JP2014225368A - Method for manufacturing nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014225368A
JP2014225368A JP2013103797A JP2013103797A JP2014225368A JP 2014225368 A JP2014225368 A JP 2014225368A JP 2013103797 A JP2013103797 A JP 2013103797A JP 2013103797 A JP2013103797 A JP 2013103797A JP 2014225368 A JP2014225368 A JP 2014225368A
Authority
JP
Japan
Prior art keywords
battery assembly
battery
temperature
charging
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013103797A
Other languages
Japanese (ja)
Inventor
幸義 上野
Yukiyoshi Ueno
幸義 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013103797A priority Critical patent/JP2014225368A/en
Publication of JP2014225368A publication Critical patent/JP2014225368A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a reliable battery for a short time which enables the highly accurate detection and rejection of defective products.SOLUTION: A method for manufacturing a nonaqueous electrolyte secondary battery comprises: a step (S10) of constructing a battery assembly; a conditioning step (S20) of performing a charging treatment on the battery assembly; a first inspection step (S30) of detecting an IV resistance by charging and discharging the battery assembly while raising the temperature of the assembly to a high-temperature region of 40°C or higher; a high-temperature aging step (S40) of holding the battery assembly in the high-temperature region; a second inspection step (S50) of detecting the IV resistance by charging and discharging the battery assembly after lowering the temperature of the battery assembly; and a step (S60) of making comparison between results of the first and a second inspection step to make determination on whether each battery assembly is defective or not, and removing a battery assembly determined to be defective.

Description

本発明は、非水電解質二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a nonaqueous electrolyte secondary battery.

リチウムイオン電池等の非水電解質二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、近年、車両搭載用高出力電源等に好ましく利用されている。この種の電池の製造においては、構築した電池組立体に対してコンディショニング処理(初期充電)を行い、次いで高温環境下でエージング処理を施すことが一般的である。高温環境下で電池組立体を保持すると、例えば該組立体に何らかの不具合がある場合に性能の低下が顕著に表れることから、かかるエージング処理を利用して、電池組立体を検査する手法が広く用いられている。例えば、特許文献1には、エージング処理前後の端子間電圧を測定し、その差分(電圧降下量)が所定の閾値内にあるか否かで導電性異物の有無を判定する検査方法が開示されている。   Nonaqueous electrolyte secondary batteries such as lithium-ion batteries are lighter and have higher energy density than existing batteries, and thus have been preferably used in recent years for high-output power supplies mounted on vehicles. In manufacturing this type of battery, it is common to perform a conditioning process (initial charge) on the constructed battery assembly and then perform an aging process in a high-temperature environment. When a battery assembly is held under a high temperature environment, for example, when the assembly has some trouble, a decrease in performance appears remarkably. Therefore, a method of inspecting a battery assembly using such an aging process is widely used. It has been. For example, Patent Document 1 discloses an inspection method in which the voltage between terminals before and after the aging process is measured, and the presence or absence of conductive foreign matter is determined based on whether or not the difference (voltage drop amount) is within a predetermined threshold. ing.

特開2005−158643号公報Japanese Patent Laid-Open No. 2005-158643

しかしながら、本発明者の検討によれば、特許文献1の手法では、製造工程に由来する何らかの影響(典型的には高温エージング)で性能の低下した電池組立体が、後工程に流れてしまうことがあった。このため、製造工程に由来する性能の低下を精度よく検出することが求められている。また、コンディショニング処理は、通常、室温域で行われるため、エージング処理に際して高温域まで電池組立体の温度を上昇させる必要がある。この昇温には比較的長時間を要することから、昇温時間の短縮が課題となっていた。   However, according to the study of the present inventor, in the method of Patent Document 1, a battery assembly whose performance is deteriorated due to some influence (typically high temperature aging) derived from the manufacturing process flows into the subsequent process. was there. For this reason, it is required to accurately detect a decrease in performance derived from the manufacturing process. In addition, since the conditioning process is usually performed in a room temperature range, it is necessary to raise the temperature of the battery assembly to a high temperature range during the aging process. Since this heating requires a relatively long time, shortening the heating time has been a problem.

本発明はかかる従来の状況を鑑みて創出されたものであり、その目的は、不具合品を精度よく検出・排除することができ、より短時間で信頼性の高い非水電解質二次電池を製造する方法を提供することである。   The present invention has been created in view of such a conventional situation, and its purpose is to manufacture a highly reliable non-aqueous electrolyte secondary battery that can detect and eliminate defective products with high accuracy and in a shorter time. Is to provide a way to do.

上記目的を実現すべく、本発明により、以下の工程(1)〜(6):
(1)常温域で、正極と負極を有する電極体と、非水電解質とを電池ケース内に収容する、電池組立体の構築工程;
(2)常温域で、上記電池組立体に対して充電処理を行う、コンディショニング工程;
(3)上記電池組立体を40℃以上の高温域まで昇温しながら、該組立体に対して少なくとも1回の定電流充放電を行うことでIV抵抗を検出する、第1検査工程;
(4)上記電池組立体を上記高温域で少なくとも5時間保持する、高温エージング工程;
(5)上記電池組立体を常温域まで降温した後、上記電池組立体に対して少なくとも1回の定電流充放電を行うことでIV抵抗を検出する、第2検査工程;
(6)上記第1検査工程の結果と上記第2検査工程の結果を比較して上記電池組立体の良否を判定し、不良と判定された電池組立体を除く工程(以下、「良品判定工程」ともいう。);
を包含する非水電解質二次電池の製造方法が提供される。
In order to achieve the above object, according to the present invention, the following steps (1) to (6):
(1) A battery assembly construction process in which an electrode body having a positive electrode and a negative electrode and a nonaqueous electrolyte are housed in a battery case in a normal temperature range;
(2) A conditioning process in which the battery assembly is charged in a normal temperature range;
(3) A first inspection step of detecting IV resistance by performing at least one constant current charge / discharge on the assembly while raising the battery assembly to a high temperature range of 40 ° C. or higher;
(4) A high-temperature aging step of holding the battery assembly in the high-temperature range for at least 5 hours;
(5) a second inspection step of detecting IV resistance by performing at least one constant current charge / discharge on the battery assembly after the battery assembly is cooled to a normal temperature range;
(6) A step of comparing the result of the first inspection step with the result of the second inspection step to determine the quality of the battery assembly and removing the battery assembly determined to be defective (hereinafter referred to as “non-defective product determination step”). ").);
A method for producing a non-aqueous electrolyte secondary battery is provided.

ここに開示される製造方法では、高温エージング工程の前後、すなわち第1検査工程および第2検査工程において、それぞれ1回以上の充放電試験を行い、IV抵抗値を検出する。そして、良品判定工程において、上記得られたIV抵抗値を比較する。これにより、製造工程(典型的には高温エージング)に由来する性能の低下を定量的に精度よく把握することができる。したがって、かかる製造方法によれば、不具合品が後工程に流れることを防止することができ、出荷前に効率よく除くことができる。これにより、一層信頼性の高い電池を提供することができる。加えて、コンディショニング工程の後の昇温と同時に充放電を行うことで、従来に比べて昇温に要する時間を短縮することもできる。このことは、作業効率や生産性の観点から好適である。
なお、ここで常温域とは、20℃±15℃(すなわち、例えば5〜35℃、好ましくは10〜30℃、より好ましくは20〜30℃)を指すものとする。
In the manufacturing method disclosed herein, before and after the high-temperature aging process, that is, in the first inspection process and the second inspection process, one or more charge / discharge tests are performed to detect the IV resistance value. Then, in the non-defective product determination step, the obtained IV resistance values are compared. As a result, it is possible to quantitatively accurately grasp the deterioration in performance resulting from the manufacturing process (typically high temperature aging). Therefore, according to this manufacturing method, it is possible to prevent a defective product from flowing into a subsequent process and efficiently remove it before shipping. Thereby, a battery with higher reliability can be provided. In addition, by performing charging and discharging at the same time as the temperature increase after the conditioning process, it is possible to shorten the time required for the temperature increase as compared with the conventional case. This is preferable from the viewpoint of work efficiency and productivity.
Here, the normal temperature range refers to 20 ° C. ± 15 ° C. (that is, for example, 5 to 35 ° C., preferably 10 to 30 ° C., more preferably 20 to 30 ° C.).

一実施形態に係る製造方法のフローチャートである。It is a flowchart of the manufacturing method which concerns on one Embodiment. 第1検査工程〜第2検査工程における、温度および電圧の経時変化を示すグラフである。It is a graph which shows a time-dependent change of temperature and voltage in the 1st inspection process-the 2nd inspection process. 第1検査工程の所要時間と充電電流との関係を示すグラフである。It is a graph which shows the relationship between the required time of a 1st test process, and a charging current.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここで開示される製造方法は、高温エージング処理前の昇温と同時に電池組立体を充放電する工程を含む製造方法であり、具体的には図1のフローチャートに示す(S10)〜(S60)の工程を包含する。以下、各工程について順に説明する。   The manufacturing method disclosed here is a manufacturing method including a step of charging and discharging the battery assembly simultaneously with the temperature rise before the high temperature aging treatment, and specifically, shown in the flowchart of FIG. 1 (S10) to (S60). These steps are included. Hereinafter, each process is demonstrated in order.

(S10)電池組立体の構築工程
ここでは、常温域で、少なくとも正極および負極を有する電極体と、非水電解質とを電池ケース内に収容して、電池組立体を構築する。電池ケースとしては、例えばアルミニウム等の軽量な金属材製のものを好適に採用し得る。なお、電池組立体とは、コンディショニング工程に先立った段階にまで組み立てられているもの全般をいい、電池の種類や構成等は特に限定されない。例えば、電池ケースは封口前であってもよいし、封口後であってもよい。
(S10) Battery Assembly Construction Step Here, an electrode body having at least a positive electrode and a negative electrode and a non-aqueous electrolyte are accommodated in a battery case in a normal temperature range to construct a battery assembly. As the battery case, for example, a lightweight metal material such as aluminum can be preferably used. Note that the battery assembly refers to a general assembly that has been assembled up to the stage prior to the conditioning process, and the type and configuration of the battery are not particularly limited. For example, the battery case may be before sealing or after sealing.

電極体は、正極と負極とを、典型的にはセパレータを介して、積層して構築される。
正極としては、正極活物質を導電材やバインダ等とともに組成物として正極集電体上に付着させ、正極活物質層を形成した形態のものを用いることができる。正極集電体としては、導電性の良好な金属(例えばアルミニウム)からなる導電性部材を好適に採用し得る。正極活物質としては、層状系、スピネル系等のリチウム複合金属酸化物(例えば、LiNiO、LiCoO、LiFeO、LiMn、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)を好適に採用し得る。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料を採用し得る。バインダとしては、ポリフッ化ビニリデン(PVdF)やポリエチレンオキサイド(PEO)等の各種のポリマー材料を採用し得る。
The electrode body is constructed by laminating a positive electrode and a negative electrode, typically via a separator.
As a positive electrode, the thing of the form which adhered the positive electrode active material on the positive electrode electrical power collector as a composition with a electrically conductive material, a binder, etc., and formed the positive electrode active material layer can be used. As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum) can be suitably employed. Examples of the positive electrode active material include lithium composite metal oxides such as layered and spinel (for example, LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFePO 4, etc.) can be suitably employed. As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be adopted. As the binder, various polymer materials such as polyvinylidene fluoride (PVdF) and polyethylene oxide (PEO) can be adopted.

負極としては、負極活物質をバインダ等とともに組成物として負極集電体上に付着させ、負極活物質層を形成した形態のものを用いることができる。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性材料を好適に採用し得る。負極活物質としては、黒鉛(グラファイト)、難黒鉛化炭素(ハードカーボン)、易黒鉛化炭素(ソフトカーボン)等の炭素材料を用いることができ、なかでも黒鉛を好適に採用し得る。バインダとしては、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリテトラフルオロエチレン(PTFE)等の各種のポリマー材料を採用し得る。   As the negative electrode, it is possible to use a negative electrode active material layer in which a negative electrode active material is deposited on a negative electrode current collector as a composition together with a binder or the like. As the negative electrode current collector, a conductive material made of a metal having good conductivity (for example, copper) can be suitably used. As the negative electrode active material, a carbon material such as graphite (graphite), non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), or the like can be used, and among them, graphite can be preferably used. As the binder, various polymer materials such as styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC), and polytetrafluoroethylene (PTFE) can be adopted.

セパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートを好適に採用し得る。なかでも、上記多孔性樹脂シートの片面または両面に多孔質の耐熱層を備えるものが好ましい。なお、固体状の電解質を用いた電池(リチウムポリマー電池)では、上記電解質がセパレータを兼ねる構成とし得る。   As the separator, a porous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP) can be suitably used. Especially, what equips one side or both surfaces of the said porous resin sheet with a porous heat resistant layer is preferable. Note that in a battery using a solid electrolyte (lithium polymer battery), the electrolyte can also serve as a separator.

非水電解質としては、典型的には非水溶媒中に支持塩を含有させたものを用いる。あるいは、液状の非水電解質にポリマーが添加され固体状(典型的には、いわゆるゲル状)となったものでもよい。支持塩としては、リチウム塩、ナトリウム塩、マグネシウム塩等を用いることができ、なかでもLiPF、LiBF等のリチウム塩を好適に採用し得る。非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に採用し得る。 As the nonaqueous electrolyte, typically, a nonaqueous solvent containing a supporting salt is used. Alternatively, the liquid non-aqueous electrolyte may be added with a polymer to form a solid (typically a so-called gel). As the supporting salt, lithium salt, sodium salt, magnesium salt and the like can be used, and among them, lithium salts such as LiPF 6 and LiBF 4 can be preferably used. As the non-aqueous solvent, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones and lactones can be used. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) can be preferably used.

(S20)コンディショニング工程
ここでは、常温域で、上記構築した電池組立体に対して少なくとも1回の充電処理を行う。典型的には、該組立体の正極(正極端子)と負極(負極端子)の間に外部電源を接続し、所定の電圧範囲まで充電(典型的には定電流充電)を行う。これによって、非水電解質の一部(典型的には非水溶媒)が負極で還元分解され、負極活物質の表面にその分解物からなる被膜が形成される。このときの充電時のレートは、例えば0.1〜10C程度とすることができる。また、正負極端子間の電圧(典型的には最高到達電圧)は、使用する非水溶媒の種類等にも依るが、例えば3.9〜4.2V程度とすることができる。充電処理は1回でもよく、例えば放電処理を挟んで2回以上繰り返し行うこともできる。終止電圧は、電池組立体の充電深度(State of Charge:SOC)が凡そ90〜105%の範囲にあるときに示し得る電圧の範囲とすればよい。例えば、4.2Vで満充電となる電池では、本工程終了後の正負極間電圧を凡そ3.8〜4.2Vの範囲に調整することが好ましい。例えば、後述する実施例では、本工程終了後の正負極間電圧が3.95Vである。
(S20) Conditioning Step Here, at least one charge process is performed on the constructed battery assembly in a normal temperature range. Typically, an external power source is connected between the positive electrode (positive electrode terminal) and the negative electrode (negative electrode terminal) of the assembly, and charging (typically constant current charging) is performed to a predetermined voltage range. As a result, a part of the non-aqueous electrolyte (typically a non-aqueous solvent) is reduced and decomposed at the negative electrode, and a film made of the decomposition product is formed on the surface of the negative electrode active material. The rate at the time of charge at this time can be about 0.1-10C, for example. Further, the voltage between the positive and negative terminals (typically the highest voltage reached) depends on the type of the non-aqueous solvent used, but can be about 3.9 to 4.2 V, for example. The charging process may be performed once. For example, the charging process may be repeated twice or more with the discharge process interposed therebetween. The end voltage may be a voltage range that can be indicated when the state of charge (SOC) of the battery assembly is in the range of approximately 90 to 105%. For example, in the case of a battery that is fully charged at 4.2 V, it is preferable to adjust the voltage between the positive and negative electrodes after the end of this step to a range of approximately 3.8 to 4.2 V. For example, in the Example mentioned later, the voltage between positive / negative electrodes after the completion | finish of this process is 3.95V.

(S30)第1検査工程
ここでは、コンディショニング工程後の電池組立体を40℃以上(例えば40〜80℃、好ましくは60〜70℃)の高温域まで昇温しながら、該組立体に対して少なくとも1回(例えば2〜10回)の定電流充放電を行う。これによって、高温エージング前の性能(例えば、電流(I)−電圧(V)曲線を基に算出したIV抵抗や所定の電圧範囲における放電容量)を検出・把握することができる。加えて、定電流充放電をしながら昇温を行うことで、本工程に要する時間を短縮することができる。電池組立体を昇温する方法としては、例えば、温度制御恒温槽や赤外線ヒーター等の加熱手段を用いることができる。
(S30) First Inspection Step Here, the battery assembly after the conditioning step is heated to a high temperature range of 40 ° C. or higher (eg, 40 to 80 ° C., preferably 60 to 70 ° C.) while the battery assembly is heated. Constant current charge / discharge is performed at least once (for example, 2 to 10 times). This makes it possible to detect and grasp the performance before high-temperature aging (for example, the IV resistance calculated based on the current (I) -voltage (V) curve and the discharge capacity in a predetermined voltage range). In addition, the time required for this step can be shortened by raising the temperature while charging and discharging at a constant current. As a method for raising the temperature of the battery assembly, for example, heating means such as a temperature controlled thermostat or an infrared heater can be used.

図3に、本工程の所要時間と充電電流との関係を示す。図3から明らかなように、充電時の電流をより高く設定することで、電池組立体の昇温に要する時間を短縮することができる。例えば、充電電流を60Aに設定した場合、昇温に必要な時間は凡そ100分(例えば95〜100分)である。また、例えば、充電電流を120Aに設定した場合、昇温に必要な時間は凡そ60分(例えば55分〜60分)である。このため、充放電時の電流値は、作業効率の観点と測定精度の観点とを勘案して決定することが好ましく、特に限定されないが、例えば、凡そ0.1C〜5Cとすることができる。かかるレートは充電時と放電時で同じであってもよく、異なっていてもよい。   FIG. 3 shows the relationship between the time required for this step and the charging current. As is clear from FIG. 3, the time required for raising the temperature of the battery assembly can be shortened by setting the current during charging higher. For example, when the charging current is set to 60 A, the time required for the temperature rise is about 100 minutes (for example, 95 to 100 minutes). For example, when the charging current is set to 120 A, the time required for temperature increase is about 60 minutes (for example, 55 minutes to 60 minutes). For this reason, it is preferable to determine the electric current value at the time of charging / discharging considering the viewpoint of work efficiency and the viewpoint of measurement accuracy, and although it does not specifically limit, For example, it can be set as about 0.1C-5C. The rate may be the same during charging and discharging, or may be different.

正負極間の電圧は、本工程全体に渡って比較的高い端子間電圧範囲および/または比較的高いSOC範囲とすることが好ましい。例えば4.2Vで満充電となる電池では、正負極間の電圧が凡そ3.7〜4.2Vにある状態を保つ範囲で充放電を行うことが好ましい。換言すれば、本工程における端子間電圧の最高値(最高電圧)および最低値(最低電圧)が上記電圧の範囲内となるよう、充放電条件を設定することが好ましい。また、定電流充電後および/または定電流放電後には、適宜、定電圧充放電処理や休止を挟むことができる。例えば後述する実施例では、先ず一定時間定電圧充電し、次に正負極間電圧が所定の電圧に到達するまで定電流放電し、短い休止を挟んだ後に、充電開始時の電圧まで定電流充電する。これを1サイクルとし、ここでは4回繰り返している。   The voltage between the positive and negative electrodes is preferably set to a relatively high voltage range between terminals and / or a relatively high SOC range throughout the process. For example, in a battery that is fully charged at 4.2 V, it is preferable to perform charging and discharging within a range in which the voltage between the positive and negative electrodes is maintained at approximately 3.7 to 4.2 V. In other words, it is preferable to set the charge / discharge conditions so that the maximum value (maximum voltage) and the minimum value (minimum voltage) of the inter-terminal voltage in this step are within the above voltage range. Moreover, after a constant current charge and / or after a constant current discharge, a constant voltage charging / discharging process or a rest can be appropriately sandwiched. For example, in the embodiment described later, first, constant voltage charging is performed for a certain period of time, then constant current discharging is performed until the voltage between the positive and negative electrodes reaches a predetermined voltage, and after a short pause, constant current charging is performed until the voltage at the start of charging. To do. This is one cycle and is repeated four times here.

(S40)高温エージング工程
ここでは、第1検査工程後の上記電池組立体を、上記高温域で少なくとも5時間(例えば、昇温開始時(S30)からの合計時間が5〜48時間、好ましくは10〜24時間となるまで)保持(放置)する。これによって、負極活物質の表面に形成された被膜を良質なものへと改質し得、負極の抵抗を効果的に低減することができる。したがって、優れた電池性能(例えばサイクル特性)を実現することができる。なお、電池組立体を上記高温域で保持する方法としては、上記第1検査工程と同様の手段を用いることができる。
(S40) High temperature aging process Here, the battery assembly after the first inspection process is at least 5 hours in the high temperature range (for example, a total time from the start of temperature increase (S30) is 5 to 48 hours, preferably Hold (leave) until 10-24 hours. As a result, the film formed on the surface of the negative electrode active material can be modified to a good quality, and the resistance of the negative electrode can be effectively reduced. Therefore, excellent battery performance (for example, cycle characteristics) can be realized. As a method for holding the battery assembly in the high temperature range, the same means as in the first inspection step can be used.

(S50)第2検査工程
ここでは、高温エージング工程後の電池組立体を常温域まで降温した後、電池組立体に少なくとも1回の定電流充放電を行う。これによって、高温エージング後の性能(典型的にはIV抵抗)を検出・把握することができる。なお、本工程における充放電条件(例えば電圧範囲や充放電電流値)は、上記第1検査工程と同様とすることができる。
(S50) Second Inspection Step Here, after the temperature of the battery assembly after the high-temperature aging step is lowered to a normal temperature range, the battery assembly is charged and discharged at a constant current at least once. Thereby, the performance (typically IV resistance) after high temperature aging can be detected and grasped. In addition, the charging / discharging conditions (for example, a voltage range and charging / discharging electric current value) in this process can be made the same as that of the said 1st test process.

(S60)良品判定工程
ここでは、先ず、第1検査工程の結果(IV抵抗値)と第2検査工程の結果(IV抵抗値)とを比較して、電池組立体の良否を判定する。例えば、高温エージング処理後のIV抵抗値から処理前のIV抵抗値を差し引いて、IV抵抗の増加量を算出する。これによって、製造条件に由来する何らかの影響(典型的には高温エージング)に起因する電池性能の変化を定量的に評価・把握することができる。
その後、上記抵抗増加量の算出結果に基づいて、良品判定のための基準値となる良品基準値を設定する。この良品基準値の設定方法は特に限定されないが、例えば、複数の電池組立体の抵抗増加量の算術平均値や中央値(メジアン)等を採用し得る。そして、かかる良品基準値と各電池組立体の抵抗増加量との差分を算出し、この差分が所定の閾値以下の場合にその電池組立体を「良」と判定し、この差分が所定の閾値を越える場合にその電池組立体を「不良」と判定する。閾値としては、対象とする電池の規格等にも依るが、例えば2σ〜3σ程度(σは標準偏差を意味する。)に相当する値を設定することができる。かかる手法によれば、個々の電池組立体の不良を発見し易くなる。このため、不具合品が良品と判定されることや、後の工程で必要以上に不具合品を発生させることを防止することができる。そして、かかる判定結果に基づいて「不良」と判定された電池組立体を取り除くことによって、不具合品が後の工程に流れることを防止することができ、信頼性の高い電池を提供することができる。
(S60) Non-defective Product Determination Step Here, first, the result of the first inspection step (IV resistance value) and the result of the second inspection step (IV resistance value) are compared to determine the quality of the battery assembly. For example, the IV resistance value before the process is subtracted from the IV resistance value after the high temperature aging process to calculate the increase amount of the IV resistance. Thereby, it is possible to quantitatively evaluate and grasp a change in battery performance due to some influence (typically high-temperature aging) derived from manufacturing conditions.
Thereafter, a non-defective product reference value that serves as a reference value for non-defective product determination is set based on the calculation result of the resistance increase amount. The method for setting the non-defective product reference value is not particularly limited. For example, an arithmetic average value or a median value (median) of resistance increase amounts of a plurality of battery assemblies may be employed. Then, the difference between the non-defective product reference value and the resistance increase amount of each battery assembly is calculated, and when the difference is equal to or less than a predetermined threshold value, the battery assembly is determined to be “good”, Is exceeded, the battery assembly is determined to be “defective”. The threshold value may be set to a value corresponding to, for example, about 2σ to 3σ (σ means standard deviation), although depending on the standard of the target battery. According to such a method, it becomes easy to find a defect of an individual battery assembly. For this reason, it is possible to prevent a defective product from being determined as a non-defective product and generating a defective product more than necessary in a later process. Then, by removing the battery assembly determined as “defective” based on the determination result, it is possible to prevent a defective product from flowing to a subsequent process, and to provide a highly reliable battery. .

ここで開示される方法によって製造された非水電解質二次電池は、信頼性に優れたものであり得る。したがって各種用途に好適に利用することができる。なかでも、理論容量が10〜100Ah程度の高容量型の電池、例えばプラグインハイブリッド自動車(PHV)等の車両に搭載されるモーター用の動力源(駆動用電源)として好適に用いることができる。   The nonaqueous electrolyte secondary battery manufactured by the method disclosed herein can be excellent in reliability. Therefore, it can be suitably used for various applications. In particular, it can be suitably used as a power source (drive power source) for a motor mounted on a high capacity battery having a theoretical capacity of about 10 to 100 Ah, such as a plug-in hybrid vehicle (PHV).

以下、ここで開示される電池の製造方法について、一実施形態としてのリチウムイオン電池を製造する場合を例に、より詳細に説明を行う。   Hereinafter, the manufacturing method of the battery disclosed here will be described in more detail by taking as an example the case of manufacturing a lithium ion battery as one embodiment.

正極活物質粉末としてのLi1.005Ni0.38Co0.32Mn0.30Zr0.005粉末と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、質量比率が91:6:3となるようにN−メチルピロリドン(NMP)と混合し、スラリー状組成物を調製した。この組成物を、厚み凡そ15μmの長尺状アルミニウム箔(正極集電体)に塗布して正極活物質層を形成した。得られた正極を乾燥およびプレスし、シート状の正極(正極シート)を作製した。 Li 1.005 Ni 0.38 Co 0.32 Mn 0.30 Zr 0.005 O 2 powder as the positive electrode active material powder, acetylene black (AB) as the conductive material, and polyvinylidene fluoride (PVdF) as the binder in a mass ratio of 91: 6 : It mixed with N-methylpyrrolidone (NMP) so that it might be set to 3, and the slurry-like composition was prepared. This composition was applied to a long aluminum foil (positive electrode current collector) having a thickness of about 15 μm to form a positive electrode active material layer. The obtained positive electrode was dried and pressed to produce a sheet-like positive electrode (positive electrode sheet).

次に、負極活物質としての無定形カーボン(1300℃焼成品)粉末と、スチレンブタジエンゴム(SBR)と、カルボキシメチルセルロース(CMC)とを、質量比率が98:1:1となるようにイオン交換水と混合して、スラリー状組成物を調製した。この組成物を、厚み凡そ10μmの長尺状銅箔(負極集電体)に塗布して負極活物質層を形成した。得られた負極を乾燥およびプレスし、シート状の負極(負極シート)を作製した。   Next, ion exchange is performed so that the amorphous carbon (fired at 1300 ° C.) powder, the styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) as the negative electrode active material have a mass ratio of 98: 1: 1. A slurry-like composition was prepared by mixing with water. This composition was applied to a long copper foil (negative electrode current collector) having a thickness of about 10 μm to form a negative electrode active material layer. The obtained negative electrode was dried and pressed to prepare a sheet-like negative electrode (negative electrode sheet).

次に、上記で作製した正極シートと負極シートとを、セパレータ(ここでは、ポリエチレン(PE)層の両面にポリプロピレン(PP)層が積層された三層構造の基材の片面に多孔質耐熱層を備えた構成のものを用い、該多孔質耐熱層が正極と対向するよう配置した。)を介して重ね合わせて捲回し、得られた捲回電極体を側面方向から押しつぶして拉げさせることによって扁平形状に成形した。そして、かかる捲回電極体の正極集電体の端部に正極端子を、負極集電体の端部に負極端子を溶接によりそれぞれ接合した。
この電極体を電池ケースに収容し、非水電解液を注入した。なお、非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを30:40:30の体積比率で含む混合溶媒に、電解質としてのLiPFを凡そ1mol/Lの濃度で溶解したものを用いた。そして、電池ケースの開口部に蓋体を装着し、溶接して接合することによって電池組立体を構築した(図1のS10)。
Next, the positive electrode sheet and the negative electrode sheet prepared above are combined with a separator (here, a porous heat-resistant layer on one side of a base material having a three-layer structure in which a polypropylene (PP) layer is laminated on both sides of a polyethylene (PE) layer) And is wound so that the porous heat-resistant layer faces the positive electrode.) And the resulting wound electrode body is crushed from the lateral direction and ablated. Was formed into a flat shape. And the positive electrode terminal was joined to the edge part of the positive electrode collector of this winding electrode body, and the negative electrode terminal was joined to the edge part of the negative electrode collector, respectively.
This electrode body was accommodated in a battery case and a non-aqueous electrolyte was injected. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 30:40:30, and LiPF 6 as an electrolyte are approximately. Those dissolved at a concentration of 1 mol / L were used. Then, a battery assembly was constructed by attaching a lid to the opening of the battery case and welding and joining (S10 in FIG. 1).

次に、上記構築した電池組立体に対して、25℃の温度下において、コンディショニング処理(ここでは、0.3Cの充電レートで4.2Vまで定電流定電圧で充電する操作と、0.3Cの放電レートで3.0Vまで定電流定電圧で放電する操作を3回繰り返す充放電処理)を行った後、正負極間の電圧を3.95Vに調整した(図1のS20)。このようにして、S10およびS20が同条件の非水電解質二次電池を2つ作製した。   Next, the battery assembly constructed as described above was conditioned at a constant current and a constant voltage up to 4.2 V at a charging rate of 0.3 C, and at a temperature of 25 ° C. The charge-discharge process of repeating the operation of discharging at a constant current and constant voltage up to 3.0 V at a discharge rate of 3 times was performed, and then the voltage between the positive and negative electrodes was adjusted to 3.95 V (S20 in FIG. 1). In this way, two nonaqueous electrolyte secondary batteries having the same conditions for S10 and S20 were produced.

<実施例>
本例では、上記構築した電池組立体を温度制御恒温槽内に設置して60℃まで昇温しながら、図2に示すようなパターンで定電流充放電を行い、IV抵抗を検出した。具体的には、先ず凡そ10分間の定電圧充電を行い、次に正負極間電圧が3.75Vに到達するまで60Aで定電流放電し、数分の短い休止を挟んだ後に、充電開始時の電圧(3.95V)まで60Aで定電流充電した。これを1サイクルとし、ここでは4回繰り返した(図1のS30)。その結果、60℃まで昇温するのに要した時間は凡そ98分だった。
<Example>
In this example, the battery assembly constructed as described above was placed in a temperature-controlled thermostat and heated to 60 ° C., and constant current charge / discharge was performed in a pattern as shown in FIG. 2 to detect IV resistance. Specifically, first, constant voltage charging is performed for approximately 10 minutes, then constant current discharging is performed at 60 A until the voltage between the positive and negative electrodes reaches 3.75 V, and after a short pause of several minutes, charging is started. The battery was charged at a constant current of 60 A up to a voltage (3.95 V). This was defined as one cycle, and was repeated four times here (S30 in FIG. 1). As a result, it took about 98 minutes to raise the temperature to 60 ° C.

<比較例>
本例では、上記構築した電池組立体を温度制御恒温槽内に設置して昇温のみを行った。その結果、60℃まで昇温するのに要した時間は、実施例の凡そ1.5倍に相当する150分だった。上記の結果から、ここで開示される第1検査工程を経ること(すなわち、昇温と同時に充放電を行うこと)によって、相対的に短時間で、電池組立体の温度を所望の温度まで上昇し得ることがわかった。
<Comparative example>
In this example, the battery assembly constructed as described above was installed in a temperature-controlled thermostat and only the temperature was raised. As a result, the time required to raise the temperature to 60 ° C. was 150 minutes, which is approximately 1.5 times that of the example. From the above results, the temperature of the battery assembly is raised to a desired temperature in a relatively short time by passing through the first inspection process disclosed herein (that is, charging and discharging at the same time as the temperature rise). I knew it could be.

次に、図2に示すように、上記実施例および比較例に係る電池構築体を昇温開始時からの経過時間が20時間となるまで60℃の環境下で保持し、高温エージング処理を行った(図1のS40)。
次に、図2に示すように、上記電池組立体を常温域まで降温した後、上記電池組立体に対して上記昇温時(第1検査工程)と同様の充放電パターンで定電流充放電を行い、IV抵抗を検出した(図1のS50)。そして、上記得られたIV抵抗値から高温エージング処理に依る抵抗増加量を算出することで、電池性能の変化を定量的に評価・把握することができた(図1のS60)。
Next, as shown in FIG. 2, the battery structures according to the above examples and comparative examples are held in an environment of 60 ° C. until the elapsed time from the start of temperature increase reaches 20 hours, and a high temperature aging treatment is performed. (S40 in FIG. 1).
Next, as shown in FIG. 2, after the battery assembly is cooled to a normal temperature range, the battery assembly is charged and discharged at a constant current with the same charge / discharge pattern as that at the time of the temperature increase (first inspection step). The IV resistance was detected (S50 in FIG. 1). Then, by calculating the amount of increase in resistance due to the high temperature aging process from the obtained IV resistance value, it was possible to quantitatively evaluate and grasp the change in battery performance (S60 in FIG. 1).

本発明に係る非水電解質二次電池(例えばリチウムイオン電池)は、大電流出力が可能であり、上記のとおり信頼性に優れることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用することができる。   The non-aqueous electrolyte secondary battery (for example, lithium ion battery) according to the present invention is capable of outputting a large current and is excellent in reliability as described above, so that it is particularly used for a motor (electric motor) mounted on a vehicle such as an automobile. It can be suitably used as a power source.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (1)

非水電解質二次電池を製造する方法であって:
常温域で、正極と負極を有する電極体と、非水電解質とを電池ケース内に収容する、電池組立体の構築工程;
常温域で、前記電池組立体に対して充電処理を行う、コンディショニング工程;
前記電池組立体を40℃以上の高温域まで昇温しながら、該組立体に対して少なくとも1回の定電流充放電を行うことでIV抵抗を検出する、第1検査工程;
前記電池組立体を前記高温域で少なくとも5時間保持する、高温エージング工程;
前記電池組立体を常温域まで降温した後、前記電池組立体に対して少なくとも1回の定電流充放電を行うことでIV抵抗を検出する、第2検査工程;および
前記第1検査工程の結果と前記第2検査工程の結果を比較して前記電池組立体の良否を判定し、不良と判定された電池組立体を除く工程;
を包含する、非水電解質二次電池の製造方法。
A method of manufacturing a non-aqueous electrolyte secondary battery comprising:
A process for constructing a battery assembly in which an electrode body having a positive electrode and a negative electrode and a nonaqueous electrolyte are housed in a battery case in a normal temperature range;
A conditioning process in which the battery assembly is charged in a room temperature range;
A first inspection step of detecting IV resistance by performing at least one constant current charging / discharging of the battery assembly while raising the temperature of the battery assembly to a high temperature range of 40 ° C. or higher;
A high temperature aging step of holding the battery assembly in the high temperature region for at least 5 hours;
A second inspection step of detecting IV resistance by performing at least one constant current charge / discharge on the battery assembly after the battery assembly is cooled to a normal temperature range; and a result of the first inspection step; Comparing the results of the second inspection step and determining the quality of the battery assembly and removing the battery assembly determined to be defective;
A method for producing a non-aqueous electrolyte secondary battery.
JP2013103797A 2013-05-16 2013-05-16 Method for manufacturing nonaqueous electrolyte secondary battery Pending JP2014225368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103797A JP2014225368A (en) 2013-05-16 2013-05-16 Method for manufacturing nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103797A JP2014225368A (en) 2013-05-16 2013-05-16 Method for manufacturing nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014225368A true JP2014225368A (en) 2014-12-04

Family

ID=52123905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103797A Pending JP2014225368A (en) 2013-05-16 2013-05-16 Method for manufacturing nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014225368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033881A (en) * 2015-08-05 2017-02-09 トヨタ自動車株式会社 Lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033881A (en) * 2015-08-05 2017-02-09 トヨタ自動車株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6256761B2 (en) Secondary battery inspection method and manufacturing method
JP6080017B2 (en) Method for producing non-aqueous secondary battery
JP6135929B2 (en) Method for producing non-aqueous secondary battery
JP5896024B2 (en) Charge control method and charge control device for secondary battery
JP6094817B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2015219971A (en) Method for manufacturing secondary cell
KR101881263B1 (en) Method of manufacturing nonaqueous secondary battery
JP2015008106A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6260835B2 (en) Screening method for reusable non-aqueous electrolyte secondary battery
US10132872B2 (en) Method for sorting reusable nonaqueous electrolyte secondary battery
JP2014238961A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2018073755A (en) Inspection method of lithium ion secondary battery
JP6478112B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2014192015A (en) Method for inspecting lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2005251538A (en) Inspection method and device of secondary cell
JP5978815B2 (en) Method for producing lithium ion secondary battery
JP2014225368A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP6249233B2 (en) Method for producing non-aqueous secondary battery
JP2015015084A (en) Method for manufacturing secondary battery
JP2016126881A (en) Nonaqueous electrolyte secondary battery
JP2016040756A (en) Manufacturing method of nonaqueous secondary battery
JP2020035566A (en) Reuse method of non-aqueous electrolyte secondary battery