JP2014225479A - Flat plate type fuel battery - Google Patents

Flat plate type fuel battery Download PDF

Info

Publication number
JP2014225479A
JP2014225479A JP2014181952A JP2014181952A JP2014225479A JP 2014225479 A JP2014225479 A JP 2014225479A JP 2014181952 A JP2014181952 A JP 2014181952A JP 2014181952 A JP2014181952 A JP 2014181952A JP 2014225479 A JP2014225479 A JP 2014225479A
Authority
JP
Japan
Prior art keywords
fuel
flow path
flat plate
cell
fuel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014181952A
Other languages
Japanese (ja)
Other versions
JP5775204B2 (en
Inventor
琴絵 水木
Kotoe Mizuki
琴絵 水木
克也 林
Katsuya Hayashi
克也 林
敏 杉田
Satoshi Sugita
敏 杉田
吉晃 吉田
Yoshiaki Yoshida
吉晃 吉田
真悟 峯田
Shingo Mineta
真悟 峯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2014181952A priority Critical patent/JP5775204B2/en
Publication of JP2014225479A publication Critical patent/JP2014225479A/en
Application granted granted Critical
Publication of JP5775204B2 publication Critical patent/JP5775204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To equalize a fuel gas flow in a plane of a fuel electrode.SOLUTION: A flat plate type fuel battery comprises: a flat type fuel battery cell; and a flat plate type fuel electrode-side interconnector laminated on a plane on a fuel electrode side of the cell. The fuel electrode-side interconnector comprises: a fuel supply hole 9 formed in a central portion; a fuel recovery hole 10 formed in two outer circumferential places at positions 180° apart from each other; and a flow channel adjustment convex portion 14 shaped like a circular arc in a plan view and formed adjoining the fuel recovery hole 10 on a plane facing a fuel electrode of the cell at a position closer to the central portion than the fuel recovery hole 10. The length of the arc of the flow channel adjustment convex portion 14 is set in such a way that a flow channel length from the fuel supply hole 9 to the fuel recovery hole 10 for fuel gas flowing out in a direction toward the fuel recovery hole 10 and a flow channel length to the fuel recovery hole 10 for the fuel gas flowing out in a direction orthogonal to this flow-out direction of the fuel gas are substantially the same.

Description

本発明は、平板型燃料電池に係り、特に燃料電池セルの燃料極に燃料ガスを供給する燃料極側インターコネクタの構造に関するものである。   The present invention relates to a flat plate fuel cell, and more particularly to a structure of a fuel electrode side interconnector for supplying fuel gas to a fuel electrode of a fuel cell.

円形平板型燃料電池では、電極の中心に燃料を供給することで電極内の横流れの電気抵抗や、物質輸送損失を低減し、発電性能を向上できる。これまでに、発明者らは、電極の中心に燃料を供給し、燃料電池セルの外縁部2か所に燃料の回収穴を設けることで、セルの高い発電性能を担保するスタックの構成方法を考案してきた(特許文献1、非特許文献1参照)。   In a circular flat plate type fuel cell, by supplying fuel to the center of the electrode, it is possible to reduce the electrical resistance of the transverse flow in the electrode and the mass transport loss, and to improve the power generation performance. In the past, the inventors have supplied a fuel to the center of the electrode and provided a fuel recovery hole at two locations on the outer edge of the fuel cell, thereby providing a stack configuration method that ensures high power generation performance of the cell. Have been devised (see Patent Document 1 and Non-Patent Document 1).

特開2008−117736号公報JP 2008-117736 A

M.Yokoo,K.Mizuki,K.Watanabe,K.Hayashi,“Development of a high power density 2.5kW class solid oxide fuel cell stack”,Journal of Power Sources 196,2011,p.7937-7944M.Yokoo, K.Mizuki, K.Watanabe, K.Hayashi, “Development of a high power density 2.5kW class solid oxide fuel cell stack”, Journal of Power Sources 196, 2011, p.7937-7944

従来の円形平板型燃料電池では、ガス供給穴から供給された燃料ガスは、燃料極全体に分散した後にガス回収穴に流入するが、ガス供給穴からガス回収穴への方向に流出した燃料ガスと、この方向と直交する方向に流出した燃料ガスとでは、燃料極上での燃料流路長が大きく異なることになるので、燃料流路長が長い方向には燃料ガスが十分に供給されず、燃料極の面内での燃料ガスの流れが不均一になるという問題点があった。   In the conventional circular flat plate fuel cell, the fuel gas supplied from the gas supply hole flows into the gas recovery hole after being dispersed throughout the fuel electrode, but the fuel gas that has flowed out in the direction from the gas supply hole to the gas recovery hole And the fuel gas flowing out in the direction orthogonal to this direction, the fuel flow path length on the fuel electrode is greatly different, so the fuel gas is not sufficiently supplied in the direction where the fuel flow path length is long, There has been a problem that the flow of the fuel gas in the plane of the fuel electrode becomes uneven.

本発明は、上記課題を解決するためになされたもので、燃料極の面内での燃料ガスの流れを均一にすることができる平板型燃料電池を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a flat plate fuel cell that can make the flow of fuel gas uniform in the plane of the fuel electrode.

本発明の平板型燃料電池は、平板型の燃料電池セルと、このセルの燃料極側の面に積層される平板型の燃料極側インターコネクタとを備え、前記燃料極側インターコネクタは、この燃料極側インターコネクタを貫通するように中心部に形成された燃料供給穴と、前記燃料極側インターコネクタを貫通するように外周部に2箇所、互いに180°離れた位置に形成された平面視円弧状の2つの燃料回収穴と、前記セルの燃料極と対向する面上に前記燃料回収穴1つ当たり1箇所ずつ燃料回収穴に隣接するように設けられ、隣接する燃料回収穴よりも中心部寄りの位置に形成された平面視円弧状の2つの第1の流路調整用凸部とを有し、2つの前記第1の流路調整用凸部と前記燃料極側インターコネクタの中心とが成す2つの扇形の各々は、前記燃料極側インターコネクタの中心と2つの前記燃料回収穴の中点とを通る線分によって2等分され、2等分された後の4つの扇形の各々の中心角は35〜45°であり、2つの前記第1の流路調整用凸部の弧の長さは、前記燃料供給穴から前記燃料回収穴の方向に流出した燃料ガスの燃料回収穴までの流路長と、この燃料ガスの流出の方向と直交する方向に流出した燃料ガスの燃料回収穴までの流路長とが略同一になるように設定されることを特徴とするものである。   The flat plate type fuel cell of the present invention comprises a flat plate type fuel cell and a flat plate type fuel electrode side interconnector stacked on the fuel electrode side surface of the cell, and the fuel electrode side interconnector includes A fuel supply hole formed in the center so as to pass through the fuel electrode side interconnector, and two locations on the outer periphery so as to pass through the fuel electrode side interconnector formed in a position 180 ° apart from each other. Two arc-shaped fuel recovery holes and one per fuel recovery hole are provided adjacent to the fuel recovery hole on the surface facing the fuel electrode of the cell, and are more central than the adjacent fuel recovery holes Two first flow path adjustment convex portions having a circular arc shape in plan view formed at a position near the portion, and the centers of the two first flow path adjustment convex portions and the fuel electrode side interconnector Each of the two fan shapes The center angle of each of the four sectors after being bisected by a line segment passing through the center of the electrode side interconnector and the midpoint of the two fuel recovery holes is 35 to 45 °. The lengths of the arcs of the two first flow path adjustment projections are the length of the flow path from the fuel supply hole to the fuel recovery hole of the fuel gas flowing in the direction of the fuel recovery hole, and the fuel gas. The flow path length of the fuel gas that has flowed out in the direction orthogonal to the flow direction of the fuel to the fuel recovery hole is set to be substantially the same.

また、本発明の平板型燃料電池の1構成例において、前記燃料極側インターコネクタは、さらに、前記セルの燃料極と対向する面上の2つの前記第1の流路調整用凸部よりも中心部寄りの位置で、且つ前記燃料極側インターコネクタの中心から2つの前記第1の流路調整用凸部を構成する2つの円弧の両端の各々に向かう方向の位置に1箇所ずつ形成された平面視円弧状の4つの第2の流路調整用凸部を有することを特徴とするものである。
また、本発明の平板型燃料電池の1構成例において、前記燃料極側インターコネクタは、さらに、前記セルの燃料極と対向する面上の2つの前記第1の流路調整用凸部と同じ円周上の位置に、2つの前記第1の流路調整用凸部と間を空けて形成された応力調整用凸部を有することを特徴とするものである。
また、本発明の平板型燃料電池の1構成例において、2つの前記燃料回収穴の各々は、前記セルの外周部よりも外側の位置に形成されることを特徴とするものである。
また、本発明の平板型燃料電池の1構成例において、2つの前記第1の流路調整用凸部の高さは、前記燃料極と接触する高さに設定されていることを特徴とするものである。
Moreover, in one structural example of the flat plate type fuel cell of the present invention, the fuel electrode side interconnector further includes two first flow path adjusting convex portions on a surface facing the fuel electrode of the cell. One point is formed at a position near the center and in a direction from the center of the fuel electrode side interconnector toward both ends of the two arcs constituting the two first flow path adjustment convex portions. It has four second flow path adjustment convex portions having a circular arc shape in plan view.
Moreover, in one configuration example of the flat plate fuel cell of the present invention, the fuel electrode side interconnector is further the same as the two first flow path adjusting convex portions on the surface facing the fuel electrode of the cell. It is characterized by having a stress adjusting convex part formed at a position on the circumference with a space between the two first flow path adjusting convex parts.
Further, in one configuration example of the flat plate fuel cell of the present invention, each of the two fuel recovery holes is formed at a position outside the outer peripheral portion of the cell.
Further, in one configuration example of the flat plate fuel cell of the present invention, the heights of the two first flow path adjusting convex portions are set to a height that makes contact with the fuel electrode. Is.

本発明によれば、燃料電池セルの燃料極と対向する燃料極側インターコネクタの面上に燃料回収穴に隣接して平面視円弧状の第1の流路調整用凸部を設けることにより、燃料供給穴から燃料回収穴の方向に流出した燃料ガスの燃料回収穴までの流路長と、この燃料ガスの流出の方向と直交する方向に流出した燃料ガスの燃料回収穴までの流路長とを略同一にすることができ、燃料極の面内での燃料ガスの流れを全方向でほぼ均一にすることができる。   According to the present invention, by providing the first flow path adjustment convex portion having an arc shape in plan view adjacent to the fuel recovery hole on the surface of the fuel electrode side interconnector facing the fuel electrode of the fuel cell, The length of the flow path from the fuel supply hole to the fuel recovery hole of the fuel gas flowing out in the direction of the fuel recovery hole, and the length of the flow path from the fuel supply hole to the fuel recovery hole of the fuel gas flowing out in the direction perpendicular to the direction of the fuel gas outflow Can be made substantially the same, and the flow of the fuel gas in the plane of the fuel electrode can be made substantially uniform in all directions.

また、本発明では、燃料電池セルの燃料極と対向する燃料極側インターコネクタの面上の第1の流路調整用凸部よりも中心部寄りの位置で、且つ燃料極側インターコネクタの中心から第1の流路調整用凸部の終端に向かう方向の位置に平面視円弧状の第2の流路調整用凸部を設けることにより、燃料極の面内での燃料ガスの流れの均一性を更に向上させることができる。   In the present invention, the fuel electrode side interconnector is positioned closer to the center than the first flow path adjustment convex portion on the surface of the fuel electrode side interconnector facing the fuel electrode of the fuel cell, and the center of the fuel electrode side interconnector. By providing the second flow path adjustment convex portion having a circular arc shape in plan view at a position in the direction from the first to the end of the first flow path adjustment convex portion, the flow of the fuel gas in the plane of the fuel electrode is uniform. The property can be further improved.

また、本発明では、燃料電池セルの燃料極と対向する燃料極側インターコネクタの面上の第1の流路調整用凸部と同じ円周上の位置に応力調整用凸部を設けることにより、燃料電池セルの外周部における応力集中を緩和することができ、燃料電池セルの破損を防止することができる。   In the present invention, the stress adjustment convex portion is provided at the same circumferential position as the first flow path adjustment convex portion on the surface of the fuel electrode side interconnector facing the fuel electrode of the fuel cell. The stress concentration in the outer peripheral portion of the fuel cell can be alleviated and the fuel cell can be prevented from being damaged.

また、本発明では、燃料回収穴を、燃料電池セルの外周部よりも外側の位置に設けることにより、燃料回収穴と第1の流路調整用凸部との間に隙間を設けることができ、燃料極側インターコネクタの凹凸の加工方法としてエッチング加工だけでなく、スタンプ加工も選択することができる。   Further, in the present invention, by providing the fuel recovery hole at a position outside the outer peripheral portion of the fuel cell, a gap can be provided between the fuel recovery hole and the first flow path adjustment convex portion. Further, not only etching processing but also stamp processing can be selected as a method for processing the unevenness of the fuel electrode side interconnector.

本発明の第1の実施の形態に係る平板型燃料電池スタックの構成を示す分解斜視図である。1 is an exploded perspective view showing a configuration of a flat plate fuel cell stack according to a first embodiment of the present invention. 本発明の第1の実施の形態に係るインターコネクタのアノード集電部の構造を示す平面図である。It is a top view which shows the structure of the anode current collection part of the interconnector which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るインターコネクタの断面図である。It is sectional drawing of the interconnector which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るインターコネクタのアノード集電部の構造を示す平面図である。It is a top view which shows the structure of the anode current collection part of the interconnector which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係るインターコネクタのアノード集電部の構造を示す平面図である。It is a top view which shows the structure of the anode current collection part of the interconnector which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施の形態に係るインターコネクタのアノード集電部の構造を示す平面図である。It is a top view which shows the structure of the anode current collection part of the interconnector which concerns on the 4th Embodiment of this invention. 本発明の第4の実施の形態に係るインターコネクタの断面図である。It is sectional drawing of the interconnector which concerns on the 4th Embodiment of this invention.

[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態に係る平板型燃料電池スタックの構成を示す分解斜視図である。本実施の形態の平板型燃料電池スタック1は、平面視円形の平板型の燃料電池セル2と、燃料電池セル2を収容する収容部材とを備え、これらを1組として複数組重ねて設けた構造を有する。燃料電池セル2は、空気極と燃料極とで電解質の層を挟んだ構造を有する。
[First Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing the configuration of a flat plate fuel cell stack according to the first embodiment of the present invention. The flat plate type fuel cell stack 1 according to the present embodiment includes a flat plate type fuel cell 2 having a circular shape in plan view, and a housing member that houses the fuel cell 2, and a plurality of these are provided as a set. It has a structure. The fuel battery cell 2 has a structure in which an electrolyte layer is sandwiched between an air electrode and a fuel electrode.

燃料電池セル2は、空気極側の収容部材と燃料極側の収容部材とによって挟まれるようにして収容部材の中に収容される。なお、これら収容部材の少なくとも一部は、各燃料電池セル2の燃料極側に供給される燃料と空気極側に供給される空気とが混合しない状態で各燃料電池セル2を電気的に接続するインターコネクタとしての機能を有する。   The fuel cell 2 is housed in the housing member so as to be sandwiched between the housing member on the air electrode side and the housing member on the fuel electrode side. At least a part of these housing members are electrically connected to each fuel cell 2 in a state where the fuel supplied to the fuel electrode side of each fuel cell 2 and the air supplied to the air electrode are not mixed. Functions as an interconnector.

図1に示すように、燃料極側の収容部材は、金属からなる平面視矩形の平板型のセル収納板3と、燃料電池セル2の燃料極に燃料ガスを供給する燃料供給穴9と燃料ガスを回収する燃料回収穴10とが形成された、金属からなる平面視矩形の平板型のインターコネクタ4と、燃料極に燃料ガスを供給する燃料供給流路と燃料ガスを回収する燃料回収流路とが形成された、金属からなる平面視矩形の平板型の燃料供給・回収流路板5とから構成される。これらの板は、燃料供給・回収流路板5、インターコネクタ4、セル収納板3の順に積層される。   As shown in FIG. 1, the housing member on the fuel electrode side includes a flat plate-shaped cell housing plate 3 made of metal and having a rectangular shape in plan view, a fuel supply hole 9 for supplying fuel gas to the fuel electrode of the fuel cell 2, and a fuel A flat plate interconnector 4 having a rectangular shape in plan view, formed with a fuel recovery hole 10 for recovering gas, a fuel supply flow path for supplying fuel gas to the fuel electrode, and a fuel recovery flow for recovering fuel gas A flat plate-shaped fuel supply / recovery flow path plate 5 made of metal and having a rectangular shape in plan view is formed. These plates are laminated in the order of the fuel supply / recovery flow path plate 5, the interconnector 4, and the cell storage plate 3.

セル収納板3とインターコネクタ4と燃料供給・回収流路板5の各々の四隅には、電極(燃料極と空気極)にガスを供給したりガスを回収したりするためのマニホルドを構成する貫通穴6a,6b,6c,6dが形成されている。セル収納板3には、その中央部にセル収納用の例えば平面視円形の貫通穴7が形成されている。セル収納板3の厚さは、燃料電池セル2の厚さと同じか、燃料電池セル2よりも僅かに厚い程度に設定されている。インターコネクタ4の上に燃料電池セル2を直接搭載する場合には、セル収納板3の厚さは燃料電池セル2と同じ厚さでよい。貫通穴7の径は、燃料電池セル2の外径よりも少し大きい寸法に設定されており、この貫通穴7の中に燃料電池セル2が配置される。   At the four corners of each of the cell storage plate 3, the interconnector 4, and the fuel supply / recovery flow path plate 5, manifolds for supplying gas to the electrodes (fuel electrode and air electrode) and collecting the gas are configured. Through holes 6a, 6b, 6c, 6d are formed. The cell storage plate 3 is formed with a through-hole 7 having a circular shape in plan view, for example, for cell storage at the center thereof. The thickness of the cell storage plate 3 is set to be the same as the thickness of the fuel cell 2 or slightly thicker than the fuel cell 2. When the fuel cell 2 is directly mounted on the interconnector 4, the thickness of the cell storage plate 3 may be the same as that of the fuel cell 2. The diameter of the through hole 7 is set to be slightly larger than the outer diameter of the fuel battery cell 2, and the fuel battery cell 2 is disposed in the through hole 7.

インターコネクタ4には、中心部の位置に燃料供給穴9が形成され、スタックの積層時に貫通穴7と連通する位置に燃料回収穴10が形成されている。燃料供給・回収流路板5には、燃料供給用のマニホルドを構成する貫通穴6bと連通する位置から燃料供給穴9と連通する中心部の位置まで、燃料供給・回収流路板5を貫通する燃料供給流路11が形成され、さらに燃料回収用のマニホルドを構成する貫通穴6a,6cと連通する位置から燃料回収穴10と連通する位置まで、燃料供給・回収流路板5を貫通する燃料回収流路12が形成されている。   In the interconnector 4, a fuel supply hole 9 is formed at a central position, and a fuel recovery hole 10 is formed at a position communicating with the through hole 7 when the stack is stacked. The fuel supply / recovery flow path plate 5 passes through the fuel supply / recovery flow path plate 5 from a position communicating with the through hole 6b constituting the fuel supply manifold to a central position communicating with the fuel supply hole 9. The fuel supply flow path 11 is formed, and further penetrates the fuel supply / recovery flow path plate 5 from a position communicating with the through holes 6a and 6c constituting the fuel recovery manifold to a position communicating with the fuel recovery hole 10. A fuel recovery passage 12 is formed.

平板型燃料電池では、燃料電池セル2の燃料極と接するインターコネクタ4の部分(図1のアノード集電部8)に凹凸を施し、燃料供給・回収と集電とを最適化させる構造とするのが一般的である。本実施の形態では、インターコネクタ4のアノード集電部8の凹凸の形状を工夫することによって、燃料の流速分布の不均一性を緩和する。   In the flat type fuel cell, the portion of the interconnector 4 (anode current collector 8 in FIG. 1) that contacts the fuel electrode of the fuel cell 2 is uneven so that the fuel supply / recovery and current collection are optimized. It is common. In the present embodiment, the unevenness of the flow velocity distribution of the fuel is alleviated by devising the uneven shape of the anode current collector 8 of the interconnector 4.

以下、このアノード集電部8の構造をより詳細に説明する。図2はアノード集電部8の構造を示す平面図である。上記のとおり、インターコネクタ4には、燃料供給穴9と燃料回収穴10とが形成されると共に、燃料極と対向する面に例えば円柱状の集電用凸部13が形成されている。このように、インターコネクタ4のアノード集電部8には多数の集電用凸部13が形成されており、この集電用凸部13が燃料電池セル2の燃料極と接触して電気的接続を得るようになっている。   Hereinafter, the structure of the anode current collector 8 will be described in more detail. FIG. 2 is a plan view showing the structure of the anode current collector 8. As described above, the interconnector 4 is formed with the fuel supply hole 9 and the fuel recovery hole 10, and is formed with, for example, a columnar current collecting convex portion 13 on the surface facing the fuel electrode. As described above, a large number of current collecting convex portions 13 are formed in the anode current collecting portion 8 of the interconnector 4, and the current collecting convex portions 13 come into contact with the fuel electrode of the fuel cell 2 and are electrically connected. Get to get connected.

さらに、アノード集電部8には、燃料極と対向する面に平面視円弧状の流路調整用凸部14が2箇所形成されている。平面視円弧状の燃料回収穴10は、平面視円形のアノード集電部8の端部の位置に2箇所、互いに180°離れるようにして形成されている。この燃料回収穴10の弧の長さは8〜14mm程度である。流路調整用凸部14は、燃料回収穴10よりも中心部寄りの位置に、燃料回収穴10毎に1箇所ずつ設けられている。燃料回収穴10および流路調整用凸部14が形作る円弧の中心は、インターコネクタ4の中心と一致する。   Further, the anode current collector 8 is provided with two flow path adjusting convex portions 14 having a circular arc shape in plan view on the surface facing the fuel electrode. The fuel recovery hole 10 having a circular arc shape in plan view is formed at two positions at the end of the anode current collector 8 having a circular shape in plan view so as to be separated from each other by 180 °. The length of the arc of the fuel recovery hole 10 is about 8 to 14 mm. The flow path adjusting convex portion 14 is provided at one location for each fuel recovery hole 10 at a position closer to the center than the fuel recovery hole 10. The center of the arc formed by the fuel recovery hole 10 and the flow path adjusting projection 14 coincides with the center of the interconnector 4.

流路調整用凸部14の中点は、インターコネクタ4の中心と燃料回収穴10の中点とを結ぶ線上に位置する。すなわち、流路調整用凸部14とインターコネクタ4の中心とが成す扇形は、インターコネクタ4の中心と2箇所の燃料回収穴10の中点とを通る線分L1によって2等分される。2等分される扇形のうち左側半分の扇形の中心角は35〜45°、右側半分の扇形の中心角も35〜45°である。図2の例では、左側半分の扇形の中心角と右側半分の扇形の中心角を共に39°としている。流路調整用凸部14の幅は例えば2mmである。流路調整用凸部14の高さは、集電用凸部13と同様に、燃料電池セル2の燃料極と接触する高さに設定されている。   The midpoint of the flow path adjusting convex portion 14 is located on a line connecting the center of the interconnector 4 and the midpoint of the fuel recovery hole 10. That is, the sector formed by the flow path adjusting convex portion 14 and the center of the interconnector 4 is divided into two equal parts by a line segment L1 passing through the center of the interconnector 4 and the midpoints of the two fuel recovery holes 10. The central angle of the left half of the sector divided into two halves is 35 to 45 °, and the central angle of the right half of the sector is 35 to 45 °. In the example of FIG. 2, the central angle of the left half sector and the central angle of the right half sector are both 39 °. The width of the flow path adjusting convex portion 14 is, for example, 2 mm. The height of the flow path adjusting convex portion 14 is set to a height that contacts the fuel electrode of the fuel cell 2, as with the current collecting convex portion 13.

1枚のセルを用いた平板型燃料電池の組み立て手順を簡単に説明すると、燃料供給・回収流路板5、インターコネクタ4、セル収納板3の順に積層した後に、セル収納板3の貫通穴7の中に、燃料極が下になるようにして燃料電池セル2を収納し、この燃料電池セル2の上に空気極側の収容部材15を積層すればよい。このとき、燃料電池セル2は、その中心がインターコネクタ4の中心と一致するようにインターコネクタ4上に搭載される。   The assembly procedure of the flat plate fuel cell using one cell will be briefly described. After the fuel supply / recovery flow path plate 5, the interconnector 4, and the cell storage plate 3 are stacked in this order, the through hole of the cell storage plate 3 is stacked. 7, the fuel cell 2 is accommodated with the fuel electrode facing downward, and the air electrode side accommodating member 15 is laminated on the fuel cell 2. At this time, the fuel cell 2 is mounted on the interconnector 4 so that the center thereof coincides with the center of the interconnector 4.

これらの板の積層によって各板に形成された貫通穴6a,6b,6c,6dが連結され、収容部材の四隅にマニホルドが形成されることになる。こうして、平板型燃料電池の単スタックの組み立てが完了する。高い発電出力を得るためには、単スタックを例えば10ユニットから40ユニット積層すればよい。この場合、燃料供給流路11および燃料回収流路12は、インターコネクタ4と他の単スタックの空気極側の収容部材15とによって挟まれることになる。   Through holes 6a, 6b, 6c, and 6d formed in each plate are connected by stacking these plates, and manifolds are formed at the four corners of the housing member. Thus, the assembly of a single stack of flat plate fuel cells is completed. In order to obtain a high power generation output, a single stack may be stacked, for example, 10 to 40 units. In this case, the fuel supply channel 11 and the fuel recovery channel 12 are sandwiched between the interconnector 4 and the other single stack air electrode side accommodating member 15.

なお、空気極側の収容部材15には、その四隅に貫通穴6a,6b,6c,6dが形成されると共に、燃料電池セル2の空気極に空気を供給する空気供給流路等が形成される。この空気極側の収容部材15の中には、燃料電池セル2の空気極側の面に積層される空気極側インターコネクタが含まれる。このような空気極側の収容部材15の構造は本発明の対象外であるので、この収容部材15の構造の詳細な説明は省略する。   The accommodation member 15 on the air electrode side is formed with through holes 6a, 6b, 6c, 6d at the four corners, and an air supply channel for supplying air to the air electrode of the fuel cell 2 and the like. The The air electrode side accommodating member 15 includes an air electrode side interconnector that is stacked on the air electrode side surface of the fuel cell 2. Since the structure of the housing member 15 on the air electrode side is out of the scope of the present invention, a detailed description of the structure of the housing member 15 is omitted.

平板型燃料電池スタックの組み立て後、800℃程度の高温下で金属板同士を拡散接合して気密性を確保する。なお、本実施の形態では、インターコネクタ4の上に燃料電池セル2を直接搭載しているが、これに限るものではなく、燃料電池セル2の燃料極とインターコネクタ4との間に、耐熱網や多孔質金属、波打ち板などの凹凸を有する導電性の板を挿入してもよい。   After assembling the flat plate fuel cell stack, the metal plates are diffusion-bonded at a high temperature of about 800 ° C. to ensure airtightness. In the present embodiment, the fuel cell 2 is directly mounted on the interconnector 4, but the present invention is not limited to this, and heat resistance is provided between the fuel electrode of the fuel cell 2 and the interconnector 4. You may insert the electroconductive board | plate which has unevenness | corrugations, such as a net | network, a porous metal, and a corrugated board.

次に、燃料ガスの流れについて簡単に説明する。燃料ガスは、燃料供給用のマニホルドを構成する貫通穴6bから燃料供給・回収流路板5の燃料供給流路11を通ってインターコネクタ4の燃料供給穴9に供給され、燃料供給穴9から燃料電池セル2の燃料極に供給される。そして、使用済みのガスは、インターコネクタ4の燃料回収穴10から燃料供給・回収流路板5の燃料回収流路12を通って燃料回収用のマニホルドを構成する貫通穴6a,6cに排出され、これらのマニホルドから外部に排出される。上記のとおり、貫通穴7の径は燃料電池セル2の外径よりも少し大きい寸法に設定されており、この貫通穴7の端部の位置、具体的には燃料電池セル2の外周部よりも僅かに外側の位置に燃料回収穴10が設けられている。一方、空気は、空気供給用のマニホルドを構成する貫通穴6dから空気極側の収容部材15内の空気供給流路(不図示)を通って燃料電池セル2の空気極に供給される。   Next, the flow of the fuel gas will be briefly described. The fuel gas is supplied to the fuel supply hole 9 of the interconnector 4 through the fuel supply passage 11 of the fuel supply / recovery flow passage plate 5 from the through hole 6b constituting the fuel supply manifold, and from the fuel supply hole 9 It is supplied to the fuel electrode of the fuel cell 2. The used gas is discharged from the fuel recovery hole 10 of the interconnector 4 through the fuel recovery flow path 12 of the fuel supply / recovery flow path plate 5 to the through holes 6a and 6c constituting the fuel recovery manifold. , Discharged from these manifolds to the outside. As described above, the diameter of the through hole 7 is set to be slightly larger than the outer diameter of the fuel cell 2, and the position of the end of the through hole 7, specifically, from the outer periphery of the fuel cell 2. A fuel recovery hole 10 is provided at a slightly outer position. On the other hand, air is supplied to the air electrode of the fuel cell 2 from the through hole 6d constituting the air supply manifold through the air supply channel (not shown) in the housing member 15 on the air electrode side.

ここで、本実施の形態では、インターコネクタ4のアノード集電部8の外周部に流路調整用凸部14を設けることにより、燃料供給穴9から燃料回収穴10の方向に流出した燃料ガスの燃料回収穴10までの流路長と、この流出方向と直交する方向に流出した燃料ガスの燃料回収穴10までの流路長とを略同一にすることができる。すなわち、図3に示すように燃料電池セル2の燃料極20と流路調整用凸部14とが接触しているため、燃料供給穴9から燃料回収穴10の方向に流出した燃料ガスは、燃料回収穴10に直接流入することはできない。この燃料ガスは、図2に示すインターコネクタ4のアノード集電部8の面内において、円弧状の流路調整用凸部14の内側の壁に沿って時計回りおよび反時計回りに進み、流路調整用凸部14の円周方向の終端を回り込んで、流路調整用凸部14の外側の壁に沿って進み、燃料供給穴9に流れる。燃料供給穴9から燃料回収穴10への方向と直交する方向に流出した燃料ガスは、アノード集電部8の外周部および流路調整用凸部14の外側の壁に沿って進み、燃料供給穴9に流れる。こうして、燃料供給穴9から燃料回収穴10の方向に流出した燃料ガスの燃料回収穴10までの流路長と、この流出方向と直交する方向に流出した燃料ガスの燃料回収穴10までの流路長とを略同一にすることができる。   Here, in the present embodiment, the fuel gas flowing out from the fuel supply hole 9 toward the fuel recovery hole 10 is provided by providing the flow path adjusting convex portion 14 on the outer peripheral portion of the anode current collector 8 of the interconnector 4. The flow path length to the fuel recovery hole 10 and the flow path length to the fuel recovery hole 10 for the fuel gas that has flowed out in a direction orthogonal to the outflow direction can be made substantially the same. That is, as shown in FIG. 3, since the fuel electrode 20 of the fuel cell 2 and the flow path adjustment convex portion 14 are in contact, the fuel gas flowing out from the fuel supply hole 9 toward the fuel recovery hole 10 is It cannot flow directly into the fuel recovery hole 10. The fuel gas advances clockwise and counterclockwise along the inner wall of the arc-shaped flow path adjusting convex portion 14 in the plane of the anode current collector 8 of the interconnector 4 shown in FIG. It goes around the circumferential end of the path adjustment convex portion 14, proceeds along the outer wall of the flow path adjustment convex portion 14, and flows into the fuel supply hole 9. The fuel gas that flows out in the direction perpendicular to the direction from the fuel supply hole 9 to the fuel recovery hole 10 proceeds along the outer peripheral portion of the anode current collector 8 and the outer wall of the flow path adjustment convex portion 14 to supply fuel. It flows into the hole 9. Thus, the flow path length of the fuel gas flowing out from the fuel supply hole 9 in the direction of the fuel recovery hole 10 to the fuel recovery hole 10 and the flow of the fuel gas flowing out in the direction orthogonal to the outflow direction to the fuel recovery hole 10 The road length can be made substantially the same.

流路長を略同一にすることにより、燃料供給穴9と燃料回収穴10との間での圧力損失が燃料ガスの流出方向に関わらずに同等となることで、燃料極の面内での燃料ガスの流れが全方向でほぼ均一になるようにすることができ、燃料極の全面に燃料ガスをより均等に供給することが可能となる。   By making the flow path lengths substantially the same, the pressure loss between the fuel supply hole 9 and the fuel recovery hole 10 becomes the same regardless of the outflow direction of the fuel gas. The flow of the fuel gas can be made substantially uniform in all directions, and the fuel gas can be more evenly supplied to the entire surface of the fuel electrode.

流路調整用凸部14の幅(半径方向の寸法)が広くなると、それだけ燃料極の反応面積を狭めることになるため、加工が可能な限り流路調整用凸部14の幅は狭い方が好ましい。また、流路調整用凸部14の高さは、集電用凸部13の高さと同一であることが、荷重が分散されるという点で好ましい。流路調整用凸部14の弧の長さは、流路長を均一にするという観点からはアノード集電部8の円周の長さの1/4が最適値であるが、多少長さが前後しても極端に燃料電池の性能が低下することはない。   When the width (radial dimension) of the flow path adjustment convex portion 14 is increased, the reaction area of the fuel electrode is reduced accordingly. Therefore, the flow path adjustment convex portion 14 should be as narrow as possible. preferable. Moreover, it is preferable that the height of the flow path adjusting convex portion 14 is the same as the height of the current collecting convex portion 13 in that the load is dispersed. The arc length of the flow path adjustment convex portion 14 is an optimum value from the viewpoint of making the flow path length uniform, but 1/4 of the circumferential length of the anode current collector 8 is an optimum value. However, the performance of the fuel cell is not drastically deteriorated even if it is mixed.

[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。本実施の形態においても、平板型燃料電池スタックの構造は第1の実施の形態と同様であり、第1の実施の形態と異なるのはインターコネクタ4のアノード集電部8の構造なので、図1の符号を用いて説明する。図4は本実施の形態のアノード集電部8の構造を示す平面図である。本実施の形態のアノード集電部8には、燃料電池セル2の燃料極と対向する面に、第1の実施の形態で説明した集電用凸部13と流路調整用凸部14の他に、平面視円弧状の流路調整用凸部16が4箇所形成されている。流路調整用凸部16が形作る円弧の中心は、インターコネクタ4の中心と一致する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. Also in the present embodiment, the structure of the flat plate fuel cell stack is the same as that of the first embodiment, and the structure of the anode current collector 8 of the interconnector 4 is different from the first embodiment. This will be described using the reference numeral 1. FIG. 4 is a plan view showing the structure of the anode current collector 8 of the present embodiment. The anode current collector 8 of the present embodiment has the current collecting convex portion 13 and the flow path adjusting convex portion 14 described in the first embodiment on the surface facing the fuel electrode of the fuel cell 2. In addition, four flow path adjustment convex portions 16 having a circular arc shape in plan view are formed. The center of the arc formed by the flow path adjusting projection 16 coincides with the center of the interconnector 4.

円弧状の流路調整用凸部16とインターコネクタ4の中心とが成す扇形の中心角は30〜40°である。流路調整用凸部16の中点は、インターコネクタ4の中心と流路調整用凸部14の円周方向の終端とを結ぶ線上に位置する。すなわち、各流路調整用凸部16は、流路調整用凸部14の円周方向の終端とインターコネクタ4の中心とを結ぶ線分L2,L3によって扇形が2等分されるように配置されている。流路調整用凸部16の高さは、集電用凸部13および流路調整用凸部14の高さと同一であることが好ましい。   The central angle of the sector formed by the arc-shaped flow path adjusting convex portion 16 and the center of the interconnector 4 is 30 to 40 °. The midpoint of the flow path adjustment convex portion 16 is located on a line connecting the center of the interconnector 4 and the circumferential end of the flow path adjustment convex portion 14. That is, each flow path adjustment convex portion 16 is arranged so that the sector is divided into two equal parts by line segments L2 and L3 connecting the circumferential end of the flow path adjustment convex portion 14 and the center of the interconnector 4. Has been. The height of the flow path adjusting convex portion 16 is preferably the same as the height of the current collecting convex portion 13 and the flow path adjusting convex portion 14.

第1の実施の形態では、流路調整用凸部14を設けることにより、燃料供給穴9から燃料回収穴10の方向に流出した燃料ガスの燃料回収穴10までの流路長と、この流出方向と直交する方向に流出した燃料ガスの燃料回収穴10までの流路長とを略同一にしているが、これらの流路長よりも、燃料供給穴9から流路調整用凸部14の終端の方向(図4の線分L2,L3に沿った方向)に流出した燃料ガスの燃料回収穴10までの流路長の方が短くなっている。   In the first embodiment, by providing the flow path adjustment convex portion 14, the flow path length from the fuel supply hole 9 to the fuel recovery hole 10 of the fuel gas flowing in the direction of the fuel recovery hole 10, and this outflow The flow path length of the fuel gas flowing out in the direction orthogonal to the direction to the fuel recovery hole 10 is substantially the same, but the length of the flow path adjustment convex portion 14 from the fuel supply hole 9 is longer than these flow path lengths. The flow path length of the fuel gas that has flowed out in the direction of the end (the direction along the line segments L2 and L3 in FIG. 4) to the fuel recovery hole 10 is shorter.

これに対して、本実施の形態では、流路調整用凸部16を設けることにより、燃料供給穴9から流路調整用凸部14の終端の方向に流出した燃料ガスの燃料極上での滞留時間を増加させることができる。つまり、燃料供給穴9から流路調整用凸部14の終端の方向に流出した燃料ガスは、図4に示すインターコネクタ4のアノード集電部8の面内において、円弧状の流路調整用凸部16の内側の壁に沿って時計回りおよび反時計回りに進み、流路調整用凸部16の円周方向の終端を回り込んだ後に流路調整用凸部14の終端の方向に流れ、流路調整用凸部14の外側の壁に沿って進んで、燃料供給穴9に流れる。こうして、本実施の形態では、燃料極の面内での燃料ガスの流れの均一性を更に向上させることができる。なお、第1の実施の形態で説明したとおり、燃料電池セル2の燃料極とインターコネクタ4との間に、耐熱網や多孔質金属、波打ち板などの凹凸を有する導電性の板を挿入してもよい。   On the other hand, in the present embodiment, by providing the flow path adjustment convex portion 16, the fuel gas flowing out from the fuel supply hole 9 toward the end of the flow path adjustment convex portion 14 is retained on the fuel electrode. You can increase the time. That is, the fuel gas that has flowed out from the fuel supply hole 9 toward the end of the flow path adjusting projection 14 is an arc-shaped flow path adjusting pipe in the plane of the anode current collector 8 of the interconnector 4 shown in FIG. Proceeding clockwise and counterclockwise along the inner wall of the convex portion 16, flows around the circumferential end of the flow path adjusting convex portion 16 and then flows in the direction of the end of the flow path adjusting convex portion 14. Then, it proceeds along the outer wall of the flow path adjusting projection 14 and flows into the fuel supply hole 9. Thus, in the present embodiment, the uniformity of the flow of the fuel gas in the plane of the fuel electrode can be further improved. As described in the first embodiment, a conductive plate having irregularities such as a heat-resistant net, a porous metal, and a corrugated plate is inserted between the fuel electrode of the fuel cell 2 and the interconnector 4. May be.

[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。本実施の形態においても、平板型燃料電池スタックの構造は第1の実施の形態と同様であり、第1の実施の形態と異なるのはインターコネクタ4のアノード集電部8の構造なので、図1の符号を用いて説明する。図5は本実施の形態のアノード集電部8の構造を示す平面図である。本実施の形態のアノード集電部8には、燃料電池セル2の燃料極と対向する面に、第1の実施の形態で説明した集電用凸部13と流路調整用凸部14の他に、平面視円弧状の応力調整用凸部17が4箇所形成されている。応力調整用凸部17が形作る円弧の中心は、インターコネクタ4の中心と一致する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. Also in the present embodiment, the structure of the flat plate fuel cell stack is the same as that of the first embodiment, and the structure of the anode current collector 8 of the interconnector 4 is different from the first embodiment. This will be described using the reference numeral 1. FIG. 5 is a plan view showing the structure of the anode current collector 8 of the present embodiment. The anode current collector 8 of the present embodiment has the current collecting convex portion 13 and the flow path adjusting convex portion 14 described in the first embodiment on the surface facing the fuel electrode of the fuel cell 2. In addition, four stress adjusting convex portions 17 having a circular arc shape in plan view are formed. The center of the arc formed by the stress adjusting convex portion 17 coincides with the center of the interconnector 4.

流路調整用凸部14は、インターコネクタ4の中心を囲む円周上に配置されているが、応力調整用凸部17は、この流路調整用凸部14と同じ円周上に、流路調整用凸部14と10°以上間を空けて配置されている。応力調整用凸部17の高さは、集電用凸部13および流路調整用凸部14の高さと同一であることが好ましい。   The flow path adjustment convex portion 14 is disposed on the circumference surrounding the center of the interconnector 4, but the stress adjustment convex portion 17 is arranged on the same circumference as the flow path adjustment convex portion 14. It arrange | positions at intervals of the convex part 14 for a road adjustment, and 10 degrees or more. The height of the stress adjusting convex portion 17 is preferably the same as the height of the current collecting convex portion 13 and the flow path adjusting convex portion 14.

このように、本実施の形態では、応力調整用凸部17を設けることにより、微小な反りのある燃料電池セル2と燃料極側の収容部材と空気極側の収容部材とを積層して上から荷重をかけた際に、燃料電池セル2の外周部における応力集中を緩和することができ、燃料電池セル2の破損を防止することができる。なお、第1の実施の形態で説明したとおり、燃料電池セル2の燃料極とインターコネクタ4との間に、耐熱網や多孔質金属、波打ち板などの凹凸を有する導電性の板を挿入してもよい。   As described above, in the present embodiment, the stress adjusting convex portion 17 is provided to stack the fuel cell 2 having a slight warp, the fuel electrode side housing member, and the air electrode side housing member. When a load is applied, the stress concentration at the outer periphery of the fuel cell 2 can be relaxed, and the fuel cell 2 can be prevented from being damaged. As described in the first embodiment, a conductive plate having irregularities such as a heat-resistant net, a porous metal, and a corrugated plate is inserted between the fuel electrode of the fuel cell 2 and the interconnector 4. May be.

[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。本実施の形態においても、平板型燃料電池スタックの構造は第1の実施の形態と同様であり、第1の実施の形態と異なるのはインターコネクタ4のアノード集電部8の構造なので、図1の符号を用いて説明する。図6は本実施の形態のアノード集電部8の構造を示す平面図である。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. Also in the present embodiment, the structure of the flat plate fuel cell stack is the same as that of the first embodiment, and the structure of the anode current collector 8 of the interconnector 4 is different from the first embodiment. This will be described using the reference numeral 1. FIG. 6 is a plan view showing the structure of the anode current collector 8 of the present embodiment.

本実施の形態においても、インターコネクタ4に、貫通穴6a,6b,6c,6dと燃料供給穴9と燃料回収穴10と集電用凸部13と流路調整用凸部14とが形成されていることは第1の実施の形態と同様であるが、第1の実施の形態と異なるのは、図7に示すように燃料電池セル2の外周部よりも十分に外側の位置に燃料回収穴10が設けられている点である。第1の実施の形態では、燃料回収穴10と流路調整用凸部14との距離が短いため、アノード集電部8の凹凸の加工方法としてエッチング加工を用いる必要がある。これに対して、本実施の形態では、図7に示すように燃料回収穴10と流路調整用凸部14との間に隙間18があるため、アノード集電部8の凹凸の加工方法としてエッチング加工だけでなく、スタンプ加工も選択することができる。   Also in the present embodiment, the through-holes 6a, 6b, 6c, 6d, the fuel supply hole 9, the fuel recovery hole 10, the current collecting convex portion 13, and the flow path adjusting convex portion 14 are formed in the interconnector 4. However, the difference from the first embodiment is that the fuel is recovered at a position sufficiently outside the outer peripheral portion of the fuel cell 2 as shown in FIG. The hole 10 is provided. In the first embodiment, since the distance between the fuel recovery hole 10 and the flow path adjusting convex portion 14 is short, it is necessary to use etching as a method for processing the unevenness of the anode current collector 8. On the other hand, in the present embodiment, as shown in FIG. 7, there is a gap 18 between the fuel recovery hole 10 and the flow path adjustment convex portion 14. Not only etching processing but also stamp processing can be selected.

本発明は、平板型燃料電池に適用することができる。   The present invention can be applied to a flat plate fuel cell.

1…平板型燃料電池スタック、2…燃料電池セル、3…セル収納板、4…インターコネクタ、5…燃料供給・回収流路板、6a,6b,6c,6d,7…貫通穴、8…アノード集電部、9…燃料供給穴、10…燃料回収穴、11…燃料供給流路、12…燃料回収流路、13…集電用凸部、14,16…流路調整用凸部、17…応力調整用凸部、20…燃料極。   DESCRIPTION OF SYMBOLS 1 ... Flat type fuel cell stack, 2 ... Fuel cell, 3 ... Cell storage plate, 4 ... Interconnector, 5 ... Fuel supply / recovery flow path plate, 6a, 6b, 6c, 6d, 7 ... Through-hole, 8 ... Anode current collector, 9 ... fuel supply hole, 10 ... fuel recovery hole, 11 ... fuel supply flow path, 12 ... fuel recovery flow path, 13 ... current collection convex part, 14, 16 ... flow path adjustment convex part, 17 ... Stress adjusting convex portion, 20 ... Fuel electrode.

Claims (5)

平板型の燃料電池セルと、
このセルの燃料極側の面に積層される平板型の燃料極側インターコネクタとを備え、
前記燃料極側インターコネクタは、
この燃料極側インターコネクタを貫通するように中心部に形成された燃料供給穴と、
前記燃料極側インターコネクタを貫通するように外周部に2箇所、互いに180°離れた位置に形成された平面視円弧状の2つの燃料回収穴と、
前記セルの燃料極と対向する面上に前記燃料回収穴1つ当たり1箇所ずつ燃料回収穴に隣接するように設けられ、隣接する燃料回収穴よりも中心部寄りの位置に形成された平面視円弧状の2つの第1の流路調整用凸部とを有し、
2つの前記第1の流路調整用凸部と前記燃料極側インターコネクタの中心とが成す2つの扇形の各々は、前記燃料極側インターコネクタの中心と2つの前記燃料回収穴の中点とを通る線分によって2等分され、2等分された後の4つの扇形の各々の中心角は35〜45°であり、
2つの前記第1の流路調整用凸部の弧の長さは、前記燃料供給穴から前記燃料回収穴の方向に流出した燃料ガスの燃料回収穴までの流路長と、この燃料ガスの流出の方向と直交する方向に流出した燃料ガスの燃料回収穴までの流路長とが略同一になるように設定されることを特徴とする平板型燃料電池。
A flat plate fuel cell;
And a flat plate fuel electrode side interconnector laminated on the fuel electrode side surface of this cell,
The fuel electrode side interconnector is
A fuel supply hole formed in the center so as to penetrate the fuel electrode side interconnector;
Two fuel recovery holes having a circular arc shape in plan view formed at two positions on the outer periphery so as to penetrate the fuel electrode side interconnector, and at positions spaced apart from each other by 180 °;
A plan view is provided on the surface of the cell facing the fuel electrode so as to be adjacent to the fuel recovery hole, one per fuel recovery hole, and closer to the center than the adjacent fuel recovery hole. Two arc-shaped first flow path adjustment convex portions,
Each of the two sectors formed by the two first flow path adjusting projections and the center of the fuel electrode side interconnector includes a center of the fuel electrode side interconnector and a midpoint of the two fuel recovery holes. The central angle of each of the four sectors after being divided into two equal parts by a line segment passing through
The lengths of the arcs of the two first flow path adjustment projections are the length of the flow path from the fuel supply hole to the fuel recovery hole of the fuel gas flowing out in the direction of the fuel recovery hole, A flat plate fuel cell, characterized in that the flow path length to the fuel recovery hole of fuel gas that has flowed out in a direction perpendicular to the outflow direction is set to be substantially the same.
請求項1記載の平板型燃料電池において、
前記燃料極側インターコネクタは、さらに、前記セルの燃料極と対向する面上の2つの前記第1の流路調整用凸部よりも中心部寄りの位置で、且つ前記燃料極側インターコネクタの中心から2つの前記第1の流路調整用凸部を構成する2つの円弧の両端の各々に向かう方向の位置に1箇所ずつ形成された平面視円弧状の4つの第2の流路調整用凸部を有することを特徴とする平板型燃料電池。
The flat plate fuel cell according to claim 1, wherein
The fuel electrode side interconnector is further located at a position closer to the center than the two first flow path adjustment convex portions on the surface facing the fuel electrode of the cell, and the fuel electrode side interconnector. Four second flow path adjustments having a circular arc shape in plan view, each formed at a position in a direction toward each of both ends of the two circular arcs constituting the two first flow path adjustment convex portions from the center A flat plate fuel cell having a convex portion.
請求項1または2記載の平板型燃料電池において、
前記燃料極側インターコネクタは、さらに、前記セルの燃料極と対向する面上の2つの前記第1の流路調整用凸部と同じ円周上の位置に、2つの前記第1の流路調整用凸部と間を空けて形成された応力調整用凸部を有することを特徴とする平板型燃料電池。
The flat plate fuel cell according to claim 1 or 2,
The fuel electrode-side interconnector further includes two first flow paths at positions on the same circumference as the two first flow path adjusting projections on the surface of the cell facing the fuel electrode. A flat plate type fuel cell having a stress adjusting convex portion formed with a gap between the adjusting convex portion.
請求項1乃至3のいずれか1項に記載の平板型燃料電池において、
2つの前記燃料回収穴の各々は、前記セルの外周部よりも外側の位置に形成されることを特徴とする平板型燃料電池。
The flat plate fuel cell according to any one of claims 1 to 3,
Each of the two fuel recovery holes is formed at a position outside the outer peripheral portion of the cell.
請求項1乃至4のいずれか1項に記載の平板型燃料電池において、
2つの前記第1の流路調整用凸部の高さは、前記燃料極と接触する高さに設定されていることを特徴とする平板型燃料電池。
The flat plate fuel cell according to any one of claims 1 to 4,
The flat fuel cell according to claim 1, wherein the height of the two first flow path adjustment protrusions is set to a height that contacts the fuel electrode.
JP2014181952A 2014-09-08 2014-09-08 Flat fuel cell Active JP5775204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014181952A JP5775204B2 (en) 2014-09-08 2014-09-08 Flat fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014181952A JP5775204B2 (en) 2014-09-08 2014-09-08 Flat fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013004250A Division JP2014137846A (en) 2013-01-15 2013-01-15 Flat plate type fuel battery

Publications (2)

Publication Number Publication Date
JP2014225479A true JP2014225479A (en) 2014-12-04
JP5775204B2 JP5775204B2 (en) 2015-09-09

Family

ID=52123975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014181952A Active JP5775204B2 (en) 2014-09-08 2014-09-08 Flat fuel cell

Country Status (1)

Country Link
JP (1) JP5775204B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288071A (en) * 1989-04-27 1990-11-28 Fuji Electric Co Ltd Solid electrolyte fuel cell
JPH03219563A (en) * 1988-07-23 1991-09-26 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH06290798A (en) * 1993-02-08 1994-10-18 Fuji Electric Co Ltd Solid-state electrolytic type fuel cell
US20020132156A1 (en) * 1999-12-06 2002-09-19 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
JP2004207067A (en) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd Fuel cell
JP2004259649A (en) * 2003-02-27 2004-09-16 Sumitomo Precision Prod Co Ltd Fuel cell
JP2004327079A (en) * 2003-04-21 2004-11-18 Sumitomo Precision Prod Co Ltd Fuel cell
US20040247983A1 (en) * 2001-10-26 2004-12-09 Hiroshi Orishima Fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219563A (en) * 1988-07-23 1991-09-26 Fuji Electric Co Ltd Solid electrolyte type fuel cell
JPH02288071A (en) * 1989-04-27 1990-11-28 Fuji Electric Co Ltd Solid electrolyte fuel cell
JPH06290798A (en) * 1993-02-08 1994-10-18 Fuji Electric Co Ltd Solid-state electrolytic type fuel cell
US20020132156A1 (en) * 1999-12-06 2002-09-19 Technology Management, Inc. Electrochemical apparatus with reactant micro-channels
US20040247983A1 (en) * 2001-10-26 2004-12-09 Hiroshi Orishima Fuel cell
JP2004207067A (en) * 2002-12-25 2004-07-22 Nissan Motor Co Ltd Fuel cell
JP2004259649A (en) * 2003-02-27 2004-09-16 Sumitomo Precision Prod Co Ltd Fuel cell
JP2004327079A (en) * 2003-04-21 2004-11-18 Sumitomo Precision Prod Co Ltd Fuel cell

Also Published As

Publication number Publication date
JP5775204B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP4948823B2 (en) Fuel cell stack
JP5234446B2 (en) Structure to improve stackability of metal separator for fuel cell stack
CA2680137C (en) Fuel cell and gas separator for fuel cell
CN108091912B (en) Separator for fuel cell and unit cell for fuel cell
EP2899786B1 (en) Fuel cell
JP5963947B2 (en) Electrochemical system
US20210075050A1 (en) Electrochemical system
CN107810572B (en) Separator, method of manufacturing the same, and fuel cell stack including the same
JP6634955B2 (en) Fuel cell
JP2007141551A (en) Fuel cell stack
JP4404331B2 (en) Fuel cell
JP6101253B2 (en) Fuel cell with reduced corrosion
JP5091275B2 (en) Fuel cell
JPWO2015029353A1 (en) Fuel cell
JP5775204B2 (en) Flat fuel cell
JPH10134836A (en) Fuel cell
KR102355788B1 (en) fuel cell
JP2014137846A (en) Flat plate type fuel battery
TWI699037B (en) Electrode separator structure and fuel cell applied with the same
US10074864B2 (en) Gas inlet for SOEC unit
JP4669935B2 (en) Fuel cell
JP2020038821A (en) Separator for fuel cell including guide pattern and fuel cell stack including the same
JP2018133240A (en) Fuel cell stack
JP5571758B2 (en) Flat fuel cell stack
JP7378324B2 (en) fuel cell structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150702

R150 Certificate of patent or registration of utility model

Ref document number: 5775204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150