the decontamination apparatus 1 in this embodiment includes a decontamination machine 2, a waste liquid treatment apparatus 4, a steam boiler 5, and a power supply device 6. Further, the decontamination apparatus 1 includes an oxalic acid tank 11, a neutralizer tank 12, a hydrogen peroxide tank 13, a kerosene tank 14, a recovered oxalic acid tank 21, a decontamination waste liquid tank 22, and a cesium-containing waste liquid tank 23.

除染機2は、図2に示すように、容器31と、容器31を回動可能に保持する保持部41と、を有する。容器31は、上下が封止された円筒状、すなわち、中空の円柱形状であり、水熱反応の条件下に耐え得る耐熱、耐圧、耐食性に優れた構造とされている。容器31の構造は、図3に示すように、外殻32と内殻33からなる二重構造であり、外殻32と内殻33の間に所定の空間が形成され、この空間に蒸気ボイラー5から蒸気が注入される。この容器31には、図2に示したように、汚染固体を投入する固体投入口35や、シュウ酸溶液、水、中和剤などを投入する液体投入口37としての配管接続口、外殻32と内殻33との間に蒸気を注入する蒸気注入口38としての配管接続口、溶液を排出する図示しない排出口等が設けられている。蒸気注入口38は、外殻32と内殻33の間に連通している。容器31の大きさは、直径が約1700mm、高さが約2700mm、固体投入口35の直径が約600mmであり、液体投入口37は直径約25mmで配管が接続される。なお、この数値に限定されるものではない。   As shown in FIG. 2, the decontamination machine 2 includes a container 31 and a holding unit 41 that holds the container 31 in a rotatable manner. The container 31 has a cylindrical shape whose upper and lower portions are sealed, that is, a hollow cylindrical shape, and has a structure excellent in heat resistance, pressure resistance, and corrosion resistance that can withstand the conditions of the hydrothermal reaction. As shown in FIG. 3, the structure of the container 31 is a double structure comprising an outer shell 32 and an inner shell 33. A predetermined space is formed between the outer shell 32 and the inner shell 33, and a steam boiler is formed in this space. Steam is injected from 5. As shown in FIG. 2, the container 31 has a solid inlet 35 for introducing contaminated solids, a pipe connection port as a liquid inlet 37 for introducing an oxalic acid solution, water, a neutralizing agent, and the like, and an outer shell. Between the pipe 32 and the inner shell 33, there are provided a pipe connection port as a steam inlet 38 for injecting steam, a discharge port (not shown) for discharging the solution, and the like. The steam inlet 38 communicates between the outer shell 32 and the inner shell 33. The container 31 has a diameter of about 1700 mm, a height of about 2700 mm, a solid inlet 35 having a diameter of about 600 mm, and a liquid inlet 37 having a diameter of about 25 mm and connected to a pipe. Note that the present invention is not limited to this value.

保持部41は、下方に位置する台座45と、台座45から上方に立ち上がる1対の脚部46,46と、を備える。一対の脚部46,46と容器31は、軸棒48,48によって回動可能に連結されている。   The holding portion 41 includes a pedestal 45 positioned below and a pair of leg portions 46 and 46 that rise upward from the pedestal 45. The pair of legs 46 and 46 and the container 31 are rotatably connected by shaft rods 48 and 48.

図1に示した廃液処理装置4は、セシウムが溶け込んだ廃液を濃縮し、セシウム入廃液タンク23に濃縮したセシウム入りの廃液を排出する。蒸気ボイラー5は、灯油を原料として蒸気を生成し、容器31の外殻と内殻の間に高温の蒸気を送り込む。容器31の内部は、蒸気ボイラー5から外殻32と内殻33の間に蒸気が送り込まれることで高温高圧状態となり、後述する水熱反応条件下となる。電源装置6は、除染機2や廃液処理装置4、蒸気ボイラー5に電力を供給する。   The waste liquid treatment apparatus 4 shown in FIG. 1 concentrates the waste liquid in which cesium has dissolved, and discharges the concentrated waste liquid containing cesium to the cesium-containing waste liquid tank 23. The steam boiler 5 generates steam using kerosene as a raw material, and sends high-temperature steam between the outer shell and the inner shell of the container 31. The inside of the container 31 is brought into a high-temperature and high-pressure state when steam is sent between the outer shell 32 and the inner shell 33 from the steam boiler 5 and is subjected to hydrothermal reaction conditions described later. The power supply device 6 supplies power to the decontamination machine 2, the waste liquid treatment device 4, and the steam boiler 5.

なお、除染装置1は、除染機2、廃液処理装置4、蒸気ボイラー5、電源装置6からなる第一ユニットと、シュウ酸タンク11、中和剤タンク12、過酸化水素水タンク13、灯油タンク14、回収シュウ酸タンク21、除染廃液タンク22、セシウム入廃液タンク23からなる第二ユニットと、から構成されている。そして、除染装置1は、第一ユニットと第二ユニットを2台の車両に夫々配置することにより、移動可能な構成とされている。第一ユニットと第二ユニットを構成する装置やタンクの組合せはこれらに限定されるものではない。また、第一ユニット及び第二ユニットを一台の車両に載せる構成としてもよい。   The decontamination apparatus 1 includes a first unit including a decontamination machine 2, a waste liquid treatment apparatus 4, a steam boiler 5, and a power supply apparatus 6, an oxalic acid tank 11, a neutralizing agent tank 12, a hydrogen peroxide water tank 13, The second unit includes a kerosene tank 14, a recovered oxalic acid tank 21, a decontamination waste liquid tank 22, and a cesium-containing waste liquid tank 23. And the decontamination apparatus 1 is set as the structure which can move by arrange | positioning a 1st unit and a 2nd unit to two vehicles, respectively. The combination of the apparatus and tank which comprise a 1st unit and a 2nd unit is not limited to these. Moreover, it is good also as a structure which mounts a 1st unit and a 2nd unit on one vehicle.

次に、除染方法について図4のフローチャートを用いて述べる。
まず、汚染固体の放射線レベルを測定した後、汚染固体を除染機2の容器31に投入し(ステップ101:汚染固体投入工程)、さらに、放射性セシウムの溶離剤(除染剤)としてシュウ酸タンク11からシュウ酸溶液を容器31に投入する(ステップ103:シュウ酸溶液投入工程)。
Next, the decontamination method will be described using the flowchart of FIG.
First, after measuring the radiation level of the contaminated solid, the contaminated solid is charged into the container 31 of the decontamination machine 2 (step 101: contaminated solid charging step), and oxalic acid as an eluent (decontamination agent) for radioactive cesium. An oxalic acid solution is charged into the container 31 from the tank 11 (step 103: oxalic acid solution charging step).

次に、容器31の蒸気注入口38と蒸気ボイラー5を耐熱性が高いチューブで接続し、高温の蒸気を外殻32と内殻33の間の空間に注入し、密封された容器31内を水熱反応条件下に設定する(ステップ105:水熱反応条件設定工程)。水熱反応とは、図5に示すように、高温(約100℃〜約250℃)、高圧(約1atm〜20atm(1atm=101.325kPa))の条件で液体と気体が入り交じった状態であり、加水分解能が増大し、温度・圧力による反応速度が増大し、水の溶媒としての物性が変化する状態をいう。   Next, the steam inlet 38 of the container 31 and the steam boiler 5 are connected with a tube having high heat resistance, high temperature steam is injected into the space between the outer shell 32 and the inner shell 33, and the inside of the sealed container 31 is filled. It sets to hydrothermal reaction conditions (step 105: hydrothermal reaction condition setting process). As shown in FIG. 5, the hydrothermal reaction is a state in which liquid and gas are mixed at high temperature (about 100 ° C. to about 250 ° C.) and high pressure (about 1 atm to 20 atm (1 atm = 101.325 kPa)). Yes, it means a state in which the hydrolytic ability increases, the reaction rate due to temperature and pressure increases, and the physical properties of water as a solvent change.

水熱反応条件設定工程(ステップ105)の後、所定時間水熱反応条件下を維持し、シュウ酸溶液に放射性セシウムを溶出させる(ステップ107:溶出工程)。この溶出工程(ステップ107)では、容器31を回転させて汚染固体とシュウ酸溶液が充分に混ざり合うようにしてもよい。そして、溶出工程(ステップ107)の後、容器31内を約40℃まで放冷し、排出口から回収シュウ酸タンク21に放射性セシウムが溶出したシュウ酸溶液を排出する(ステップ109:シュウ酸溶液排出工程)。なお、シュウ酸溶液投入工程(ステップ103)からシュウ酸溶液排出工程(ステップ109)が除染処理である。   After the hydrothermal reaction condition setting step (step 105), the hydrothermal reaction condition is maintained for a predetermined time, and radioactive cesium is eluted in the oxalic acid solution (step 107: elution step). In this elution step (step 107), the container 31 may be rotated so that the contaminated solid and the oxalic acid solution are sufficiently mixed. Then, after the elution step (step 107), the inside of the container 31 is allowed to cool to about 40 ° C., and the oxalic acid solution from which radioactive cesium has been eluted is discharged from the outlet into the recovered oxalic acid tank 21 (step 109: oxalic acid solution) Discharge process). Note that the oxalic acid solution charging process (step 103) to the oxalic acid solution discharging process (step 109) are decontamination processes.

シュウ酸溶液排出工程(ステップ109)の後、除染済み固体の放射線レベルを測定し(ステップ111:放射線レベル測定工程)、除染率又は放射線レベルが基準値を超えているか否かを判定する(ステップ113:放射線レベル判定工程)。なお、放射線レベルとは、固体の放射能濃度であり、Bq/kgで表される。また、除染率とは、除染後の放射線レベルをA、除染前の放射線レベルをBとしたときに(B−A)/B×100で表される数値である。放射線レベル判定工程(ステップ113)における基準値としては、高い除染率である80%や90%、あるいは、国や地方の放射線レベルの基準を基準値とすることができる。例えば、一般環境に放出可能となる放射線セシウムのクリアランスレベルは、100Bq/kgであり、この数値を放射線レベル判定処理(ステップ113)の基準値とすることができる。なお、これらの数値に限定されるものではない。   After the oxalic acid solution discharging step (step 109), the radiation level of the decontaminated solid is measured (step 111: radiation level measuring step), and it is determined whether the decontamination rate or the radiation level exceeds a reference value. (Step 113: radiation level determination step). The radiation level is the solid radioactive concentration and is expressed in Bq / kg. The decontamination rate is a numerical value represented by (B−A) / B × 100, where A is the radiation level after decontamination and B is the radiation level before decontamination. As a reference value in the radiation level determination step (step 113), a high decontamination rate of 80% or 90%, or a national or local radiation level reference can be used as the reference value. For example, the clearance level of radiation cesium that can be released into the general environment is 100 Bq / kg, and this value can be used as a reference value for the radiation level determination process (step 113). Note that the present invention is not limited to these numerical values.

放射線レベル判定工程(ステップ113)で基準を満たしており充分に除染されている場合、容器31内に塩基性の水溶液を中和剤として投入し(ステップ114:中和剤投入工程)、容器31内の固体の洗浄及び中和を行う(ステップ115:中和工程)。中和工程(ステップ115)の後、容器31の排出口から水溶液を除染廃液タンク22に排出する(ステップ117:中和剤排出工程)。なお、中和剤としては、例えば水酸化ナトリウム溶液が挙げられる。そして、最後に、容器31内に残った除染済み固体を排出し、土壌として再利用する(ステップ119:固体再利用工程)。   In the case where the radiation level determination process (step 113) satisfies the standard and is sufficiently decontaminated, a basic aqueous solution is charged into the container 31 as a neutralizing agent (step 114: neutralizing agent charging process). The solid in 31 is washed and neutralized (step 115: neutralization step). After the neutralization step (step 115), the aqueous solution is discharged from the discharge port of the container 31 to the decontamination waste liquid tank 22 (step 117: neutralizing agent discharge step). In addition, as a neutralizing agent, a sodium hydroxide solution is mentioned, for example. Finally, the decontaminated solid remaining in the container 31 is discharged and reused as soil (step 119: solid recycling step).

放射線レベル判定工程(ステップ113)で基準を満たしおらず充分に除染されていない場合、除染処理(シュウ酸溶液投入工程(ステップ103)からシュウ酸溶液排出工程(ステップ109)まで)を基準を満たすまで繰り返す。   When the radiation level determination process (step 113) does not satisfy the standard and is not sufficiently decontaminated, the decontamination process (from the oxalic acid solution charging process (step 103) to the oxalic acid solution discharging process (step 109)) is a standard. Repeat until

シュウ酸溶液排出工程(ステップ109)において回収シュウ酸タンク21に排出されたシュウ酸溶液は、シュウ酸溶液投入工程(ステップ103)におけるシュウ酸溶液として再利用する(ステップ121:シュウ酸溶液再利用工程)。なお、シュウ酸溶液に溶出する放射性セシウムの量はシュウ酸溶液の量に対して微量であるため、そのまま再利用しても十分に溶離剤としての効能を有している。   The oxalic acid solution discharged to the recovered oxalic acid tank 21 in the oxalic acid solution discharging step (step 109) is reused as the oxalic acid solution in the oxalic acid solution charging step (step 103) (step 121: oxalic acid solution reuse) Process). Note that the amount of radioactive cesium eluted in the oxalic acid solution is very small relative to the amount of the oxalic acid solution, so that it has a sufficient effect as an eluent even if it is reused as it is.

溶離剤として十分に使用した後のシュウ酸溶液は、過酸化水素水を混入させることにより水と二酸化炭素に分解し、二酸化炭素はそのまま大気中に放出し、放射性セシウムが溶け込んだ水は廃液処理装置4で濃縮した後、保管する。なお、シュウ酸溶液排出工程(ステップ109)において回収シュウ酸タンク21に排出されたシュウ酸溶液は、遠心分離器で固液分離し、分離後のシュウ酸溶液のみ再利用するものとしてもよい。   The oxalic acid solution after sufficiently used as an eluent is decomposed into water and carbon dioxide by mixing hydrogen peroxide water, carbon dioxide is released into the atmosphere as it is, and water in which radioactive cesium is dissolved is treated as a waste liquid. After concentrating with the apparatus 4, it is stored. Note that the oxalic acid solution discharged to the recovered oxalic acid tank 21 in the oxalic acid solution discharging step (step 109) may be solid-liquid separated by a centrifugal separator and only the oxalic acid solution after separation may be reused.

廃液処理装置4では、廃液処理が実行される(ステップ131:廃液処理工程)。廃液処理工程(ステップ131)では廃液を濃縮する作業を行う。濃縮された放射性セシウムが溶け込んだ溶液は保管する。廃液の濃縮方法としては、廃液処理装置4で濃縮するとしているもこれに限らず、容器31内に廃液を投入して容器31内を高温高圧状態とし、加熱・濃縮するものとしてもよい。   In the waste liquid processing apparatus 4, waste liquid processing is executed (step 131: waste liquid processing step). In the waste liquid treatment step (step 131), an operation for concentrating the waste liquid is performed. Store the solution containing the concentrated radioactive cesium. The method for concentrating the waste liquid is not limited to this, but it is also possible to put the waste liquid into the container 31 to bring the container 31 into a high-temperature and high-pressure state, and to heat and concentrate the waste liquid.

このように本実施形態の除染方法では、汚染固体とシュウ酸溶液を水熱反応条件下で混ぜ合わせることにより、通常反応状態(図5参照)で反応させるよりも放射線セシウムの溶出率が上がるため、高い除染効果が得られる。   As described above, in the decontamination method of the present embodiment, by mixing the contaminated solid and the oxalic acid solution under the hydrothermal reaction conditions, the elution rate of radiation cesium is higher than that in the normal reaction state (see FIG. 5). Therefore, a high decontamination effect can be obtained.

図6は、シュウ酸濃度が2.0mol/L、処理温度が140℃、圧力が353kPa、処理時間が0.5時間とした場合における、汚染固体とシュウ酸溶液の質量比が1:2、1:3、1:5での除染率を示す図である。図6に示すように、汚染固体とシュウ酸溶液の質量比が1:2と1:3での除染率には大きな変化が見られないことがわかる。また、汚染固体とシュウ酸溶液の質量比が1:3と1:5では、1:5の除染率が高くなることがわかる。よって、除染率を高くするためにはシュウ酸溶液の量を増やすことが考えられるが、シュウ酸溶液の量を増やすと、コストの増大、容器31の大型化などの問題が生じる。よって、上記汚染固体投入工程(ステップ101)とシュウ酸溶液投入工程(ステップ103)における汚染固体とシュウ酸溶液の質量比(固液比)は、1:2とするのが好適である。なお、この数値に限定されるものではない。   FIG. 6 shows that the mass ratio of the contaminated solid to the oxalic acid solution is 1: 2, when the oxalic acid concentration is 2.0 mol / L, the treatment temperature is 140 ° C., the pressure is 353 kPa, and the treatment time is 0.5 hours. It is a figure which shows the decontamination rate in 1: 3 and 1: 5. As shown in FIG. 6, it can be seen that there is no significant change in the decontamination rate when the mass ratio of the contaminated solid and the oxalic acid solution is 1: 2 and 1: 3. It can also be seen that the decontamination rate of 1: 5 is high when the mass ratio of the contaminated solid to the oxalic acid solution is 1: 3 and 1: 5. Therefore, it is conceivable to increase the amount of the oxalic acid solution in order to increase the decontamination rate. However, when the amount of the oxalic acid solution is increased, problems such as an increase in cost and an increase in the size of the container 31 occur. Therefore, the mass ratio (solid-liquid ratio) of the contaminated solid and the oxalic acid solution in the contaminated solid charging process (step 101) and the oxalic acid solution charging process (step 103) is preferably 1: 2. Note that the present invention is not limited to this value.

図7は、処理温度140℃、処理時間が1時間、固液比(汚染固体とシュウ酸溶液の質量比)が1:5、圧力が353kPaとした場合における、シュウ酸溶液の濃度が1mol/L、2mol/L、3mol/Lでの除染率を示す図である。図7に示すように、シュウ酸溶液の濃度が1mol/Lと2mol/Lの場合では、2mol/Lのシュウ酸溶液の方が除染率が高くなり、除染率に大きな変化が現れていることがわかる。一方、2mol/Lと3mol/Lとでは、僅かに3mol/Lの方が除染率が高くなったものの大きな変化は見られないことがわかる。よって、シュウ酸溶液投入工程(ステップ103)で投入するシュウ酸溶液の濃度は、シュウ酸の使用量と効能のバランスから2mol/Lとするのが好適である。なお、この数値に限定されるものではない。   FIG. 7 shows that the concentration of the oxalic acid solution is 1 mol / wt when the treatment temperature is 140 ° C., the treatment time is 1 hour, the solid-liquid ratio (mass ratio of the contaminated solid and the oxalic acid solution) is 1: 5, and the pressure is 353 kPa. It is a figure which shows the decontamination rate in L, 2 mol / L, and 3 mol / L. As shown in FIG. 7, when the concentration of the oxalic acid solution is 1 mol / L and 2 mol / L, the decontamination rate is higher in the 2 mol / L oxalic acid solution, and a large change appears in the decontamination rate. I understand that. On the other hand, it can be seen that between 2 mol / L and 3 mol / L, the decontamination rate was slightly higher at 3 mol / L, but no significant change was observed. Therefore, the concentration of the oxalic acid solution to be added in the oxalic acid solution charging step (step 103) is preferably 2 mol / L from the balance between the amount of oxalic acid used and the effect. Note that the present invention is not limited to this value.

図8は、シュウ酸濃度が2.0mol/L、処理時間が1時間、固液比が1:5、圧力が353kPa(各温度での飽和蒸気圧)とした場合における、容器31内の温度が90℃、120℃、140℃での除染率を示す図である。図8に示すように、90℃、120℃では除染率が90%未満であるが、140℃では90%を超えていることがわかる。よって、水熱反応条件設定工程(ステップ105)では、140℃以上に設定するのが好適である。なお、水熱反応条件設定工程(ステップ105)における圧力は、高い方が反応としてはよいものの圧力を高くし過ぎると容器31の耐圧性を高めるコストが増大する、また、容器31の重量が増えるといった問題が生じる。よって、圧力は、353kPa(3.48atm、約3.5気圧)程度とするのが好適である。当然のことながら、軽く、耐圧性も高く、コストも抑えられ、水熱反応条件に耐え得る部材があればさらに圧力を高くしてもよく、上記数値に限定されるものではない。   FIG. 8 shows the temperature in the container 31 when the oxalic acid concentration is 2.0 mol / L, the treatment time is 1 hour, the solid-liquid ratio is 1: 5, and the pressure is 353 kPa (saturated vapor pressure at each temperature). Is a figure which shows the decontamination rate in 90 degreeC, 120 degreeC, and 140 degreeC. As shown in FIG. 8, it can be seen that the decontamination rate is less than 90% at 90 ° C. and 120 ° C., but exceeds 90% at 140 ° C. Therefore, in the hydrothermal reaction condition setting step (step 105), it is preferable to set the temperature to 140 ° C. or higher. The pressure in the hydrothermal reaction condition setting step (step 105) is better as a reaction, but if the pressure is increased too much, the cost for increasing the pressure resistance of the container 31 increases, and the weight of the container 31 increases. Problems arise. Therefore, the pressure is preferably about 353 kPa (3.48 atm, about 3.5 atm). As a matter of course, the pressure may be further increased as long as there is a member that is light, has high pressure resistance, is low in cost, and can withstand hydrothermal reaction conditions, and is not limited to the above values.

図9は、シュウ酸濃度が2.0mol/L、処理時間温度が140℃、圧力が353kPa、固液比が1:5、とした場合における、処理時間が0.5時間、1時間、2時間での除染率を示す図である。図9に示すように、処理時間0.5時間と1時間では除染率に大きな変化がなく、2時間では僅かに高くなっていることがわかる。よって、時間効率から考えると、溶出工程(ステップ107)における水熱反応条件下を維持する時間(処理時間)は、0.5時間とするのが好適である。時間効率を考えない場合は当然のことながら長時間反応させる方が除染率も上がるため、上記数値に限定するものではない。   FIG. 9 shows the treatment time of 0.5 hour, 1 hour, 2 when the oxalic acid concentration is 2.0 mol / L, the treatment time temperature is 140 ° C., the pressure is 353 kPa, and the solid-liquid ratio is 1: 5. It is a figure which shows the decontamination rate in time. As shown in FIG. 9, it can be seen that there is no significant change in the decontamination rate at the treatment time of 0.5 hour and 1 hour, and it is slightly higher at 2 hours. Therefore, from the viewpoint of time efficiency, it is preferable that the time (treatment time) for maintaining the hydrothermal reaction condition in the elution step (step 107) is 0.5 hour. When time efficiency is not considered, it is a matter of course that the decontamination rate increases when the reaction is performed for a long time, and therefore, the present invention is not limited to the above values.

次に、本実施形態における除染方法を用いて除染を行った効果について述べる。図10は、シュウ酸濃度が2mol/L、処理温度が140℃、圧力が353kPa、処理時間が0.5時間、固液比が1:2、処理工程が1回の場合における、様々な種類の土壌の除染率を示す図である。図10に示すように、除染率は、校庭土壌1で91.6%、校庭土壌2で78.5%、校庭土壌3で52.0%、農地土壌1で73.6%、農地土壌2で55.7%、農地土壌3で64.7%であり、土壌の種類によって除染率が大きく変化することがわかる。一方で1回の処理工程で除染率が90%を超える効果が得られる場合もあることがわかる。   Next, the effect of decontamination using the decontamination method in this embodiment will be described. FIG. 10 shows various types when the oxalic acid concentration is 2 mol / L, the processing temperature is 140 ° C., the pressure is 353 kPa, the processing time is 0.5 hours, the solid-liquid ratio is 1: 2, and the processing step is one time. It is a figure which shows the decontamination rate of soil. As shown in FIG. 10, the decontamination rates are 91.6% for schoolyard soil 1, 78.5% for schoolyard soil 2, 52.0% for schoolyard soil 3, 73.6% for farmland soil 1, and farmland soil. 2 is 55.7%, and farmland soil 3 is 64.7%. It can be seen that the decontamination rate varies greatly depending on the type of soil. On the other hand, it turns out that the effect that a decontamination rate exceeds 90% may be acquired by one processing process.

図11は、図10において最も除染率が低かった校庭土壌3に除染処理を複数回実施した場合の除染率を示す図である。図11に示すように、除染率は、処理ステップ1回で51.7%、2回で86.0%、処理工程3回で99.7%となった。すなわち、最も除染率が低い土壌であっても、処理工程を3回繰り返すことにより非常に高い除染効果が得られる。   FIG. 11 is a diagram showing the decontamination rate when the decontamination process is performed a plurality of times on the schoolyard soil 3 having the lowest decontamination rate in FIG. 10. As shown in FIG. 11, the decontamination rate was 51.7% for one processing step, 86.0% for two processing steps, and 99.7% for three processing steps. That is, even if the soil has the lowest decontamination rate, a very high decontamination effect can be obtained by repeating the treatment step three times.

図12は、処理温度が140℃、圧力が353kPa、処理時間が1時間、固液比が1:5、試験土壌(試験固体)が校庭土壌1の場合における、放射性セシウムの溶離剤として様々な溶離剤を用いた除染率を示す図である。図12に示すように、除染率は、シュウ酸1.0mol/Lが82.6%、シュウ酸2.0mol/Lが96.0%、シュウ酸3.0mol/Lが95.2%と非常に高い数値を示すことがわかる。一方、シュウ酸アンモニウム0.1mol/Lが9.8%、ギ酸1mol/Lが2.2%、ギ酸2mol/Lが3.2%、ギ酸3mol/Lが4.1%、硝酸カリウム0.01mol/Lが0.9%、硝酸カリウム0.1mol/Lが6.2%、硝酸カリウム1.0mol/Lが10.2%、硝酸アンモニウム0.01mol/Lが1.6%、硝酸アンモニウム0.1mol/Lが6.1%、硝酸アンモニウム1mol/Lが10.3%と非常に除染率が低くなった。よって、放射性セシウムの溶離剤としてはシュウ酸が最も好適であることがわかる。   FIG. 12 shows various eluents of radioactive cesium when the treatment temperature is 140 ° C., the pressure is 353 kPa, the treatment time is 1 hour, the solid-liquid ratio is 1: 5, and the test soil (test solid) is school ground soil 1. It is a figure which shows the decontamination rate using an eluent. As shown in FIG. 12, the decontamination rate was 82.6% for oxalic acid 1.0 mol / L, 96.0% for oxalic acid 2.0 mol / L, and 95.2% for oxalic acid 3.0 mol / L. It can be seen that the value is very high. On the other hand, ammonium oxalate 0.1 mol / L is 9.8%, formic acid 1 mol / L is 2.2%, formic acid 2 mol / L is 3.2%, formic acid 3 mol / L is 4.1%, potassium nitrate 0.01 mol / L is 0.9%, potassium nitrate 0.1 mol / L is 6.2%, potassium nitrate 1.0 mol / L is 10.2%, ammonium nitrate 0.01 mol / L is 1.6%, ammonium nitrate 0.1 mol / L Of 6.1% and ammonium nitrate 1 mol / L of 10.3%, the decontamination rate was very low. Therefore, it is understood that oxalic acid is most suitable as an eluent for radioactive cesium.

このように、本実施形態の汚染固体の除染方法では、除染機2の容器31に汚染固体とシュウ酸溶液を投入し、水熱反応条件下で反応させることにより、高い除染効果を提供できることとなる。   As described above, in the contaminated solid decontamination method of this embodiment, the contaminated solid and the oxalic acid solution are put into the container 31 of the decontamination machine 2 and reacted under hydrothermal reaction conditions, thereby achieving a high decontamination effect. It can be provided.

また、除染処理の後、容器31内の除染済み固体に中和剤を投入して中和させることにより、固体が酸性を帯びることを防止でき、除染終了後に直ちに再利用できる固体(土壌)を提供できることとなる。   In addition, after the decontamination treatment, the neutralized solid is added to the decontaminated solid in the container 31 to neutralize the solid, so that the solid can be prevented from being acidic and can be reused immediately after decontamination ( Soil).

さらに、除染処理を複数回繰り返すことにより、1回の除染処理では除染しきれないような汚染固体に対しても高い除染効果を提供できることとなる。   Furthermore, by repeating the decontamination process a plurality of times, a high decontamination effect can be provided even for contaminated solids that cannot be decontaminated by a single decontamination process.

そして、除染処理後に放射線レベルを測定し、測定値に合わせて除染処理を繰り返すか、中和処理に移るかを決定することにより、除染効果が高い土壌では除染時間の短縮が図れると共に、除染の効果が低い土壌では除染処理を繰り返すことで高い除染効果が得られる。   And by measuring the radiation level after the decontamination treatment and deciding whether to repeat the decontamination treatment according to the measured value or to shift to the neutralization treatment, the decontamination time can be shortened in the soil having a high decontamination effect. At the same time, a high decontamination effect can be obtained by repeating the decontamination process in the soil having a low decontamination effect.

また、本実施形態の除染方法で使用したシュウ酸溶液を再利用することにより、シュウ酸の使用量を減らすことができるため、除染にかかるコストを削減することができる。   Further, by reusing the oxalic acid solution used in the decontamination method of the present embodiment, the amount of oxalic acid used can be reduced, so that the cost for decontamination can be reduced.

また、シュウ酸溶液として濃度が2mol/Lのシュウ酸溶液を使用することにより、図7に示したように、シュウ酸の使用量を少なく抑えつつ、高い除染効果を得られることとなる。   Further, by using an oxalic acid solution having a concentration of 2 mol / L as the oxalic acid solution, a high decontamination effect can be obtained while suppressing the amount of oxalic acid used as shown in FIG.

さらに、水熱反応条件設定工程(ステップ105)において、140℃、353kPa(3.6kgf/cm2)に設定することにより、図8に示したように、水熱反応条件下による高い除染効果が得られると共に、容器31の耐圧性は低くても(上記圧力に耐えうる程度)よくなるため、容器31の重量を低く抑えられ、且つ容器31にかかるコストも削減できることとなる。   Further, in the hydrothermal reaction condition setting step (step 105), by setting the temperature to 140 ° C. and 353 kPa (3.6 kgf / cm 2), as shown in FIG. In addition to being obtained, the pressure resistance of the container 31 is improved even if the pressure resistance is low (to the extent that it can withstand the pressure), so that the weight of the container 31 can be kept low and the cost of the container 31 can be reduced.

また、シュウ酸溶液投入工程(ステップ103)で容器31に投入するシュウ酸溶液の量を汚染固体の質量の2倍の質量(固液比が1:2)とすることにより、図6に示したように、高い除染効果を維持しつつシュウ酸の使用量を削減できる。   Further, by setting the amount of the oxalic acid solution charged into the container 31 in the oxalic acid solution charging step (step 103) to be twice the mass of the contaminated solid (solid-liquid ratio is 1: 2), FIG. As described above, the amount of oxalic acid used can be reduced while maintaining a high decontamination effect.

そして、除染装置1が、容器31を備えた除染機2と、蒸気ボイラー5と、を少なくとも備えることにより、容器31内を水熱反応条件下に設定することができるため、高い除染効果が得られる除染装置1を提供できることとなる。   Since the decontamination apparatus 1 includes at least the decontamination machine 2 provided with the container 31 and the steam boiler 5, the inside of the container 31 can be set under hydrothermal reaction conditions. The decontamination apparatus 1 which can obtain an effect can be provided.

また、除染装置1を車両などで移動可能とすることにより、汚染固体の回収、除染、除染済みの固体の再利用が、汚染固体を回収する場所で行えるため、汚染固体の運送などが必要なくなり、汚染固体の運送によるさらなる放射線セシウムの拡散を防止でき、運送費も削減できることとなる。   In addition, by making the decontamination apparatus 1 movable by a vehicle or the like, the contaminated solid can be collected, decontaminated, and reused after the decontamination can be performed at the place where the contaminated solid is collected. Therefore, it is possible to prevent further diffusion of radioactive cesium due to transportation of contaminated solids and to reduce transportation costs.

なお、上述したフローでは、シュウ酸溶液の排出や中和剤の排出について容器31から排出するとのみ述べているが、遠心分離機を別途備え、当該遠心分離機で固液を分離させるものとしてもよい。遠心分離機を使用して固体とシュウ酸溶液、又は、固体と中和剤を分離することで、これらの作業にかかる時間を短縮でき、また、固体に残るシュウ酸溶液や中和剤の量を減らすことができる。   In the above-described flow, the discharge of the oxalic acid solution and the neutralizing agent is only described as being discharged from the container 31. However, a separate centrifuge may be provided, and the solid-liquid may be separated by the centrifuge. Good. Using a centrifuge to separate the solid and oxalic acid solution or the solid and neutralizing agent can reduce the time required for these operations, and the amount of oxalic acid solution and neutralizing agent remaining in the solid. Can be reduced.

また、上述したフローでは、放射線レベル測定工程(ステップ111)及び放射線レベル判定工程(ステップ113)を実行し、放射線レベルに合わせて除染作業を繰り返しているが、図11に示したように、1回の除染作業で最も除染率が低かった土壌においても3回の除染作業で非常に高い除染率を達成できたため、除染作業の回数を予め3回と設定してもよい。   In the above-described flow, the radiation level measurement process (step 111) and the radiation level determination process (step 113) are executed, and the decontamination work is repeated according to the radiation level, but as shown in FIG. Even in soil where the decontamination rate was the lowest in one decontamination operation, a very high decontamination rate was achieved in the three decontamination operations, so the number of decontamination operations may be set to 3 in advance. .

さらに、これまでの除染方法では手作業での除染を述べたが、全てを自動化することも可能である。すなわち、上記フローで述べた除染作業のプログラムが記憶された記憶媒体と、CPUなどの演算装置と、を備えた制御装置を追加することにより、全ての除染作業を自動化できる。   Furthermore, although manual decontamination has been described in the conventional decontamination methods, all can be automated. That is, all the decontamination operations can be automated by adding a control device including a storage medium storing the decontamination operation program described in the above flow and an arithmetic device such as a CPU.

そして、本発明は、以上の実施形態に限定されるものではなく、発明の要旨を変更しない限り、あらゆる変更が可能となる。また、これまで述べた数値等は、実験上最適な数値を述べたにすぎず、数値に限定されることを意味するものではない。除染に使用する各種装置の材質や除染作業を実施する環境などによって最適な数値は変化する可能性がある。   And this invention is not limited to the above embodiment, All changes are possible unless the summary of invention is changed. In addition, the numerical values described so far are only the optimal numerical values in the experiment, and are not meant to be limited to the numerical values. The optimum numerical value may vary depending on the materials of various devices used for decontamination and the environment where decontamination work is performed.

1 除染装置
2 除染機
4 廃液処理装置
5 蒸気ボイラー
6 電源装置
11 シュウ酸タンク
12 中和剤タンク
13 過酸化水素水タンク
14 灯油タンク
21 回収シュウ酸タンク
22 除染廃液タンク
23 セシウム入廃液タンク
31 容器
32 外殻
33 内殻
35 固体投入口
37 液体投入口
38 蒸気注入口
41 保持部
45 台座
46 脚部
48 軸棒
DESCRIPTION OF SYMBOLS 1 Decontamination apparatus 2 Decontamination machine 4 Waste liquid processing apparatus 5 Steam boiler 6 Power supply apparatus 11 Oxalic acid tank 12 Neutralizing agent tank 13 Hydrogen peroxide water tank 14 Kerosene tank 21 Recovery oxalic acid tank 22 Decontamination waste liquid tank 23 Cesium containing waste liquid Tank 31 Container 32 Outer shell 33 Inner shell 35 Solid inlet 37 Liquid inlet 38 Steam inlet 41 Holding part 45 Base 46 Leg part 48 Shaft bar

Claims (10)

放射性セシウムにより汚染された土壌や汚泥などの汚染固体から放射性セシウムを除去して除染する汚染固体の除染方法であって、
除染機の容器に汚染固体を投入する汚染固体投入工程と、
前記容器にシュウ酸溶液を投入するシュウ酸溶液投入工程と、
前記容器を密封し、前記容器内を水熱反応条件下に設定する水熱反応条件設定工程と、
水熱反応条件下で前記シュウ酸溶液に前記放射性セシウムを溶出させる溶出工程と、
前記容器から前記シュウ酸溶液を排出するシュウ酸溶液排出工程と、
を順に行うことを特徴とする汚染固体の除染方法。
A decontamination method for contaminated solids by removing radioactive cesium from contaminated solids such as soil and sludge contaminated with radioactive cesium,
A contaminated solid charging process for charging the contaminated solid into a decontamination container;
An oxalic acid solution charging step of charging the oxalic acid solution into the container;
Hydrothermal reaction condition setting step of sealing the container and setting the inside of the container under hydrothermal reaction conditions;
An elution step of eluting the radioactive cesium into the oxalic acid solution under hydrothermal reaction conditions;
An oxalic acid solution discharging step of discharging the oxalic acid solution from the container;
A method for decontaminating contaminated solids characterized in that
前記シュウ酸溶液排出工程の後、
前記容器に中和剤を投入する中和剤投入工程と、
前記容器から前記中和剤を排出する中和剤排出工程と、
を行うことを特徴とする請求項1に記載の汚染固体の除染方法。
After the oxalic acid solution discharging step,
A neutralizing agent charging step of charging a neutralizing agent into the container;
A neutralizing agent discharging step of discharging the neutralizing agent from the container;
The method for decontaminating contaminated solid according to claim 1, wherein:
前記中和剤投入工程の前に、
前記シュウ酸溶液投入工程と、前記水熱反応条件設定工程と、前記溶出工程と、前記シュウ酸溶液排出工程と、を複数回実施することを特徴とする請求項2に記載の汚染固体の除染方法。
Before the neutralizing agent charging step,
3. The removal of contaminated solid according to claim 2, wherein the oxalic acid solution charging step, the hydrothermal reaction condition setting step, the elution step, and the oxalic acid solution discharging step are performed a plurality of times. Dyeing method.
前記シュウ酸溶液排出工程の後、
前記容器内の固体の放射線レベルを測定し、前記放射線レベルが基準値以下となっているか否かを判定する放射線レベル判定工程を行い、
前記放射線レベル判定工程で基準値以下になっていると判定した場合には、前記中和剤投入工程を行い、
前記放射線レベル判定工程で基準値以下になっていないと判定した場合には、前記シュウ酸溶液投入工程と、前記水熱反応条件設定工程と、前記溶出工程と、前記シュウ酸溶液排出工程と、を行うことを特徴とする請求項2又は請求項3に記載の汚染固体の除染方法。
After the oxalic acid solution discharging step,
Measuring the radiation level of the solid in the container, and performing a radiation level determination step to determine whether the radiation level is below a reference value;
When it is determined that the radiation level is determined to be below the reference value in the radiation level determination step, the neutralizing agent charging step is performed,
When it is determined that the radiation level determination step is not below the reference value, the oxalic acid solution charging step, the hydrothermal reaction condition setting step, the elution step, the oxalic acid solution discharging step, 4. The method for decontaminating contaminated solids according to claim 2 or claim 3, wherein:
前記シュウ酸溶液排出工程で排出されたシュウ酸溶液を前記シュウ酸溶液投入工程で再利用することを特徴とする請求項1乃至請求項4のいずか1項に記載の汚染固体の除染方法。   The decontamination of contaminated solid according to any one of claims 1 to 4, wherein the oxalic acid solution discharged in the oxalic acid solution discharging step is reused in the oxalic acid solution charging step. Method. 前記シュウ酸溶液投入工程では、濃度が2mol/Lのシュウ酸溶液を容器に投入することを特徴とする請求項1乃至請求項5のいずれか1項に記載の汚染固体の除染方法。   6. The decontamination method for contaminated solid according to claim 1, wherein in the oxalic acid solution charging step, an oxalic acid solution having a concentration of 2 mol / L is charged into a container. 前記水熱反応条件設定工程では、140℃、353kPaに設定することを特徴とする請求項1乃至請求項6のいずれか1項に記載の汚染固体の除染方法。   The decontamination method for contaminated solid according to any one of claims 1 to 6, wherein in the hydrothermal reaction condition setting step, the temperature is set to 140 ° C and 353 kPa. 前記シュウ酸溶液投入工程において前記容器に投入するシュウ酸溶液の量は、前記汚染固体投入工程で投入された汚染固体の質量の2倍の質量であることを特徴とする請求項1乃至請求項7のいずれか1項に記載の汚染固体の除染方法。   The amount of the oxalic acid solution charged into the container in the oxalic acid solution charging step is twice the mass of the contaminated solid charged in the contaminated solid charging step. 8. The method for decontaminating contaminated solids according to any one of 7 above. 放射性セシウムにより汚染された土壌や汚泥などの汚染固体から放射性セシウムを除去して除染する汚染固体の除染装置であって、
汚染固体及びシュウ酸溶液が投入される容器を備えた除染機と、
前記容器に水蒸気を注入して前記容器内を水熱反応条件下に設定する蒸気ボイラーと、を少なくとも備え、
水熱反応条件下で前記シュウ酸溶液に前記放射性セシウムを溶出させ、前記容器から前記シュウ酸溶液を排出することで前記汚染固体の除染を行うことを特徴とする汚染固体の除染装置。
A decontamination device for contaminated solids that removes radioactive cesium from decontaminated solids such as soil and sludge contaminated with radioactive cesium,
A decontamination machine comprising a container into which contaminated solids and an oxalic acid solution are charged;
A steam boiler that injects steam into the container and sets the inside of the container under hydrothermal reaction conditions,
A decontamination apparatus for contaminated solids, wherein the radioactive cesium is eluted in the oxalic acid solution under hydrothermal reaction conditions, and the contaminated solid is decontaminated by discharging the oxalic acid solution from the container.
車両などで移動可能とされたことを特徴とする請求項9に記載の汚染固体の除染装置。
The decontamination apparatus for contaminated solids according to claim 9, wherein the apparatus is movable by a vehicle or the like.
JP2013105704A 2013-05-20 2013-05-20 Contaminated solid decontamination method and contaminated solid decontamination apparatus Active JP5770218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105704A JP5770218B2 (en) 2013-05-20 2013-05-20 Contaminated solid decontamination method and contaminated solid decontamination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105704A JP5770218B2 (en) 2013-05-20 2013-05-20 Contaminated solid decontamination method and contaminated solid decontamination apparatus

Publications (2)

Publication Number Publication Date
JP2014228288A true JP2014228288A (en) 2014-12-08
JP5770218B2 JP5770218B2 (en) 2015-08-26

Family

ID=52128275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105704A Active JP5770218B2 (en) 2013-05-20 2013-05-20 Contaminated solid decontamination method and contaminated solid decontamination apparatus

Country Status (1)

Country Link
JP (1) JP5770218B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5032713B1 (en) * 2011-10-13 2012-09-26 株式会社Cdmコンサルティング Method for treating soil containing radioactive material
JP2013036825A (en) * 2011-08-05 2013-02-21 Cdm Consulting Co Ltd Method for reducing radioactive substances to safety level in living environment
JP2013044575A (en) * 2011-08-22 2013-03-04 Cdm Consulting Co Ltd Method of concentrating radioactive materials in sewage sludge containing radioactive materials
JP2013088391A (en) * 2011-10-21 2013-05-13 Toshiba Corp Processing method of material containing radioactive cesium and radioactive strontium
JP2013088227A (en) * 2011-10-17 2013-05-13 Akita Univ Separation and recovery method of radioactive alkali metal and/or radioactive alkali earth metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036825A (en) * 2011-08-05 2013-02-21 Cdm Consulting Co Ltd Method for reducing radioactive substances to safety level in living environment
JP2013044575A (en) * 2011-08-22 2013-03-04 Cdm Consulting Co Ltd Method of concentrating radioactive materials in sewage sludge containing radioactive materials
JP5032713B1 (en) * 2011-10-13 2012-09-26 株式会社Cdmコンサルティング Method for treating soil containing radioactive material
JP2013088227A (en) * 2011-10-17 2013-05-13 Akita Univ Separation and recovery method of radioactive alkali metal and/or radioactive alkali earth metal
JP2013088391A (en) * 2011-10-21 2013-05-13 Toshiba Corp Processing method of material containing radioactive cesium and radioactive strontium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015013714; '(3)除染技術実証試験事業の結果報告 平成23年度「除染技術実証試験事業」' [online] , 20120326, p1-p82, (独)日本原子力研究開発機構 *

Also Published As

Publication number Publication date
JP5770218B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6129342B2 (en) Method and equipment for treating carbonaceous radioactive waste
KR102287059B1 (en) Method and apparatus for the recovery of radioactive nuclides from spent resin materials
JP6204096B2 (en) System and method for removing cesium contained in waste
RU2467419C1 (en) Method of cleaning still residues of liquid radioactive wastes from radioactive cobalt and caesium
JP6100185B2 (en) Processing method and processing apparatus for used ion exchange resin
JP5770218B2 (en) Contaminated solid decontamination method and contaminated solid decontamination apparatus
JP5175997B1 (en) Method and apparatus for treating radioactive cesium-containing water
KR101172247B1 (en) Decontamination method and apparatus of radwaste resin
JP2015138014A (en) Radioactive waste liquid treatment apparatus and radioactive waste liquid treatment method
CN103949159A (en) Separation method of radioisotope 14C
JP2012247407A (en) Precipitation removal technology of radioactivity from high-level radiation-contaminated water and purification technology of water
JP6570220B2 (en) Fly ash treatment apparatus and treatment method
JP5845478B2 (en) Method and apparatus for treating radioactive material-containing wastewater
KR101725258B1 (en) High efficiency electrokinetic treatment method for uranium contaminated soil using the ion-exchange resins
KR101678805B1 (en) Decontamination method and system of radioactive spent resin
Korchagin et al. Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations
Avramenko et al. Implementation of the continuous-flow hydrothermal technology of the treatment of concentrated liquid radioactive wastesat nuclear power plants
WO2012165025A1 (en) Method for cleaning and decontaminating dust, earth, sand, and soil contaminated by radioactive substance
KR20120130605A (en) Treatment process for a retired steam generator
Savkin Development and trials of a technology for reprocessing of NPP liquid radioactive wastes
RU2465665C1 (en) Method of processing spent ion-exchange resins
JP5986763B2 (en) Pollutant treatment apparatus and treatment method
JP6234033B2 (en) Extraction apparatus and extraction method for radioactive substances contained in incineration fly ash
JP2014235011A (en) Device and method for decontaminating soil
Koegler Development of a unique process for recovery of uranium from incinerator ash

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150624

R150 Certificate of patent or registration of utility model

Ref document number: 5770218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250