JP2014224292A - Method for blowing dust coal from blast furnace tuyere - Google Patents

Method for blowing dust coal from blast furnace tuyere Download PDF

Info

Publication number
JP2014224292A
JP2014224292A JP2013104201A JP2013104201A JP2014224292A JP 2014224292 A JP2014224292 A JP 2014224292A JP 2013104201 A JP2013104201 A JP 2013104201A JP 2013104201 A JP2013104201 A JP 2013104201A JP 2014224292 A JP2014224292 A JP 2014224292A
Authority
JP
Japan
Prior art keywords
pulverized coal
furnace
lance
sio
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013104201A
Other languages
Japanese (ja)
Other versions
JP6155834B2 (en
Inventor
篠竹 昭彦
Akihiko Shinotake
昭彦 篠竹
謙一 樋口
Kenichi Higuchi
謙一 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013104201A priority Critical patent/JP6155834B2/en
Publication of JP2014224292A publication Critical patent/JP2014224292A/en
Application granted granted Critical
Publication of JP6155834B2 publication Critical patent/JP6155834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To more largely blow dust coal of low quality having a high SiOin Ash without increasing hot pig iron [Si] in a blast furnace operation in which dust coal is largely blown from a tuyere.SOLUTION: Provided is a method for blowing the fine coal of a plurality of coal kinds from the tuyere of a blast furnace using two fine coal lances, in which installing is performed in such a manner that the positions of the tips of the blow pipes of the two lances are shifted before and after, and the concentration of an SiOcomponent in the Ash of the fine coal blown from the lance on the side of a furnace wall is higher than the concentration of an SiOcomponent in the Ash of the fine coal blown from the lance on the inside of the furnace.

Description

本発明は、高炉羽口からの微粉炭吹き込み方法に関する。   The present invention relates to a method for blowing pulverized coal from a blast furnace tuyere.

製鉄所の高炉においては、燃料として、主にコークスを使用している。コークスの原料である高粘結炭の枯渇に対応し、微粉炭(以下、PCと記すこともある。)の使用量を増加させてきた。高炉への微粉炭吹き込み方法は、高炉への熱風吹き込み管であるブローパイプ内に微粉炭吹き込みパイプ(以下、ランスと記すこともある。)を挿入し、高炉羽口に吹き込み、羽口前レースウェイで微粉炭を燃焼させる方法が一般的である。   In steelworks blast furnaces, coke is mainly used as fuel. In response to the depletion of coking coal, a raw material for coke, the amount of pulverized coal (hereinafter sometimes referred to as PC) has been increased. The method of blowing pulverized coal into the blast furnace is to insert a pulverized coal blowing pipe (hereinafter sometimes referred to as a lance) into the blow pipe that is a hot air blowing pipe into the blast furnace, and then blow it into the blast furnace tuyere. A method of burning pulverized coal in a way is common.

高炉への補助燃料吹き込みに際し、複数の補助燃料吹き込みパイプをブローパイプに挿入し、複数の補助燃料を吹き込む高炉操業方法の提案がある(特許文献1)。当該提案によれば、微粉炭の他に重油の吹き込みも同時に実施することができ、多様な補助燃料吹き込みが可能である。   There is a proposal of a blast furnace operating method in which a plurality of auxiliary fuel injection pipes are inserted into a blow pipe and a plurality of auxiliary fuels are injected when the auxiliary fuel is injected into the blast furnace (Patent Document 1). According to the proposal, heavy oil can be injected at the same time as pulverized coal, and various auxiliary fuel can be injected.

近年は、高価な高粘結炭を原料とするコークスの使用量を極力低減し、安価な微粉炭を大量に高炉へ吹き込む技術が望まれている。
微粉炭吹き込み量の増加に対して、前記特許文献1に記載の複数の微粉炭吹き込みパイプにより、微粉炭を多量に吹き込む方法がある(図1)。この技術によれば、微粉炭吹き込みパイプ1本当たりの微粉炭吹き込み負荷が軽減され、微粉炭吹き込み量の増大に貢献することができる。
また、微粉炭吹き込み量の増加に対応して、羽口の摩耗が増加するという問題もある。これに対しては、微粉炭吹き込みノズル先端位置を規定し、先端形状が羽口側に向くようにする提案がある(特許文献2)。
しかし、微粉炭吹き込み量の増加に対し、微粉炭の燃焼が羽口前レースウェイ内で完全に燃焼し終えず、微粉炭内のカーボンが未燃チャーとして高炉炉芯内に燃え残るという問題がある。
In recent years, there has been a demand for a technique for reducing the amount of coke used as an expensive high-coking coal as a raw material and blowing a large amount of inexpensive pulverized coal into a blast furnace.
There is a method of blowing a large amount of pulverized coal with a plurality of pulverized coal blowing pipes described in Patent Document 1 with respect to an increase in the amount of pulverized coal blowing (FIG. 1). According to this technology, the pulverized coal blowing load per one pulverized coal blowing pipe is reduced, which can contribute to an increase in the amount of pulverized coal blowing.
There is also a problem that the wear of tuyere increases in response to an increase in the amount of pulverized coal. For this, there is a proposal to define the tip position of the pulverized coal blowing nozzle so that the tip shape faces the tuyere side (Patent Document 2).
However, as the amount of pulverized coal injection increases, the combustion of the pulverized coal does not finish completely in the front tuyere, and the carbon in the pulverized coal remains in the blast furnace core as unburned char. is there.

特開1992−202613号公報JP-A-1992-202613 特開2007−131873号公報JP 2007-131873 A

高炉羽口から微粉炭を吹き込む場合、微粉炭比(PCR)が高くなると微粉炭が羽口先のレースウェイ内で完全に燃焼し終えずに炉芯(コークス充填層)に未燃チャーが侵入する。炉芯に侵入した未燃チャー中の炭素Cは、Ash中SiOと反応し、(SiO)ガスを発生する。炉内を滴下中の溶銑は、(SiO)ガスと接触すると、(SiO)を還元して吸収し、溶銑中の[Si]が上昇する。溶銑中[Si]は製鋼工程で酸化されて製鋼スラグとなる。製鋼スラグは、未反応のCaOや吹錬中に再酸化されたFeOが含まれるため、高炉スラグに比べて再利用が難しく、製鋼スラグの増大は、製銑・製鋼トータルではコストの上昇を招く。一方、微粉炭はAsh中SiOが多く低品位の方が安価であるため、高炉はAsh中SiOが多い微粉炭を多く使用した方がコストを低減できる。Ash中SiOが多く低品位で安価な微粉炭を多く使用しても溶銑中の[Si]が増大しない高炉羽口からの微粉炭を吹き込む方法が望まれている。 When pulverized coal is blown from the blast furnace tuyere, if the pulverized coal ratio (PCR) increases, the pulverized coal does not completely burn in the raceway at the tuyere, and unburned char enters the furnace core (coke packed bed). . The carbon C in the unburned char that has entered the furnace core reacts with SiO 2 in Ash to generate (SiO) gas. When the hot metal dropping in the furnace comes into contact with (SiO) gas, (SiO) is reduced and absorbed, and [Si] in the hot metal rises. In the hot metal, [Si] is oxidized in the steelmaking process to become steelmaking slag. Steelmaking slag contains unreacted CaO and FeO that has been reoxidized during blowing. Therefore, it is difficult to reuse steelmaking slag compared to blast furnace slag, and the increase in steelmaking slag leads to an increase in costs for ironmaking and steelmaking. . On the other hand, since pulverized coal has a lot of SiO 2 in Ash and lower grade is cheaper, the blast furnace can reduce the cost by using much pulverized coal with much SiO 2 in Ash. How in blowing pulverized coal from the blast furnace tuyeres [Si] does not increase in the molten iron be used many inexpensive pulverized coal in SiO 2 are many low-grade Ash is desired.

本発明の課題は、Ash中SiOが多く低品位で安価な微粉炭を多く使用しても溶銑中の[Si]が増大しない高炉羽口からの微粉炭吹き込み方法を提供することである。 An object of the present invention is to provide a pulverized coal injection process from a blast furnace tuyeres be used many inexpensive pulverized coal in many low-grade Ash in SiO 2 in the molten iron [Si] does not increase.

本発明者は、Ash中のSiO成分濃度が高い微粉炭を炉壁側の微粉炭吹き込みランスから吹き込み、Ash中のSiO成分濃度が低い微粉炭を炉内側の微粉炭吹き込みランスから吹き込むことにより、安価な微粉炭を大量に吹き込んでも溶銑のSiの上昇を防止することができるという知見を得た。
本発明は、この知見に基づいて上記の課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。
The inventor blows pulverized coal having a high SiO 2 component concentration in Ash from the pulverized coal blowing lance on the furnace wall side, and blows pulverized coal having a low SiO 2 component concentration in the Ash from the pulverized coal blowing lance inside the furnace. Thus, it has been found that even if a large amount of inexpensive pulverized coal is blown, the rise of Si in the hot metal can be prevented.
The present invention has been made to solve the above-mentioned problems based on this finding, and the gist thereof is as follows.

(1) 高炉の羽口から複数の炭種の微粉炭を2本の微粉炭ランスを用いて吹き込む方法であって、2本のランスのブローパイプ先端の位置を前後にずらして設置し、炉壁側のランスから吹き込まれる微粉炭のAsh中のSiO成分濃度が、炉内側のランスから吹き込まれる微粉炭のAsh中のSiO成分濃度より高いことを特徴とする高炉羽口からの微粉炭吹き込み方法。
(2) 前記炉壁側のランス先端の位置と前記炉内側のランス先端の位置の間隔が、50mm〜150mmであることを特徴とする請求項1に記載の高炉羽口からの微粉炭吹き込み方法。
(1) A method of blowing pulverized coal of a plurality of coal types from the blast furnace tuyeres using two pulverized coal lances. SiO 2 component concentration in Ash pulverized coal blown from the wall lance, pulverized coal from a blast furnace tuyere being higher than SiO 2 component concentration in Ash pulverized coal blown from the furnace inside of the lance Blowing method.
(2) The method of injecting pulverized coal from a blast furnace tuyere according to claim 1, wherein an interval between the position of the lance tip on the furnace wall side and the position of the lance tip on the furnace inner side is 50 mm to 150 mm. .

本発明は、Ash中SiOが多く低品位で安価な微粉炭を多く使用しても溶銑中のSiが増大することなく、高炉羽口から微粉炭を吹き込むことができる。 The present invention has thus Si in even hot metal by using a number of inexpensive pulverized coal is increased by SiO 2 Many low-grade Ash, it can be blown pulverized coal from the blast furnace tuyeres.

先端位置が同じである微粉炭吹き込みランスを示す図。The figure which shows the pulverized-coal blowing lance with the same front-end | tip position. 先端位置をずらした微粉炭吹き込みランスを示す図。The figure which shows the pulverized-coal blowing lance which shifted the front-end | tip position. レースウェイ中のガス成分と温度を示す図。The figure which shows the gas component and temperature in a raceway. レースウェイ模擬燃焼実験装置を示す図。The figure which shows a raceway simulation combustion experiment apparatus.

高炉の羽口から微粉炭を吹き込む場合、微粉炭ランスをブローパイプ1に挿入し、羽口先端の手前で微粉炭を吹き出すように設置する。微粉炭の吹き込み量(PCR)が大きい場合ランスを2本設置して吹き込むことができる(図1.ダブルランス構造)。この場合、
吹き込み位置が同じの吹き込みランス2を用いる。これに対し、本発明では、複数の炭種の微粉炭を2本の微粉炭吹き込みランスを用いて吹き込む場合に、図2のように微粉炭ランスをずらして設置し、Ash中SiO成分の濃度が高い微粉炭を炉壁側のランス3から、Ash中SiO成分濃度が低い微粉炭を炉内側のランス4から吹き込むように操業を行う。
When pulverized coal is blown from the tuyere of the blast furnace, a pulverized coal lance is inserted into the blow pipe 1 so that the pulverized coal is blown out before the tip of the tuyere. If the amount of pulverized coal blown (PCR) is large, two lances can be installed and blown (Fig. 1. Double lance structure). in this case,
A blowing lance 2 having the same blowing position is used. In contrast, in the present invention, when blown using two pulverized coal injection lance multiple coal type of pulverized coal was placed staggered pulverized coal lance as in FIG. 2, Ash in the SiO 2 component The operation is performed such that pulverized coal having a high concentration is blown from the lance 3 on the furnace wall side and pulverized coal having a low SiO 2 component concentration in the Ash is blown from the lance 4 on the furnace inner side.

図3に羽口前レースウェイ中のガス成分及び断熱温度の一例を示す(日本鉄鋼協会鉄鋼便覧第4.1版020105の図5・34)。羽口前レースウェイの反応は、以下の式(1)〜式(4)の通りである。即ち、微粉炭吹き込みランスから吹き込まれた微粉炭は熱風により昇温され、一定温度以上になるとまず揮発分(VM(CmHn)と記すことがある。)を放出する(1)。揮発分が熱風中の酸素により燃焼して発熱し高温の燃焼ガスとなる(2)。この熱により微粉炭中の固体成分が昇温し、熱風中の酸素と反応する(3)。酸素が消費されると燃焼生成ガスのCOまたはHOと固体炭素が反応して固体炭素がガス化消費される(4)。これら一連の反応は、一部は平行して進行する。

PC (昇温) → VM(CmHn) + C・・・・・・・・・・・(1)
VM(CmHn) + O2 → CO2+ H2O・・・・・・・・・・(2)
C + O2 → CO2, C + (1/2)O22 → CO・・・・・・・・(3)
C + CO2 → 2CO, C + H2O → CO + H2・・・・・・(4)
FIG. 3 shows an example of the gas components and the heat insulation temperature in the tuyere front raceway (FIGS. 5 and 34 of Japan Iron and Steel Institute 4.1 Edition 020105). The reaction of the front tuyere raceway is as shown in the following formulas (1) to (4). That is, the pulverized coal blown from the pulverized coal blowing lance is heated by hot air, and when it reaches a certain temperature or higher, first, volatile matter (which may be referred to as VM (CmHn)) is released (1). Volatile matter is burned by oxygen in the hot air to generate heat and become high-temperature combustion gas (2). This heat raises the temperature of the solid component in the pulverized coal and reacts with oxygen in the hot air (3). When oxygen is consumed, CO 2 or H 2 O of the combustion product gas and solid carbon react with each other to gasify and consume solid carbon (4). A part of these series of reactions proceeds in parallel.

PC (Temperature rise) → VM (CmHn) + C (1)
VM (CmHn) + O 2 → CO 2 + H 2 O (2)
C + O 2 → CO 2 , C + (1/2) O 2 2 → CO (3)
C + CO 2 → 2CO, C + H 2 O → CO + H 2 (4)

図3においては、羽口先端より約1mの位置にCO2成分と温度のピークがある。微粉炭吹き込み量が増加すると、上記式(1)により揮発分の放出が多く、式(2)による燃焼により温度のピークは炉壁側に移動し、炉壁側の熱負荷が増大するという問題がある。これに対し、微粉炭吹き込みランスの先端位置を炉内側にシフトさせ、炉壁側の熱負荷の増大を抑制するという対応策が考えられる。 In FIG. 3, there is a CO 2 component and temperature peak at a position about 1 m from the tip of the tuyere. When the amount of pulverized coal injection increases, the amount of volatile matter released by the above equation (1) increases, and the temperature peak moves to the furnace wall side due to combustion by the equation (2), and the heat load on the furnace wall side increases. There is. On the other hand, a countermeasure can be considered in which the tip position of the pulverized coal blowing lance is shifted to the inside of the furnace to suppress an increase in the heat load on the furnace wall side.

一方、微粉炭吹き込みランスの先端位置を炉内側にシフトさせると、レースウェイ内で完全に燃焼しなかったチャー(以下、未燃チャーと言う。)が炉芯のコークス充填層に侵入し、(SiO)ガス発生を増加し、溶銑中[Si]濃度が増大するという問題がある。即ち、未燃チャーは固体炭素が主成分であるが、微粉炭中のAsh成分も含まれる。レースウェイで高温に昇温された未燃チャーが酸素ポテンシャルの低い炉芯に入ると、未燃チャー内部の炭素CとAsh中SiOが反応し、下記の式(5)により、(SiO)ガスが発生する。
(SiO)ガスが炉芯内を滴下してくる溶銑と接触すると、下記の式(6)により、Siが溶銑に吸収され、溶銑中[Si]濃度が上がる。

SiO2 + C → (SiO) + CO ・・・・・・・・・・・・・(5)
(SiO) + [C] → [Si] + CO・・・・・・・・・・・・(6)
On the other hand, when the tip position of the pulverized coal blowing lance is shifted to the inside of the furnace, char that has not completely combusted in the raceway (hereinafter referred to as unburned char) enters the coke packed bed of the furnace core, There is a problem that the generation of (SiO) gas increases and the concentration of [Si] in the hot metal increases. That is, the unburnt char is mainly composed of solid carbon, but also includes an Ash component in pulverized coal. When unburned char heated to the high temperature on the raceway enters the furnace core having a low oxygen potential, carbon C in the unburned char and SiO 2 in Ash react to each other, and (SiO) Gas is generated.
When (SiO) gas comes into contact with the hot metal dropping in the furnace core, Si is absorbed by the hot metal according to the following formula (6), and the [Si] concentration in the hot metal is increased.

SiO 2 + C → (SiO) + CO (5)
(SiO) + [C] → [Si] + CO (6)

本発明者は、上記の相反する課題を解決する方策として、2本のランスをずらして微粉炭を吹き込むという方策を考えた。
炉壁側のランス3から吹き込まれた微粉炭は、先行して上記(1)〜(4)の反応が起こるため、レースウェイで燃焼しきれず炉芯に侵入する未燃チャーの発生は少ない。レースウェイ内で燃焼が完了して固体炭素がすべてガス化し、燃焼しない灰分は固体として残るが、レースウェイ内では酸素分圧が高いためSiOの還元が起こらず、残留灰分にはCがないため(SiO)ガスの発生は起こらない。
一方、炉内側から吹き込まれた微粉炭は、レースウェイで燃焼しきれず、炉芯に侵入する未燃チャーは発生するが、SiOの少ない微粉炭を選択的に吹き込めば、(SiO)ガスの発生量を低減できるとともに、炉壁側の熱負荷の増大を抑制することができる。
The present inventor considered a policy of shifting the two lances and injecting pulverized coal as a method of solving the above conflicting problems.
Since the pulverized coal blown from the lance 3 on the furnace wall side undergoes the reactions (1) to (4) in advance, there is little generation of unburned char that cannot be burned on the raceway and enters the furnace core. Combustion is completed in the raceway and all solid carbon is gasified, and the ash that does not burn remains as a solid, but the oxygen partial pressure is high in the raceway, so there is no reduction of SiO 2 and there is no C in the residual ash Therefore, generation of (SiO) gas does not occur.
On the other hand, the pulverized coal blown from the inside of the furnace cannot be burned in the raceway, and unburned char that enters the furnace core is generated, but if pulverized coal with little SiO 2 is selectively blown, (SiO) gas The generation amount can be reduced, and an increase in the heat load on the furnace wall side can be suppressed.

そこで、本発明では、Ash中のSiOが高い微粉炭は、微粉炭吹き込みランスの先端位置を炉壁側にシフトすることにより炉芯の未燃チャーの減少をはかり、溶銑[Si]濃度の上昇を防止する。一方、Ash中のSiOが低い微粉炭は、微粉炭吹き込みランスの先端位置を炉内側にシフトすることにより炉壁側の熱負荷の増大を抑制することとした。 Therefore, in the present invention, the pulverized coal having a high SiO 2 in Ash is used to reduce the unburned char in the furnace core by shifting the tip position of the pulverized coal blowing lance toward the furnace wall, and the molten iron [Si] concentration is reduced. Prevent the rise. On the other hand, the pulverized coal with low SiO 2 in the Ash is supposed to suppress an increase in the heat load on the furnace wall side by shifting the tip position of the pulverized coal blowing lance to the inside of the furnace.

微粉炭吹き込みランスの先端位置はそれぞれの微粉炭の揮発分を考慮して調整するべきであるが、2本のランスの先端位置を50〜300mm程度の範囲でずらすことが好ましい。すなわち、50mm以下では2本のランスをずらした効果が発現しにくい。300mm以上ずらすと、炉壁側のランスから出た微粉炭の揮発分の燃焼がブローパイプ内で始まってしまいブローパイプ内や炉壁部が高温になるため望ましくない。   The tip position of the pulverized coal blowing lance should be adjusted in consideration of the volatile content of each pulverized coal, but it is preferable to shift the tip positions of the two lances within a range of about 50 to 300 mm. That is, when the length is 50 mm or less, the effect of shifting the two lances is hardly exhibited. If it is shifted by 300 mm or more, the combustion of the volatile matter of the pulverized coal from the lance on the furnace wall side starts in the blow pipe, which is not desirable because the temperature in the blow pipe and the furnace wall becomes high.

(レースウェイ炉実験)
図4に示すようなレースウェイ模擬燃焼炉実験装置を用いて、表1に示す各実験条件で2種類の微粉炭(PC)を別々のランスから吹き込んで燃焼させる実験を行った。表2に、用いた高SiOの微粉炭(a)と高SiOの微粉炭(b)の組成を示す。レースウェイ模擬燃焼炉実験装置は、下部炉5と中部炉6からなり、試験終了後の下部炉5の炉内容物のサンプリングの便宜のため、中部炉6は、取り外し可能である。コークスは、中部炉6の上部より装入される。コークスと、下部炉の羽口7から吹き込まれた微粉炭は、羽口前レースウェイ8で燃焼する。試験終了後は、レースウェイの解体調査を行い、微粉炭の未燃チャー及び蓄積していたダストを調べた。ダストは、羽口中心から上部300mm、炉壁から300mmに位置する個所から採取し、SiOとAlの成分分析を行った。
(Raceway furnace experiment)
Using a raceway simulation combustion furnace experimental apparatus as shown in FIG. 4, an experiment was conducted in which two types of pulverized coal (PC) were blown from different lances and burned under the experimental conditions shown in Table 1. Table 2 shows the compositions of the high SiO 2 pulverized coal (a) and the high SiO 2 pulverized coal (b) used. The raceway simulation combustion furnace test apparatus includes a lower furnace 5 and a central furnace 6, and the central furnace 6 can be removed for the convenience of sampling the furnace contents of the lower furnace 5 after the test. Coke is charged from the upper part of the central furnace 6. The coke and pulverized coal blown from the tuyeres 7 of the lower furnace are combusted in the tuyere front raceway 8. After the test, the raceway was dismantled to investigate unburned char of pulverized coal and accumulated dust. Dust was collected from a location located 300 mm above the center of the tuyere and 300 mm from the furnace wall, and component analysis of SiO 2 and Al 2 O 3 was performed.

従来方式のランス配置(1)、すなわち2本のランスを羽口先端から手前50mmの位置でそろえて微粉炭を噴出した場合、蓄積していたダスト中のSiO/Alの比が1.5であった。これに対し、本発明方式のランス配置(2)、すなわち2本のランスからの微粉炭噴出位置を羽口先端から手前100mmと羽口先端位置にずらし、高SiOの微粉炭(a)を手前100mmのランスから、低SiOの微粉炭(b)を羽口先端位置のランスから噴出した場合、蓄積していたダスト中のSiO/ Alの比は2.0であった。これに対してもともとの微粉炭の平均のSiO/ Alの比は2.3である。微粉炭が燃焼してもAlはそのまま灰分中に残存すると考えられるから、SiO/ Alが減少した分は灰分中SiOが(SiO)ガスとして揮発して減少した分であると考えられる。したがって本発明方式(2)のランス配置により、(1)従来方式のランス配置に比べて(SiO)ガスの発生量が低減できたものと考えられ、実炉では溶銑[Si]が低減できると考えられる。 When the conventional lance arrangement (1), that is, when two lances are aligned at a position 50 mm from the tip of the tuyere and pulverized coal is ejected, the ratio of SiO 2 / Al 2 O 3 in the accumulated dust is 1.5. On the other hand, the lance arrangement (2) of the present invention system, that is, the pulverized coal ejection position from the two lances is shifted from the tip of the tuyere to the front and the tip of the tuyere, and the high SiO 2 pulverized coal (a) is placed. When low SiO 2 pulverized coal (b) was ejected from the lance at the tip of the tuyere from a lance 100 mm in front, the ratio of SiO 2 / Al 2 O 3 in the accumulated dust was 2.0. . In contrast, the average SiO 2 / Al 2 O 3 ratio of the original pulverized coal is 2.3. Even if pulverized coal burns, Al 2 O 3 is considered to remain in the ash as it is, so the amount of SiO 2 / Al 2 O 3 that has been reduced is the amount of SiO 2 volatilized and reduced as (SiO) gas. It is thought that. Therefore, it is considered that the amount of (SiO) gas generated can be reduced by the lance arrangement of the present invention system (2) compared with the lance arrangement of the conventional system (1), and the hot metal [Si] can be reduced in an actual furnace. Conceivable.

Figure 2014224292
Figure 2014224292

Figure 2014224292
Figure 2014224292

羽口から微粉炭を多量に吹き込む高炉操業において、溶銑[Si]を増加させることなく、Ash中SiO成分の高い低品質の微粉炭をより多く吹き込むことに利用できる。 In blast furnace operation in which a large amount of pulverized coal is blown from the tuyere, it can be used to blow more low-quality pulverized coal having a high SiO 2 component in Ash without increasing the amount of molten iron [Si].

1…ブローパイプ、2…吹き込み位置が同じの吹き込みランス、3…炉壁側のランス、4…炉内側のランス、5…下部炉、6…中部炉、7…羽口、8…レースウェイ。   DESCRIPTION OF SYMBOLS 1 ... Blow pipe, 2 ... Blowing lance with the same blowing position, 3 ... Lance on the furnace wall side, 4 ... Lance inside a furnace, 5 ... Lower furnace, 6 ... Middle furnace, 7 ... Tuyere, 8 ... Raceway.

Claims (2)

高炉の羽口から複数の炭種の微粉炭を2本の微粉炭ランスを用いて吹き込む方法であって、
2本のランスのブローパイプ先端の位置を前後にずらして設置し、炉壁側のランスから吹き込まれる微粉炭のAsh中のSiO成分濃度が、炉内側のランスから吹き込まれる微粉炭のAsh中のSiO成分濃度より高いことを特徴とする高炉羽口からの微粉炭吹き込み方法。
A method in which pulverized coal of a plurality of coal types is blown using two pulverized coal lances from a tuyeres of a blast furnace,
The two lance blow pipe tip positions are shifted back and forth, and the SiO 2 component concentration in the ash of the pulverized coal blown from the lance on the furnace wall side is in the ash of the pulverized coal blown from the lance inside the furnace. A method for injecting pulverized coal from a blast furnace tuyere characterized by being higher than the SiO 2 component concentration.
前記炉壁側のランス先端の位置と前記炉内側のランス先端の位置の間隔が、50mm〜150mmであることを特徴とする請求項1に記載の高炉羽口からの微粉炭吹き込み方法。   The method for injecting pulverized coal from a blast furnace tuyere according to claim 1, wherein an interval between the position of the lance tip on the furnace wall side and the position of the lance tip on the inside of the furnace is 50 mm to 150 mm.
JP2013104201A 2013-05-16 2013-05-16 Method of blowing pulverized coal from the blast furnace tuyeres Active JP6155834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013104201A JP6155834B2 (en) 2013-05-16 2013-05-16 Method of blowing pulverized coal from the blast furnace tuyeres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013104201A JP6155834B2 (en) 2013-05-16 2013-05-16 Method of blowing pulverized coal from the blast furnace tuyeres

Publications (2)

Publication Number Publication Date
JP2014224292A true JP2014224292A (en) 2014-12-04
JP6155834B2 JP6155834B2 (en) 2017-07-05

Family

ID=52123176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013104201A Active JP6155834B2 (en) 2013-05-16 2013-05-16 Method of blowing pulverized coal from the blast furnace tuyeres

Country Status (1)

Country Link
JP (1) JP6155834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112583A (en) * 2015-10-13 2015-12-02 武钢集团昆明钢铁股份有限公司 Method for increasing combustion rate of coal powder by adding furnace-front dust of blast furnace to injection coal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211148B2 (en) 2018-03-05 2023-01-24 株式会社リコー Information processing device, information processing system, information processing method and information processing program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205007A (en) * 1988-02-10 1989-08-17 Kobe Steel Ltd Method for controlling blast furnace operation by blowing fine powdered coal fuel
JPH0428808A (en) * 1990-05-23 1992-01-31 Sumitomo Metal Ind Ltd Method for blowing powdered material from tuyere in blast furnace
JPH0578718A (en) * 1991-09-20 1993-03-30 Nippon Steel Corp Method for controlling si concentration in molten iron in blast furnace
JPH06128614A (en) * 1992-10-14 1994-05-10 Nippon Steel Corp Operation of blast furnace
JP2004307966A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Method for operating blast furnace
JP2006241586A (en) * 2004-09-30 2006-09-14 Jfe Steel Kk Device for blowing reducing material into blast furnace, and method for operating blast furnace with the use of the device
JP2014031570A (en) * 2012-07-09 2014-02-20 Jfe Steel Corp Method for blowing solid reducing agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205007A (en) * 1988-02-10 1989-08-17 Kobe Steel Ltd Method for controlling blast furnace operation by blowing fine powdered coal fuel
JPH0428808A (en) * 1990-05-23 1992-01-31 Sumitomo Metal Ind Ltd Method for blowing powdered material from tuyere in blast furnace
JPH0578718A (en) * 1991-09-20 1993-03-30 Nippon Steel Corp Method for controlling si concentration in molten iron in blast furnace
JPH06128614A (en) * 1992-10-14 1994-05-10 Nippon Steel Corp Operation of blast furnace
JP2004307966A (en) * 2003-04-09 2004-11-04 Nippon Steel Corp Method for operating blast furnace
JP2006241586A (en) * 2004-09-30 2006-09-14 Jfe Steel Kk Device for blowing reducing material into blast furnace, and method for operating blast furnace with the use of the device
JP2014031570A (en) * 2012-07-09 2014-02-20 Jfe Steel Corp Method for blowing solid reducing agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112583A (en) * 2015-10-13 2015-12-02 武钢集团昆明钢铁股份有限公司 Method for increasing combustion rate of coal powder by adding furnace-front dust of blast furnace to injection coal

Also Published As

Publication number Publication date
JP6155834B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP4074467B2 (en) Method for improving combustibility of low volatile pulverized coal in blast furnace
JP5522325B1 (en) Blast furnace operation method
JP2013047371A (en) Method for refining molten iron
KR101341758B1 (en) Arc furnace steelmaking process using palm shell charcoal
JP6155834B2 (en) Method of blowing pulverized coal from the blast furnace tuyeres
JP5775476B2 (en) Reducing gas blowing method and blowing lance from blast furnace tuyere
JP6098765B2 (en) Method of injecting pulverized coal into oxygen blast furnace
JP4650226B2 (en) Melting reduction method
CN201680717U (en) Circulating fluid bed boiler for stone coal decarburization
CA2917759C (en) Method for operating a blast furnace
CN106232835B (en) Shaft furnace and method for operating the same
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
RU2695793C2 (en) Blast furnace operation method
KR102021871B1 (en) Method for operating blast furnace
JP4807099B2 (en) Blast furnace operation method
CN104619866B (en) The preparation method of pulverized coal injection into blast furna
JP2011190471A (en) Method for operating blast furnace
JP5526614B2 (en) Melting reduction method
JP2015166490A (en) Method for operating blast furnace
JP2023115784A (en) Converter operation method and auxiliary material for converter heat rise
JPH04110405A (en) Method for operating blast furnace
JP2014210962A (en) Blast furnace operation method
Stainlay et al. PCI coal- status and forecast
YA et al. On the prospects for increasing the flow rate of pulverized coal in iron production within the operating conditions of Blast Furnace Shop of PJSC" Ilyich Iron and Steel Works".
JP2015183232A (en) High furnace operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170522

R151 Written notification of patent or utility model registration

Ref document number: 6155834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350