JP2014224288A - Electrolytic tank drying method - Google Patents

Electrolytic tank drying method Download PDF

Info

Publication number
JP2014224288A
JP2014224288A JP2013103891A JP2013103891A JP2014224288A JP 2014224288 A JP2014224288 A JP 2014224288A JP 2013103891 A JP2013103891 A JP 2013103891A JP 2013103891 A JP2013103891 A JP 2013103891A JP 2014224288 A JP2014224288 A JP 2014224288A
Authority
JP
Japan
Prior art keywords
drying
bath
temperature
bath salt
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013103891A
Other languages
Japanese (ja)
Other versions
JP6083867B2 (en
Inventor
俊裕 立花
Toshihiro Tachibana
俊裕 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2013103891A priority Critical patent/JP6083867B2/en
Publication of JP2014224288A publication Critical patent/JP2014224288A/en
Application granted granted Critical
Publication of JP6083867B2 publication Critical patent/JP6083867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic tank drying method for executing, on an occasion for forcibly heating and drying an Mg electrolytic tank based on bath salt retention, efficient heating and drying treatment while effectively preventing the leakage of the bath salt.SOLUTION: On an occasion for forcibly heating and drying a refractory material layer within an Mg electrolytic tank with a molten salt charged into the tank, the temperature of the intra-tank bath salt is elevated in the initial drying phase of 48 hours or less since the charging of the molten salt in such a way that the average temperature gain ratio of the intra-tank bath salt over the period of 48 hours or less will be 0.75 to 2.5°C/hr. In the electrolytic tank drying method, the average temperature gain ratio of the intra-tank bath salt since the commencement of the bath salt retention drying till the passage of 24 hours is greater than the average temperature gain ratio of the intra-tank bath salt since 24 hours after the commencement of the bath salt retention drying till the passage of 48 hours, whereas the average temperature gain ratio of the intra-tank bath salt since the commencement of the bath salt retention drying till the passage of 24 hours is 1.5 to 5°C/hr. The average temperature of the bath salt following the passage of 48 hours since the charging of the molten salt is assumed to be 620 to 750°C.

Description

本発明は、金属Mgの製造に用いられるMg電解槽の乾燥方法、特に築炉されたMg電解槽の稼働開始前の乾燥方法に関し、より詳しくは、槽内に溶融塩を保持する浴塩保持乾燥による電解槽乾燥方法に関する。   The present invention relates to a drying method for an Mg electrolytic cell used for the production of metallic Mg, and more particularly to a drying method before starting operation of a built-in Mg electrolytic cell, and more specifically, a bath salt holding for holding a molten salt in the bath. The present invention relates to an electrolytic cell drying method by drying.

従来よりスポンジチタンの製造にはクロール法と呼ばれる還元法が使用されている。クロール法によるスポンジチタンの製造では、反応容器内の溶融Mgに四塩化チタンの液体を滴下し、その四塩化チタンをMgで還元することにより、反応容器内にスポンジチタンが生成し、副生物としてMgCl2 が生成する。副生物であるMgCl2 は溶融塩電解法により金属Mgに戻され、クロール法に還元剤として再使用される。   Conventionally, a reduction method called a crawl method has been used for producing sponge titanium. In the production of sponge titanium by the crawl method, titanium tetrachloride liquid is dropped into molten Mg in the reaction vessel, and the titanium tetrachloride is reduced with Mg to produce sponge titanium in the reaction vessel as a by-product. MgCl2 is formed. By-product MgCl2 is returned to metallic Mg by the molten salt electrolysis method and reused as a reducing agent in the crawl method.

溶融塩電解法による金属Mgの製造では、耐火レンガにより構築された電解槽が使用される。この電解槽は電解室とMg回収室とに分かれており、操業ではMgCl2 の溶融塩を槽内に投入し、電解室での電気分解によりMgを生成する。電解室で生成したMgは溶融塩の対流により隣接するMg回収室に運ばれて、その室内の溶融塩上に浮上し、逐次回収される。電解室ではMgの生成と同時に塩素ガスが生成される。   In the production of metal Mg by the molten salt electrolysis method, an electrolytic cell constructed of refractory bricks is used. This electrolytic cell is divided into an electrolytic chamber and an Mg recovery chamber. In operation, MgCl2 molten salt is charged into the tank, and Mg is generated by electrolysis in the electrolytic chamber. Mg generated in the electrolysis chamber is transported to the adjacent Mg recovery chamber by the convection of the molten salt, floats on the molten salt in the chamber, and is sequentially recovered. In the electrolytic chamber, chlorine gas is generated simultaneously with the generation of Mg.

このような金属Mgの製造では、電解槽での電流効率を高めることが、Mgの製造コストを引き下げる上で非常に重要な要件となっている。電解槽での電流効率を低下させる要因は様々あるが、その一つは電解槽内の水分である。   In the production of such metal Mg, increasing the current efficiency in the electrolytic cell is a very important requirement for reducing the production cost of Mg. There are various factors that decrease the current efficiency in the electrolytic cell, one of which is moisture in the electrolytic cell.

すなわち、電解槽での電流効率は、稼働からの経過日数により経時的に変化する。通常は操業後期に稼働日数が増加するにつれて電流効率が低下する。この原因は電解槽を構成する耐火レンガや電極の損耗とされている。しかし、電流効率の低下はこれだけではなく、稼働直後に電流効率が低く、稼働日数が増加するにつれて電流効率が上昇する変化もある。この操業初期における電流効率低下の原因は電解槽内の水分とされており、より詳しくは、次のようなメカニズムで電流効率に悪影響を及ぼすと考えられる。   That is, the current efficiency in the electrolytic cell changes over time depending on the number of days elapsed since operation. Usually, current efficiency decreases as the number of working days increases in the latter half of operation. The cause of this is considered to be wear of refractory bricks and electrodes constituting the electrolytic cell. However, this is not the only decrease in current efficiency, but there is also a change in current efficiency that is low immediately after operation and increases as the number of operating days increases. The cause of the decrease in current efficiency in the initial stage of operation is assumed to be moisture in the electrolytic cell. More specifically, it is considered that the current efficiency is adversely affected by the following mechanism.

溶融塩中に水分が混入すると、MgやMgCl2 との反応によりMgOが形成される。溶融塩中のMgO濃度が上昇すると、Mgの回収効率が低下する他、化学式1の反応により、生成したMgやCl2 が再びMgCl2 に戻るという再反応が起きるため、エネルギーロスが大きい。これが電流効率を低下させる要因である。これに加え、水分は塩化物との反応により塩酸を生成する場合があり、電解槽内の鉄製構造物(カソードや熱交換器等)を腐食させる原因にもなる。更に又、形成されたMgOは、電極材である黒鉛(C)と反応するため、電極を損耗させ電解操業後期における電流効率の低下やセル寿命にも悪影響を及ぼす。   When water is mixed in the molten salt, MgO is formed by reaction with Mg or MgCl2. When the MgO concentration in the molten salt increases, the recovery efficiency of Mg decreases, and the reaction of Chemical Formula 1 causes a re-reaction in which the generated Mg or Cl 2 returns to MgCl 2, resulting in a large energy loss. This is a factor that reduces current efficiency. In addition to this, water may generate hydrochloric acid by reaction with chloride, which may cause corrosion of iron structures (cathodes, heat exchangers, etc.) in the electrolytic cell. Furthermore, the formed MgO reacts with the graphite (C), which is an electrode material, so that the electrode is worn and the current efficiency is lowered and the cell life is adversely affected in the late stage of electrolytic operation.

Figure 2014224288
Figure 2014224288

このようなことから電解槽稼働前の段階で槽内の水分を極力減らすための対策が種々講じられており、その一つは十分に乾燥させた耐火レンガの使用である(特許文献1)。また、積極的な水分減少を狙ったものではないが、一般的な築炉法の一つとして、不定形耐火材の一つであるキャスターを槽内で焼成成形するための局部的なバーナー乾燥は従来からも実施されている(特許文献2)。しかしながら、従来の電解槽の場合、乾燥レンガを使用するというような積極的な水分対策を講じても、電解操業開始直後からしばらくの間は電流効率の低下を避けることができず、電解操業後期の電流効率の低下と共に、止むを得ない現象とされてきた。特に、耐火材として不定形耐火材を使用する場合は電解操業初期における電流効率の落ち込みが顕著であった。   For this reason, various measures have been taken to reduce moisture in the tank as much as possible before the operation of the electrolytic cell, and one of them is the use of a sufficiently dried refractory brick (Patent Document 1). In addition, although it is not aimed at active moisture reduction, as one of the general construction methods, local burner drying for firing and forming casters, which are one of the irregular refractory materials, in the tank Has also been implemented conventionally (Patent Document 2). However, in the case of conventional electrolyzers, even if aggressive measures against moisture such as using dry bricks are taken, a decrease in current efficiency cannot be avoided for a while from the start of electrolysis operation. As current efficiency declines, it has been considered an inevitable phenomenon. In particular, when an irregular refractory material is used as the refractory material, a drop in current efficiency in the initial stage of electrolytic operation was significant.

この問題を解決するために提案されたのが、電解槽を構築しその電解槽で電解操業を開始する際に、電解槽内に溶融状態の溶融塩を投入した後、通電を行わずに溶融塩を溶融状態に保持して槽内の耐火材の乾燥を行う浴塩保持乾燥である(特許文献3)。すなわち、MgCl2 を含む溶融塩は数百℃に加熱されている。これを構築された電解槽に投入すると格別のエネルギーを使用せずとも槽内全体が均一に数百℃の高温に加熱され、電解槽を構成する耐火材も数百℃に高温加熱される。この状態を保持することにより、耐火材中の水分が蒸発し乾燥が進む。耐火材から排出された水分の一部は槽内の溶融塩に吸収される。しかし、電気分解を行わない限り、溶融塩中にMg及びCl2 は存在しない。このため、溶融塩中に水分が侵入しても、再反応によるエネルギーロスが生じない。   To solve this problem, when an electrolytic cell was constructed and electrolytic operation was started in the electrolytic cell, the molten salt was put into the electrolytic cell and then melted without energization. It is bath salt holding drying which dries the refractory material in the tank while holding the salt in a molten state (Patent Document 3). That is, the molten salt containing MgCl2 is heated to several hundred degrees Celsius. When this is put into the constructed electrolytic cell, the entire interior of the cell is uniformly heated to a high temperature of several hundred degrees C without using any special energy, and the refractory material constituting the electrolytic cell is also heated to a high temperature of several hundred degrees C. By maintaining this state, moisture in the refractory material evaporates and drying proceeds. Part of the moisture discharged from the refractory material is absorbed by the molten salt in the tank. However, Mg and Cl2 are not present in the molten salt unless electrolysis is performed. For this reason, even if moisture enters the molten salt, no energy loss occurs due to re-reaction.

詳しく説明すると、電解初期に耐火材から発生する水分の多くは、耐火レンガ間の目地材として使用されるモルタルからの水分である。この水分が、溶融塩中に液滴となって分散混入しているMgと反応して、問題となるMgOを大量に発生させる。溶融塩を電解槽に投入すれば、モルタルについても乾燥が効果的に進み、水分が溶融塩中に吸収されるが、電解通電を行わなければ溶融塩中にMgが発生しないので、問題となるMgOの発生は大幅に抑制でき、モルタルを始めとする耐火物の乾燥のみが進む。このため、電解通電を行わずに電解槽内に溶融塩を保持することが、有効な乾燥法となるのである。   More specifically, most of the water generated from the refractory material in the early stage of electrolysis is water from the mortar used as a joint material between the refractory bricks. This moisture reacts with Mg dispersed and mixed as droplets in the molten salt, and a large amount of problematic MgO is generated. If molten salt is put into an electrolytic cell, drying of mortar will proceed effectively and moisture will be absorbed into the molten salt, but Mg will not be generated in the molten salt unless electrolytic current is applied, which is problematic. The generation of MgO can be greatly suppressed, and only the drying of refractories including mortar proceeds. For this reason, it is an effective drying method to keep the molten salt in the electrolytic cell without conducting electrolysis.

そして、ここにおける溶融塩の温度は、当然のことながら乾燥促進による電解槽の稼働直後の電流効率向上、乾燥工期短縮の点から高い方がよい。ただし、電解操業中の溶融塩温度(約660℃)+200℃というような極端に高い温度になると、炉材の熱損傷が問題となる。   And naturally, the temperature of the molten salt is better from the viewpoint of improving the current efficiency immediately after the operation of the electrolytic cell by promoting drying and shortening the drying period. However, when the molten salt temperature during electrolytic operation (about 660 ° C.) + 200 ° C. becomes extremely high, thermal damage to the furnace material becomes a problem.

ところが、本発明者らが実際にこの浴塩保持乾燥を実施したところ、溶融塩温度が炉材耐熱温度である上限値よりも十分に低い700℃程度であるにもかかわらず、溶融塩が電解槽の鉄皮と呼ばれるケーシングの裏側の耐火材層を通過し、ケーシングに開口する内部乾燥用ノズルなどから漏洩する危険のあることが分かった。溶融塩が電解槽外へ漏洩すると、安全面でのリスクが生じるのは勿論のこと、漏洩箇所の整備を実施する必要があり、余分なコストがかかる。最悪の場合は、稼働前の電解槽であるにもかかわらず、解体する必要に迫られ、多大の経済的損害を被る。   However, when the present inventors actually carried out this bath salt holding and drying, the molten salt was electrolyzed even though the molten salt temperature was about 700 ° C., which was sufficiently lower than the upper limit of the furnace material heat resistance temperature. It has been found that there is a risk of leakage from an internal drying nozzle or the like that passes through the refractory material layer on the back side of the casing, which is called the iron shell of the tank. If the molten salt leaks out of the electrolytic cell, there is a risk in terms of safety, and it is necessary to carry out maintenance of the leaking portion, which requires extra costs. In the worst case, it is necessary to dismantle even though it is an electrolytic cell before operation, and it suffers a great deal of economic damage.

特開昭58−157983号公報JP 58-157983 A 特開2002−80989号公報JP 2002-80989 A 特開2006−328450号公報JP 2006-328450 A

本発明の目的は、Mg電解槽を浴塩保持により強制加熱乾燥する際に、浴塩の漏洩を効果的に防止しつつ効率的な加熱乾燥処理を行う電解槽乾燥方法を提供することにある。   An object of the present invention is to provide an electrolytic cell drying method for efficiently performing a heat drying process while effectively preventing leakage of a bath salt when a Mg electrolytic cell is forcibly heated and dried by holding a bath salt. .

上記目的を達成するために、本発明者は構築された稼働前のMg電解槽に対し、浴塩保持による加熱乾燥を実施したときの浴塩漏洩の原因を解明するために、浴塩の漏洩が生じた電解槽を解体調査した。その結果、電解槽の耐火材である耐火レンガの特に目地を通して浴塩の浸透が進んでおり、漏洩部では、その浸透浴塩が電解槽のケーシングに達して、その内面に沿って広がり、そのケーシングの内部乾燥用ノズルなどから外部へ漏出していることが判明した。   In order to achieve the above-mentioned object, the present inventor in order to elucidate the cause of the leakage of bath salt when heat drying by holding the bath salt is performed on the constructed Mg electrolytic cell before operation. The dismantling investigation was conducted on the electrolytic cell in which this occurred. As a result, the penetration of the bath salt has progressed through the joints of the refractory brick, which is the refractory material of the electrolytic cell, and in the leaked part, the permeated bath salt reaches the casing of the electrolytic cell and spreads along its inner surface, It has been found that leakage has occurred from the nozzle for drying inside the casing.

逆に、浴塩の漏洩が発生しなかった電解槽を耐用期間経過後に解体調査したところ、溶融塩がケーシング手前の耐火材層内で固化することにより形成された浴塩の固化層自体が効果的な保護層を形成していることが明らかになった。そして、この現象の差異は、浴塩の温度による粘度の違い、これによる耐火材層への浸透速度とケーシング表面からの放熱とのバランスに起因していることが判明した。   On the contrary, when the electrolytic cell where the leakage of bath salt did not occur was disassembled after the end of its useful life, the solidified layer of the bath salt formed by the molten salt solidifying in the refractory layer before the casing was effective. It was revealed that a protective layer was formed. And it became clear that the difference of this phenomenon originated in the difference of the viscosity by the temperature of bath salt, and the balance of the penetration rate to the refractory material layer by this, and the heat dissipation from the casing surface.

すなわち、溶融塩の温度は、前述したとおり、乾燥促進による電解槽の稼働直後の電流効率向上、乾燥工期短縮の点から高い目に設定されるが、そうすると浴塩の粘度が低下し、耐火材層へ浴塩が溶融状態で比較的短時間に浸透して、ケーシング表面からの放熱より浸透速度が勝り、その結果ケーシングに達することから漏洩の危険性が高くなる。反対に浴塩が低温でその粘度が高いと、耐火材層への浸透速度が遅くなり、耐火材層への浸透速度とケーシング表面からの放熱とのバランスがとれ、固化層自体がケーシング近傍に効果的な保護層を形成するのである。   That is, as described above, the temperature of the molten salt is set to a high value from the viewpoint of improving the current efficiency immediately after operation of the electrolytic cell by promoting drying and shortening the drying period. The bath salt penetrates into the layer in a molten state in a relatively short time, and the permeation rate is higher than the heat dissipation from the casing surface. As a result, the risk of leakage increases due to reaching the casing. On the contrary, if the bath salt is low temperature and its viscosity is high, the penetration rate into the refractory material layer becomes slow, the balance between the penetration rate into the refractory material layer and the heat radiation from the casing surface, and the solidified layer itself is near the casing. An effective protective layer is formed.

いずれにしても、浴塩の漏洩は、ケーシング表面からの放熱と浴塩の浸透速度(浴塩温度)とのバランス上の問題であること、なかでも特に、効果的な保護層の形成は、電解槽へ浴塩を投入してから1〜2日、すなわち浴塩保持乾燥の開始から1〜2日という乾燥工程初期における前記バランスに支配されていることが判明した。   In any case, the leakage of the bath salt is a problem on the balance between the heat dissipation from the casing surface and the penetration rate of the bath salt (bath salt temperature), and in particular, the formation of an effective protective layer is It has been found that it is governed by the balance in the initial stage of the drying process, which is 1 to 2 days after the bath salt is introduced into the electrolytic cell, that is, 1 to 2 days from the start of the bath salt retention drying.

このことから、本発明者は電解槽内の耐火材層を投入浴塩により乾燥する際、その投入浴塩として、乾燥のために最適な浴温から意図的に下げた低温の浴塩を使用して、耐火材層への浴塩の浸透を抑え、これによりケーシング手前の耐火材層内に効果的な保護層を形成するのが浴塩の漏洩防止に有効であり、保護層が形成された後は、速やかに槽内の浴塩を乾燥に最適な高めの定常温度に維持して、乾燥促進による電解槽の稼働直後の電流効率向上、乾燥工期短縮を図るのが、安全で且つ効率的な合理的乾燥法であるとの結論に達した。 From this, when the present inventors dried the refractory material layer in the electrolytic cell with the input bath salt, the input bath salt used was a low-temperature bath salt that was intentionally lowered from the optimum bath temperature for drying. Therefore, it is effective for preventing the bath salt from leaking, so that the penetration of the bath salt into the refractory material layer is suppressed, thereby forming an effective protective layer in the refractory material layer before the casing. After that, it is safe and efficient to quickly maintain the bath salt in the tank at a higher steady temperature optimum for drying, improve the current efficiency immediately after the operation of the electrolytic cell by promoting drying, and shorten the drying period. It was concluded that this is a reasonable and reasonable drying method.

本発明の電解槽乾燥方法は、かかる知見を基礎として完成されたものであり、Mg電解槽内の耐火材層を、槽内へ投入された溶融塩により強制的に加熱乾燥する浴塩保持乾燥において、浴塩保持乾燥の開始から48時間以内の乾燥初期に、その48時間以内における槽内浴塩の平均温度上昇率が0.75〜2.5℃/hrとなるように槽内浴塩を昇温するものである。   The electrolytic cell drying method of the present invention has been completed on the basis of such knowledge, and the bath salt retention drying is performed by forcibly heating and drying the refractory material layer in the Mg electrolytic cell with the molten salt charged into the electrolytic cell. In the initial stage of drying within 48 hours from the start of the bath salt retention drying, the bath salt in the bath is adjusted so that the average temperature rise rate of the bath salt in the bath is within a range of 0.75 to 2.5 ° C./hr within 48 hours. The temperature is raised.

典型的な例としては、乾燥促進による電解槽の稼働直後の電流効率向上、乾燥工期短縮の点から最適とされる溶融塩の定常温度が700℃の場合、これより100℃低い600℃の低温浴を電解槽内へ投入し、遅くとも48時間後の浴温が700℃になるように投入浴塩を加熱するのである。このときの乾燥初期の48時間における槽内浴塩の平均温度上昇率は、約2℃/hr(100℃/48hr)以上である。これにより、乾燥初期の耐火材層への浴塩の緩慢な浸透により効果的な固化層が形成され、その後は速やかに浴塩温度が高めの定常温度へ戻され、その高温浴により効率的な乾燥が行われる。高温の浴塩を使用しても、それ以前の乾燥初期に効果的な固化層が形成されているので、浴塩の浸透による槽外への漏洩は可及的に抑制される。 As a typical example, when the steady-state temperature of the molten salt is 700 ° C, which is optimized from the viewpoint of improving the current efficiency immediately after the operation of the electrolytic cell by promoting drying and shortening the drying period, the low temperature of 600 ° C is lower by 100 ° C The hot bath is put into the electrolytic bath, and the bath salt is heated so that the bath temperature becomes 700 ° C. after 48 hours at the latest. At this time, the average temperature increase rate of the bath salt in the tank in the initial 48 hours is about 2 ° C./hr (100 ° C./48 hr) or more. As a result, an effective solidified layer is formed by the slow penetration of the bath salt into the refractory material layer at the initial stage of drying, and then the bath salt temperature is quickly returned to a higher steady temperature. Drying is performed. Even when a high-temperature bath salt is used, an effective solidified layer is formed at the early stage of drying before that, and leakage outside the bath due to penetration of the bath salt is suppressed as much as possible.

電解槽内へ投入された溶融塩の加熱法としては、電解通電による加熱以外のものでなければならず、具体的には電気抵抗加熱等の電気による加熱、又はガスによる加熱が好ましい。電解通電加熱を行うと、槽内の耐火材、特に耐火レンガ間のモルタルから発生した水分が、溶融塩中に液滴となって分散混入しているMgと反応して、問題となるMgOを大量発生させる。   The method for heating the molten salt introduced into the electrolytic cell must be other than heating by electrolysis, and specifically heating by electricity such as electric resistance heating or heating by gas is preferable. When electrolytic current heating is performed, the moisture generated from the refractory material in the tank, in particular, the mortar between the refractory bricks reacts with Mg dispersed and mixed as droplets in the molten salt, causing the problematic MgO. Generate a large amount.

浴塩保持乾燥を開始してからの浴塩の昇温速度は、基本的には速い方がよく、短時間で最終温度まで高めて定常温度に移行するのが乾燥効率の点から望ましいが、速すぎると電解槽のケーシング表面からの放熱と浴塩の浸透速度(浴塩温度)とのバランスが崩れて浴塩の浸透が急速に進み、その漏洩の危険性が生じる。この観点から、乾燥初期の48時間における槽内浴塩の平均温度上昇率を0.75〜2.5℃/hrとし、望ましくは乾燥初期の24時間における槽内浴塩の平均温度上昇率を1.5〜5℃/hrとする。乾燥初期の24時間における槽内浴塩の平均温度上昇率を1.5〜5℃/hrとして槽内浴塩を定常温度まで昇温する操作は、乾燥初期の48時間で見れば平均温度上昇率は0.75〜2.5℃/hrとなるので、前者の範囲内に後者は入る。   The rate of temperature rise of the bath salt after the start of bath salt retention drying is basically better, and it is desirable from the viewpoint of drying efficiency to increase to the final temperature in a short time and shift to the steady temperature, If it is too fast, the balance between the heat dissipation from the casing surface of the electrolytic cell and the penetration rate (bath salt temperature) of the bath salt is lost, and the penetration of the bath salt proceeds rapidly, resulting in the risk of leakage. From this point of view, the average temperature rise rate of the bath salt in the tank in the initial 48 hours of drying is set to 0.75 to 2.5 ° C./hr, and preferably the average temperature rise rate of the bath salt in the tank in the initial 24 hours of drying. Set to 1.5 to 5 ° C./hr. The average temperature rise rate of the bath salt in the tank in the initial 24 hours of drying is 1.5-5 ° C./hr, and the temperature of the bath salt in the tank is raised to the steady temperature. Since the rate is 0.75 to 2.5 ° C./hr, the latter falls within the former range.

浴塩保持乾燥を開始してから48時間経過した後も昇温を続けることは可能であるが、48時間経過までに昇温を終え、好ましくは24時間経過までに昇温を概ね終え、昇温を終えた後は、槽内の浴塩温度を乾燥に最適な定常温度に維持するのが乾燥効率の点から望ましい。つまり、浴塩保持乾燥の開始後24時間から48時間までの浴塩の平均温度上昇率よりも、浴塩保持乾燥の開始から24時間経過までの浴塩の平均温度上昇率の方が大きい方が望ましいということである。   It is possible to continue to raise the temperature after 48 hours have passed since the start of bath salt retention drying, but the temperature has been raised by 48 hours, preferably by 24 hours. After finishing the temperature, it is desirable from the viewpoint of drying efficiency that the bath salt temperature in the tank is maintained at a steady temperature optimum for drying. That is, the average temperature increase rate of the bath salt from the start of the bath salt holding and drying until the lapse of 24 hours is larger than the average temperature increase rate of the bath salt from 24 to 48 hours after the start of the bath salt holding and drying. Is desirable.

ここにおける定常温度とは、定性的には前述のとおり槽内の耐火材層の乾燥を目的とした浴塩温度であり、具体的には浴塩保持乾燥開始後48時間経過してから浴塩保持乾燥終了までの平均温度である。浴塩保持乾燥開始から48時間経過した後は浴塩の温度を定常温度に維持すのが望ましいが、この場合の「定常温度に維持」とは、必ずしも一定温度である必要はなく、多少の変動は許される。具体的には、この変動率は±0.5℃/hr以下が望ましく、±0.3℃/hr以下が更に望ましい。   The steady temperature herein is qualitatively the bath salt temperature for the purpose of drying the refractory material layer in the tank as described above, and specifically, the bath salt after 48 hours have elapsed since the start of bath salt retention drying. The average temperature until the end of holding and drying. It is desirable to maintain the temperature of the bath salt at a steady temperature after 48 hours from the start of the bath salt holding and drying. In this case, “maintenance at the steady temperature” does not necessarily need to be a constant temperature. Variation is allowed. Specifically, this variation rate is desirably ± 0.5 ° C./hr or less, and more desirably ± 0.3 ° C./hr or less.

そして、その定常温度の平均値は620〜750℃が望ましい。これが低いと電解槽内の耐火材層の乾燥が十分に進まないため、通電開始時における水分残留、或いは乾燥期間の延長が問題となる。反対に高すぎた場合は、既に強固な固化層が形成されているので溶融塩の漏洩の問題が生じることはないが、溶融塩の昇温に必要以上のエネルギーが必要となり、経済性の低下が問題となる。極端に高い浴塩温度は耐火材へ悪影響を与えることもある。   And the average value of the steady temperature is desirably 620 to 750 ° C. If this is low, drying of the refractory material layer in the electrolytic cell will not proceed sufficiently, so there will be a problem of moisture remaining at the start of energization or an extended drying period. On the other hand, if it is too high, a strong solidified layer has already been formed, so there will be no problem of leakage of molten salt, but more energy is required to raise the temperature of the molten salt, which reduces economic efficiency. Is a problem. Extremely high bath salt temperatures can adversely affect the refractory material.

電解槽へ投入する溶融塩の温度、すなわち浴塩保持乾燥開始時の浴塩温度は、乾燥初期の槽内浴塩の平均温度上昇率と、溶融塩を投入してから48時間経過した後の槽内浴塩温度、すなわち乾燥に最適な定常温度とが決まれば、自ずと算出され、具体的には530〜670℃が望ましい。これが低いと溶融塩の粘度が高くなり、投入作業に支障が生じる。また、投入後の昇温に余分なエネルギーが必要となると共に乾燥期間も必要以上に長くなり、経済性が悪化する。反対にこの温度が高すぎると溶融塩の耐火材層への浸透が速くなり、漏洩の危険性が生じる。   The temperature of the molten salt to be charged into the electrolytic bath, that is, the bath salt temperature at the start of bath salt holding and drying, is the average temperature rise rate of the bath salt in the initial stage of drying and after 48 hours have passed since the molten salt was added. If the bath salt temperature in the tank, that is, the steady temperature optimum for drying is determined, it is automatically calculated, and specifically, 530 to 670 ° C. is desirable. When this is low, the viscosity of the molten salt becomes high, and the charging operation is hindered. In addition, extra energy is required to raise the temperature after the addition, and the drying period becomes longer than necessary, which deteriorates the economy. On the other hand, if this temperature is too high, penetration of the molten salt into the refractory material layer is accelerated, and there is a risk of leakage.

なお、電解槽へ投入する直前の溶融塩の温度と電解槽へ投入された直後の溶融塩の温度との差は僅かで無視できる程度であるが、本発明の電解槽乾燥方法では後者の温度、すなわち浴塩保持乾燥開始時の温度を基準とする。   Note that the difference between the temperature of the molten salt immediately before being introduced into the electrolytic cell and the temperature of the molten salt immediately after being introduced into the electrolytic cell is negligible and can be ignored. That is, it is based on the temperature at the start of bath salt holding drying.

浴塩保持乾燥を開始してから電解通電を開始するまでの浴塩保持による乾燥期間は4〜15日が好ましく、6〜10日が特に好ましい。乾燥期間が短いと水分の残留による電解槽稼働直後のMgOの生成による電流効率の低下が問題となる。乾燥期間が長すぎると、浴塩温度保持のためのエネルギーが余分に必要となるたけでなく、構築を終えた電解槽の休止期間が長くなり、これら両面から経済性が低下する。   The drying period by holding the bath salt from the start of bath salt holding drying to the start of electrolysis is preferably 4 to 15 days, and particularly preferably 6 to 10 days. If the drying period is short, there is a problem of a decrease in current efficiency due to the generation of MgO immediately after operation of the electrolytic cell due to residual moisture. If the drying period is too long, not only energy for maintaining the bath salt temperature is required, but also the rest period of the electrolytic cell that has been constructed is lengthened, and the economic efficiency is lowered from both sides.

構築を終えた電解槽に対しては浴塩保持による乾燥を行う前にガス加熱乾燥を実施し、これにより槽内の耐火材中の水分を浴塩保持乾燥に先立って減らしておくのが、全体の乾燥期間の短縮、水分除去効率の向上の点から望ましい。低温の電解槽に高温の溶融塩を投入すると、熱衝撃で耐火材の接合部が損傷する懸念があるが、浴保持乾燥の前にガス加熱乾燥を行うと、ガス加熱乾燥で耐火材が予熱されるため、その懸念も取り除かれ、溶融塩の投入による温度低下も阻止される   For electrolytic tanks that have been constructed, gas heating drying is performed before drying by bath salt retention, and this reduces the moisture in the refractory material in the tank prior to bath salt retention drying, It is desirable from the viewpoint of shortening the entire drying period and improving the water removal efficiency. If high-temperature molten salt is introduced into a low-temperature electrolytic cell, there is a concern that the joint of the refractory material will be damaged by thermal shock. However, if gas heating drying is performed before bath holding drying, the refractory material is preheated by gas heating drying. Therefore, the concern is removed, and the temperature drop due to the addition of molten salt is also prevented.

ガス加熱乾燥において使用するガスは大気でよい。窒素等の他のガスを使用したり他のガスを大気に混合して使用することもできるが、大気を加熱して使用することに特に問題はない。すなわち、大気は若干の水分を有するが、100℃以上に加熱すれば耐火材の乾燥が可能である。大気加熱乾燥は乾燥ガスを使用する場合よりもガスの取扱が簡単であり、コストも大幅に抑制される。加熱手段としてはガスバーナー、電気ヒーターなどを使用することができる。最も合理的、効率的な方法は、大気をバーナーで加熱して槽内へ吹き込みながら他の場所から排気する加熱大気流通乾燥である。   The gas used in the gas heating drying may be air. Other gases such as nitrogen can be used, or other gases can be mixed with the atmosphere, but there is no particular problem with heating and using the atmosphere. That is, the atmosphere has some moisture, but the refractory material can be dried by heating to 100 ° C. or higher. Air heating drying is easier to handle gas than using dry gas, and the cost is greatly reduced. As the heating means, a gas burner, an electric heater or the like can be used. The most rational and efficient method is heated air circulation drying in which the atmosphere is heated with a burner and blown into the tank and exhausted from other places.

ガス加熱乾燥の期間は、乾燥効果を上げるために2日間が望ましく、4日間以上が更に望ましい。乾燥時間の上限については、必要以上の乾燥は経済性を悪化させるので10日間以下が望ましく、7日間以下が更に望ましい。望ましい雰囲気ガス温度は100〜400℃である。雰囲気ガス温度が低いと乾燥が十分に進まない。高すぎる場合は電解槽に使用される黒鉛部材の酸化が顕著になる。100〜400℃の範囲内、より望ましくは300〜400℃の範囲内であれば、黒鉛部材の酸化を抑えつつ耐火物の効率的な乾燥を行うことができる。使用する部材が急激な温度変化に耐えられず、亀裂等を引き起こす場合は、100〜400℃の間で徐々に又は段階的に温度を上げる方法が望まれる。なお、槽内から黒鉛部材を除去しておけば、400℃を超える加熱温度も可能である。   The period of gas heat drying is preferably 2 days in order to increase the drying effect, and more preferably 4 days or more. The upper limit of the drying time is preferably 10 days or less, and more preferably 7 days or less because excessive drying deteriorates the economy. A desirable atmospheric gas temperature is 100 to 400 ° C. If the atmospheric gas temperature is low, drying does not proceed sufficiently. When too high, the oxidation of the graphite member used for an electrolytic cell becomes remarkable. Within the range of 100 to 400 ° C., more desirably within the range of 300 to 400 ° C., the refractory can be efficiently dried while suppressing oxidation of the graphite member. When a member to be used cannot withstand a rapid temperature change and causes cracks or the like, a method of raising the temperature gradually or stepwise between 100 to 400 ° C. is desired. If the graphite member is removed from the tank, a heating temperature exceeding 400 ° C. is possible.

本発明の電解槽乾燥方法は、電解槽内へ投入された溶融塩により槽内の耐火材を強制的に加熱乾燥する浴塩保持乾燥の初期に槽内浴塩を昇温することにより、投入浴塩の温度を乾燥に最適な定常温度より下げることができる。これにより投入浴塩の粘度を高め、電解槽の耐火材層内に固化層を形成することができ、槽外への浴塩の漏洩を効果的に防止することができる。投入後、速やかに当初の定常温度にまで昇温することにより、効率のよい乾燥を行うことができ、これにより、浴塩の漏出の危険性を低減しつつ、電解槽の稼働直後の電流効率向上を図ると共に、乾燥工期短縮を図ることができ、これらにより浴塩漏洩に伴う補修費用の出費回避を含めた電解コストの大幅低減を可能とする。   The electrolytic cell drying method of the present invention is performed by heating the bath salt in the bath at the initial stage of bath salt holding drying in which the refractory material in the bath is forcibly heated and dried by the molten salt charged into the electrolytic cell. The temperature of the bath salt can be lowered from the steady temperature optimum for drying. Thereby, the viscosity of the bath salt can be increased, a solidified layer can be formed in the refractory material layer of the electrolytic cell, and the leakage of the bath salt to the outside of the cell can be effectively prevented. By quickly raising the temperature to the initial steady temperature after charging, efficient drying can be performed, thereby reducing the risk of leakage of bath salt and current efficiency immediately after operation of the electrolytic cell. In addition to the improvement, it is possible to shorten the drying period, and it is possible to significantly reduce the electrolysis cost including the avoidance of repair costs due to the leakage of bath salt.

電解槽へ投入した溶融塩の昇温パターンを例示したグラフである。It is the graph which illustrated the temperature rising pattern of the molten salt thrown into the electrolytic cell. 電解槽へ投入した溶融塩の別の昇温パターンを例示したグラフである。It is the graph which illustrated another temperature rising pattern of the molten salt thrown into the electrolytic cell. 電解槽へ投入した溶融塩の更に別の昇温パターンを例示したグラフである。It is the graph which illustrated another temperature rising pattern of the molten salt thrown into the electrolytic cell.

以下に本発明の実施形態を説明する。本実施形態の電解槽乾燥方法は、クロール法で副生したMgCl2 から金属Mgを再生するためのMg電解槽を対象とし、より具体的には、Mg電解槽の構築に使用された槽内の耐火材の乾燥に用いられる。このMg電解槽は、ケーシングとしての鉄皮の内側に乾燥した耐火レンガをモルタルで固定しながら積み上げて耐火材層を形成することにより構築される。構築後の槽内に電極等の付帯設備を設置して完成させたMg電解槽に前処理としてのガス加熱乾燥と、本処理としての浴塩保持乾燥を行うのが本実施形態の電解槽乾燥方法である。   Embodiments of the present invention will be described below. The electrolytic cell drying method of the present embodiment is directed to an Mg electrolytic cell for regenerating metal Mg from MgCl2 by-produced by the crawl method, and more specifically, in the electrolytic cell used for the construction of the Mg electrolytic cell. Used for drying refractory materials. This Mg electrolytic cell is constructed by stacking dry refractory bricks with mortar and forming a refractory layer on the inside of an iron skin as a casing. The electrolytic cell drying of the present embodiment is to perform gas heating drying as pre-treatment and bath salt retention drying as main treatment to the Mg electrolytic cell completed by installing auxiliary equipment such as electrodes in the constructed tank. Is the method.

本実施形態の電解槽乾燥方法では、完成した電解槽に関し、槽内の耐火材の乾燥の観点から、最適なガス加熱温度を300〜400℃の範囲内から予め設定すると共に、最適な浴塩保持乾燥における定常平均温度を620〜750℃の範囲内から予め設定しておく。また、浴塩保持乾燥初期における浴塩の漏洩防止の観点から、浴塩保持乾燥初期の48時間における平均温度上昇率0.75〜2.5℃/hrを満足する範囲内で予め設定しておく。これらから、浴塩保持乾燥開始時の浴塩温度を530〜670℃の範囲内で予め設定しておく。   In the electrolytic cell drying method of the present embodiment, regarding the completed electrolytic cell, from the viewpoint of drying the refractory material in the electrolytic cell, an optimal gas heating temperature is set in advance from the range of 300 to 400 ° C. and an optimal bath salt The steady average temperature in the holding drying is set in advance from the range of 620 to 750 ° C. In addition, from the viewpoint of preventing leakage of the bath salt in the initial stage of bath salt holding and drying, it is set in advance within a range that satisfies the average temperature increase rate of 0.75 to 2.5 ° C./hr in the initial 48 hours of bath salt holding and drying. deep. From these, the bath salt temperature at the start of bath salt holding drying is set in advance within a range of 530 to 670 ° C.

電解槽が完成すると、ガス加熱乾燥の後、530〜670℃の温度の溶融塩(低温浴)を電解槽内へ投入する。溶融塩(低温浴)の投入が終わると、その槽内の溶融塩を、遅くとも投入から48時間後までに定常平均温度(620〜750℃)の高温浴へ加熱昇温する。このとき、48時間における平均温度上昇率は0.75〜2.5℃/hrを満足させる必要がある。   When the electrolytic cell is completed, a molten salt (low temperature bath) having a temperature of 530 to 670 ° C. is put into the electrolytic cell after gas heating and drying. When charging of the molten salt (low temperature bath) is completed, the molten salt in the tank is heated to a high temperature bath having a steady average temperature (620 to 750 ° C.) at least 48 hours after the charging. At this time, the average temperature rise rate in 48 hours needs to satisfy 0.75-2.5 degrees C / hr.

投入された低温浴が所定の定常温度の高温浴になると、その高温浴の温度を予め定めた乾燥期間中、保持し、乾燥工程を終了する。5日間のガス加熱乾燥(300℃)の後に実施した浴塩保持乾燥での槽内浴塩の温度変化パターンを示したのが図1〜図3である。電解槽へ投入する低温浴の温度、すなわち浴塩保持乾燥開始時の浴塩温度は600℃、昇温後の高温浴の温度は700℃である。低温浴の投入、すなわち浴塩保持乾燥開始から48時間経過するまでの間に、600℃の低温浴が700℃の高温浴となってさえいれば、乾燥初期の48時間における浴塩の平均温度上昇率は約2℃/hrである。   When the introduced low temperature bath becomes a high temperature bath having a predetermined steady temperature, the temperature of the high temperature bath is maintained for a predetermined drying period, and the drying process is terminated. FIG. 1 to FIG. 3 show the temperature change pattern of bath salt in the bath in bath salt holding drying carried out after 5 days of gas heating drying (300 ° C.). The temperature of the low temperature bath introduced into the electrolytic cell, that is, the bath salt temperature at the start of bath salt holding and drying is 600 ° C., and the temperature of the high temperature bath after the temperature rise is 700 ° C. As long as the low temperature bath at 600 ° C. becomes a high temperature bath at 700 ° C. after the start of the low temperature bath, that is, 48 hours after the start of the bath salt holding drying, the average temperature of the bath salt in the initial 48 hours of drying The rate of increase is about 2 ° C./hr.

図1中に示された槽内浴塩の昇温パターンについて具体的に説明する。図1中のAは、乾燥初期の昇温を一定比率で48時間かけて行った昇温パターンを示す。Bは最初の24時間で定常温度まで浴塩を昇温し、その後の24時間は定常温度を維持した昇温パターンである。最初の24時間での昇温速度は約4℃/hr(100℃/24hr)である。またCは、最初の24時間での昇温速度を、その後の24時間での昇温速度より大きくした2段階昇温パターンであり、具体的には最初の24時間で75℃昇温し、その後の24時間で25℃昇温した。最初の24時間での昇温速度は約3℃/hr(75℃/24hr)であり、その後の24時間での昇温速度は約1℃/hr(25℃/24hr)である。   The temperature rising pattern of the bath salt in the tank shown in FIG. 1 will be specifically described. A in FIG. 1 shows a temperature increase pattern in which the temperature increase in the initial stage of drying was performed at a constant rate over 48 hours. B is a temperature rising pattern in which the temperature of the bath salt is raised to a steady temperature in the first 24 hours and the steady temperature is maintained for the next 24 hours. The temperature rising rate in the first 24 hours is about 4 ° C./hr (100 ° C./24 hr). C is a two-stage temperature increase pattern in which the temperature increase rate in the first 24 hours is larger than the temperature increase rate in the subsequent 24 hours. Specifically, the temperature is increased by 75 ° C. in the first 24 hours. The temperature was raised at 25 ° C. over the next 24 hours. The rate of temperature rise in the first 24 hours is about 3 ° C./hr (75 ° C./24 hr), and the rate of temperature rise in the subsequent 24 hours is about 1 ° C./hr (25 ° C./24 hr).

いずれのパターンでも、乾燥開始から48時間経過までの平均温度上昇率は、全て同じ約2℃/hr(100℃/48hr)となる。これにより乾燥初期に問題となる浴塩漏洩の問題は解決される。乾燥に最適な定常温度まで昇温した後はその定常温度を維持することにより、効率的な乾燥が行われる。これにより浴塩漏洩の問題発生を抑制しつつ、短い期間で効率的な乾燥を行うことができ、その効率的な乾燥により電解槽の稼働直後の電流効率向上を図ると共に、乾燥工期短縮を図ることができる。ちなみに、浴塩保持乾燥期間はここでは8日である。特にBパターン及びCパターンでは、前半の昇温速度を速くし、後半の昇温速度を遅くしたため、浴塩保持による乾燥効率があがり、乾燥期間は8日で余るほどであった。 In any of the patterns, the average temperature increase rate from the start of drying to the lapse of 48 hours is all about 2 ° C./hr (100 ° C./48 hr). This solves the problem of bath salt leakage which becomes a problem in the early stage of drying. After the temperature is raised to the optimum steady temperature for drying, efficient drying is performed by maintaining the steady temperature. As a result, it is possible to perform efficient drying in a short period of time while suppressing the occurrence of bath salt leakage problems, and the efficient drying improves current efficiency immediately after operation of the electrolytic cell and shortens the drying period. be able to. By the way, the bath salt retention drying period is 8 days here. In particular, in the B pattern and the C pattern, since the heating rate in the first half was increased and the heating rate in the second half was decreased, the drying efficiency by holding the bath salt increased, and the drying period was more than 8 days.

図2中のDは、最初の24時間を低温浴のまま保持し、後の24時間で定常温度まで昇温を行ったパターンである。Eは浴塩投入、すなわち浴塩保持乾燥開始から12時間経過した後に昇温を開始し、その後24時間で定常温度まで昇温を行い、残りの12時間を定常温度に維持したパターンである。昇温時の昇温速度は図1中のBパターンと同じ約4℃/hr(100℃/24hr)であるが、昇温は速く開始するほどよいので、望ましいのはBパターン、Eパターン、Dパターンの順である。   D in FIG. 2 is a pattern in which the first 24 hours are kept in the low temperature bath and the temperature is raised to the steady temperature in the next 24 hours. E is a pattern in which the bath salt is charged, that is, the temperature starts to rise after 12 hours have elapsed from the start of bath salt holding and drying, the temperature is raised to the steady temperature in 24 hours, and the remaining 12 hours are maintained at the steady temperature. The temperature increase rate at the time of temperature increase is about 4 ° C./hr (100 ° C./24 hr), which is the same as the B pattern in FIG. 1. However, the higher the temperature increase, the better. D pattern order.

図3中にFで示した昇温パターンでは、電解槽へ投入した600℃の低温浴の投入からの昇温を3日間(72時間)継続して、その低温浴を700℃の高温浴にした。投入から48時間経過後の浴温は約670℃であるので、乾燥初期の48時間における平均温度上昇率は約1.5℃/hである。定常温度である700℃までの昇温を3日間(72時間)としたため、浴塩保持乾燥期間は8日から9日に延長した。48時間経過した後から乾燥終了までの平均浴温は、定常温度である700℃より僅かに下がるが、依然として700℃に近く、620〜750℃の範囲内である。   In the temperature rise pattern indicated by F in FIG. 3, the temperature rise from the introduction of the 600 ° C. low temperature bath charged into the electrolytic cell is continued for 3 days (72 hours), and the low temperature bath is changed to a 700 ° C. high temperature bath. did. Since the bath temperature after the lapse of 48 hours from the introduction is about 670 ° C., the average temperature increase rate in the initial 48 hours of drying is about 1.5 ° C./h. Since the temperature rise to 700 ° C., which is a steady temperature, was 3 days (72 hours), the bath salt retention drying period was extended from 8 days to 9 days. The average bath temperature from the end of 48 hours to the end of drying is slightly lower than the steady temperature of 700 ° C., but is still close to 700 ° C. and within the range of 620 to 750 ° C.

図3中のGパターンでは、Fパターンと同様に、低温浴の投入からの昇温を3日間(72時間)継続したが、投入から48時間経過するまでの昇温速度を速く、その後、72時間目までの昇温速度を遅くした。昇温を72時間継続するとはいえ、48時間目までに約685℃まで昇温し、実質的な昇温を終え〔この間の昇温速度は約1.8℃/hr(85℃/48hr)〕、昇温パターンが図1中のAパターンに限りなく近づくため、浴塩保持乾燥期間は図1中のAパターンと同じ8日で問題がなかった。   In the G pattern in FIG. 3, as with the F pattern, the temperature increase from the introduction of the low temperature bath was continued for 3 days (72 hours). The heating rate was slowed down to the hour. Although the temperature rise is continued for 72 hours, the temperature is raised to about 685 ° C. by the 48th hour, and the substantial temperature rise is finished. [The temperature rise rate during this period is about 1.8 ° C./hr (85 ° C./48 hr) ] Since the temperature rising pattern approaches the A pattern in FIG. 1 as much as possible, the bath salt retention drying period was the same 8 days as the A pattern in FIG.

以上の昇温パターンは、その範囲を明確にするために比較的現実性の薄いものも含んでいるが、現実的な昇温パターンは、浴塩の投入直後から浴塩の漏洩が生じない範囲内で急速に昇温して48時間経過までに定常温度に移行する図1中のAパターン、Bパターン及びCパターンである。特に図1中のBパターンの場合は、乾燥初期における定常温度時間が他のパターンに比べて長くなるので、その分、乾燥初期後の定常温度の維持時間を短縮でき、全体としての乾燥期間を図示の8日間から7日間程度に短縮することも可能である。   The above temperature rising patterns include those that are relatively unrealistic in order to clarify the range, but the realistic temperature rising pattern is the range where the leakage of bath salt does not occur immediately after the bath salt is added. FIG. 1 shows the A pattern, B pattern, and C pattern in FIG. 1 that rapidly rise in temperature and shift to a steady temperature by 48 hours. In particular, in the case of the B pattern in FIG. 1, the steady temperature time in the initial stage of drying is longer than in the other patterns. Therefore, the maintenance time of the steady temperature after the initial stage of drying can be shortened accordingly, and the overall drying period can be reduced. It is also possible to shorten the time from the illustrated 8 days to about 7 days.

実施例として、完成した電解槽に対して実際に7日間のガス加熱乾燥(7日間)を実施した後、溶融塩を投入し、図1〜図3中にA〜Gに示すにパターンにより昇温した。浴塩保持乾燥の期間は8日間とした。比較例1として、電解槽に670℃の溶融塩を投入し、初期昇温をせずに670℃を定常温度としてこれを8日間維持した。同様に、比較例2としては、初期昇温のない700℃の定温浴塩保持乾燥(8日間)を行った。浴塩の定常温度、初期昇温パターン(平均温度上昇率)、その初期昇温パターンの種類が浴漏れ率、電解槽ケーシングの補修面積、及び電解通電操業初期における電流効率に及ぼす影響を調査した。調査結果を表1に示す。   As an example, the actual electrolytic cell was actually heated and dried for 7 days (7 days), then molten salt was added, and the pattern was raised according to the patterns shown in FIGS. Warm up. The period of bath salt retention drying was 8 days. As Comparative Example 1, a molten salt of 670 ° C. was charged into an electrolytic cell, and this was maintained for 8 days at a constant temperature of 670 ° C. without initial temperature rise. Similarly, as Comparative Example 2, 700 ° C. constant temperature bath holding and drying (8 days) without initial temperature increase was performed. We investigated the effect of bath salt steady temperature, initial temperature rise pattern (average temperature rise rate), and the type of initial temperature rise pattern on bath leakage rate, electrolytic cell casing repair area, and current efficiency in the initial electrolysis operation. . The survey results are shown in Table 1.

Figure 2014224288
Figure 2014224288

初期昇温を行った実施例については、乾燥初期の浴塩の平均温度上昇率を、乾燥開始から24時間経過までの値、24時間経過後から48時間経過までの値、及び乾燥開始から48時間経過までの値について表示した。浴漏れ率とは、複数の電解槽のうちの僅かでも浴漏れを起こした電解槽の比率であり、電解槽ケーシングの補修面積とは、浴漏れを起こした電解槽における補修面積の平均値である。これらは、電流効率と共に、初期昇温のない700℃の定温浴塩保持乾燥(8日間)を行った比較例2での値を100とした相対値で表した。   For the examples in which the initial temperature was raised, the average temperature rise rate of the bath salt at the initial stage of drying was set to a value from the start of drying to 24 hours, a value from 24 hours to 48 hours, and 48 times from the start of drying. The values up to the passage of time are displayed. The bath leak rate is the ratio of the electrolyzer that caused even a slight bath leak among a plurality of electrolyzers, and the repair area of the electrolyzer casing is the average value of the repair areas in the electrolyzer that caused the bath leak. is there. These were expressed as relative values with the current efficiency as well as the value in Comparative Example 2 in which constant temperature bath salt holding drying (8 days) at 700 ° C. without initial temperature increase was performed.

また、湯漏れ率、ケーシング補修面積、及び初期電流効率の評価を( )内に表示し、湯漏れ率、ケーシング補修面積については「50未満」を「×(不可)」、「50以上」を「○(可)」とした。初期電流効率については「90未満」は「5」、「91〜93」は「4」、「94〜96」は「3」、「97〜98」は「2」、「99以上」は「1」とした。すなわち、評価の数字が小さい方が高評価ということである。   In addition, the evaluation of the hot water leak rate, casing repair area, and initial current efficiency is displayed in parentheses. For the hot water leak rate and casing repair area, “less than 50” is indicated as “× (impossible)” and “50 or higher”. “Yes (Yes)”. Regarding the initial current efficiency, “less than 90” is “5”, “91 to 93” is “4”, “94 to 96” is “3”, “97 to 98” is “2”, and “99 or more” is “ 1 ”. That is, the smaller the evaluation number, the higher the evaluation.

これらの総合評価を表1に併示した。総合評価は「5」から「1」までの5段階評価とし、初期電流効率と同様に、評価の数字が小さい方を高評価とした。湯漏れ率、及びケーシング補修面積の何れかの評価が「×(不可)」である場合は、初期電流効率の評価に関係なく、最低評価の「5」を総合評価とした。湯漏れ率、及びケーシング補修面積の両方の評価が「○(可)」である場合は、初期電流効率の5段階評価をそのまま総合評価とした。   These comprehensive evaluations are shown in Table 1. The overall evaluation was a five-step evaluation from “5” to “1”. Like the initial current efficiency, the one with a smaller evaluation number was rated high. When any evaluation of the hot water leak rate and the casing repair area is “× (impossible)”, the lowest evaluation “5” is set as the overall evaluation regardless of the evaluation of the initial current efficiency. When the evaluation of both the hot water leak rate and the casing repair area is “◯ (possible)”, the five-stage evaluation of the initial current efficiency was taken as the overall evaluation.

比較例1及び2は乾燥初期の昇温を行わなかった従来例であり、浴塩保持乾燥開始時の浴塩温度と浴塩保持乾燥終了時の浴塩温度とが同じである。この浴塩温度、すなわち定常温度が700℃の比較例2では浴漏れ及びこれに伴うケーシング補修が大きな問題となった。但し、耐火材層の乾燥が進んでいるので、電解操業開始期における初期電流効率は高い。同様に乾燥初期の昇温を行わなかった比較例1では、浴塩温度が670℃と比較例2に比して若干低下したため、浴漏れ及びこれに伴うケーシング補修は低減したが、初期電流効率の低下は顕著であった。   Comparative Examples 1 and 2 are conventional examples in which the temperature was not raised at the initial stage of drying, and the bath salt temperature at the start of bath salt holding drying and the bath salt temperature at the end of bath salt holding drying were the same. In Comparative Example 2 in which the bath salt temperature, that is, the steady-state temperature is 700 ° C., the bath leakage and the accompanying casing repair became a big problem. However, since the drying of the refractory material layer is progressing, the initial current efficiency at the start of the electrolytic operation is high. Similarly, in Comparative Example 1 in which the temperature was not raised at the initial stage of drying, the bath salt temperature was 670 ° C., which was slightly lower than that in Comparative Example 2. The decrease of was remarkable.

これらに対し、初期昇温を行ったパターンA〜Gでは、パターンの違いにより若干の相違はあるが、全体としては浴漏れを効果的に抑制しつつ、電解通電操業初期における電流効率の低下を効果的に阻止することができた。各パターンにおける具体的な傾向は、前述の説明と整合するのもであった。 On the other hand, in the patterns A to G in which the initial temperature increase was performed, there are some differences depending on the patterns, but as a whole, a decrease in current efficiency at the initial stage of the electrolysis energization operation is achieved while effectively suppressing bath leakage. I was able to stop it effectively. The specific tendency in each pattern was consistent with the above explanation.

Claims (6)

Mg電解槽内の耐火材層を、槽内へ投入された溶融塩により強制的に加熱乾燥する浴塩保持乾燥において、浴塩保持乾燥の開始から48時間以内の乾燥初期に、その48時間以内における槽内浴塩の平均温度上昇率が0.75〜2.5℃/hrとなるように槽内浴塩を昇温する電解槽乾燥方法。   In the bath salt holding drying in which the refractory material layer in the Mg electrolytic bath is forcibly heated and dried by the molten salt charged into the bath, within 48 hours from the start of the bath salt holding drying within 48 hours. The electrolytic bath drying method of heating the bath salt in the bath so that the average temperature rise rate of the bath salt in the bath is 0.75 to 2.5 ° C./hr. 請求項1に記載の電解槽乾燥方法において、浴塩保持乾燥の開始から48時間経過した後は浴塩の温度を定常温度に維持する電解槽乾燥方法。   2. The electrolytic cell drying method according to claim 1, wherein the temperature of the bath salt is maintained at a steady temperature after 48 hours from the start of the bath salt retention drying. 請求項1又は2に記載の電解槽乾燥方法において、浴塩保持乾燥の開始から24時間経過までの槽内浴塩の平均温度上昇率が、浴塩保持乾燥の開始後24時間から48時間までの槽内浴塩の平均温度上昇率よりも大である電解槽乾燥方法。   3. The electrolytic cell drying method according to claim 1, wherein the average temperature rise rate of the bath salt in the bath from the start of the bath salt holding drying to the elapse of 24 hours is from 24 hours to 48 hours after the start of the bath salt holding drying. An electrolytic cell drying method that is greater than the average temperature rise rate of the bath salt in the cell. 請求項1〜3の何れかに記載の電解槽乾燥方法において、浴塩保持乾燥の開始から24時間経過までの槽内浴塩の平均温度上昇率が1.5〜5℃/hrである電解槽乾燥方法。   The electrolytic cell drying method according to any one of claims 1 to 3, wherein the average temperature rise rate of the bath salt in the bath from the start of bath salt retention drying to the lapse of 24 hours is 1.5 to 5 ° C / hr. Tank drying method. 請求項1〜4の何れかに記載の電解槽乾燥方法において、浴塩保持乾燥の開始から48時間経過した後の浴塩の平均温度が620〜750℃である電解槽乾燥方法。   The electrolytic cell drying method according to any one of claims 1 to 4, wherein an average temperature of the bath salt after lapse of 48 hours from the start of the bath salt retention drying is 620 to 750 ° C. 請求項1〜5の何れかに記載の電解槽乾燥方法において、浴塩保持乾燥の開始前に、槽内の耐火材層に対してガス乾燥を行う電解槽乾燥方法。   The electrolytic cell drying method according to claim 1, wherein gas drying is performed on the refractory material layer in the cell before the start of bath salt retention drying.
JP2013103891A 2013-05-16 2013-05-16 Electrolytic cell drying method Active JP6083867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103891A JP6083867B2 (en) 2013-05-16 2013-05-16 Electrolytic cell drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013103891A JP6083867B2 (en) 2013-05-16 2013-05-16 Electrolytic cell drying method

Publications (2)

Publication Number Publication Date
JP2014224288A true JP2014224288A (en) 2014-12-04
JP6083867B2 JP6083867B2 (en) 2017-02-22

Family

ID=52123172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103891A Active JP6083867B2 (en) 2013-05-16 2013-05-16 Electrolytic cell drying method

Country Status (1)

Country Link
JP (1) JP6083867B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059971A (en) * 2017-09-25 2019-04-18 東邦チタニウム株式会社 Drying method of molten salt electrolytic bath
JP2020002403A (en) * 2018-06-26 2020-01-09 東邦チタニウム株式会社 Moisture reduction method for molten salt, molten salt electrolysis method, and production method of molten metal
JP2020003265A (en) * 2018-06-26 2020-01-09 東邦チタニウム株式会社 Water amount estimation method in molten salt, and method for manufacturing molten metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089801A (en) * 2003-09-16 2005-04-07 Toho Titanium Co Ltd Metal production device, and temperature control method therefor
JP2006328450A (en) * 2005-05-24 2006-12-07 Sumitomo Titanium Corp Fused-salt electrolytic method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089801A (en) * 2003-09-16 2005-04-07 Toho Titanium Co Ltd Metal production device, and temperature control method therefor
JP2006328450A (en) * 2005-05-24 2006-12-07 Sumitomo Titanium Corp Fused-salt electrolytic method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019059971A (en) * 2017-09-25 2019-04-18 東邦チタニウム株式会社 Drying method of molten salt electrolytic bath
JP2020002403A (en) * 2018-06-26 2020-01-09 東邦チタニウム株式会社 Moisture reduction method for molten salt, molten salt electrolysis method, and production method of molten metal
JP2020003265A (en) * 2018-06-26 2020-01-09 東邦チタニウム株式会社 Water amount estimation method in molten salt, and method for manufacturing molten metal
JP7061519B2 (en) 2018-06-26 2022-04-28 東邦チタニウム株式会社 Molten salt moisture reduction method, molten salt electrolysis method, and molten metal manufacturing method
JP7166086B2 (en) 2018-06-26 2022-11-07 東邦チタニウム株式会社 Method for estimating amount of water in molten salt and method for producing molten metal

Also Published As

Publication number Publication date
JP6083867B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6083867B2 (en) Electrolytic cell drying method
CN104357067B (en) Maintenance of coke oven method
WO2019128826A1 (en) Rare earth metal molten salt electrolytic cell
CN104032116A (en) Thermal treatment process of steel bevel gear
CN103290200B (en) Method for treating accretions of roller with carbon sleeve for continuous annealing furnace
CN103060848B (en) Aluminum electrolytic tank with artificial hearth
CN104259153A (en) Furnace tube cleaning process
JP4481877B2 (en) Molten salt electrolysis method
JP6970570B2 (en) How to dry the molten salt electrolytic cell
CN103320817A (en) Preparation method of heat-preserving and sealing structure above hearth of inert electrode aluminum electrolyzing tank
RU2687113C2 (en) Method of producing metal and method of producing refractory metal
CN101270482A (en) Starting method for aluminum cell
CN103866097B (en) Salt bath furnace with submerged electrodes
CN109974459A (en) A kind of method that electrode paste repairs furnace eye
CN103940233A (en) Novel all-fibre muffle furnace
CN102703934B (en) Method for improving calcination temperature evenness of aluminium electrolysis cell
JP5533389B2 (en) Cement manufacturing apparatus and manufacturing method
KR101374242B1 (en) Magnesium produduce apparatus
RU220188U1 (en) Gas-electric electrolysis bath for producing aluminum from alumina
CN216205171U (en) Anti-skinning structure and rotary kiln using same
CN104451774A (en) Zero allowance cell shutting polymorph high roasting method
JP2019214773A (en) Molten salt electrolysis method, and method for producing metal magnesium
JP5365040B2 (en) Coke oven repair method
Butakova et al. Simulation of baking conditions and start-up of the aluminium electrolytic cells and their effect on the operating performance of cold ramming paste
CN207702995U (en) A kind of stove water cooling ceramic welding rifle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170120

R150 Certificate of patent or registration of utility model

Ref document number: 6083867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250