JP2013044575A - Method of concentrating radioactive materials in sewage sludge containing radioactive materials - Google Patents

Method of concentrating radioactive materials in sewage sludge containing radioactive materials Download PDF

Info

Publication number
JP2013044575A
JP2013044575A JP2011180990A JP2011180990A JP2013044575A JP 2013044575 A JP2013044575 A JP 2013044575A JP 2011180990 A JP2011180990 A JP 2011180990A JP 2011180990 A JP2011180990 A JP 2011180990A JP 2013044575 A JP2013044575 A JP 2013044575A
Authority
JP
Japan
Prior art keywords
radioactive
sewage sludge
water
radioactive materials
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011180990A
Other languages
Japanese (ja)
Other versions
JP4994509B1 (en
Inventor
Shigeto Hayafuji
茂人 早藤
Takeshi Kamaya
武志 釜谷
Kenji Takeshita
健二 竹下
Masanori Aritomi
正憲 有冨
Kunio Yoshikawa
邦夫 吉川
Saburo Kikuchi
三郎 菊池
Akio Ishido
昭夫 石堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Radioactive Waste Management & Nuclear Facility Decommissioning Technology Center
Tokyo Institute of Technology NUC
CDM Consulting Co Ltd
Original Assignee
Radioactive Waste Management & Nuclear Facility Decommissioning Technology Center
Tokyo Institute of Technology NUC
CDM Consulting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46793877&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013044575(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Radioactive Waste Management & Nuclear Facility Decommissioning Technology Center, Tokyo Institute of Technology NUC, CDM Consulting Co Ltd filed Critical Radioactive Waste Management & Nuclear Facility Decommissioning Technology Center
Priority to JP2011180990A priority Critical patent/JP4994509B1/en
Priority to CN201280038364.8A priority patent/CN103733269B/en
Priority to PCT/JP2012/069901 priority patent/WO2013021954A1/en
Priority to US14/236,884 priority patent/US9395003B2/en
Priority to EP12822415.1A priority patent/EP2747089B1/en
Priority to RU2014108422/07A priority patent/RU2595260C2/en
Publication of JP4994509B1 publication Critical patent/JP4994509B1/en
Application granted granted Critical
Publication of JP2013044575A publication Critical patent/JP2013044575A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To address contamination by existing radioactive materials.SOLUTION: A method of concentrating radioactive materials in sewage sludge containing radioactive materials includes the steps of: subjecting sewage sludge containing radioactive materials to blasting treatment and hydrothermal treatment or hydrothermal treatment and blasting treatment; and adsorbing the radioactive materials at least in a resulting liquid with adsorbent.

Description

本発明は固体核燃料を用いる原子力発電所の事故や核兵器テロ、原爆実験などで汚染された下水汚泥中の放射性物質を集約する方法に関する。   The present invention relates to a method for aggregating radioactive materials in sewage sludge contaminated in an accident at a nuclear power plant using solid nuclear fuel, a nuclear weapon terrorism, an atomic bomb experiment, or the like.

固体核燃料を用いる原子力発電や核兵器テロ、原爆実験などはウラン235やプルトニウム239の原子核を人工的に破壊する核分裂反応に依る。その際、ウラン235やプルトニウム239の原子核は粉々の破片に分かれる。これらの破片の殆どは非常に放射能レベルが高い人工放射性核種である。これらの人工放射性核種は半減期が短いものが多い。例えば放射性クリプトンや放射性キセノンは常温でも気体であり、これらを主成分とする放射性雲が通過中に強烈な放射線を放射するが、放射能雲の通過後には残らない。また、沃素131は半減期が8日なので半年後には殆ど消滅する。   Nuclear power generation, nuclear weapon terrorism, and atomic bomb tests using solid nuclear fuel rely on fission reactions that artificially destroy uranium 235 and plutonium 239 nuclei. At that time, the nuclei of uranium 235 and plutonium 239 are broken into pieces. Most of these fragments are artificial radionuclides with very high levels of radioactivity. Many of these artificial radionuclides have a short half-life. For example, radioactive krypton and radioactive xenon are gases even at normal temperatures, and radioactive clouds mainly composed of these radiate intense radiation during passage, but do not remain after the passage of radioactive clouds. In addition, iodine 131 almost disappears after half a year since it has a half-life of 8 days.

しかしながら、セシウム137は678℃で気体になるため、原発事故で放出されやすく、しかも半減期が30年と長い。またセシウムは土壌粒子と結合しやすいため長い間地表から流されない。このため、短寿命の放射性核種や沃素131が消滅した後にも残り、地面から放射線を放ち続け、農作物にも取り込まれて、長期汚染の原因になる。1960年代末までの大気圏核実験によって1億500万京ベクレルという、膨大な核分裂生成物がばらまかれ、地球全体を汚染した。核実験によるセシウム137は、現在も海水・地表・大気中に残っている。またチェルノブイリ原発事故では、直径約250kmの範囲にわたり、高濃度汚染地域が点在している。さらに福島原発事故でも原発から遠く離れた静岡県の茶にもセシウムが検出された。   However, since cesium 137 becomes a gas at 678 ° C., it is easily released in a nuclear accident and has a long half-life of 30 years. In addition, cesium is not washed away from the surface for a long time because it easily binds to soil particles. For this reason, even after the short-lived radionuclide and iodine 131 have disappeared, they continue to emit radiation from the ground and are taken into farm products, causing long-term contamination. Atmospheric nuclear tests by the end of the 1960s scattered a huge amount of fission products, 150 million Kyo Becquerel, polluting the entire earth. Cesium 137 from nuclear tests still remains in seawater, the ground, and the atmosphere. In the Chernobyl accident, high-concentration contaminated areas are scattered over a range of about 250 km in diameter. Furthermore, cesium was also detected in tea in Shizuoka Prefecture, which is far from the nuclear power plant in the Fukushima accident.

また、ストロンチウム90も半減期が28年であり、セシウム137と同様の問題がある。よって、放射性物質の汚染を考慮する上では、セシウム137とストロンチウム90を主として対策をとればよい。   Strontium 90 also has a half-life of 28 years and has the same problems as cesium 137. Therefore, in consideration of radioactive contamination, cesium 137 and strontium 90 should be mainly taken.

このような厄介な放射性セシウム137とストロンチウム90で汚染された、生活空間にある物体から放射性物質を除去し、放射線物質を特定領域に集約する方法としては、自然界にある放射能セシウム137と放射性ストロンチウム90を表面に付着する物質を水中に入れ、水に溶ける放射性セシウム137と放射性ストロンチウム90を水に溶かし、そこにフェロシアン化鉄やフェロシアン化ニッケルなどのフェロシアン化物を溶かし、水中の放射性セシウムをフェロシアン化物に吸着させる方法が知られている(非特許文献1)。しかしながら、この方法は水に溶けている放射性物質を取り込むだけであり、生物の体内に取り込まれた放射性物質を取り出すことはできない。   As a method of removing radioactive substances from objects in living space contaminated with such troublesome radioactive cesium 137 and strontium 90 and concentrating radioactive substances in a specific area, radioactive cesium 137 and radioactive strontium in the natural world are used. A substance adhering to the surface of 90 is put in water, radioactive cesium 137 and radioactive strontium 90 dissolved in water are dissolved in water, ferrocyanides such as ferrocyanide and nickel ferrocyanide are dissolved therein, and radioactive cesium in water is dissolved. There is known a method of adsorbing to ferrocyanide (Non-patent Document 1). However, this method only takes in a radioactive substance dissolved in water, and cannot take out the radioactive substance taken into the living body.

また、更に別の方法としては、藻類「バイノス」が放射性物質で汚染された水から放射性物質を藻類細胞内に取り込むことが知られている(非特許文献2)。この方法も水に溶けている放射性物質を取り込むだけであり、生物の体内に取り込まれた放射性物質を取り出すことができないのは前述と同様であり、藻類に取り込まれた放射性物質をどうするかという問題が残されている。   Further, as another method, it is known that the alga “Vinos” takes in a radioactive substance into the algal cell from water contaminated with the radioactive substance (Non-patent Document 2). This method only takes in radioactive substances dissolved in water, and it is impossible to take out radioactive substances taken into the body of living organisms as before, and what to do with radioactive substances taken in algae Is left.

福島原発事故による放射性物質で汚染されたものとしては下水汚泥が一つの大きな問題になっている。放射能で汚染された下水汚泥は処理場で引き取ってもらえず、悪臭を周囲に放ちつつ、大量に野積みされたままである。下水汚泥は微生物で処理されるので下水汚泥中、水分の含有率に次いで微生物の占める割合が大きい。したがって、上述と同様、微生物の体内に取り込まれた放射性物質を取り出せない。加えて、下水汚泥には粘土が若干ながら含まれる。粘土にも放射性物質のセシウムが取り込まれ、簡単には取れないので対応に苦慮しているのが現実である。   Sewage sludge is one of the major problems as a result of radioactive material contamination caused by the Fukushima nuclear accident. The sewage sludge contaminated with radioactivity cannot be collected at the treatment plant, and is still piled up in large quantities, giving off a bad odor to the surroundings. Since sewage sludge is treated with microorganisms, the proportion of microorganisms in the sewage sludge is the second largest after the moisture content. Therefore, the radioactive substance taken in the body of the microorganism cannot be taken out as described above. In addition, the sewage sludge contains some clay. In reality, cesium, a radioactive substance, is also taken into clay and cannot be easily removed, so it is difficult to cope with it.

毎日新聞 「顔料使ってセシウム汚染水浄化 東工大が開発」 2011.4.15 毎日新聞社Mainichi Shimbun “Cesium-contaminated water purification using pigment developed by Tokyo Institute of Technology” 2011.15.15 Mainichi Shimbun

日本経済新聞 「放射性物質汚染水を浄化する藻「バイノス」 浄化に藻類活用」 2011.7.15 日本経済新聞社 朝刊Nihon Keizai Shimbun "Algae" Binos "that purifies radioactive water contaminated water" Utilization of algae for purification 2011.15.15 Nihon Keizai Shimbun morning edition

本発明は放射性物質で汚染された下水汚泥中の放射性物質含有体を集約する方法を提供し、大量の下水汚泥の処理をできるようにすることを目的とするものである。   An object of the present invention is to provide a method for consolidating radioactive substance-containing bodies in sewage sludge contaminated with radioactive substances, so that a large amount of sewage sludge can be treated.

上記の課題を解決するために、本発明は放射性物質を含む下水汚泥を爆砕処理、水熱処理、または、水熱処理及び爆砕処理する工程を経た後、少なくとも液分中の放射性物質を吸着剤により吸着させる工程からなることを特徴とする、放射性物質を含む下水汚泥を集約する方法である。   In order to solve the above problems, the present invention adsorbs at least radioactive substances in a liquid by an adsorbent after undergoing a blasting treatment, hydrothermal treatment, or hydrothermal treatment and blasting treatment of sewage sludge containing radioactive substances. It is the method of collecting the sewage sludge containing a radioactive substance characterized by comprising the process to make.

本発明によれば、放射性物質を取り込んだ下水汚泥中の微生物体内にある放射性物質を回収するとともに、放射性物質を凝縮した形で回収することができ、保存スペースを極小化することができる。しかも通常の焼却処理であれば煙と共に放射性物質が大気中に飛散するが、本発明によれば、そのような心配もない。   ADVANTAGE OF THE INVENTION According to this invention, while recovering the radioactive substance in the microorganisms body in the sewage sludge which took in the radioactive substance, it can collect | recover in the form which condensed the radioactive substance, and a storage space can be minimized. Moreover, in the case of a normal incineration process, radioactive material is scattered into the atmosphere together with smoke, but according to the present invention, there is no such concern.

本発明は下水汚泥を爆砕処理、水熱処理、または、水熱処理及び爆砕処理する。下水汚泥の大部分は水分であり、残りの殆どは下水処理に関わった微生物であり、粘土が微量ながら含まれる。本発明でいう爆砕処理とは急激な圧力変化により、その微生物の細胞膜を破断する操作をいう。急激な圧力変化というのは、例えば、4〜5MPaから一気に常圧に戻すような変化である。その際、温度は常温でもよい。爆砕処理の場合には物理的作用が主体となる。爆砕装置は、圧力容器、圧力容器にバルブを介して連結されるブロータンク、及び必要に応じたサイレンサ等から構成する。圧力容器中に下水汚泥を60〜90容量%、好適には70〜80容量%で投入し、圧力容器内を高圧にした後、バルブを開き、常圧のブロータンクに下水汚泥を送り込んで、一気に圧力を開放する。微生物の細胞膜の中に閉じ込められた水分中に溶けていた放射性物質は爆砕により細胞膜が破裂することで細胞膜内の水分と共に外に出されて飛散するが、ブロータンクの中に留まり、焼却処理の場合のような煙やガスが放射性物質を同伴しつつ外界に拡散することはない。   In the present invention, sewage sludge is subjected to blasting treatment, hydrothermal treatment, or hydrothermal treatment and blasting treatment. Most of the sewage sludge is moisture, and most of the rest are microorganisms involved in sewage treatment, and contain a small amount of clay. The blasting treatment in the present invention refers to an operation of breaking the cell membrane of the microorganism due to a rapid pressure change. The sudden pressure change is, for example, a change that returns from 4 to 5 MPa to normal pressure at once. At that time, the temperature may be room temperature. In the case of the blasting process, the physical action is the main. The blasting device includes a pressure vessel, a blow tank connected to the pressure vessel via a valve, a silencer as necessary, and the like. The sewage sludge is charged into the pressure vessel at 60 to 90% by volume, preferably 70 to 80% by volume, the pressure vessel is made high pressure, the valve is opened, and the sewage sludge is sent into a normal pressure blow tank, Release pressure at once. The radioactive material dissolved in the moisture confined in the cell membrane of the microorganisms is expelled and scattered with the moisture in the cell membrane due to the explosion of the cell membrane, but it stays in the blow tank and is incinerated. Smoke and gas like the case do not diffuse to the outside world accompanied by radioactive material.

一方、水熱処理とは、水の亜臨界状態の条件を満足する範囲での処理を言う。微生物の細胞膜を高温高圧の熱水の物理的、化学的作用により、微生物の細胞膜を破断して、内部の細胞液が外界に流出し得る状態にする。水の亜臨界状態(亜臨界水状態とも言う)、即ち、臨界点以下の温度における飽和蒸気圧以上の圧力下の水は加水分解力が非常に大きく、固体有機物を短時間に低分子の有機物に分解する。中でも水のイオン積が最大となる250℃付近が常温におけるイオン積の約1000倍となり、H+とOH-の濃度は常温における値の30倍以上となり、加水分解力が非常に大きくこれらのイオンのエステル結合部など加水分解の起こり得る結合部位への攻撃が極めて大きくなる。330℃より温度が高くなると、温度の上昇に伴い、水のイオン積は急激に減少するため加水分解力も急激に衰え、加水分解力は臨界点を超えるとなくなるので、臨界点以下の温度で処理を行うとよい。また130℃より低い温度でも加水分解力は緩やかではあるが低下するので、好ましくは130〜330℃で、より好ましくは230〜280℃、特に好ましくは240〜270℃で行なわれる。水熱装置は、反応容器等から構成され、反応容器中に下水汚泥を投入し、そこに高温高圧の蒸気を吹き込み、水の亜臨界状態の条件にさせて反応させ、その後圧力を開放し、常温、常圧に戻す。 On the other hand, hydrothermal treatment refers to treatment within a range that satisfies the subcritical condition of water. The cell membrane of the microorganism is broken by the physical and chemical action of hot water of high temperature and high pressure so that the internal cell fluid can flow out to the outside. Water in a subcritical state (also called a subcritical water state), that is, water under a pressure equal to or higher than the saturated vapor pressure at a temperature below the critical point has a very high hydrolysis power, and solid organic matter can be converted into low molecular weight organic matter in a short time. Disassembled into Of these 250 around ℃ the ionic product of water is maximized becomes about 1000 times the ion product at room temperature, H + and OH - concentration becomes more than 30 times the value at room temperature, hydrolysis force is very large ions thereof Attacks on the bonding sites where hydrolysis can occur, such as the ester bond portion, are extremely large. When the temperature rises above 330 ° C, as the temperature rises, the ionic product of water decreases rapidly, so the hydrolytic power also declines sharply and the hydrolytic power disappears when it exceeds the critical point. It is good to do. Further, since the hydrolytic power is moderately lowered even at a temperature lower than 130 ° C., it is preferably 130 to 330 ° C., more preferably 230 to 280 ° C., particularly preferably 240 to 270 ° C. The hydrothermal device is composed of a reaction vessel, etc., and sewage sludge is introduced into the reaction vessel, high-temperature and high-pressure steam is blown into the reaction vessel, the reaction is performed under the subcritical condition of water, and then the pressure is released. Return to normal temperature and pressure.

好適な方法は、水熱処理した上で爆砕処理する方法である。圧力容器中に下水汚泥を投入し、そこに高温高圧の蒸気を吹き込み、水の亜臨界状態の条件にさせ、圧力容器のバルブを開き、常温・常圧のブロータンクに下水汚泥を送り込んで、一気に圧力を開放する。爆砕の過程で温度が高く、水蒸気となっている場合には、ブロータンクの中で冷却されて、水蒸気は水となる。生物体の中に留まっていた放射性物質は細胞液とともに外界に放出されるか、破断された細胞膜に付着している。尚、その過程で、放射性物質は水に溶け込むものもあるが、爆砕により破砕された物やブロータンクの壁に付着しているものもある。後者の放射性物質はブロータンク内をときどき水洗浄することで水に溶け込ませて次の処理工程に廻すことができる。   A suitable method is a method of performing a blasting treatment after hydrothermal treatment. Put sewage sludge into the pressure vessel, blow high-temperature and high-pressure steam into it, let it be in the subcritical condition of water, open the valve of the pressure vessel, send sewage sludge into the blow tank at normal temperature and normal pressure, Release pressure at once. When the temperature is high and becomes steam during the explosion process, the steam is cooled in the blow tank, and the steam becomes water. The radioactive material that has remained in the organism is either released to the outside with the cell fluid or attached to the broken cell membrane. In the process, some radioactive materials dissolve in water, but some are crushed by explosion or attached to the wall of the blow tank. The latter radioactive material can be dissolved in water by occasionally washing the inside of the blow tank and sent to the next processing step.

爆砕或いは水熱処理の温度、圧力が適切であると、放射性物質の殆どは液側に移行し、固形破断物に残留する放射性物質は僅かとなる。   When the temperature and pressure of the blasting or hydrothermal treatment are appropriate, most of the radioactive substance moves to the liquid side, and the radioactive substance remaining in the solid fracture is small.

本発明を亜臨界水状態で実施する場合、亜臨界水の状態は超臨界水のような酸化還元力がないので、容器は超臨界水装置に比べれば腐蝕されがたいものの、水分と酸が存在するので、腐蝕を加速させる要因を有する。しかしながら、水熱処理系では酸素を含まないようにすることで腐蝕そのものを起こさせないようにすることがかなりの程度まで可能である。そのような手段として、蒸気に用いる水は純水を使い、しかも80℃で加熱して酸素が仮に入り込んだ場合でも追い出したものを用いる。また、下水汚泥に含まれている空気を例えば0.5〜0.8MPa程度の水蒸気でブロータンクに追い出して系内のガスを水蒸気だけにする。また、無機の燐が含まれないようにすることも必要である。このような配慮をした上で、水熱処理後に爆砕処理させると、爆砕により容器内部は全てのものが吹き飛ばされるので、内部は清浄にされるため、長期にわたる使用が可能であり、容器の長期使用の耐久性の面からも好ましい。本発明で用いられる容器は亜臨界水状態で使用される公知の材料が用いられ、オーステナイトやマルテンサイト、二層合金系などのステンレス鋼、高合金などが用いられる。   When the present invention is carried out in a subcritical water state, the subcritical water state does not have the redox power of supercritical water. Because it exists, it has a factor that accelerates corrosion. However, in the hydrothermal treatment system, it is possible to prevent the corrosion itself from occurring by not containing oxygen. As such means, pure water is used as the water for steam, and it is heated at 80 ° C. and purged even when oxygen enters temporarily. Further, the air contained in the sewage sludge is expelled to the blow tank with, for example, about 0.5 to 0.8 MPa of water vapor so that the gas in the system is only water vapor. It is also necessary to prevent inorganic phosphorus from being contained. Taking these considerations into consideration, if the blasting process is performed after hydrothermal treatment, everything inside the container will be blown away by the blasting process, so the inside is cleaned, allowing long-term use. It is also preferable from the viewpoint of durability. As the container used in the present invention, a known material used in a subcritical water state is used, and austenite, martensite, a double-layer alloy type stainless steel, a high alloy, or the like is used.

容器の大きさは大きいと内部の温度が不均一になるので、30〜200L程度、好適には30〜100L程度の小型のものを用いればよく、処理時間は数分あれば十分である。例えば下水汚泥と蒸気投入に30秒〜1分、処理時間2〜5分、容器から被処理物を排除するのに30秒〜1分程度が好適な条件である。大量処理が必要な場合にはこのような小型容器を複数個用意する。例えば、コンベア上に置かれた下水汚泥からリミットスイッチによりバルブを介して開いた計量計に向けて下水汚泥が送り込まれ、所定量の下水汚泥が計量されたことを光センサーで感知したところでバルブを閉めて、所定量の下水汚泥が、容器に送り込まれる。相互の容器の下水汚泥や蒸気の入口と出口はそれぞれリミットスイッチにより所定の条件を満たすと開閉して、順次、水熱処理される。また、その後に爆砕処理する場合には、共通のブロータンクに下水汚泥が送り込まれる。このような小型容器を複数連動させることで、大型容器を所定の温度にするまでの昇温時間に比べて、短時間で所定温度に達することができ、容器内の温度分布が均一にできることと相俟って大型容器を用いて処理を行う以上に大量処理が可能である。   If the size of the container is large, the internal temperature becomes non-uniform, so a small size of about 30 to 200 L, preferably about 30 to 100 L may be used, and a processing time of several minutes is sufficient. For example, the preferable conditions are 30 seconds to 1 minute for sewage sludge and steam input, a processing time of 2 to 5 minutes, and 30 seconds to 1 minute for removing the object to be processed from the container. When a large amount of processing is necessary, a plurality of such small containers are prepared. For example, sewage sludge placed on a conveyor is sent to a meter that is opened via a valve by a limit switch, and the valve is turned on when a predetermined amount of sewage sludge is measured by a light sensor. Closed and a predetermined amount of sewage sludge is fed into the container. The inlet and outlet of the sewage sludge and steam of each container are opened and closed when a predetermined condition is satisfied by a limit switch, and then hydrothermally treated. Moreover, when carrying out an explosion process after that, sewage sludge is sent into a common blow tank. By interlocking a plurality of such small containers, it is possible to reach a predetermined temperature in a short time compared to the temperature raising time until the large container is brought to a predetermined temperature, and the temperature distribution in the container can be made uniform. Combined, it is possible to perform a large amount of processing more than processing using a large container.

爆砕処理、水熱処理、または、水熱処理及び爆砕処理後、必要に応じ、固形破断物からスクウィーズ、スクリュープレス、遠心分離或いは濾過などの手段である程度液分を分離する。ここで「固形破断物」というのは、爆砕等により破砕されたものであり、破断が細かいため、一見すると固体と認識しにくい場合が多い。しかも、破断により細胞膜でそれまで保存されていた液分も外界に出るので、破断物と液分が混在している。そのため、本発明でいう「固形破断物」とは、固形破断物というより、ドロドロした液状といってもよい場合が多く、本発明でいう「固形破断物」とはこのような状態のものを包含し、具体的には、微生物の細胞膜、粘土等が挙げられる。液分分離工程により、固形破断物に放射性物質が付着していたり、固形破断物と放射性物質が同伴されていた場合に、液分分離の過程でそのような放射性物質が液分に溶けたり、同伴されるので、固形破断物中の放射性物質は相対的に減少し、次になされる水洗浄が不要になる場合もある。しかしながら、このような液分分離処理をしないで後述の吸着工程で水洗浄を合わせて行なってもよい。   After the blasting treatment, hydrothermal treatment, or hydrothermal treatment and blasting treatment, a liquid component is separated to some extent from the solid rupture by means such as squeeze, screw press, centrifugation or filtration. Here, the “solid rupture” is crushed by blasting or the like, and since the break is fine, it is often difficult to recognize it as a solid at first glance. In addition, since the liquid that has been stored in the cell membrane due to the rupture also appears outside, the rupture and the liquid are mixed. Therefore, the “solid fractured product” as used in the present invention is often referred to as a dripping liquid rather than a solid fractured product, and the “solid fractured product” as used in the present invention is in such a state. Specifically, cell membranes of microorganisms, clays and the like can be mentioned. If the radioactive material is attached to the solid fractured product by the liquid separation process, or if the solid fractured product and the radioactive material are accompanied, such radioactive material is dissolved in the liquid during the liquid separation process, Because it is entrained, the radioactive material in the solid rupture is relatively reduced, and the subsequent water wash may be unnecessary. However, water washing may be performed in the adsorption step described later without performing such a liquid separation process.

放射性物質を固形破断物から除去する必要がある場合には、固形破断物の水洗浄工程を行う。水洗浄は攪拌洗浄が好ましい。また、水洗浄の際に、固形破断物を振動させることも効果的である。かかる水洗浄は固形破断物中の放射能が問題とならないレベルになるまで繰り返し洗浄することで、固形破断物は通常の廃棄物と同様の処理が可能となる。かかる水洗浄は後述の吸着工程で同時に行なってもよい。洗浄に用いた水は、前記液分分離工程で分離した液分と共に、次の吸着工程に供されるとよい。   When it is necessary to remove the radioactive substance from the solid rupture, a water washing step of the solid rupture is performed. The water washing is preferably stirring washing. In addition, it is also effective to vibrate the solid rupture when washing with water. Such water washing is performed repeatedly until the radioactivity in the solid breakage reaches a level that does not cause a problem, so that the solid breakage can be treated in the same manner as normal waste. Such water washing may be performed simultaneously in the adsorption step described later. The water used for washing may be used for the next adsorption step together with the liquid separated in the liquid separation step.

次いで、爆砕処理、水熱処理、または、水熱処理及び爆砕処理された、少なくとも液分中の放射性物質を吸着剤により吸着させる。放射性物質の吸着は、化学吸着でも物理吸着でもよい。吸着剤としては、フェロシアン化物、ゼオライト、活性炭が例示される。中でもフェロシアン化物は少量で多くの放射性物質を吸着できるので好適である。その中でも、フェロシアン化鉄が好ましいが、この他、フェロシアン化ニッケル、フェロシアン化コバルトなどが例示される。放射性ストロンチウムは放射性セシウムに吸着するので、フェロシアン化物で取り込まれた放射性セシウムともども取り込まれる。吸着剤はその吸着剤の吸着能力と水溶液中の放射性物質の量に応じて必要量を適宜選定する。このような吸着剤はカラムに充填して水溶液を通過させる形で接触させてもよいし、水溶液中に必要な量の吸着剤を投入して攪拌させるような形でもよい。攪拌であれば、前述の洗浄工程を兼ねて行なうことができる。また、液分ばかりでなく、固体破断物も攪拌される場に混在させてもよい。なお、前者のカラムに充填して水溶液を通過させる場合、吸着剤は、カラムに充填でき、流出しない程度の粒径のものでなければならない。また、後者の水溶液中に吸着剤を投入させる場合は水溶液中に吸着剤が浮遊していては困るので、吸着剤だけ凝集させて沈澱させることができる凝集沈殿剤を用いる必要がある。例えば、フェロシアン化物は特に造粒しない限り、微粉であるため、フェロシアン化物を造粒するか、あるいは微粉のままで使うのであれば、凝集剤を用いる。   Next, the radioactive material in at least the liquid component subjected to the explosion treatment, hydrothermal treatment, or hydrothermal treatment and explosion treatment is adsorbed by the adsorbent. The adsorption of the radioactive substance may be chemical adsorption or physical adsorption. Examples of the adsorbent include ferrocyanide, zeolite, and activated carbon. Among them, ferrocyanide is preferable because it can adsorb many radioactive substances in a small amount. Among these, ferric ferrocyanide is preferable, but nickel ferrocyanide, cobalt ferrocyanide, and the like are also exemplified. Since radioactive strontium is adsorbed by radioactive cesium, it is also taken in together with radioactive cesium taken in by ferrocyanide. The necessary amount of the adsorbent is appropriately selected according to the adsorption capacity of the adsorbent and the amount of radioactive substance in the aqueous solution. Such an adsorbent may be brought into contact with the column in such a manner that the aqueous solution passes through the column, or a necessary amount of the adsorbent may be charged into the aqueous solution and stirred. If it is stirring, it can perform also as the above-mentioned washing | cleaning process. Moreover, you may mix not only a liquid component but the solid fracture | rupture thing in the place stirred. In addition, when filling the former column and allowing aqueous solution to pass through, the adsorbent must be of a particle size that can be filled into the column and does not flow out. In addition, when the adsorbent is introduced into the latter aqueous solution, it is not necessary that the adsorbent floats in the aqueous solution. Therefore, it is necessary to use an aggregating precipitant that can aggregate and precipitate only the adsorbent. For example, since ferrocyanide is a fine powder unless it is granulated, a flocculant is used if the ferrocyanide is granulated or used as it is.

放射性物質を吸着した吸着剤と水溶液との混合物はそのまま、最終処分場に運び込み、水分を自然蒸発させてもよいが、水溶液側の放射性物質は殆ど無視できる程度の量であるので、吸着剤と水溶液を分離して吸着剤のみを最終処分場に運び、水はそのまま排泄しても又は再利用しても環境に影響はない。吸着剤と水溶液との分離は、吸着剤の物性を考慮して、遠心分離、濾過などの方法により行われる。   The mixture of the adsorbent adsorbed with radioactive material and the aqueous solution may be carried directly to the final disposal site to evaporate the water, but the amount of radioactive material on the aqueous solution side is almost negligible. Even if the aqueous solution is separated and only the adsorbent is transported to the final disposal site, water can be excreted or reused without affecting the environment. Separation of the adsorbent and the aqueous solution is performed by a method such as centrifugation or filtration in consideration of the physical properties of the adsorbent.

放射性物質を吸着した吸着剤は放射性物質の放射能が抑制できるような容器に収容保存する。容器の材質としてはコンクリート製、鉛製など、放射線を外界に放出する度合いを顕著に抑制できる材質であればよく、コンクリートが好適に用いられる。ここで容器は放射線を吸着した吸着剤の放射線量が大きいときには最終処分場の保管容器となるが、吸着剤の放射線量が少ないときには放射性物質を吸着した吸着剤を収容するまで容器の形態であればよく、収容後は口をコンクリートなどの封止材で封止し、別な用途、例えば、コンクリートであれば、コンクリートが本来用いられる用途、例えば、土木建築材として用いられる。放射性物質を吸着した吸着剤を容器に収容させるのには、生コンの原料の水とともに吸着剤を混ぜる方法が好適に用いられる。   The adsorbent that adsorbs the radioactive substance is stored and stored in a container that can suppress the radioactivity of the radioactive substance. The material of the container may be any material that can significantly suppress the degree of radiation emission to the outside, such as concrete and lead, and concrete is preferably used. Here, the container becomes a storage container at the final disposal site when the radiation dose of the adsorbent adsorbing radiation is large, but if the radiation dose of the adsorbent is small, the container may be in the form of a container until the adsorbent that adsorbs the radioactive substance is accommodated. What is necessary is just to seal a mouth with sealing materials, such as concrete, after accommodation, and if it is another use, for example, concrete, it is used as a use in which concrete is originally used, for example, a civil engineering building material. In order to store the adsorbent adsorbing the radioactive substance in the container, a method of mixing the adsorbent together with the raw material water of the raw kon is suitably used.

(実施例1)
下水汚泥としては、福島市堀河町終末処理場から採取した、放射性セシウムの放射能が3110Bqである下水汚泥31.1g(1kg当たり10万Bq相当;75%が水分であり、固形分は6g)を用いた。これを水93.1gと混ぜて、オートクレーブに入れ、水熱処理した。オートクレーブは500ccの高圧マイクロリアクター(オーエムラボテック(株)製)を用いた。水熱処理は常温から260℃までの昇温時間を60分、260℃で4MPaとし、その保持時間を30分、260℃から常温までの放冷時間90分である。水熱処理後、ナイロン製メッシュ(150メッシュ)で濾別した。濾液は94.2gで1680Bq(1kg当たり1800Bq相当)であり、残渣は16.3gで1077Bq(1kg当たり66000Bq相当)であった。
後述する通り、濾液は約100%除染されるので、除染率は(当初のベクレル数−処理後の残渣中のベクレル数)/当初のベクレル数と定義した場合、この段階での除染率は66%である。
Example 1
As sewage sludge, 31.1g of sewage sludge collected from Horikawa-cho terminal treatment plant in Fukushima City and having a radioactive cesium activity of 3110Bq (equivalent to 100,000 Bq per kg; 75% is moisture and solid content is 6g) Was used. This was mixed with 93.1 g of water, placed in an autoclave, and hydrothermally treated. As the autoclave, a 500 cc high pressure microreactor (manufactured by OM Lab Tech Co., Ltd.) was used. In the hydrothermal treatment, the temperature rising time from room temperature to 260 ° C. is 60 minutes, 260 ° C. is 4 MPa, the holding time is 30 minutes, and the cooling time from 260 ° C. to room temperature is 90 minutes. After hydrothermal treatment, it was filtered off with a nylon mesh (150 mesh). The filtrate was 94.2 g and 1680 Bq (equivalent to 1800 Bq per kg), and the residue was 16.3 g and 1077 Bq (equivalent to 66000 Bq per kg).
As described later, since the filtrate is decontaminated by about 100%, the decontamination rate is defined as (initial number of becquerels−number of becquerels in the residue after treatment) / initial number of becquerels. The rate is 66%.

次いで、残渣を水洗いした。水洗いは、残渣16.3gに30倍の水438gを加えて攪拌洗浄することでなされた。次いで、前述と同様、ナイロン製メッシュで濾別した。濾液は443gで600Bq(1kg当たり1350Bq相当)、残渣は7.5gで357Bq(1kg当たり47600Bq相当)であった。この段階での除染率は89%である。
次いで上記二つの濾液を合わせ、フェロシアン化鉄を濾液に対し1%、凝集剤「イオンリアクションP」(再生舎製市販品)0.8%を加えて攪拌させた後、上述と同様、ナイロン製メッシュで濾別した。濾液は490gで50Bq(1kg当たり102Bq相当)、残渣は45gで1953Bq(1kg当たり43400Bq相当)であった。この濾液中の除染率は98%であり、最終的に濾液中の放射能は100Bq/kg程度にまで低減された。
The residue was then washed with water. Washing with water was performed by adding 438 g of 30-fold water to 16.3 g of the residue and stirring and washing. Subsequently, it was filtered through a nylon mesh as described above. The filtrate was 443 g and 600 Bq (corresponding to 1350 Bq per kg), and the residue was 7.5 g and 357 Bq (corresponding to 47600 Bq per kg). The decontamination rate at this stage is 89%.
Next, the above two filtrates were combined, and 1% ferrous ferrocyanide and 0.8% flocculant “Ion Reaction P” (commercially available from Regeneration Building) were added and stirred. It was filtered off with a mesh. The filtrate was 490 g and 50 Bq (corresponding to 102 Bq per kg), and the residue was 45 g and 1953 Bq (corresponding to 43400 Bq per kg). The decontamination rate in this filtrate was 98%, and the radioactivity in the filtrate was finally reduced to about 100 Bq / kg.

また、当初の下水汚泥31.1g中、75%が水分であり、固形分は約6gであるが、その殆どは微生物である。これに対し、最終残渣45g中、95%以上が水分であり、固形分は2gであった。微生物は水熱処理で細胞膜が破壊されるので、この殆どは粘土と推定される。
これより下水汚泥31.1gは、本発明の処理により、水分も除去されれば、2gの固形分に集約されることが分かり、それとともに放射性物質も集約されることが分かった。
Further, in 31.1 g of the initial sewage sludge, 75% is water and the solid content is about 6 g, but most of them are microorganisms. On the other hand, in 45 g of the final residue, 95% or more was moisture, and the solid content was 2 g. Most of the microorganisms are presumed to be clay because the cell membrane is destroyed by hydrothermal treatment.
From this, it was found that 31.1 g of sewage sludge is aggregated to 2 g of solids if moisture is also removed by the treatment of the present invention, and radioactive substances are also aggregated together with it.

本発明は放射性物質で汚染された下水汚泥の処理が可能である。   The present invention can treat sewage sludge contaminated with radioactive substances.

Claims (1)

放射性物質を含む下水汚泥を爆砕処理、水熱処理、または、水熱処理及び爆砕処理する工程を経た後、少なくとも液分中の放射性物質を吸着剤により吸着させる工程からなることを特徴とする、放射性物質を含む下水汚泥中の放射性物質を集約する方法。   A radioactive material comprising a step of adsorbing at least a radioactive substance in a liquid with an adsorbent after undergoing a step of blasting treatment, hydrothermal treatment, or hydrothermal treatment and explosion treatment of sewage sludge containing the radioactive material Of radioactive material in sewage sludge containing sewage.
JP2011180990A 2011-08-05 2011-08-22 Method for consolidating radioactive materials in sewage sludge containing radioactive materials Expired - Fee Related JP4994509B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011180990A JP4994509B1 (en) 2011-08-22 2011-08-22 Method for consolidating radioactive materials in sewage sludge containing radioactive materials
EP12822415.1A EP2747089B1 (en) 2011-08-05 2012-08-03 Processing method and apparatus for decreasing radioactive substance absorbed in material to safe level for living environment
PCT/JP2012/069901 WO2013021954A1 (en) 2011-08-05 2012-08-03 Processing method and apparatus for decreasing radioactive substance absorbed in material to safe level for living environment
US14/236,884 US9395003B2 (en) 2011-08-05 2012-08-03 Process and device for reducing radioactive material of object containing radioactive material to safe level in living environment
CN201280038364.8A CN103733269B (en) 2011-08-05 2012-08-03 By absorbed inside the radioactive substance in the material of radioactive substance be reduced to processing method and the treating apparatus of the level of security of living environment
RU2014108422/07A RU2595260C2 (en) 2011-08-05 2012-08-03 Method for reducing content of radioactive material in object containing radioactive material, to environmentally safe level and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180990A JP4994509B1 (en) 2011-08-22 2011-08-22 Method for consolidating radioactive materials in sewage sludge containing radioactive materials

Publications (2)

Publication Number Publication Date
JP4994509B1 JP4994509B1 (en) 2012-08-08
JP2013044575A true JP2013044575A (en) 2013-03-04

Family

ID=46793877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180990A Expired - Fee Related JP4994509B1 (en) 2011-08-05 2011-08-22 Method for consolidating radioactive materials in sewage sludge containing radioactive materials

Country Status (1)

Country Link
JP (1) JP4994509B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016336A (en) * 2012-06-14 2014-01-30 Kasai:Kk Extracting unit and extracting method of radioactive substance in fly ash
JP2014032127A (en) * 2012-08-03 2014-02-20 So Innovation Co Ltd Treatment method and treatment apparatus for reducing radioactive materials taken into contaminant to safety level in living environment
JP2014228288A (en) * 2013-05-20 2014-12-08 公益財団法人 原子力安全技術センター Decontamination method for contaminated solid and decontamination apparatus for contaminated solid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103299A (en) * 2001-07-26 2003-04-08 Mitsubishi Heavy Ind Ltd Treatment method of high concentration sludge and its apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014016336A (en) * 2012-06-14 2014-01-30 Kasai:Kk Extracting unit and extracting method of radioactive substance in fly ash
JP2014032127A (en) * 2012-08-03 2014-02-20 So Innovation Co Ltd Treatment method and treatment apparatus for reducing radioactive materials taken into contaminant to safety level in living environment
JP2014228288A (en) * 2013-05-20 2014-12-08 公益財団法人 原子力安全技術センター Decontamination method for contaminated solid and decontamination apparatus for contaminated solid

Also Published As

Publication number Publication date
JP4994509B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
RU2595260C2 (en) Method for reducing content of radioactive material in object containing radioactive material, to environmentally safe level and device therefor
Adeola et al. Advances in the management of radioactive wastes and radionuclide contamination in environmental compartments: a review
JP2017511467A (en) Liquid radioactive waste disposal and reuse methods
JP5032713B1 (en) Method for treating soil containing radioactive material
JP4994509B1 (en) Method for consolidating radioactive materials in sewage sludge containing radioactive materials
JP5018989B1 (en) Method to reduce radioactive material to safe level in living environment
JP5684102B2 (en) Method and apparatus for treating radioactive cesium-containing material
JP2012247407A (en) Precipitation removal technology of radioactivity from high-level radiation-contaminated water and purification technology of water
JP6190996B2 (en) A treatment method that reduces the radioactive material in the treated material, including soil containing clay and silt, to which radioactive material has been incorporated, to a safe level in the living environment
CN114746956A (en) Method for treating tritium-containing radioactive waste liquid
JP6180838B2 (en) Soil decontamination method and apparatus
Oszczak et al. Sorption of Sr-85 and Am-241 from liquid radioactive wastes by alginate beads
CN104900285A (en) A treatment method for radionuclide-containing pollutants
JP2013170967A (en) Radioactive substance decontamination method, radioactive substance adsorbent and radioactive substance decontamination apparatus
RU2465665C1 (en) Method of processing spent ion-exchange resins
JP5713245B2 (en) Method for treating incinerated ash containing radioactive materials
JP2014032127A (en) Treatment method and treatment apparatus for reducing radioactive materials taken into contaminant to safety level in living environment
JP2013181883A (en) Method of reducing radioactive material to safety level in living environment
JP2014235011A (en) Device and method for decontaminating soil
KR101618346B1 (en) Manufacturing method of soil fixation agents with adhesion of radionuclide
KR101458008B1 (en) Purification method for removal of uranium from liquid waste using brown algae biosorbents
EP3951800B1 (en) Method for decontaminating tritium-radiation-polluted water
CN108986947B (en) Combined type uranium-containing low-level wastewater purification treatment system and treatment method
RU2189650C2 (en) Liquid radioactive waste decontamination process
RU2345430C1 (en) Liquid radioactive waste treatment process

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees