JP2014224554A - Bolt for evaluation of fastening characteristic, and method of manufacturing the same - Google Patents

Bolt for evaluation of fastening characteristic, and method of manufacturing the same Download PDF

Info

Publication number
JP2014224554A
JP2014224554A JP2013103342A JP2013103342A JP2014224554A JP 2014224554 A JP2014224554 A JP 2014224554A JP 2013103342 A JP2013103342 A JP 2013103342A JP 2013103342 A JP2013103342 A JP 2013103342A JP 2014224554 A JP2014224554 A JP 2014224554A
Authority
JP
Japan
Prior art keywords
bolt
tightening
evaluation
region
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013103342A
Other languages
Japanese (ja)
Other versions
JP6025653B2 (en
Inventor
浩一 横田
Koichi Yokota
浩一 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Heavy Industry Co Ltd
Original Assignee
Matsumoto Heavy Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Heavy Industry Co Ltd filed Critical Matsumoto Heavy Industry Co Ltd
Priority to JP2013103342A priority Critical patent/JP6025653B2/en
Publication of JP2014224554A publication Critical patent/JP2014224554A/en
Application granted granted Critical
Publication of JP6025653B2 publication Critical patent/JP6025653B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide means capable of easily and inexpensively evaluating a fastening characteristic with high accuracy under a condition close to an actual use condition.SOLUTION: An evaluation bolt 7 is used to evaluate a fastening characteristic of a bolt for fastening fastened members 15, 17 by plastic region fastening, by using a strain gauge 1. The evaluation bolt 7 is manufactured by using a bolt according to specifications same as those of a mass-produced bolt actually used to fasten the fastened members 15, 17, as material. A strength of a hardened portion 23 including a strain gauge mounting area, of the evaluation bolt 7 is made higher than a strength of an area excluding the hardened portion 23, by hardening, and tempering thereafter. The thermally-refined portion 23 is formed on a columnar portion 13 between a seat surface of a head portion 11 and a screw portion 12 of the evaluation bolt 7. The strength of the hardened portion 23 is preferably 1.1 times or more a strength of the other region.

Description

本発明は、塑性域締め付けにより被締結部材を締結するための金属製のボルトの締め付け特性を、歪ゲージを用いて評価するための締め付け特性評価用ボルトと、該締め付け特性評価用ボルトの製造方法とに関するものである。   The present invention relates to a tightening characteristic evaluation bolt for evaluating a tightening characteristic of a metal bolt for fastening a member to be fastened by plastic region tightening using a strain gauge, and a manufacturing method of the tightening characteristic evaluation bolt It is about.

一般に、自動車や産業機器等の製造又は組み立てに際しては、種々の被締結部材がボルトで締結される。そして、ボルトで被締結部材を高精度で締め付けることが要求される場合、すなわちボルトの締め付け軸力のバラツキが小さいことが要求される場合は、通常、ボルトが塑性変形するまで締め付ける塑性域締め付け、例えば回転角度法による塑性域締め付けが用いられるが(例えば、特許文献1、2参照。)、このような塑性域締め付けを行うと、ボルトに永久的な変形である塑性伸びが生じる。   Generally, when manufacturing or assembling an automobile or industrial equipment, various members to be fastened are fastened with bolts. And when it is required to fasten the fastened member with a bolt with high accuracy, that is, when it is required that the variation in the tightening axial force of the bolt is small, usually the plastic region tightening until the bolt is plastically deformed, For example, plastic region tightening by the rotation angle method is used (see, for example, Patent Documents 1 and 2). However, when such plastic region tightening is performed, plastic elongation, which is a permanent deformation, occurs in the bolt.

ところで一方、自動車や産業機器等においては、通常、その修理や点検のために、ボルトで締結された複数の被締結部材の分解と再組み立てとが繰り返される。この場合、塑性域締め付けにより被締結部材を締結するたびにボルトの塑性伸びが累積されてゆく。このようにボルトの塑性伸びが累積されると、ボルト材料の加工硬化により、同一の回転角に対するボルトの締付け軸力が次第に上昇してゆく。そして、ボルトの締め付け軸力が極限締め付け軸力に到達すると、このボルトはもはやその機能を完全には果たすことができなくなるので、新しいボルトと交換しなければならない。このため、自動車や産業機器等の製造又は組み立てに塑性域締め付けを用い場合は、ボルトをどの程度まで再使用することができるかを正確に事前評価する必要がある。   On the other hand, in automobiles, industrial equipment, and the like, usually, for repair and inspection, disassembly and reassembly of a plurality of fastened members fastened with bolts are repeated. In this case, the plastic elongation of the bolt is accumulated every time the member to be fastened is fastened by plastic region fastening. When the plastic elongation of the bolt is accumulated in this way, the bolt tightening axial force for the same rotation angle gradually increases due to work hardening of the bolt material. And when the bolt tightening axial force reaches the ultimate tightening axial force, the bolt can no longer fully perform its function and must be replaced with a new bolt. For this reason, when using plastic region tightening for manufacturing or assembling automobiles or industrial equipment, it is necessary to accurately evaluate in advance how much the bolt can be reused.

特開平10−299740号公報Japanese Patent Laid-Open No. 10-299740 特開2012−77797号公報JP 2012-77797 A

そして、ボルトの塑性域締め付けを繰り返す場合、毎回の塑性域締め付けにおいてボルトに生じる塑性伸び量を安定させること、すなわち予め設定された塑性伸び量を確実に発生させることが必要であるが、塑性伸び量を安定させるためには適正な締め付け仕様を設定することが必要である。そして、適正な締め付け仕様を設定するためには、高精度な締め付け特性の評価が必要であり、高精度な評価を行うためには、実際の使用条件に近い条件での締め付け特性を測定ないしは評価することが必要である。   When the bolt is repeatedly tightened in the plastic region, it is necessary to stabilize the amount of plastic elongation generated in the bolt in each tightening of the plastic region, that is, to reliably generate a preset amount of plastic elongation. In order to stabilize the amount, it is necessary to set an appropriate tightening specification. In order to set an appropriate tightening specification, it is necessary to evaluate the tightening characteristics with high accuracy. To perform a highly accurate evaluation, the tightening characteristics under conditions close to actual use conditions are measured or evaluated. It is necessary to.

しかしながら、現時点では、実際の使用条件に近い条件で高精度な締め付け特性の評価を容易にかつ低コストで行うことを可能にする手段は見当たらない。本発明は、このような事情に鑑みてなされたものであって、実際の使用条件に近い条件で高精度な締め付け特性の評価を容易にかつ低コストで行うことを可能にする手段を提供することを解決すべき課題とする。   However, at present, no means has been found that makes it possible to easily and inexpensively evaluate the fastening characteristics with high accuracy under conditions close to actual use conditions. The present invention has been made in view of such circumstances, and provides a means that makes it possible to easily and cost-effectively evaluate tightening characteristics under conditions close to actual use conditions. This is a problem to be solved.

上記課題を解決するためになされた本発明に係る締め付け特性評価用ボルト(以下「評価用ボルト」という。)は、塑性域締め付けにより被締結部材を締結するための金属製のボルトの締め付け特性を、歪ゲージを用いて評価するために用いられる。この評価用ボルトは、被締結部材を実際に締結するボルト(量産ボルト)と同一の外形を有するとともに該ボルトと同一の材料で形成されている。そして、この評価用ボルトにおいては、歪ゲージが装着される部位(以下「歪ゲージ装着部位」という。)を含む評価用ボルトの部分領域(以下「強化領域」という。)の強度が、高周波焼き入れにより、評価用ボルトの強化領域以外の領域(以下「非強化領域」という。)の強度より高められている。   The fastening characteristic evaluation bolt (hereinafter referred to as “evaluation bolt”) according to the present invention, which has been made to solve the above-mentioned problems, has a fastening characteristic of a metal bolt for fastening a member to be fastened by plastic region fastening. Used to evaluate using strain gauges. This evaluation bolt has the same outer shape as a bolt (mass production bolt) that actually fastens the member to be fastened, and is formed of the same material as the bolt. In this evaluation bolt, the strength of the partial region (hereinafter referred to as “strengthening region”) of the evaluation bolt including the region where the strain gauge is mounted (hereinafter referred to as “strain gauge mounting region”) is high-frequency baked. By inserting, the strength of the region other than the reinforced region of the evaluation bolt (hereinafter referred to as “non-reinforced region”) is increased.

本発明に係る評価用ボルトにおいては、歪ゲージ装着部位を含む強化領域を、ボルト軸線方向に関して評価用ボルトの座面とねじ部との間の円柱部(軸部)に形成するのが好ましい。本発明に係る評価用ボルトにおいては、強化領域の強度が非強化領域の強度の1.1倍以上であるのが好ましい。また、強化領域のボルト軸線方向の長さは、評価用ボルトのねじ部の呼び径(雄ねじの外径)の0.5倍以上であるのが好ましい。   In the evaluation bolt according to the present invention, it is preferable that the reinforced region including the strain gauge mounting portion is formed in a cylindrical portion (shaft portion) between the seat surface of the evaluation bolt and the screw portion in the bolt axial direction. In the evaluation bolt according to the present invention, the strength of the reinforced region is preferably 1.1 times or more than the strength of the non-reinforced region. Moreover, it is preferable that the length of the reinforced region in the bolt axis direction is 0.5 times or more the nominal diameter of the thread portion of the evaluation bolt (the outer diameter of the male screw).

本発明に係る塑性域締め付けにより被締結部材を締結するための金属製のボルトの締め付け特性を、歪ゲージを用いて評価するための評価用ボルトの製造方法は、次の各工程を備えている。
(1) 被締結部材の締結に用いられるボルトと同一仕様のボルト(すなわち量産ボルト)を評価用ボルト素材として準備する工程。
(2) 評価用ボルト素材の歪ゲージ装着部位を決定する工程。
(3) 歪ゲージ装着部位を含む評価用ボルト素材の強化領域に高周波焼き入れ処理を施して、該強化領域の強度を非強化領域の強度より高める工程。
An evaluation bolt manufacturing method for evaluating the tightening characteristics of a metal bolt for fastening a member to be fastened by plastic region tightening according to the present invention using a strain gauge includes the following steps. .
(1) A step of preparing, as an evaluation bolt material, a bolt having the same specification as that of a bolt used for fastening a member to be fastened (that is, a mass production bolt).
(2) A step of determining a strain gauge mounting portion of the bolt material for evaluation.
(3) A step of subjecting the reinforced region of the evaluation bolt material including the strain gauge mounting portion to induction hardening to increase the strength of the reinforced region over the strength of the non-reinforced region.

本発明に係る評価用ボルトの製造方法においては、強化領域に高周波焼き入れ処理を施した後、該強化領域に焼き戻し処理を施すのが好ましい。ここで、歪ゲージ装着部位を含む強化領域は、ボルト軸線方向に関して評価用ボルト素材の座面とねじ部との間の円柱部に形成するのが好ましい。この評価用ボルトの製造方法においては、強化領域の強度が非強化領域の強度の1.1倍以上となるように、高周波焼き入れ処理ないし焼き戻し処理を施すのが好ましい。また、強化領域のボルト軸線方向の長さは、評価用ボルト素材のねじ部の呼び径の0.5倍以上に設定するのが好ましい。   In the evaluation bolt manufacturing method according to the present invention, it is preferable to subject the strengthened region to a tempering process after the strengthened region is subjected to induction hardening. Here, the reinforced region including the strain gauge mounting portion is preferably formed in a cylindrical portion between the seat surface of the bolt material for evaluation and the screw portion in the bolt axial direction. In this evaluation bolt manufacturing method, it is preferable to perform induction hardening or tempering so that the strength of the reinforced region is 1.1 times or more the strength of the non-reinforced region. Moreover, it is preferable to set the length of the reinforced region in the bolt axis direction to 0.5 times or more the nominal diameter of the threaded portion of the bolt material for evaluation.

本発明に係る評価用ボルトは、被締結部材の締結に実際に用いられるボルト(量産ボルト)と同一の外形を有するとともに該ボルトと同一の材料で形成されている。例えば、量産ボルトそのものが、評価用ボルトの素材として用いられる。このため、実際にボルトで締め付けを行うときとほぼ同様の締め付け状態で締め付け特性を評価することができる。したがって、本発明に係る評価用ボルトを用いれば、実際の使用条件に近い条件で高精度なボルトの締め付け特性の評価を容易にかつ低コストで行うことができる。   The evaluation bolt according to the present invention has the same outer shape as a bolt (mass production bolt) actually used for fastening the member to be fastened, and is formed of the same material as the bolt. For example, the mass production bolt itself is used as a material for the evaluation bolt. For this reason, it is possible to evaluate the tightening characteristics under substantially the same tightening state as when actually tightening with bolts. Therefore, if the evaluation bolt according to the present invention is used, it is possible to easily and accurately evaluate the tightening characteristics of the bolt under conditions close to actual use conditions.

また、歪ゲージ装着部位を含む強化領域の強度が、高周波焼き入れにより、ねじ部等の非強化領域の強度より高められている。このため、評価用ボルトの締め付け特性評価試験において、評価用ボルトで被締結部材を締め付けたときに、ねじ部に塑性変形が生じた後も、歪ゲージ装着部位のまわりの部分に塑性変形が生じない。その結果、歪ゲージで評価用ボルトに生じる軸力を正確に測定することができ、締め付け特性を正確に評価することができ、適正な締め付け仕様を設定することができる。   In addition, the strength of the reinforced region including the strain gauge mounting portion is higher than the strength of the non-reinforced region such as the threaded portion by induction hardening. For this reason, in the tightening characteristic evaluation test of the evaluation bolt, when the member to be fastened is tightened with the evaluation bolt, the plastic deformation is generated in the portion around the strain gauge mounting portion even after the thread portion is plastically deformed. Absent. As a result, the axial force generated in the evaluation bolt can be accurately measured with the strain gauge, the tightening characteristics can be accurately evaluated, and an appropriate tightening specification can be set.

本発明に係る評価用ボルトの製造方法によれば、被締結部材の締結に実際に用いられるボルトと同一の仕様のボルト(すなわち、量産ボルトそのもの)が評価用ボルト素材として用いられる。すなわち、この製造方法によって製造される評価用ボルトは、実際に用いられるボルトを部分的に若干改質しただけのものである。したがって、本発明に係る製造方法により製造された評価用ボルトを用いれば、実際に用いられるボルトで締め付けを行うときと実質的に同一の締め付け状態で締め付け特性を評価することができる。このため、実際の使用条件に非常に近い条件で高精度なボルトの締め付け特性の評価を容易にかつ低コストで行うことができる。   According to the evaluation bolt manufacturing method of the present invention, a bolt having the same specification as that of a bolt actually used for fastening a member to be fastened (that is, a mass production bolt itself) is used as an evaluation bolt material. In other words, the bolt for evaluation manufactured by this manufacturing method is a partially modified version of the actually used bolt. Therefore, if the evaluation bolt manufactured by the manufacturing method according to the present invention is used, the tightening characteristics can be evaluated in substantially the same tightening state as when tightening with the bolt that is actually used. For this reason, it is possible to easily evaluate the tightening characteristics of the bolt with high accuracy under conditions very close to the actual use conditions at low cost.

また、歪ゲージ装着部位を含む強化領域の強度が、高周波焼き入れにより、ねじ部等の非強化領域の強度より高められる。このため、評価用ボルトの締め付け特性評価試験において、評価用ボルトで被締結部材を締め付けたときに、ねじ部に塑性変形が生じた後も、歪ゲージ装着部位のまわりの部分に塑性変形が生じない。その結果、歪ゲージで評価用ボルトに生じる軸力を正確に測定することができ、締め付け特性を正確に評価することができ、適正な締め付け仕様を設定することができる。   In addition, the strength of the reinforced region including the strain gauge mounting portion is increased from the strength of the non-reinforced region such as the threaded portion by induction hardening. For this reason, in the tightening characteristic evaluation test of the evaluation bolt, when the member to be fastened is tightened with the evaluation bolt, the plastic deformation is generated in the portion around the strain gauge mounting portion even after the thread portion is plastically deformed. Absent. As a result, the axial force generated in the evaluation bolt can be accurately measured with the strain gauge, the tightening characteristics can be accurately evaluated, and an appropriate tightening specification can be set.

回転角度法で塑性域締め付けを行う場合における、締め付け回転角に対する締め付けトルク及び締め付け軸力の変化特性を示すグラフである。It is a graph which shows the change characteristic of the fastening torque with respect to a fastening rotation angle, and a fastening axial force in the case of performing plastic area fastening by a rotation angle method. 回転角度法で塑性域締め付けと締め付けの解除とを8回繰り返した場合に、締め付け回転角に対する締め付け軸力の変化特性がどのように変化してゆくかを示すグラフである。It is a graph which shows how the change characteristic of the fastening axial force changes with respect to the fastening rotation angle when the plastic region fastening and the release of fastening are repeated eight times by the rotational angle method. 回転角度法で塑性域締め付けを行う場合における、締め付け回転角に対する締め付け軸力と、締め付けトルク対する締め付け軸力の変化特性とを互いに関連付けて示すグラフである。FIG. 5 is a graph showing the tightening axial force with respect to the tightening rotation angle and the change characteristic of the tightening axial force with respect to the tightening torque in association with each other when performing plastic region tightening by the rotation angle method. 評価用ボルトによる塑性域締め付けを行う際に、評価用ボルトに装着される歪ゲージの模式的な立面図である。FIG. 4 is a schematic elevation view of a strain gauge attached to an evaluation bolt when performing plastic region tightening with an evaluation bolt. 呼び径ボルト(円柱部の直径とねじ部の呼び径とがほぼ等しいボルト)の斜視図である。It is a perspective view of a nominal diameter bolt (bolt with the diameter of a cylindrical part and the nominal diameter of a thread part substantially equal). 有効径ボルト(円柱部の直径とねじ部の有効径とがほぼ等しいボルト)の斜視図である。It is a perspective view of an effective diameter volt | bolt (bolt in which the diameter of a cylinder part and the effective diameter of a thread part are substantially equal). 2つの被締結部材を締結している状態における、歪ゲージを装着した評価用ボルトの立面断面図である。It is an elevational sectional view of an evaluation bolt equipped with a strain gauge in a state where two members to be fastened are fastened. 歪ゲージによって測定される評価用ボルトの締め付け軸力の締め付け回転角に対する変化特性を示すグラフである。It is a graph which shows the change characteristic with respect to the fastening rotation angle of the fastening axial force of the bolt for evaluation measured with a strain gauge. 円柱部の歪ゲージ装着部位付近に太軸部が設けられた評価用ボルト(有効径ボルト)の斜視図である。It is a perspective view of an evaluation bolt (effective diameter bolt) in which a thick shaft portion is provided in the vicinity of a strain gauge mounting portion of a cylindrical portion. 2つの被締結部材を締結している状態における、太軸部に歪ゲージが装着された図9に示す評価用ボルトの立面断面図である。FIG. 10 is an elevational cross-sectional view of the evaluation bolt shown in FIG. 9 in which a strain gauge is attached to the thick shaft portion in a state where two fastened members are fastened. 2つの被締結部材を締結している状態における、円柱部の調質部(強化領域)に歪ゲージが装着された評価用ボルトの立面断面図である。It is an elevational sectional view of an evaluation bolt in which a strain gauge is attached to a tempered portion (strengthened region) of a cylindrical portion in a state where two fastened members are fastened. 円柱部に調質部(強化領域)が設けられた4種の評価用ボルトのロックウェル硬度(HRC)を示すグラフである。It is a graph which shows the Rockwell hardness (HRC) of four types of evaluation bolts in which the tempered part (strengthening area | region) was provided in the cylindrical part. 円柱部に調質部(強化領域)が設けられた4種の評価用ボルトのビッカース硬度(HV)を示すグラフである。It is a graph which shows the Vickers hardness (HV) of four types of bolts for evaluation in which the tempered part (strengthening area | region) was provided in the cylindrical part. (a)及び(b)は、高周波焼き入れのみにより調質部(強化領域)が形成された評価用ボルトの締め付け特性評価試験を行った結果を示すグラフである。(A) And (b) is a graph which shows the result of having performed the fastening characteristic evaluation test of the volt | bolt for evaluation in which the tempered part (strengthening area | region) was formed only by induction hardening. (a)及び(b)は、高周波焼き入れとこの後の焼き戻し(215℃)とにより調質部(強化領域)が形成された評価用ボルトの締め付け特性評価試験を行った結果を示すグラフである。(A) And (b) is a graph which shows the result of having performed the fastening characteristic evaluation test of the bolt for evaluation in which the tempered part (strengthening area | region) was formed by induction hardening and subsequent tempering (215 degreeC). It is. (a)及び(b)は、高周波焼き入れとこの後の焼き戻し(265℃)とにより調質部(強化領域)が形成された評価用ボルトの締め付け特性評価試験を行った結果を示すグラフである。(A) And (b) is a graph which shows the result of having performed the fastening characteristic evaluation test of the bolt for evaluation in which the tempered part (strengthening area | region) was formed by induction hardening and subsequent tempering (265 degreeC). It is. (a)及び(b)は、高周波焼き入れとこの後の焼き戻し(300℃)とにより調質部(強化領域)が形成された評価用ボルトの締め付け特性評価試験を行った結果を示すグラフである。(A) And (b) is a graph which shows the result of having performed the fastening characteristic evaluation test of the bolt for evaluation in which the tempered part (strengthening area | region) was formed by induction hardening and subsequent tempering (300 degreeC). It is.

以下、添付の図面を参照しつつ本発明の実施形態を具体的に説明する。本発明に係る評価用ボルト(締め付け特性評価用ボルト)は、例えば自動車や産業機器等の製造又は組み立てに際して塑性域締め付けにより被締結部材を締結するためのボルトの締め付け特性を、歪ゲージを用いて評価するために用いられるものである。まず、回転角度法により塑性域締め付けを行う場合における、ボルトの挙動ないしは締め付け特性の特徴を説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The evaluation bolt according to the present invention (tightening characteristic evaluation bolt) uses, for example, a strain gauge for tightening characteristics of a bolt for fastening a member to be fastened by plastic region fastening when manufacturing or assembling an automobile or industrial equipment. It is used for evaluation. First, the behavior of the bolt or the characteristics of the tightening characteristics when the plastic region is tightened by the rotation angle method will be described.

図1は、回転角度法により塑性域締め付けを行う場合における、締め付け回転角θ(以下「回転角θ」という。)に対する締め付けトルクT(以下「トルクT」という。)及び締め付け軸力F(以下「軸力F」という。)の変化特性を示している。図1に示す例では、回転角θがθyとなったときに、ボルトは降伏点に到達し、降伏締め付け軸力Fy及び降伏締め付けトルクTyが生じている。したがって、回転角θがθy以下の領域は弾性域締め付け領域であり、θyを超える領域は塑性域締め付け領域である。また、θstはスナグトルク点に対応する回転角θを示し、θuは極限締め付け軸力Fuないしは極限締め付けトルクTuに対応する回転角θを示している。なお、「スナグトルク」は、回転角度法で締め付けを行う前に、比較的小さいトルクで締め付けを行って被締結部材間の各隙間をなくし、回転角θと軸力Fとの間に直線的な比例関係が生じるようにするためのトルクである。   FIG. 1 shows a tightening torque T (hereinafter referred to as “torque T”) and a tightening axial force F (hereinafter referred to as “rotation angle θ”) with respect to a tightening rotation angle θ (hereinafter referred to as “rotation angle θ”) in the case of performing plastic region tightening by the rotation angle method. The change characteristic of “axial force F” is shown. In the example shown in FIG. 1, when the rotation angle θ becomes θy, the bolt reaches the yield point, and the yield tightening axial force Fy and the yield tightening torque Ty are generated. Therefore, the region where the rotation angle θ is equal to or less than θy is the elastic region tightening region, and the region exceeding θy is the plastic region tightening region. Θst represents the rotation angle θ corresponding to the snag torque point, and θu represents the rotation angle θ corresponding to the ultimate tightening axial force Fu or the ultimate tightening torque Tu. Note that the “snugging torque” is a linear relationship between the rotation angle θ and the axial force F by tightening with a relatively small torque before the tightening by the rotation angle method to eliminate each gap between the fastened members. This is a torque for causing a proportional relationship to occur.

本発明の対象となるボルトは、被締結部材を締結するときに、回転角θがθyを超えて、例えばθcとなるまで被締結部材を締め付けて塑性変形すること、すなわち塑性域締め付けを行うことが予定されているボルトである。この場合、ボルトの軸力Fのバラツキが小さい高精度の締め付けを行うことができるが、ボルトには永久変形である塑性伸びが生じる。したがって、同じボルトで塑性域締め付けと締め付けの解除とを繰り返すと、塑性域締め付けを行うたびにボルトの塑性伸びが累積されてゆく。   When fastening a member to be fastened, the bolt subject to the present invention is to be plastically deformed by tightening the member to be fastened until the rotation angle θ exceeds θy, for example, θc, that is, to perform plastic region fastening. Are planned bolts. In this case, it is possible to perform high-precision tightening with a small variation in the axial force F of the bolt, but the bolt undergoes plastic elongation, which is a permanent deformation. Therefore, when the plastic region tightening and the releasing of the tightening are repeated with the same bolt, the plastic elongation of the bolt is accumulated every time the plastic region tightening is performed.

このようにボルトに塑性伸びが累積されると、ボルトの素材の加工硬化により、同一の回転角θに対する軸力Fが次第に上昇してゆく。そして、ボルトの軸力Fが極限締め付け軸力Fuに到達すると、このボルトはもはやその機能を完全には果たすことができないので新たなボルトと交換しなければならない。したがって、同じボルトで塑性域締め付けを繰り返す場合、締め付けを行うことができる回数(再使用回数)は、極限締め付け軸力Fuが発生したときの回数より1回少ない回数である。なお、ボルトの軸力Fが極限締め付け軸力Fuに到達した後に、さらにボルトの塑性域締め付けと締め付けの解除とを繰り返すと、軸力Fは次第に低下してゆき、最終的にはボルトが破断することになる。   When plastic elongation is accumulated in this way, the axial force F with respect to the same rotation angle θ gradually increases due to work hardening of the bolt material. When the axial force F of the bolt reaches the ultimate tightening axial force Fu, the bolt can no longer fully perform its function and must be replaced with a new bolt. Therefore, when the plastic region tightening is repeated with the same bolt, the number of times that the tightening can be performed (the number of reuses) is one less than the number of times when the ultimate tightening axial force Fu is generated. When the bolt axial force F reaches the ultimate tightening axial force Fu, if the bolt is further tightened in the plastic region and the tightening is released, the axial force F gradually decreases and eventually the bolt breaks. Will do.

図2は、同じボルトを用いて塑性域締め付けと締め付けの解除とを8回繰り返した場合に、回転角θに対する軸力Fの変化特性がどのように変化してゆくかを示している。図2において、Δθは、初回の締め付けを行った場合のボルトの塑性伸び量に対応する回転角を示している。また、図2に示す例では、8回目の締め付けを行ったときに、軸力Fが極限締め付け軸力Fuに到達している。したがって、このボルトでは、問題なく塑性域締め付けを行うことができる回数は7回である。なお、軸力Fが極限締め付け軸力Fu又はその付近に達した場合、ボルトの最小断面部(有効径ボルトの場合はねじ部)には局部的な断面減少が生じ、その部位での実応力(真応力)は急激に増大する。図2中の2点鎖線は、このように増大する実応力を示している。実応力が増大したボルトは、疲労破壊や遅れ破壊を起こす可能性があるので用いることはできない。   FIG. 2 shows how the change characteristic of the axial force F with respect to the rotation angle θ changes when the plastic region tightening and the tightening release are repeated eight times using the same bolt. In FIG. 2, Δθ represents a rotation angle corresponding to the plastic elongation amount of the bolt when the first tightening is performed. In the example shown in FIG. 2, the axial force F reaches the ultimate tightening axial force Fu when the eighth tightening is performed. Therefore, with this bolt, the number of times that the plastic region can be tightened without any problem is seven times. Note that when the axial force F reaches or near the ultimate tightening axial force Fu, a local cross-sectional reduction occurs in the minimum cross-sectional portion of the bolt (in the case of an effective diameter bolt), and the actual stress at that portion (True stress) increases rapidly. The two-dot chain line in FIG. 2 indicates the actual stress that increases in this way. Bolts with increased actual stress cannot be used because they may cause fatigue failure or delayed failure.

かくして、塑性域締付けにおいては、毎回の塑性域締付けでボルトに生じる塑性伸び量を安定させること、すなわち設定した伸び量を確実に発生させることが必要であり、塑性伸びを安定させるためには適正な締付け仕様を設定することが必要である。そして、適正な締付け仕様を設定するためには、高精度な締付け特性の評価が必要であり、高精度な評価を行うためには、実際の使用条件に近い条件で締め付け特性を測定ないしは評価することが必要である。とくに、ボルトと被締結部材ないしは被螺入体(例えば、ナット等)との間の摩擦係数、降伏締め付け軸力、極限締め付け軸力等は、締め付け仕様の設定に大きな影響を与える項目であるので、正確に測定ないしは評価する必要がある。   Thus, in plastic region tightening, it is necessary to stabilize the amount of plastic elongation generated in the bolt in each plastic region tightening, that is, to reliably generate the set amount of elongation. It is necessary to set a proper tightening specification. In order to set appropriate tightening specifications, it is necessary to evaluate the tightening characteristics with high accuracy. To perform high-precision evaluation, the tightening characteristics are measured or evaluated under conditions close to actual use conditions. It is necessary. In particular, the coefficient of friction between the bolt and the member to be fastened or the member to be screwed (for example, a nut), the yield tightening axial force, the ultimate tightening axial force, etc. are items that greatly affect the setting of the tightening specifications. It is necessary to measure or evaluate accurately.

図3は、回転角度法で塑性域締め付けを行う場合における、トルクTに対する軸力Fの変化特性と、回転角θに対する軸力Fの変化特性とを関連付けて示している。図3において縦軸より右側のグラフは、トルクTに対する軸力Fの変化特性が、ボルトと被締結部材ないしは被螺入体との間の摩擦係数μによってどのように変化するかを示している。なお、図3においてμminは摩擦係数μの最小値を示し、μmaxは摩擦係数μの最大値を示している。図3から明らかなとおり、同一のトルクTに対する軸力Fは、摩擦係数μが小さいと大きくなり、摩擦係数μが大きいと小さくなる。例えば、ボルトを同一のスナグトルクTstで締め付けた場合、摩擦係数μが最小値μminであれば発生する軸力FはF1となり、摩擦係数μが最大値μmaxであればF2(<F1)となる。   FIG. 3 shows the change characteristic of the axial force F with respect to the torque T and the change characteristic of the axial force F with respect to the rotation angle θ in association with the plastic region tightening by the rotation angle method. The graph on the right side of the vertical axis in FIG. 3 shows how the change characteristic of the axial force F with respect to the torque T changes depending on the friction coefficient μ between the bolt and the member to be fastened or the screwed body. . In FIG. 3, μmin represents the minimum value of the friction coefficient μ, and μmax represents the maximum value of the friction coefficient μ. As is apparent from FIG. 3, the axial force F with respect to the same torque T increases as the friction coefficient μ decreases, and decreases as the friction coefficient μ increases. For example, when the bolts are tightened with the same snag torque Tst, the generated axial force F is F1 if the friction coefficient μ is the minimum value μmin, and F2 (<F1) if the friction coefficient μ is the maximum value μmax.

図3において縦軸より左側のグラフは、回転角度法で塑性域締め付けを行う場合における、回転角θに対する軸力Fの変化特性を示している。この塑性域締め付けにおいては、まずスナグトルクで締め付けを行い、さらに回転角度法による制御で塑性域締め付けを行って締め付けを完了している。ここで、摩擦係数μが小さい場合、例えば最小値μminである場合は、スナグトルクTstで締め付けたときに発生する軸力FはF1である。この後、さらにボルトを締め付けると、軸力Fは降伏締め付け軸力に到達するが、この締め付けに対応する回転角の増分はΔθ1である。そして、さらにボルト(又は被螺入体)を回転させて締め付けると、その分だけ塑性伸びが生じる。この場合、初回の締め付けでボルトに発生させるべき塑性伸び量を予め決定しておき、その塑性伸び量が発生するようにボルト(又は被螺入体)を回転させて締め付ける。   The graph on the left side of the vertical axis in FIG. 3 shows the change characteristics of the axial force F with respect to the rotation angle θ when the plastic region is tightened by the rotation angle method. In this plastic region tightening, first, tightening is performed with a snug torque, and then tightening is completed by performing plastic region tightening with control by a rotation angle method. Here, when the friction coefficient μ is small, for example, when it is the minimum value μmin, the axial force F generated when tightened with the snag torque Tst is F1. Thereafter, when the bolt is further tightened, the axial force F reaches the yield tightening axial force, but the rotation angle increment corresponding to this tightening is Δθ1. Further, when the bolt (or a member to be screwed) is further rotated and tightened, plastic elongation is generated accordingly. In this case, the amount of plastic elongation to be generated in the bolt by the first tightening is determined in advance, and the bolt (or the screwed body) is rotated and tightened so that the amount of plastic elongation is generated.

他方、摩擦係数μが大きい場合、例えば最大値μmaxである場合は、スナグトルクTstで締め付けたときに発生する軸力FはF2である。この後、さらにボルトを締め付けると、軸力Fは降伏締め付け軸力に到達するが、この締め付けに対応する回転角の増分はΔθ2である。図3から明らかなとおり、摩擦係数μが最大値μmaxであるときの回転角の増分θ2は、最小値μminであるときの回転角の増分Δθ1よりαだけ大きくなっている。   On the other hand, when the friction coefficient μ is large, for example, when it is the maximum value μmax, the axial force F generated when tightening with the snag torque Tst is F2. Thereafter, when the bolt is further tightened, the axial force F reaches the yield tightening axial force, but the increment of the rotation angle corresponding to this tightening is Δθ2. As apparent from FIG. 3, the rotation angle increment θ2 when the friction coefficient μ is the maximum value μmax is larger than the rotation angle increment Δθ1 when the friction coefficient μ is the minimum value μmin by α.

ここで、例えば、締め付け仕様を、スナグトルクTstで締め付けを行った後、回転角の増分がΔθ1となるまでさらに締め付けを行うように設定したとする。締め付け仕様をこのように設定した場合、摩擦係数μが最小値μminであれば、回転角度の増分をΔθ1とする締め付けにより、軸力Fは降伏締め付け軸力に到達するので、被締結部材を適切に締結することができる。しかしながら、摩擦係数μが最大値μmaxであれば、軸力Fを降伏締め付け軸力に到達させるためには回転角の度増分をΔθ2とする締め付けを行うことが必要であるので、締め付け仕様に従って回転角の増分をΔθ1とする締め付けを行ったのでは、軸力Fは降伏締め付け軸力には到達せず、被締結部材を適切に締結することができない。   Here, for example, it is assumed that the tightening specification is set such that after tightening with the snag torque Tst, further tightening is performed until the rotation angle increment becomes Δθ1. When the tightening specifications are set in this way, if the friction coefficient μ is the minimum value μmin, the axial force F reaches the yield tightening axial force by tightening the rotation angle increment to Δθ1, so that the member to be fastened is appropriately Can be fastened. However, if the friction coefficient μ is the maximum value μmax, in order to reach the axial force F to the yield tightening axial force, it is necessary to perform tightening with an increment of the rotation angle of Δθ2, and thus the rotation according to the tightening specification. If tightening is performed with an angle increment of Δθ1, the axial force F does not reach the yield tightening axial force, and the fastened member cannot be fastened properly.

このように、回転角θと降伏締め付け軸力の関係は、ボルトと被締結部材ないしは被螺入体との間の摩擦係数μによって左右されるので、締め付け仕様は、実際に用いられるボルトと被締結部材ないしは被螺入体との間の摩擦係数μに応じて設定する必要がある。そこで、本発明では、ボルトの締め付け仕様を設定するための締め付け特性の評価ないしは実験を、実際に用いられる冷間鍛造によるボルト(量産ボルト)と実際に用いられる被締結部材とを用いて行うようにしている。すなわち、実際に用いられるボルトと被締結部材ないしは被螺入体との間の摩擦係数μに応じた評価ないしは実験を行うようにしている。   Thus, since the relationship between the rotation angle θ and the yield tightening axial force depends on the friction coefficient μ between the bolt and the member to be fastened or the screwed body, the tightening specification depends on the actually used bolt and the target bolt. It is necessary to set according to the coefficient of friction μ between the fastening member or the member to be screwed. Therefore, in the present invention, the evaluation or experiment of the tightening characteristics for setting the tightening specifications of the bolt is performed by using the bolt (mass production bolt) by cold forging actually used and the member to be fastened actually used. I have to. That is, an evaluation or experiment is performed in accordance with the friction coefficient μ between the actually used bolt and the member to be fastened or screwed member.

図4は、例えば図1及び図2に示すような締め付け特性をもつボルトについて、締め付け仕様を設定するための締め付け特性の評価ないしは実験を行うときに、ボルトの歪ひいては軸力Fを測定するのに用いられる歪ゲージを示している。この歪ゲージ1は、絶縁材料からなる担体2(キャリア)と、担体2の上に取り付けられた線状又は箔状の電気抵抗体からなるグリッド3と、それぞれ接続タブ4を介してグリッド3に接続された2本のリード線5とを備えている。この歪ゲージ1は、後で説明するように、評価用ボルトの円柱部に装着され、評価用ボルトに生じる歪、ひいては軸力Fを測定するためのものである。   FIG. 4 shows, for example, the measurement of the bolt strain and the axial force F when evaluating or experimenting the tightening characteristics for setting the tightening specifications for the bolts having the tightening characteristics as shown in FIGS. The strain gauge used for is shown. The strain gauge 1 is connected to the grid 3 via a connection tab 4 and a carrier 2 (carrier) made of an insulating material, a grid 3 made of a linear or foil-like electric resistor mounted on the carrier 2, and a connection tab 4. Two lead wires 5 connected to each other are provided. As will be described later, the strain gauge 1 is attached to the cylindrical portion of the evaluation bolt, and is used to measure the strain generated in the evaluation bolt, and hence the axial force F.

図5及び図6は、それぞれ、一般に被締結部材を締結するために用いられている呼び径ボルト6及び有効径ボルト7を示している。呼び径ボルト6は、頭部8と、雄ねじが形成されたねじ部9と、頭部8とねじ部9の間の雄ねじが形成されていない円柱部10(軸部)とを有している。呼び径ボルト6は、ねじ部9の呼び径(外径)と円柱部10の直径とがほぼ等しいボルトであり、ねじ部9の有効断面積が円柱部10の断面積よりかなり小さいものである。他方、有効径ボルト7は、頭部11と、雄ねじが形成されたねじ部12と、頭部11とねじ部12の間の雄ねじが形成されていない円柱部13(軸部)とを有している。有効径ボルト7は、ねじ部12の呼び径(外径)と円柱部13の直径とがほぼ等しいボルトであり、ねじ部12の有効断面積が円柱部13の断面積より若干小さいものである。本発明は、図6に示すような有効径ボルト7を対象としており、図5に示すような呼び径ボルト6は対象としていない。   5 and 6 respectively show a nominal diameter bolt 6 and an effective diameter bolt 7 that are generally used for fastening a fastened member. The nominal diameter bolt 6 has a head portion 8, a screw portion 9 in which a male screw is formed, and a columnar portion 10 (shaft portion) in which a male screw between the head portion 8 and the screw portion 9 is not formed. . The nominal diameter bolt 6 is a bolt in which the nominal diameter (outer diameter) of the threaded portion 9 and the diameter of the cylindrical portion 10 are substantially equal, and the effective sectional area of the threaded portion 9 is considerably smaller than the sectional area of the cylindrical portion 10. . On the other hand, the effective diameter bolt 7 has a head portion 11, a screw portion 12 in which a male screw is formed, and a cylindrical portion 13 (shaft portion) in which a male screw between the head portion 11 and the screw portion 12 is not formed. ing. The effective diameter bolt 7 is a bolt in which the nominal diameter (outer diameter) of the screw portion 12 and the diameter of the cylindrical portion 13 are substantially equal, and the effective cross-sectional area of the screw portion 12 is slightly smaller than the cross-sectional area of the cylindrical portion 13. . The present invention is intended for the effective diameter bolt 7 as shown in FIG. 6 and not for the nominal diameter bolt 6 as shown in FIG.

図7は、ナットと協働して2つの締結部材を締結している評価用ボルトとしての有効径ボルト7(以下「評価用ボルト7」という。)を示している。図7に示すように、評価用ボルト7のねじ部12及び円柱部13は、第1被締結部材15の穴部16と第2被締結部材17の穴部18とを通って伸びている。そして、評価用ボルト7のねじ部12には、ナット19が螺合されている。第1被締結部材15及び第2被締結部材17は、評価用ボルト7の頭部11とナット17とによって挟まれ、ボルト軸線方向の圧縮力(押圧力)が加えられている。その反作用として、評価用ボルト7にはボルト軸線方向の引張力(すなわち、軸力F)が作用している。なお、ねじ部12のうち12aで示す部分は、ナット19と螺合していない「遊びねじ」である。   FIG. 7 shows an effective-diameter bolt 7 (hereinafter referred to as “evaluation bolt 7”) as an evaluation bolt that fastens two fastening members in cooperation with a nut. As shown in FIG. 7, the screw portion 12 and the cylindrical portion 13 of the evaluation bolt 7 extend through the hole portion 16 of the first fastened member 15 and the hole portion 18 of the second fastened member 17. A nut 19 is screwed onto the threaded portion 12 of the evaluation bolt 7. The 1st to-be-fastened member 15 and the 2nd to-be-fastened member 17 are pinched | interposed by the head 11 and the nut 17 of the evaluation volt | bolt 7, and the compression force (pressing force) of a bolt axial direction is applied. As a reaction, a tensile force (that is, axial force F) in the bolt axial direction is applied to the evaluation bolt 7. A portion indicated by 12 a in the screw portion 12 is a “free screw” that is not screwed into the nut 19.

評価用ボルト7には、頭部11からボルト先端側に向かってボルト軸線方向に伸びる小径(例えば、直径1〜2mm)の孔部20が形成され、この孔部20内に接着剤を用いて歪ゲージ1が埋め込まれている。歪ゲージ1は、ボルト軸線方向に関して、円柱部13の中央部よりやや頭部11側の部位に接着剤で固定されている。歪ゲージ1の2本のリード線5は、該歪ゲージ1を外部のホイートストンブリッジ回路等の電気回路(図示せず)と接続するために、評価用ボルト7の外部に突出している。なお、歪ゲージ1を、円柱部13内に埋め込まず、接着剤で円柱部13の外周面に接着して固定するようにしてもよい。ただし、この場合は、評価用ボルト7の頭部11に、リード線5を外部に引き出すための穴を設ける必要がある。   The evaluation bolt 7 is formed with a hole 20 having a small diameter (for example, a diameter of 1 to 2 mm) extending in the bolt axis direction from the head 11 toward the bolt tip, and an adhesive is used in the hole 20. A strain gauge 1 is embedded. The strain gauge 1 is fixed with an adhesive to a portion slightly closer to the head 11 than the center of the cylindrical portion 13 in the bolt axial direction. The two lead wires 5 of the strain gauge 1 protrude outside the evaluation bolt 7 in order to connect the strain gauge 1 to an external electric circuit (not shown) such as a Wheatstone bridge circuit. Note that the strain gauge 1 may be fixed to the outer peripheral surface of the cylindrical portion 13 with an adhesive without being embedded in the cylindrical portion 13. However, in this case, it is necessary to provide a hole for pulling out the lead wire 5 to the head 11 of the evaluation bolt 7.

このように、歪ゲージ1が評価用ボルト7の円柱部13内に埋め込まれて固定されているので、評価用ボルト7にボルト軸線方向の歪が生じたときには、歪ゲージ1のグリッド3に、評価用ボルト7の歪に対応する歪が生じ、このグリッド3の歪に対応して該グリッド3の電気抵抗が変化する。この電気抵抗の変化を、ホイートストンブリッジ回路(図示せず)等を介して電圧として検出し、この電圧に基づいて評価用ボルト7の時々刻々の歪を測定することができる。この評価用ボルト7の歪は、一般に知られたキャリブレーション手法を用いて予め設定された歪量と軸力Fとの関係を示す関係式により軸力Fに換算される。   Thus, since the strain gauge 1 is embedded and fixed in the cylindrical portion 13 of the evaluation bolt 7, when strain in the bolt axis direction occurs in the evaluation bolt 7, the grid 3 of the strain gauge 1 A strain corresponding to the strain of the evaluation bolt 7 is generated, and the electrical resistance of the grid 3 changes corresponding to the strain of the grid 3. This change in electrical resistance can be detected as a voltage via a Wheatstone bridge circuit (not shown) or the like, and the distortion of the evaluation bolt 7 from time to time can be measured based on this voltage. The strain of the bolt 7 for evaluation is converted into the axial force F by a relational expression showing the relationship between the strain amount and the axial force F set in advance using a generally known calibration method.

以下、図7に示すような状態において、評価用ボルト7を回転させて、評価用ボルト7とナット19とで第1、第2被締結部材15、17を、評価用ボルト7が破断するまで締め付ける場合、すなわち塑性域締め付けを行う場合における、評価用ボルト7及び歪ゲージ1の挙動ないしは動作を説明する。スナグトルクTstで第1、第2被締結部材15、17を締め付けた後、評価用ボルト7を回転させてゆくと、まずねじ部12及び円柱部13に、評価用ボルト7のばね定数に見合った弾性変形が生じる。   Hereinafter, in the state shown in FIG. 7, the evaluation bolt 7 is rotated until the evaluation bolt 7 breaks the first and second fastened members 15 and 17 with the evaluation bolt 7 and the nut 19. The behavior or operation of the evaluation bolt 7 and the strain gauge 1 when tightening, that is, when performing plastic region tightening will be described. When the evaluation bolt 7 is rotated after the first and second fastened members 15 and 17 are tightened with the snag torque Tst, the screw portion 12 and the column portion 13 first meet the spring constant of the evaluation bolt 7. Elastic deformation occurs.

さらに評価用ボルト7を回転させて軸力Fを上昇させると、評価用ボルト7は弾性限界を超える。その結果、まずねじ部12のみが塑性変形し始めるが、これに伴ってねじ部12の材料の加工硬化によりねじ部12の強度ないしは硬度が上昇する。そして、ねじ部12の強度ないしは硬度が上昇すると、円柱部13(直径がねじ部12の有効径、すなわちほぼ転造前径)が塑性変形を開始する。この後、さらに評価用ボルト7を回転させて第1、第2被締結部材15、17を締め付けると、最弱部(すなわち最小断面部)であるねじ部12が破断する。   When the evaluation bolt 7 is further rotated to increase the axial force F, the evaluation bolt 7 exceeds the elastic limit. As a result, first, only the screw portion 12 begins to be plastically deformed, and accordingly, the strength or hardness of the screw portion 12 increases due to work hardening of the material of the screw portion 12. When the strength or hardness of the threaded portion 12 is increased, the cylindrical portion 13 (the diameter of which is the effective diameter of the threaded portion 12, that is, the diameter before rolling) starts plastic deformation. Thereafter, when the evaluation bolt 7 is further rotated and the first and second fastened members 15 and 17 are tightened, the screw portion 12 that is the weakest portion (that is, the minimum cross-sectional portion) is broken.

図8中の実線は、このような塑性域締め付けを行った場合における、回転角θと実際に生じる軸力Fとの関係を示している。また、破線は、回転角θと、歪ゲージ1の出力に基づいて算出される締め付け軸力(以下「見かけの軸力Fi」という。)との関係を示している。図8に示すように、ねじ部12が弾性限界を超えるP点付近までは、円柱部13は塑性変形しないので、実際に生じる軸力Fと見かけの軸力Fiはほぼ一致している。   The solid line in FIG. 8 shows the relationship between the rotation angle θ and the axial force F actually generated when such plastic region tightening is performed. A broken line indicates a relationship between the rotation angle θ and the tightening axial force calculated based on the output of the strain gauge 1 (hereinafter referred to as “apparent axial force Fi”). As shown in FIG. 8, the cylindrical portion 13 is not plastically deformed until the vicinity of the point P at which the screw portion 12 exceeds the elastic limit, so that the actually generated axial force F and the apparent axial force Fi substantially coincide.

しかしながら、ねじ部12が弾性限界を超えて塑性変形し始めると、ねじ部12が加工硬化し、主な塑性変形部がねじ部12から円柱部13に移行する。このため、歪ゲージ1の出力に基づいて算出される見かけの軸力Fiが急上昇する。したがって、このような状況下では、塑性域締め付けにおける軸力Fを正確に測定することはできない。このため、評価用ボルト7ひいては実際に用いられる量産ボルトの適切な締め付け特性を評価することができず、適正な締め付け仕様を設定することはできない。   However, when the screw portion 12 starts to be plastically deformed beyond the elastic limit, the screw portion 12 is work-hardened, and the main plastically deformed portion is transferred from the screw portion 12 to the cylindrical portion 13. For this reason, the apparent axial force Fi calculated based on the output of the strain gauge 1 rapidly increases. Therefore, under such circumstances, the axial force F in the plastic region tightening cannot be accurately measured. For this reason, it is not possible to evaluate the proper tightening characteristics of the evaluation bolt 7 and thus the mass production bolt actually used, and it is not possible to set an appropriate tightening specification.

このような事実に鑑み、本願発明者は、歪ゲージ装着部位、すなわち歪ゲージ1が装着ないしは配置された部位を含む評価用ボルト7の円柱部13の部分領域(以下「歪ゲージ近傍領域」という。)の強度ないしは硬度を高めて塑性変形の発生を防止すれば、塑性域締め付けを行ったときに、歪ゲージ1の近傍では円柱部13は塑性変形せず、軸力Fと見かけの軸力Fiはほぼ一致するものと考察した。   In view of such facts, the inventor of the present application has a strain gauge mounting region, that is, a partial region of the cylindrical portion 13 of the evaluation bolt 7 including a portion where the strain gauge 1 is mounted or disposed (hereinafter referred to as “strain gauge vicinity region”). If the strength or hardness is increased to prevent plastic deformation, the cylindrical portion 13 does not plastically deform in the vicinity of the strain gauge 1 when the plastic region is tightened, and the axial force F and the apparent axial force It was considered that Fi almost coincided.

かくして、図9及び図10に示すように、評価用ボルト7aの円柱部13の歪ゲージ近傍領域の直径を大きくしてその強度を高めるといった対応が考えられる。例えば、全体的にはねじ部12の有効径とほぼ同一の直径をもつ円柱部13の歪ゲージ近傍領域の直径を呼び径まで大きくするといった対応が考えられる。ここで、歪ゲージ1は、直径が拡大された強度の高い歪ゲージ近傍領域22(以下「太軸部22」という。)内に位置している。このため、評価用ボルト7が破断するまで塑性域締め付けを行っても、太軸部22には塑性変形は生じない。その結果、塑性変形による見かけの軸力Fiの上昇を防止することができ、したがって実際に生じる軸力Fと見かけの軸力Fiとをほぼ一致させることができる。   Thus, as shown in FIGS. 9 and 10, it is conceivable to increase the strength of the cylindrical portion 13 of the evaluation bolt 7a by increasing the diameter in the vicinity of the strain gauge. For example, it is conceivable that the diameter of the vicinity of the strain gauge of the cylindrical portion 13 having substantially the same diameter as the effective diameter of the screw portion 12 is increased to the nominal diameter. Here, the strain gauge 1 is located in a high-strength strain gauge vicinity region 22 (hereinafter referred to as a “thick shaft portion 22”) having an enlarged diameter. For this reason, even if the plastic region is tightened until the evaluation bolt 7 is broken, plastic deformation does not occur in the thick shaft portion 22. As a result, it is possible to prevent an increase in the apparent axial force Fi due to plastic deformation, and therefore it is possible to make the actually generated axial force F and the apparent axial force Fi substantially coincide with each other.

ところで一方、このような太軸部22を備えた評価用ボルト7の円柱部13(22)の輪郭形状は、一般に切削加工で成形される。なお、ねじ部12は、金型を用いて転造で成形される。この場合、評価用ボルト7の座面は切削加工(旋削加工)で形成されるので、この座面には輪状の溝が形成される。このため、冷間鍛造により製造され実際に使用される量産ボルトとは摩擦係数μが異なることになる。このように評価用ボルトと量産ボルトとで摩擦係数μが異なると、前記のとおり(段落[0026]参照)、実際に用いられるボルトと被締結部材15、17との間の摩擦係数μに応じた適正な評価ないしは実験を行うことができない。   Meanwhile, the contour shape of the cylindrical portion 13 (22) of the evaluation bolt 7 provided with such a thick shaft portion 22 is generally formed by cutting. In addition, the screw part 12 is shape | molded by rolling using a metal mold | die. In this case, since the seat surface of the evaluation bolt 7 is formed by cutting (turning), an annular groove is formed on the seat surface. For this reason, the friction coefficient μ is different from that of mass-produced bolts manufactured by cold forging and actually used. When the friction coefficient μ is different between the evaluation bolt and the mass production bolt in this way, as described above (see paragraph [0026]), according to the friction coefficient μ between the actually used bolt and the fastened members 15 and 17. It is not possible to conduct proper evaluation or experiment.

そこで、図11に示すように、本発明では、評価用ボルト7は、被締結部材を実際に締結する量産ボルトと同一の外形ないしは輪郭を有するとともに、該量産ボルトと同一の材料で形成されている。すなわち、評価用ボルト7の素材として、量産ボルトそのものを用いている。そして、歪ゲージ近傍領域23の強度ないしは硬度を、高周波焼き入れ処理と焼き戻し処理とによって、歪ゲージ近傍領域以外の領域の強度より高めている(以下、この領域を「調質部23」という。)。   Therefore, as shown in FIG. 11, in the present invention, the evaluation bolt 7 has the same outer shape or outline as the mass production bolt for actually fastening the fastened member, and is formed of the same material as the mass production bolt. Yes. That is, the mass production bolt itself is used as a material for the evaluation bolt 7. The strength or hardness of the strain gauge vicinity region 23 is higher than the strength of the region other than the strain gauge vicinity region by the induction hardening process and the tempering process (hereinafter, this region is referred to as the “tempered portion 23”). .)

このような調質部23(強化領域)を備えた評価用ボルト7は、例えば次の工程を経て製造される。
(1) 第1、第2被締結部材15、17の締結に用いられるボルトと同一仕様のボルト(すなわち量産ボルトそのもの)を評価用ボルト素材として準備する。
(2) 評価用ボルト素材の歪ゲージ装着部位を決定する。
(3) 歪ゲージ装着部位を含む評価用ボルト素材の所定の部分領域に高周波焼き入れ処理を施して調質部23を形成する。
(4) 調質領域23に焼き戻し処理を施す。
The evaluation bolt 7 provided with such a tempered portion 23 (strengthened region) is manufactured through the following steps, for example.
(1) A bolt having the same specifications as the bolt used for fastening the first and second fastened members 15 and 17 (that is, a mass production bolt itself) is prepared as an evaluation bolt material.
(2) Determine the strain gauge attachment site of the bolt material for evaluation.
(3) The tempered portion 23 is formed by subjecting a predetermined partial region of the evaluation bolt material including the strain gauge mounting portion to induction hardening treatment.
(4) A tempering process is performed on the tempered region 23.

かくして、評価用ボルト7においては、調質部23の強度ないしは硬度が、調質部23以外の領域の強度より高められる。ここで、高周波焼き入れ処理及び焼き戻し処理は、調質部23の強度ないしは硬度が、例えば、調質部以外の領域の強度ないしは硬度の1.1〜3.0倍(好ましくは、1.1〜2.0倍)の範囲となるように実施される。また、調質部23のボルト軸線方向の長さは、例えば評価用ボルト7のねじ部12の呼び径の0.5〜3.0倍(好ましくは、0.5〜2.0倍)の範囲に設定される。   Thus, in the evaluation bolt 7, the strength or hardness of the tempered portion 23 is higher than the strength of the region other than the tempered portion 23. Here, in the induction hardening treatment and the tempering treatment, the strength or hardness of the tempered portion 23 is, for example, 1.1 to 3.0 times the strength or hardness of a region other than the tempered portion (preferably 1. 1 to 2.0 times). The length of the tempered portion 23 in the bolt axis direction is, for example, 0.5 to 3.0 times (preferably 0.5 to 2.0 times) the nominal diameter of the threaded portion 12 of the evaluation bolt 7. Set to range.

以下、図12〜図17を参照しつつ、量産ボルト(M10ボルト)を評価用ボルト素材として用いて評価用ボルト(シリンダヘッドボルト)を試作し、その締め付け特性を測定ないしは評価した実験結果を説明する。試作された評価用ボルトは、その引張り時にはねじ部だけではなく円柱部(軸部)にも塑性変形が起こっているといった事実に鑑み、量産ボルトの歪ゲージ装着部位を含む調質部(強化領域)に高周波焼き入れ処理のみを施し、又は高周波焼き入れ処理と焼き戻し処理とを施し、調質部の強度ないしは硬度を高めて塑性域締め付けを行ったときに評価用ボルトの円柱部(軸部)の調質部に塑性変形が生じないようにしたものである。この実験においては、焼き戻しの有無又は焼き戻し温度が異なる4種の評価用ボルトを試作した上で、これらの評価用ボルトの硬度を測定するとともに、塑性域締め付けを行ったときに歪ゲージ装着領域に塑性変形が生じているか否かを判定した。   Hereinafter, with reference to FIGS. 12 to 17, an experimental bolt (cylinder head bolt) is manufactured using a mass production bolt (M10 bolt) as an evaluation bolt material, and the experimental results of measuring or evaluating the tightening characteristics are described. To do. In view of the fact that the prototype bolt that was prototyped was deformed not only in the threaded part but also in the cylindrical part (shaft part) during its tension, the tempered part including the strain gauge mounting part of the mass production bolt (strengthened region) ) Is subjected to induction hardening only, or induction hardening and tempering treatment, and the tempered part is strengthened or hardened to tighten the plastic zone. ) To prevent plastic deformation. In this experiment, four types of evaluation bolts with different tempering presence / absence or tempering temperatures were prototyped, the hardness of these evaluation bolts was measured, and a strain gauge was attached when the plastic zone was tightened. It was determined whether plastic deformation occurred in the region.

表1は、ロックウェル硬度(HRC)及びビッカース硬度(HV)硬度の測定に用いられた評価用ボルトの高周波焼き入れ及び焼き戻しの条件を示している。また、表2は、締め付け特性の測定ないしは評価に用いられた評価用ボルトの高周波焼き入れ及び焼き戻しの条件を示している。表1又は表2において、焼き戻し温度の欄が「−」である試作品については焼き戻し処理を施していない。なお、焼き戻しは、評価用ボルトの試作品を各焼き戻し温度で1時間保持した後、空冷することにより行った。




Table 1 shows the conditions of induction hardening and tempering of the evaluation bolts used for the measurement of Rockwell hardness (HRC) and Vickers hardness (HV) hardness. Table 2 shows the conditions of induction hardening and tempering of the bolts for evaluation used for measurement or evaluation of the fastening characteristics. In Table 1 or Table 2, the tempering process is not performed for the prototype whose column of the tempering temperature is “−”. The tempering was carried out by holding the evaluation bolt prototype at each tempering temperature for 1 hour and then air cooling.




Figure 2014224554
Figure 2014224554

Figure 2014224554
Figure 2014224554

図12に、評価用ボルトの試作品1〜4について、調質部及び熱処理が施されていないねじ部のロックウェル硬度(HRC)をそれぞれ複数回測定し、その測定値を平均した結果を示す。また、図13に、評価用ボルトの試作品1〜4について、調質部のビッカース硬度(HV)をボルト径方向の複数の部位で測定した結果を示す。なお、図13において、横軸(X軸)は、評価用ボルトの試作品の円柱部の表面から中心に向かう距離(深さ)を示している。   FIG. 12 shows the results of measuring the Rockwell hardness (HRC) of the tempered part and the threaded part not subjected to heat treatment a plurality of times for the prototypes 1 to 4 of the evaluation bolt, and averaging the measured values. . Moreover, the result of having measured the Vickers hardness (HV) of the tempering part in the several site | part of a bolt radial direction about the prototypes 1-4 of the bolt for evaluation in FIG. In FIG. 13, the horizontal axis (X axis) indicates the distance (depth) from the surface of the cylindrical portion of the prototype of the evaluation bolt toward the center.

図12によれば、各評価用ボルトの試作品の調質部のロックウェル硬度(HRC)ひいては強度は、熱処理が施されていないねじ部に比べて、おおむね50〜70%高められていることが分かる。なお、本願発明者の知見によれば、評価用ボルトの調質部のロックウェル硬度がねじ部のロックウェル硬度の1.1〜3.0倍(好ましくは1.1〜2.0倍)程度であれば、該評価用ボルトで塑性域締め付けを行っても調質部に塑性変形は生じないものと考察される。また、図13によれば、M10の量産ボルトを評価用ボルト素材として用いて、高周波焼き入れ処理及び焼き戻し処理により調質部を形成する場合は、円柱部の表面では、ビッカース硬度は比較的低いが、表面から中心に向かって1〜3.5mmの範囲内では、ビッカース硬度は比較的安定して高められていることが分かる。したがって、歪ゲージは、円柱部の表面ではなく内部に装着する方が好ましい。   According to FIG. 12, the Rockwell hardness (HRC) and hence the strength of the tempered portion of each evaluation bolt prototype is generally increased by 50 to 70% as compared to the unthreaded screw portion. I understand. According to the knowledge of the present inventor, the Rockwell hardness of the tempered portion of the evaluation bolt is 1.1 to 3.0 times (preferably 1.1 to 2.0 times) the Rockwell hardness of the threaded portion. If it is about the extent, it is considered that plastic deformation does not occur in the tempered portion even if the plastic region is tightened with the bolt for evaluation. Further, according to FIG. 13, when a tempered part is formed by induction hardening and tempering using a mass production bolt of M10 as an evaluation bolt material, the Vickers hardness is relatively low on the surface of the cylindrical part. Although it is low, it can be seen that the Vickers hardness is relatively stably increased within the range of 1 to 3.5 mm from the surface toward the center. Therefore, it is preferable that the strain gauge is mounted not on the surface of the cylindrical portion but inside.

図14(a)、(b)〜図17(a)、(b)に、評価用ボルトの試作品5〜12について、万能材料試験機とX−Yレコーダとを用いて引張り試験を行った結果を示す。具体的には、これらの図は、基本的には各評価用ボルトの変位量(X軸)に対する、歪ゲージの出力に基づいて算出された軸力F(Y軸)の変化特性を示している。しかしながら、これらの引張り試験では、極限締め付け軸力を超えた後も評価用ボルトを伸長させ(締め付けを行い)、評価用ボルトが破断する直前に変位計を外して変位量の測定を中止し、この後評価用ボルトを破断させ、上記軸力Fを評価用ボルトの破断後まで記録(モニター)している。なお、図14(a)、(b)はそれぞれ試作品5、6についてのグラフであり、図15(a)、(b)はそれぞれ試作品7、8についてのグラフであり、図16(a)、(b)はそれぞれ試作品9、10についてのグラフであり、図15(a)、(b)はそれぞれ試作品11、12についてのグラフである。   14 (a), 14 (b) to 17 (a), 17 (b), a tensile test was performed on evaluation bolt prototypes 5-12 using a universal material testing machine and an XY recorder. Results are shown. Specifically, these drawings basically show the change characteristics of the axial force F (Y axis) calculated based on the output of the strain gauge with respect to the displacement amount (X axis) of each evaluation bolt. Yes. However, in these tensile tests, the evaluation bolt was extended (tightened) even after exceeding the ultimate tightening axial force, and the displacement meter was removed immediately before the evaluation bolt broke, and the measurement of the displacement amount was stopped. Thereafter, the evaluation bolt is broken, and the axial force F is recorded (monitored) until after the evaluation bolt is broken. 14A and 14B are graphs for prototypes 5 and 6, respectively, and FIGS. 15A and 15B are graphs for prototypes 7 and 8, respectively. ) And (b) are graphs for prototypes 9 and 10, respectively, and FIGS. 15A and 15B are graphs for prototypes 11 and 12, respectively.

図14(a)、(b)〜図17(a)、(b)に示す各グラフにおいては、いずれも、例えば図8中の破線で示すような見かけの軸力Fiの上昇ないしは急上昇は生じていない。ただし、図14(a)、(b)に示すように、焼き戻し処理が施されていない試作品5、6では、評価用ボルトが破断した後、歪ゲージの出力に基づいて算出された軸力Fは0kNに戻らず9kN〜10kNの残留歪(残留軸力)が生じている。これは、焼き戻し処理が施されていない試作品5、6では、極限引張り強さ(極限締め付け軸力)まで引張ったときに、調質部のゲージ貼り付け部分にわずかに塑性伸びが発生していることを示している。   In each of the graphs shown in FIGS. 14 (a), 14 (b) to 17 (a), (b), for example, the apparent axial force Fi as shown by the broken line in FIG. Not. However, as shown in FIGS. 14A and 14B, in the prototypes 5 and 6 that have not been tempered, the axis calculated based on the output of the strain gauge after the evaluation bolt broke. The force F does not return to 0 kN, and a residual strain (residual axial force) of 9 kN to 10 kN is generated. This is because, in the prototypes 5 and 6 that have not been tempered, a slight plastic elongation occurs in the tempered portion of the tempered portion when it is pulled to its ultimate tensile strength (extreme tightening axial force). It shows that.

また、図15(a)、(b)〜図17(a)、(b)に示すように、焼き戻し処理が施された試作品7〜12では、評価用ボルトが破断した後、歪ゲージの出力に基づいて算出された軸力Fはほぼ0kNに戻っている。これは、焼戻し処理が施された試作品7〜12では、いずれも塑性伸びは発生しなかったことを示している。高周波焼き入れ処理及び焼き戻し処理が施された調質部を備えた評価用ボルトを用いれば、引張り試験により抗張力を超えて引張っても、ゲージの伸びが見られないことから、部分的に調質をしてゲージを貼りつけた部分は、ねじ部が破断するまで引張りを行っても塑性変形せず、したがって実際に生じる軸力Fを支障なく測定することができるものと考察される。   Further, as shown in FIGS. 15 (a), 15 (b) to 17 (a), (b), in the prototypes 7 to 12 subjected to the tempering process, after the evaluation bolt is broken, the strain gauge The axial force F calculated on the basis of the output of is returned to almost 0 kN. This indicates that no plastic elongation occurred in the prototypes 7 to 12 that had been tempered. If an evaluation bolt equipped with a tempered part that has been induction hardened and tempered is used, even if the tensile bolt is pulled beyond the tensile strength in the tensile test, the gauge is not stretched. It is considered that the portion where the quality is applied and the gauge is attached does not undergo plastic deformation even if it is pulled until the threaded portion breaks, and therefore the actually generated axial force F can be measured without hindrance.

調質部23を備えた評価用ボルト7は、第1、第2被締結部材15、17の締結に実際に用いられる量産ボルトと同一の外形を有するとともに該量産ボルトと同一の材料で形成されている。すなわち、量産ボルトそのものが、評価用ボルト7の素材として用いられている。このため、実際にボルトで締め付けを行うときとほぼ同様の締め付け状態で締め付け特性を評価することができる。したがって、この評価用ボルト7を用いれば、実際の使用条件に近い条件で高精度なボルトの締め付け特性の評価を容易にかつ低コストで行うことができる。   The evaluation bolt 7 having the tempered portion 23 has the same outer shape as the mass production bolt actually used for fastening the first and second fastened members 15 and 17 and is formed of the same material as the mass production bolt. ing. That is, the mass production bolt itself is used as a material for the evaluation bolt 7. For this reason, it is possible to evaluate the tightening characteristics under substantially the same tightening state as when actually tightening with bolts. Therefore, if this evaluation bolt 7 is used, it is possible to easily and cost-effectively evaluate the tightening characteristics of the bolt under conditions close to actual use conditions.

また、調質部23の強度ないしは硬度が、高周波焼き入れ処理及び焼き戻し処理により、調質部23以外の領域の強度ないしは硬度より高められている。このため、評価用ボルト7の締め付け特性評価試験において、評価用ボルト7で被締結部材を締め付けたときに、ねじ部12に塑性変形が生じた後も、歪ゲージ装着部位のまわりの部分に塑性変形が生じない。その結果、歪ゲージ1で評価用ボルト7に生じる軸力を正確に測定することができ、締め付け特性を正確に評価することができる。   Further, the strength or hardness of the tempered portion 23 is made higher than the strength or hardness of the region other than the tempered portion 23 by the induction hardening process and the tempering process. For this reason, in the tightening characteristic evaluation test of the evaluation bolt 7, when the member to be fastened is tightened with the evaluation bolt 7, even after plastic deformation occurs in the threaded portion 12, the portion around the strain gauge mounting portion is plastic. No deformation occurs. As a result, the axial force generated in the evaluation bolt 7 by the strain gauge 1 can be accurately measured, and the tightening characteristics can be accurately evaluated.

この評価用ボルト7によれば、評価用ボルト7の座面の摩擦係数μが量産ボルトの摩擦係数μと同等であるため、スナグトルクで締め付けを行っているときに発生する軸力Fも量産ボルトの場合とほぼ同等である。このため、適正な締め付け仕様を設定することができる。また、量産ボルトを用いて締め付け軸力Fを、弾性域、降伏締め付け軸力、極限締め付け軸力、破断締め付け軸力の各段階まで測定可能となるため、ボルトの再使用性(繰り返し締め付け性)の評価の精度が向上し、適正な締め付け仕様を設定することができる。さらに、評価用ボルト7の素材として量産ボルトを使用するため、評価用ボルト7のばね定数も量産ボルトの場合と同一となり、例えば図9及び図10に示すような太軸部22を備えた評価用ボルト7aのようにばね定数が量産ボルトよりも大きくなるといった不具合が起こらず、締め付け角度に影響を与えるような弊害は生じない。   According to this evaluation bolt 7, since the friction coefficient μ of the seating surface of the evaluation bolt 7 is equal to the friction coefficient μ of the mass production bolt, the axial force F generated when tightening with the snag torque is also the mass production bolt. Is almost the same as For this reason, an appropriate tightening specification can be set. In addition, it is possible to measure the tightening axial force F using the mass-produced bolts to each stage of the elastic range, yield tightening axial force, ultimate tightening axial force, and fracture tightening axial force. The accuracy of evaluation is improved, and appropriate tightening specifications can be set. Further, since a mass production bolt is used as the material for the evaluation bolt 7, the spring constant of the evaluation bolt 7 is the same as that of the mass production bolt. For example, an evaluation having a thick shaft portion 22 as shown in FIGS. The problem that the spring constant becomes larger than that of the mass-produced bolt does not occur unlike the bolt 7a, and the adverse effect of affecting the tightening angle does not occur.

1 歪ゲージ、2 担体、3 グリッド、4 接続タブ、5 リード線、6 呼び径ボルト、7 評価用ボルト(有効径ボルト)、8 頭部、9 ねじ部、10 円柱部、11 頭部、12 ねじ部、13 円柱部、15 第1被締結部材、16 孔部、17 第2被締結部、18 孔部、19 ナット、20 穴部、22 太軸部、23 調質部(強化領域)。   1 strain gauge, 2 carrier, 3 grid, 4 connection tab, 5 lead wire, 6 nominal diameter bolt, 7 evaluation bolt (effective diameter bolt), 8 head, 9 threaded portion, 10 cylindrical portion, 11 head, 12 Screw part, 13 Cylinder part, 15 1st to-be-fastened member, 16 Hole part, 17 2nd to-be-fastened part, 18 Hole part, 19 Nut, 20 Hole part, 22 Thick shaft part, 23 Tempered part (strengthening area).

Claims (9)

塑性域締め付けにより被締結部材を締結するための金属製のボルトの締め付け特性を、歪ゲージを用いて評価するための締め付け特性評価用ボルトであって、
前記ボルトと同一の外形を有するとともに前記ボルトと同一の材料で形成されていて、
前記歪ゲージが装着される部位を含む該締め付け特性評価用ボルトの部分領域の強度が、高周波焼き入れにより、該締め付け特性評価用ボルトの前記部分領域以外の領域の強度より高められていることを特徴とする締め付け特性評価用ボルト。
A tightening characteristic evaluation bolt for evaluating a tightening characteristic of a metal bolt for fastening a member to be fastened by plastic region tightening using a strain gauge,
It has the same outer shape as the bolt and is formed of the same material as the bolt,
The strength of the partial region of the tightening characteristic evaluation bolt including the portion to which the strain gauge is attached is higher than the strength of the region other than the partial region of the tightening characteristic evaluation bolt by induction hardening. Bolt for evaluating tightening characteristics.
前記部分領域が、ボルト軸線方向に関して該締め付け特性評価用ボルトの座面とねじ部との間の円柱部に形成されていることを特徴とする、請求項1に記載の締め付け特性評価用ボルト。   The bolt for tightening characteristic evaluation according to claim 1, wherein the partial region is formed in a cylindrical part between a seating surface of the bolt for tightening characteristic evaluation and a threaded part in the bolt axial direction. 前記部分領域の強度が、該締め付け特性評価用ボルトの前記部分領域以外の領域の強度の1.1倍以上であることを特徴とする、請求項1又は2に記載の締め付け特性評価用ボルト。   The bolt for tightening characteristic evaluation according to claim 1 or 2, wherein the strength of the partial region is 1.1 times or more of the strength of the region other than the partial region of the bolt for evaluating tightening characteristic. 前記部分領域のボルト軸線方向の長さは、該締め付け特性評価用ボルトのねじ部の呼び径の0.5倍以上であることを特徴とする、請求項1〜3のいずれか1つに記載の締め付け特性評価用ボルト。   The length in the bolt axis direction of the partial region is 0.5 times or more of the nominal diameter of the threaded portion of the bolt for tightening characteristics evaluation, according to any one of claims 1 to 3. Bolt for evaluating tightening characteristics. 塑性域締め付けにより被締結部材を締結するための金属製のボルトの締め付け特性を、歪ゲージを用いて評価するための締め付け特性評価用ボルトの製造方法であって、
前記被締結部材の締結に用いられる前記ボルトと同一仕様のボルトを締め付け特性評価用ボルト素材として準備し、
前記締め付け特性評価用ボルト素材における前記歪ゲージを装着するための歪ゲージ装着部位を決定し、
前記歪ゲージ装着部位を含む前記締め付け特性評価用ボルト素材の部分領域に高周波焼き入れ処理を施して、該部分領域の強度を、該締め付け特性評価用ボルト素材の該部分領域以外の領域の強度より高めることを特徴とする締め付け特性評価用ボルトの製造方法。
A method for producing a bolt for tightening characteristics evaluation for evaluating a tightening characteristic of a metal bolt for fastening a member to be fastened by plastic region tightening using a strain gauge,
Prepare bolts of the same specifications as the bolts used to fasten the fastened member as bolt material for tightening characteristics evaluation,
Determine the strain gauge mounting site for mounting the strain gauge in the bolting property evaluation bolt material,
Inductive quenching treatment is performed on a partial region of the bolting material for tightening characteristic evaluation including the strain gauge mounting portion, and the strength of the partial region is determined from the strength of the region other than the partial region of the bolt material for tightening characteristic evaluation. A method for producing a bolt for evaluating tightening characteristics, characterized in that it is enhanced.
前記部分領域に高周波焼き入れ処理を施した後、該部分領域に焼き戻し処理を施すことを特徴とする、請求項5に記載の締め付け特性評価用ボルトの製造方法。   6. The method of manufacturing a bolt for evaluating tightening characteristics according to claim 5, wherein after the partial region is subjected to induction hardening, the partial region is tempered. 前記部分領域を、ボルト軸線方向に関して前記締め付け特性評価用ボルト素材の座面とねじ部との間の円柱部に形成することを特徴とする、請求項5又は6に記載の締め付け特性評価用ボルトの製造方法。   The bolt for tightening characteristic evaluation according to claim 5 or 6, wherein the partial region is formed in a cylindrical part between a seat surface of the bolt material for tightening characteristic evaluation and a screw part with respect to a bolt axial direction. Manufacturing method. 前記部分領域の強度が、前記締め付け特性評価用ボルト素材の前記部分領域以外の領域の強度の1.1倍以上となるように、前記高周波焼き入れ処理を施すことを特徴とする、請求項5〜7のいずれか1つに記載の締め付け特性評価用ボルトの製造方法。   6. The induction hardening process is performed so that the strength of the partial region is 1.1 times or more the strength of the region other than the partial region of the bolting property evaluation bolt material. The manufacturing method of the bolt for a fastening characteristic evaluation as described in any one of -7. 前記部分領域のボルト軸線方向の長さを、前記締め付け特性評価用ボルト素材のねじ部の呼び径の0.5倍以上に設定することを特徴とする、請求項5〜8のいずれか1つに記載の締め付け特性評価用ボルトの製造方法。   The length of the partial region in the bolt axis direction is set to 0.5 times or more the nominal diameter of the threaded portion of the bolting material for tightening characteristics evaluation, according to any one of claims 5 to 8, The manufacturing method of the bolt for bolting characteristic evaluation described in 2.
JP2013103342A 2013-05-15 2013-05-15 Bolt for tightening characteristic evaluation and manufacturing method thereof Expired - Fee Related JP6025653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103342A JP6025653B2 (en) 2013-05-15 2013-05-15 Bolt for tightening characteristic evaluation and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103342A JP6025653B2 (en) 2013-05-15 2013-05-15 Bolt for tightening characteristic evaluation and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014224554A true JP2014224554A (en) 2014-12-04
JP6025653B2 JP6025653B2 (en) 2016-11-16

Family

ID=52123373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103342A Expired - Fee Related JP6025653B2 (en) 2013-05-15 2013-05-15 Bolt for tightening characteristic evaluation and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6025653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121486A (en) * 2014-12-25 2016-07-07 株式会社大林組 Method for managing jointing of steel-pipe column by screw-type mechanical joint

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161636A (en) * 2004-12-06 2006-06-22 Toshiba Corp Connecting pin, manufacturing method thereof, connecting pin abnormality detecting device, and guide vane driving mechanism with the same pin and the same device
JP2010133877A (en) * 2008-12-05 2010-06-17 Tokyo Sokki Kenkyusho Co Ltd Apparatus for measuring strain of bolt
JP2012077797A (en) * 2010-09-30 2012-04-19 Hitachi Constr Mach Co Ltd Plastic fastening bolt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161636A (en) * 2004-12-06 2006-06-22 Toshiba Corp Connecting pin, manufacturing method thereof, connecting pin abnormality detecting device, and guide vane driving mechanism with the same pin and the same device
JP2010133877A (en) * 2008-12-05 2010-06-17 Tokyo Sokki Kenkyusho Co Ltd Apparatus for measuring strain of bolt
JP2012077797A (en) * 2010-09-30 2012-04-19 Hitachi Constr Mach Co Ltd Plastic fastening bolt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121486A (en) * 2014-12-25 2016-07-07 株式会社大林組 Method for managing jointing of steel-pipe column by screw-type mechanical joint

Also Published As

Publication number Publication date
JP6025653B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
EP2828018B1 (en) Fastener with sensor and its manufacturing process
CN106795904B (en) Fastener
CN109366423B (en) Bolt tightening method
CN107923804B (en) Mechanical element with sensor device and method for manufacturing mechanical element
EP1990552B1 (en) Bolt and method for manufacturing bolt
JP2015131364A (en) Bolt axial force test apparatus and bolt axial force test method
WO2019167328A1 (en) Pulling device
JP4986851B2 (en) Structure of stress sensor on arm of weld clamp and method of attaching stress sensor
CN112536581B (en) Shafting product assembly deformation control method based on pre-tightening force and torque relation
JP6025653B2 (en) Bolt for tightening characteristic evaluation and manufacturing method thereof
US20090084197A1 (en) Method and apparatus for mounting a sensor
US3789726A (en) Load-indicating means for a nut and bolt assembly
US20200116180A1 (en) Method for manufacturing joined body and quality management method for plate-shaped member
CN110926940B (en) Method for testing ultimate contact strength of material surface
Junker et al. The bolted joint: economy of design through improved analysis and assembly methods
Schiborr et al. Application of direct tension indicators in preloaded bolted connections
CN209638195U (en) A kind of mechanoluminescence type intelligent bolt with pretightning force instruction
CN109780029A (en) A kind of mechanoluminescence type intelligent bolt with pretightning force instruction
JPH0634464A (en) Method for testing looseness of magnesiumalloy bolt
Misra Determine the Fatigue behavior of engine damper caps screw bolt
CN116067655B (en) Part testing device, part testing equipment and part testing method
CN116044883A (en) Nut self-locking method and self-locking structure thereof
Hoernig Increased Thread Load Capability of Bolted Joints in Light Weight Design
Sawa et al. FEM stress analysis and design for bolted circular flange joints under tensile loading
Kaneda et al. Application of plastic region tightening bolt to flange joint assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151211

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161011

R150 Certificate of patent or registration of utility model

Ref document number: 6025653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees