JP2014222564A - All-solid battery, manufacturing method of all-solid battery and manufacturing device for all-solid battery - Google Patents

All-solid battery, manufacturing method of all-solid battery and manufacturing device for all-solid battery Download PDF

Info

Publication number
JP2014222564A
JP2014222564A JP2013100817A JP2013100817A JP2014222564A JP 2014222564 A JP2014222564 A JP 2014222564A JP 2013100817 A JP2013100817 A JP 2013100817A JP 2013100817 A JP2013100817 A JP 2013100817A JP 2014222564 A JP2014222564 A JP 2014222564A
Authority
JP
Japan
Prior art keywords
layer
current collecting
electrode
solid
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013100817A
Other languages
Japanese (ja)
Other versions
JP6095472B2 (en
Inventor
高野 靖
Yasushi Takano
靖 高野
健児 岡本
Kenji Okamoto
健児 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2013100817A priority Critical patent/JP6095472B2/en
Publication of JP2014222564A publication Critical patent/JP2014222564A/en
Application granted granted Critical
Publication of JP6095472B2 publication Critical patent/JP6095472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an all-solid battery of which the internal short-circuiting is unlikely to occur regardless of a difference in thickness of layers caused by thinning and capacity increase.SOLUTION: A manufacturing method of an all-solid battery includes the steps of: forming a first electrode layer 4 in a first composite collector member 1 on a surface of a first collector member 1a and inside of a first insulation member 1b, forming a solid electrolyte layer 5 on a surface of the first electrode layer 4 and then further forming a second electrode mixture layer 6; and disposing an adhesive layer 8 in a second insulation member 2b of a second composite collector member 2. The first insulation member 1b opposes the adhesive layer 8 disposed in the second insulation member 2b and in the state where the second insulation member 2b is positioned around the second electrode mixture layer 6, the second collector member 2a is pressed and deformed along a surface shape of the second electrode mixture layer 6 by an elastic member 31. The first insulation member 1b and the second insulation member 2b are then adhered by the adhesive layer 8.

Description

本発明は、全固体電池並びに全固体電池の製造方法及び全固体電池の製造装置に関する。   The present invention relates to an all-solid battery, an all-solid battery manufacturing method, and an all-solid battery manufacturing apparatus.

全固体リチウムイオン二次電池は、高性能化及び高容量化を図るため、薄膜化及び大型化が試みられている(例えば特許文献1参照)。特許文献1には、集電体の表面に電荷を帯電させられた活物質及び固体電解質の混合粉末材料を搬送用ガスで吹き付けることにより、電池を薄膜化及び大型化する方法が開示されている。   In order to achieve high performance and high capacity, all solid lithium ion secondary batteries have been attempted to be thin and large (see, for example, Patent Document 1). Patent Document 1 discloses a method for thinning and increasing the size of a battery by spraying a mixed powder material of an active material and a solid electrolyte charged with electric charge on the surface of a current collector with a carrier gas. .

特開2011−124028号公報JP 2011-1224028 A

しかしながら、このような従来の方法では、膜を形成した後、プレスにて膜を押し固める際、薄型化のために固体電解質層を薄くしたり、高容量化のために電極層を厚くしたりすることに起因する各層の厚みの違いによって、部分的に全固体電池の内部構造が破壊され内部短絡が起こりやすくなるといった問題があった。   However, in such a conventional method, after the film is formed, when the film is pressed and solidified, the solid electrolyte layer is thinned for thinning or the electrode layer is thickened for high capacity. There is a problem that the internal structure of the all-solid-state battery is partially broken due to the difference in the thickness of each layer due to the fact that the internal short circuit easily occurs.

そこで、本発明は、上記問題に鑑み、薄型化及び高容量化により起こる各層の厚みの差異によらず、内部短絡しにくい全固体電池、その製造方法及びその製造装置を提供することを目的とする。   Therefore, in view of the above problems, the present invention has an object to provide an all-solid-state battery that is not easily short-circuited internally, regardless of the difference in thickness of each layer that occurs due to thinning and high capacity, a manufacturing method thereof, and a manufacturing apparatus thereof. To do.

本発明の全固体電池は、薄板状の第1集電部材及び当該第1集電部材の表面の周辺部に接着される薄板状の第1絶縁部材から成る第1複合集電部材と、当該第1複合集電部材及び前記第1集電部材の表面で且つ第1絶縁部材よりも内方に積層される第1電極合材層とから成る正極又は負極の第1電極層と、
固体電解質層と、
薄板状の第2集電部材及び当該第2集電部材の表面の周辺部に接着される薄板状の第2絶縁部材から成る第2複合集電部材と、当該第2複合集電部材及び前記第2集電部材の表面で且つ第2絶縁部材よりも内方に積層される第2電極合材層とから成る負極又は正極の第2電極層とを備え、
前記固体電解質層を前記第1及び第2電極合材層の間に配置して、第1及び第2電極層を各絶縁部材を対向させて積層する際に前記第1絶縁部材及び前記第2絶縁部材の間に接着層を介在させるとともに、弾性部材を介して押圧部材により押圧することにより、第2集電部材、各電極合材層及び前記固体電解質層の間に空隙が生じないようにされたことを特徴とする。
The all-solid-state battery of the present invention includes a first composite current collecting member comprising a thin plate-like first current collecting member and a thin plate-like first insulating member bonded to a peripheral portion of the surface of the first current collecting member, A positive electrode or negative electrode first electrode layer comprising a first composite current collecting member and a first electrode mixture layer laminated on the surface of the first current collecting member and inward of the first insulating member;
A solid electrolyte layer;
A second composite current collecting member composed of a thin plate-like second current collecting member and a thin plate-like second insulating member bonded to a peripheral portion of the surface of the second current collecting member; the second composite current collecting member; A second electrode layer of a negative electrode or a positive electrode comprising a second electrode mixture layer laminated on the surface of the second current collecting member and inward of the second insulating member,
When the solid electrolyte layer is disposed between the first and second electrode mixture layers and the first and second electrode layers are laminated with the insulating members facing each other, the first insulating member and the second insulating member are stacked. An adhesive layer is interposed between the insulating members and pressed by the pressing member via the elastic member so that no gap is generated between the second current collecting member, each electrode mixture layer and the solid electrolyte layer. It is characterized by that.

各電極合材層の少なくとも一方の側面が層の厚み方向に対して傾斜していることが好ましく、側面の傾斜角度は、各層の層面方向に対して10〜60°であることがより好ましく、固体電解質層の表面は、各電極層の表面よりも面積が大きいことがさらに好ましい。   It is preferable that at least one side surface of each electrode mixture layer is inclined with respect to the thickness direction of the layer, and the inclination angle of the side surface is more preferably 10 to 60 ° with respect to the layer surface direction of each layer, More preferably, the surface of the solid electrolyte layer has a larger area than the surface of each electrode layer.

本発明の全固体電池の製造方法は、上記の全固体電池の製造方法であって、第1複合集電部材に第1集電部材の表面で且つ第1絶縁部材よりも内方に第1電極合材の粉体を積層し第1電極層を形成する工程と、
前記第1電極層の表面に固体電解質の粉体を積層して固体電解質層を形成した後、第2電極合材の粉体をさらに積層して第2電極合材層を形成する工程と、
第2複合集電部材の第2絶縁部材に接着層を配置する工程とを備え、
さらに、前記第1絶縁部材と前記第2絶縁部材に配置された前記接着層とが対向するように配置し、且つ前記第2絶縁部材を前記第2電極合材層の周囲に位置させた状態で、
弾性部材を介して押圧部材により、前記第2集電部材を前記第2電極合材層の表面形状に沿って押圧して変形させるとともに、第1絶縁部材と第2絶縁部材とを接着層により接着させることを特徴とする。
The method for producing an all-solid battery according to the present invention is the above-described method for producing an all-solid battery, wherein the first composite current collecting member is first on the surface of the first current collecting member and more inward than the first insulating member. A step of laminating electrode mixture powder to form a first electrode layer;
Forming a solid electrolyte layer by laminating solid electrolyte powder on the surface of the first electrode layer, and further laminating powder of the second electrode mixture to form a second electrode mixture layer;
Providing an adhesive layer on the second insulating member of the second composite current collecting member,
Further, the first insulating member and the adhesive layer disposed on the second insulating member are arranged so as to face each other, and the second insulating member is positioned around the second electrode mixture layer so,
The second current collecting member is pressed and deformed along the surface shape of the second electrode mixture layer by the pressing member via the elastic member, and the first insulating member and the second insulating member are bonded by the adhesive layer. It is made to adhere.

本発明の全固体電池の製造装置は、上記の全固体電池の製造装置であって、第1絶縁部材を有する第1電極層、固体電解質層及び第2電極層の第2電極合材から成る主積層体を支持する受け台と、
第2複合集電部材及び第2絶縁部材に設けられた接着層から成る副積層体を支持し得るとともに前記受け台よりも上方に配置され且つ上下方向で移動可能に設けられた可動支持部材と、
当該可動支持部材よりも上方に配置されるとともに下端に弾性部材が設けられた押圧部材とを具備し、
前記受け台に支持された前記主積層体に前記可動支持部材に支持された前記副積層体を積層し押圧させて全固体電池を形成する際に、
前記押圧部材を下方に及び/又は前記受け台を上方に移動させることにより、前記可動支持部材に支持された副積層体と前記受け台に支持された主積層体とを接触させた後、さらに前記押圧部材を下方に及び/又は前記受け台を上方に移動させることにより、前記弾性部材を介して、前記第2絶縁部材を前記第2電極合材層の周囲に位置させた状態で、前記第2集電部材を前記第2電極合材層の表面に沿って変形させるとともに、前記接着層により前記第1絶縁部材と前記第2絶縁部材とを互いに接着させるようにしたことを特徴とする。
An apparatus for producing an all-solid battery according to the present invention is the apparatus for producing an all-solid battery described above, comprising a first electrode layer having a first insulating member, a solid electrolyte layer, and a second electrode mixture of a second electrode layer. A cradle for supporting the main laminate;
A movable support member capable of supporting a sub-layered body composed of an adhesive layer provided on the second composite current collecting member and the second insulating member and disposed above the cradle and movably provided in the vertical direction; ,
A pressing member disposed above the movable support member and provided with an elastic member at the lower end;
When forming the all-solid battery by laminating and pressing the sub-laminate supported by the movable support member on the main laminate supported by the cradle,
After contacting the sub-laminate supported by the movable support member and the main laminate supported by the cradle by moving the pressing member downward and / or the cradle upward, By moving the pressing member downward and / or the cradle upward, the second insulating member is positioned around the second electrode mixture layer via the elastic member, The second current collecting member is deformed along the surface of the second electrode mixture layer, and the first insulating member and the second insulating member are bonded to each other by the adhesive layer. .

本発明の全固体電池、全固体電池の製造装置及び全固体電池の製造方法によれば、全固体電池を加圧する際に、変形自在な弾性部材を介して押圧することにより、押圧部材のみを用いる場合と比較して、圧縮に伴い弾性部材の形状が変化し、電極合材層の表面形状に沿って集電部材を変形させて配することができるため、各電極合材層及び固体電解質層並びにこれらと各集電部材との間に空隙のない成形体を得ることができる。また、第1絶縁部材と第2絶縁部材との間に接着層を設けることで、各層間の空隙が低減された押圧状態を確実に維持することができるため、全固体電池の内部短絡が抑制される。   According to the all-solid battery, the all-solid battery manufacturing apparatus, and the all-solid battery manufacturing method of the present invention, when pressing the all-solid battery, only the pressing member is pressed by pressing it through a deformable elastic member. Compared with the case of using, the shape of the elastic member changes with compression, and the current collecting member can be deformed and arranged along the surface shape of the electrode mixture layer, so that each electrode mixture layer and solid electrolyte It is possible to obtain a molded body having no gaps between the layers and the current collecting members. In addition, by providing an adhesive layer between the first insulating member and the second insulating member, it is possible to reliably maintain a pressed state in which the gaps between the respective layers are reduced, thereby suppressing an internal short circuit of the all-solid-state battery. Is done.

本実施の形態に係る全固体電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the all-solid-state battery which concerns on this Embodiment. 本実施の形態に係る全固体電池の製造装置の斜視図である。It is a perspective view of the manufacturing apparatus of the all-solid-state battery which concerns on this Embodiment. 同全固体電池の製造装置の要部切欠正面図である。It is a principal part notched front view of the manufacturing apparatus of the all-solid-state battery. 同全固体電池の製造装置の側面図である。It is a side view of the manufacturing apparatus of the all-solid-state battery. 同全固体電池の製造装置のA−A断面図である。It is AA sectional drawing of the manufacturing apparatus of the all-solid-state battery. 同全固体電池の製造装置のB−B断面図である。It is BB sectional drawing of the manufacturing apparatus of the all-solid-state battery. 本実施の形態に係る全固体電池の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the all-solid-state battery which concerns on this Embodiment.

以下、本発明の実施の形態に係る全固体電池並びにその製造方法及びその製造装置について説明する。
なお、以下の実施の形態では、まず全固体電池の構成について説明し、次にその製造装置及び製造方法について説明する。
<全固体電池>
本実施の形態に係る全固体電池は、図1に示すように、薄板状の第1集電部材1a及び第1集電部材1aの表面の周辺部に接着される薄板状の第1絶縁部材1bから成る第1複合集電部材1と、第1複合集電部材1及び第1集電部材1aの表面で且つ第1絶縁部材1bよりも内方に積層される第1電極合材層3とから成る正極又は負極の第1電極層4と、固体電解質層5と、薄板状の第2集電部材2a及び第2集電部材2aの表面の周辺部に接着される薄板状の第2絶縁部材2bから成る第2複合集電部材2と、第2複合集電部材2及び第2集電部材2aの表面で且つ第2絶縁部材2bよりも内方に積層される第2電極合材層6とから成る負極又は正極の第2電極層7とを備え、固体電解質層5を第1及び第2電極合材層3,6の間に配置して、第1及び第2電極層4,7を各絶縁部材1b,2bを対向させて積層する際に第1絶縁部材1b及び第2絶縁部材2bの間に接着層8を介在させるとともに、弾性部材を介して押圧部材により押圧することにより、第2集電部材2a、各電極合材層3,6及び固体電解質層5の間に空隙が生じないようにされている。
Hereinafter, an all-solid-state battery according to an embodiment of the present invention, a manufacturing method thereof, and a manufacturing apparatus thereof will be described.
In the following embodiments, the configuration of an all-solid battery will be described first, and then the manufacturing apparatus and manufacturing method will be described.
<All solid battery>
As shown in FIG. 1, the all solid state battery according to the present embodiment includes a thin plate-like first current collecting member 1a and a thin plate-like first insulating member bonded to the peripheral portion of the surface of the first current collecting member 1a. A first composite current collecting member 1 made of 1b, and a first electrode mixture layer 3 laminated on the surfaces of the first composite current collection member 1 and the first current collection member 1a and inward of the first insulating member 1b. A first electrode layer 4 of a positive electrode or a negative electrode, a solid electrolyte layer 5, a thin plate-like second current collecting member 2a, and a thin plate-like second electrode bonded to the peripheral portion of the surface of the second current collecting member 2a. Second composite current collecting member 2 composed of insulating member 2b, and second electrode composite material laminated on the surface of second composite current collecting member 2 and second current collecting member 2a and inward of second insulating member 2b A negative electrode or a positive electrode second electrode layer 7 comprising a layer 6, and a solid electrolyte layer 5 is disposed between the first and second electrode mixture layers 3, 6. When the first and second electrode layers 4 and 7 are laminated with the insulating members 1b and 2b facing each other, the adhesive layer 8 is interposed between the first insulating member 1b and the second insulating member 2b, and the elastic member By pressing with a pressing member via the, a gap is prevented from being generated between the second current collecting member 2 a, the electrode mixture layers 3, 6 and the solid electrolyte layer 5.

以下、より具体化した全固体電池について説明する。下側に第1電極層4として正極層を配置する場合について説明するとともに、その平面視形状が正方形である場合について説明する。   Hereinafter, a more specific all solid state battery will be described. The case where the positive electrode layer is disposed as the first electrode layer 4 on the lower side will be described, and the case where the shape in plan view is a square will be described.

図1に示すように、本実施の形態に係る全固体電池は、正極として機能する第1電極層4と、第1電極層4に積層される固体電解質層5と、固体電解質層5に積層される負極として機能する第2電極層7とで構成されている。   As shown in FIG. 1, the all solid state battery according to the present embodiment includes a first electrode layer 4 that functions as a positive electrode, a solid electrolyte layer 5 that is stacked on the first electrode layer 4, and a stack on the solid electrolyte layer 5. And the second electrode layer 7 functioning as a negative electrode.

第1電極層4及び第2電極層7は、同一の構成をしているため、以下、電極層4,7として説明する。電極層4,7は、薄板状の集電部材1b,2b及び集電部材1a,2aの表面の周辺部に接着される薄板状の絶縁部材1b,2bから成る複合集電部材1,2と、複合集電部材1,2及び集電部材1a,2aの表面で且つ絶縁部材1b,2bよりも内方に積層される電極合材層3,6とで構成される。すなわち、複合集電部材1,2の中央部には、集電部材1a,2aが露出される開口部9,10が形成される。   Since the first electrode layer 4 and the second electrode layer 7 have the same configuration, they will be described as electrode layers 4 and 7 below. The electrode layers 4 and 7 are composed of thin plate-like current collecting members 1b and 2b and composite current collecting members 1 and 2 composed of thin plate-like insulating members 1b and 2b bonded to the periphery of the surface of the current collecting members 1a and 2a. The electrode collector layers 3 and 6 are laminated on the surfaces of the composite current collecting members 1 and 2 and the current collecting members 1a and 2a and inward of the insulating members 1b and 2b. In other words, openings 9 and 10 through which the current collecting members 1a and 2a are exposed are formed at the center of the composite current collecting members 1 and 2.

第1集電部材(正極集電部材ともいう)1aの上面の周辺部には所定幅でもって接着材1cを介して第1絶縁部材1bが配置されて第1複合集電部材(正極複合集電部材ともいう)1が構成されるとともに、この第1複合集電部材1の中央部に形成される開口部9に第1電極合材層(正極合材層ともいう)3が配置されて第1電極層4が構成される。   A first insulating member 1b is disposed around the upper surface of a first current collecting member (also referred to as a positive current collecting member) 1a with a predetermined width through an adhesive 1c, and a first composite current collecting member (positive electrode current collecting member). 1), and a first electrode mixture layer (also referred to as a positive electrode mixture layer) 3 is disposed in an opening 9 formed in the central portion of the first composite current collection member 1. The first electrode layer 4 is configured.

そして、この第1電極層4における第1電極合材層3の上面に且つ第1電極合材層3の全体を覆うように固体電解質の粉体が積層されるとともに、この固体電解質層5の上面に第2電極合材層(負極電極合材層ともいう)6が積層される。ここで、以下、第1電極合材層3、固体電解質層5及び第2電極合材層6を併せて粉体層と称することがある。   Then, solid electrolyte powder is laminated on the upper surface of the first electrode mixture layer 3 in the first electrode layer 4 so as to cover the entire first electrode mixture layer 3, and the solid electrolyte layer 5 A second electrode mixture layer (also referred to as a negative electrode mixture layer) 6 is laminated on the upper surface. Here, hereinafter, the first electrode mixture layer 3, the solid electrolyte layer 5, and the second electrode mixture layer 6 may be collectively referred to as a powder layer.

本実施の形態に係る全固体電池は、この第2電極合材層6の上面に、第2集電部材(負極集電部材ともいう)2aの上面の周辺部に所定幅でもって接着材2cを介して第2絶縁部材2bが配置されてなる第2複合集電部材(負極複合集電部材ともいう)2が配置された状態で、上方から押圧して第1絶縁部材1bと第2絶縁部材2bとが接着層8を介して強固に接着されたものである。   In the all solid state battery according to the present embodiment, the adhesive 2c has a predetermined width on the upper surface of the second electrode mixture layer 6 and on the periphery of the upper surface of the second current collecting member (also referred to as negative electrode current collecting member) 2a. In a state where a second composite current collector member (also referred to as a negative electrode composite current collector member) 2 in which the second insulating member 2b is arranged via the first insulating member 1b and the second insulating member is pressed from above. The member 2b is firmly bonded via the adhesive layer 8.

このとき、図1に示すように、第2集電部材2aは固体電解質層5の周辺部の外側の第1絶縁部材1bの上面に接触されて、第1電極合材層3と第2電極合材層6との内部短絡が防止されている。   At this time, as shown in FIG. 1, the second current collecting member 2 a is in contact with the upper surface of the first insulating member 1 b outside the periphery of the solid electrolyte layer 5, and the first electrode mixture layer 3 and the second electrode An internal short circuit with the composite material layer 6 is prevented.

ここで、上記全固体電池の平面視の形状について説明すると、集電部材1a,2a及び電極合材層3,6は正方形にされており、当然ながら、接着材1c、2c及び接着層8についても、その正方形の辺に沿って配置されるため、中央部に開口部を有する。なお、接着材1c、2c及び接着層8には、一般に用いられる接着方法を用いるか、熱融着を代用しても構わない。本実施の形態においては、接着には、全て感圧接着材を用いている。   Here, the shape of the all-solid battery in plan view will be described. The current collecting members 1a and 2a and the electrode mixture layers 3 and 6 are square, and of course, the adhesives 1c and 2c and the adhesive layer 8 are used. Since it is arranged along the side of the square, it has an opening at the center. For the adhesives 1c and 2c and the adhesive layer 8, a commonly used adhesion method may be used, or heat fusion may be substituted. In this embodiment, a pressure-sensitive adhesive is used for bonding.

そして、それぞれの大きさについて説明すると、正極(又は負極)の第1電極層4の上方に負極(又は正極)の第2電極層7が押圧されて積層されるため、各電極合材層3,6の大きさ、集電部材1a,2aの大きさ、集電部材1a,2aの周辺部に配置される絶縁部材1b,2bの内寸法つまり絶縁部材1b,2bに設けられる開口部9,10の大きさは、以下のようにされている。   The respective sizes will be described. Since the second electrode layer 7 of the negative electrode (or positive electrode) is pressed and laminated above the first electrode layer 4 of the positive electrode (or negative electrode), each electrode mixture layer 3 , 6, the size of the current collecting members 1 a, 2 a, the internal dimensions of the insulating members 1 b, 2 b arranged around the current collecting members 1 a, 2 a, that is, the openings 9 provided in the insulating members 1 b, 2 b, The size of 10 is as follows.

すなわち、図1に示すように、第1絶縁部材1bの開口部9の方は第1電極層4の第1電極合材層3の大きさ以上であるとともに、第1電極合材層3の上方に配置される固体電解質層5は第1絶縁部材1bの開口部9の大きさ以上であり、さらにこの上に積層される第2電極層7の第2電極合材層6は固体電解質層5の大きさ以下であるとともに、第2電極合材層6の周囲に配置される第2絶縁部材2bの開口部10は第2電極合材層6の大きさ以上であり、且つ押圧時に第2集電部材2aの周辺部が第1絶縁部材1bに接触されるような大きさにされている。   That is, as shown in FIG. 1, the opening 9 of the first insulating member 1 b is not less than the size of the first electrode mixture layer 3 of the first electrode layer 4 and the first electrode mixture layer 3. The solid electrolyte layer 5 disposed above is larger than the size of the opening 9 of the first insulating member 1b, and the second electrode mixture layer 6 of the second electrode layer 7 laminated thereon is a solid electrolyte layer. And the opening 10 of the second insulating member 2b disposed around the second electrode mixture layer 6 is not less than the size of the second electrode mixture layer 6 and is The size is such that the peripheral portion of the two current collecting members 2a is in contact with the first insulating member 1b.

その大小関係を示すと下記のようになる。
第1電極合材層3の一辺の幅L1≦第1絶縁部材1bの開口部9の一辺の幅L2≦第2電極合材層6の一辺の幅L3≦固体電解質層5の一辺の幅L4≦第2絶縁部材2bの開口部10の一辺の幅L5
また、全固体電池の重量を低減する観点から、集電部材1a,2aの厚さが10〜50μm、第1及び第2絶縁部材1b,2bの厚さが20〜100μmであり、接着層8の厚さが5〜100μmであり、各電極合材層3,6及び固体電解質層5の厚さの合計が、各絶縁部材1b,2b及び接着層8の厚さの合計よりも大きいことが好適である。
The magnitude relationship is as follows.
The width L1 of one side of the first electrode mixture layer 3 ≦ the width L2 of one side of the opening 9 of the first insulating member 1b ≦ the width L3 of one side of the second electrode mixture layer 6 ≦ the width L4 of one side of the solid electrolyte layer 5 ≦ Width L5 of one side of the opening 10 of the second insulating member 2b
From the viewpoint of reducing the weight of the all-solid-state battery, the current collecting members 1a and 2a have a thickness of 10 to 50 μm, the first and second insulating members 1b and 2b have a thickness of 20 to 100 μm, and the adhesive layer 8 The total thickness of the electrode mixture layers 3 and 6 and the solid electrolyte layer 5 is larger than the total thickness of the insulating members 1b and 2b and the adhesive layer 8. Is preferred.

さらには、本実施の形態においては、成形時の加圧に好ましい圧力7.35〜14.7MPa(75〜150kgf/cm)に対して、第1複合集電部材1の開口部9の一辺の幅が10〜500mmであることが好ましく、50mmが最も好適である。なお、本実施の形態における、上記の適正な圧力範囲は、一般的な弾性部材の耐圧可能な数値範囲である。したがって、弾性部材の耐圧可能な圧力範囲内であれば、上記圧力の範囲に限らない。 Furthermore, in the present embodiment, one side of the opening 9 of the first composite current collecting member 1 against a pressure of 7.35 to 14.7 MPa (75 to 150 kgf / cm 2 ) that is preferable for pressurization during molding. The width is preferably 10 to 500 mm, and most preferably 50 mm. Note that the appropriate pressure range in the present embodiment is a numerical range in which a general elastic member can withstand pressure. Accordingly, the pressure is not limited to the above range as long as it is within the pressure range in which the elastic member can withstand pressure.

本実施の形態においては、第2集電部材2a、各電極合材層3,6及び固体電解質層5の間に空隙が生じないようにされている。この構成は、固体電解質層5を第1及び第2電極合材層3,6の間に配置して、第1及び第2電極層4,7を各絶縁部材1b,2bを対向させて積層する際に、第1絶縁部材1b及び第2絶縁部材2bの間に接着層8を介在させるとともに、弾性部材を介して押圧部材により押圧することによって成し得る。   In the present embodiment, no gap is formed between the second current collecting member 2a, the electrode mixture layers 3 and 6, and the solid electrolyte layer 5. In this configuration, the solid electrolyte layer 5 is disposed between the first and second electrode mixture layers 3 and 6, and the first and second electrode layers 4 and 7 are laminated with the insulating members 1b and 2b facing each other. In doing so, the adhesive layer 8 may be interposed between the first insulating member 1b and the second insulating member 2b, and may be pressed by a pressing member via an elastic member.

この構成によれば、全固体電池を加圧する際に、変形自在な弾性部材(後述する)を介して押圧することにより、押圧部材(後述する)のみを用いる場合と比較して、圧縮に伴い弾性部材の形状が変化し、各電極合材層3,6の表面形状に沿って各集電部材1a,2aを変形させて配することができるため、各電極合材層3,6及び固体電解質層5並びにこれらと各集電部材1a,2aとの間に空隙のない成形体を得ることができる。また、第1絶縁部材1bと第2絶縁部材2bとの間に接着層8を設けることで、各層間の空隙が低減された押圧状態を確実に維持することができるため、全固体電池の内部短絡が抑制される。   According to this configuration, when all-solid-state batteries are pressurized, pressing is performed via a deformable elastic member (described later), and therefore, as compared with the case where only the pressing member (described later) is used, the compression is accompanied. Since the shape of the elastic member changes and the current collecting members 1a and 2a can be deformed and arranged along the surface shape of each electrode mixture layer 3 and 6, each electrode mixture layer 3 and 6 and solid It is possible to obtain a molded body having no gap between the electrolyte layer 5 and the current collecting members 1a and 2a. Further, by providing the adhesive layer 8 between the first insulating member 1b and the second insulating member 2b, it is possible to reliably maintain a pressed state in which the gaps between the respective layers are reduced. Short circuit is suppressed.

そして、各電極合材層3,6の少なくとも一方の側面が厚み方向に対して傾斜している。より具体的には、各電極合材層3,6の少なくとも一方の側面が、各層の層面(層厚方向に直交する面すなわち表面)方向に対して10〜60°の範囲で傾斜していることが好ましい。この構成によれば、粉体層における各層の厚さの急な変化(不連続状態)が解消されることにより、押圧時に成形体に生じる内部応力による断層の発生が抑制されるため、内部短絡を抑制することができる。なお、各電極合材層3,6は粉体によって構成されるために層面や側面に凹凸を有することが多い。その場合、上記傾斜角度は、例えば、各電極合材層3,6について、凹凸の平均値に基づき平面をそれぞれ求め、それらが成す角度を計測したり、又、各電極合材層3,6について、複数箇所の断面における側面及び層面の成す角度を計測し、それらの平均値を算出すればよい。したがって、各電極合材層3,6の少なくとも一方の側面が、各電極合材層3,6の層面方向に対して平均10〜60°の範囲で傾斜していることになる。   And at least one side surface of each electrode compound-material layer 3 and 6 inclines with respect to the thickness direction. More specifically, at least one side surface of each electrode mixture layer 3, 6 is inclined within a range of 10 to 60 ° with respect to the layer surface (surface orthogonal to the layer thickness direction). It is preferable. According to this configuration, since a sudden change (discontinuous state) in the thickness of each layer in the powder layer is eliminated, occurrence of a fault due to internal stress generated in the molded body at the time of pressing is suppressed. Can be suppressed. In addition, since each electrode compound-material layer 3 and 6 is comprised with powder, it has an unevenness | corrugation in a layer surface and a side surface in many cases. In that case, the said inclination | tilt angle calculates | requires each plane based on the average value of an unevenness | corrugation about each electrode compound-material layer 3 and 6, respectively, measures the angle which they comprise, and each electrode compound-material layer 3 and 6 , The angle formed by the side surfaces and the layer surfaces in a plurality of cross sections may be measured, and the average value thereof may be calculated. Therefore, at least one side surface of each electrode mixture layer 3, 6 is inclined in an average range of 10 to 60 ° with respect to the layer surface direction of each electrode mixture layer 3, 6.

また、固体電解質層5の表面は、各電極合材層3,6の表面よりも面積が大きいことがよい。この構成により、粉体層の側面における正極合材層3と負極合材層6との接触が回避されるため、内部短絡を抑制することができる。   The surface of the solid electrolyte layer 5 is preferably larger in area than the surfaces of the electrode mixture layers 3 and 6. With this configuration, contact between the positive electrode mixture layer 3 and the negative electrode mixture layer 6 on the side surface of the powder layer is avoided, so that an internal short circuit can be suppressed.

さらには、集電部材1a,2aよりも面積の大きな弾性部材を用いることが好ましい。この構成によれば、押圧によって、弾性部材が各層の側面を覆うように変形するため、集電部材1a,2aを電極合材層3,6及び固体電解質層5の表面形状に沿って変形させるとともに、各電極合材層3,6及び固体電解質層5と各集電部材1a,2aとの間に空隙のない成形体が得られ、粉体層の崩壊を抑制することができる。   Furthermore, it is preferable to use an elastic member having a larger area than the current collecting members 1a and 2a. According to this configuration, the elastic member is deformed so as to cover the side surface of each layer by pressing, so that the current collecting members 1 a and 2 a are deformed along the surface shapes of the electrode mixture layers 3 and 6 and the solid electrolyte layer 5. At the same time, a molded body without voids is obtained between the electrode mixture layers 3 and 6 and the solid electrolyte layer 5 and the current collecting members 1a and 2a, and the collapse of the powder layer can be suppressed.

以下、全固体電池の各層の機能及び用いられる材料について述べる。
集電部材1a,2aとしては、銅(Cu)、マグネシウム(Mg)、ステンレス鋼、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、リチウム(Li)、錫(Sn)、又はこれらの合金等から成る板状体、箔状体が用いられる。本実施の形態においては、正極集電部材1aとしてはアルミ箔を、負極集電部材2aとしては銅箔をそれぞれ採用している。
Hereinafter, the function of each layer of the all-solid-state battery and the materials used will be described.
As current collecting members 1a and 2a, copper (Cu), magnesium (Mg), stainless steel, titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al ), Germanium (Ge), indium (In), lithium (Li), tin (Sn), or an alloy thereof or the like. In the present embodiment, an aluminum foil is employed as the positive electrode current collecting member 1a, and a copper foil is employed as the negative electrode current collecting member 2a.

電極合材層3,6は、電子を送り出し受け取る酸化還元反応を行うために粒子間に電子伝導パスを確保する電極活物質と硫化物系無機固体電解質とを所定の割合で混合した混合材から成る層である。本実施の形態においては、硫化物系無機固体電解質として、リチウムイオン伝導性固体電解質を用いる。このように、電極活物質にリチウムイオン伝導性固体電解質を混合することにより、電子伝導性に加えてイオン伝導性を付与し、粒子間にイオン伝導パスを確保することができる。   The electrode mixture layers 3 and 6 are made of a mixed material in which an electrode active material that secures an electron conduction path between particles and a sulfide-based inorganic solid electrolyte are mixed at a predetermined ratio in order to perform an oxidation-reduction reaction for sending and receiving electrons. It is a layer. In the present embodiment, a lithium ion conductive solid electrolyte is used as the sulfide-based inorganic solid electrolyte. Thus, by mixing a lithium ion conductive solid electrolyte with the electrode active material, ion conductivity can be imparted in addition to electron conductivity, and an ion conduction path can be secured between the particles.

正極合材層3に適した正極活物質としては、リチウムイオンの挿入脱離が可能なものであればよく、特に限定されない。例えば、リチウム・ニッケル複合酸化物(LiNi1-x、ただし、MはCo、Al、Mn、V、Cr、Mg、Ca、Ti、Zr、Nb、Mo及びWのうち少なくとも1つの元素)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)等の層状酸化物、オリビン構造を持つリン酸鉄リチウム(LiFePO)、スピネル構造を持つマンガン酸リチウム(LiMn、LiMnO、LiMO)等の固溶体やそれらの混合物、更に硫黄(S)、硫化リチウム(LiS)等の硫化物などを用いることもできる。本実施の形態においては、正極活物質として、具体的には、リチウム・ニッケル・コバルト・アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05、以下、NCA系複合酸化物と称することがある。)を採用している。 The positive electrode active material suitable for the positive electrode mixture layer 3 is not particularly limited as long as it can insert and desorb lithium ions. For example, lithium-nickel composite oxide (LiNi x M 1-x O 2 , where M is at least one of Co, Al, Mn, V, Cr, Mg, Ca, Ti, Zr, Nb, Mo and W Elements), layered oxides such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium iron phosphate (LiFePO 4 ) having an olivine structure, spinel structure A solid solution such as lithium manganate (LiMn 2 O 4 , Li 2 MnO 3 , LiMO 2 ) or a mixture thereof, or a sulfide such as sulfur (S) or lithium sulfide (Li 2 S) can also be used. In the present embodiment, as the positive electrode active material, specifically, a lithium / nickel / cobalt / aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 , hereinafter referred to as an NCA-based composite oxide) Are sometimes used).

一方、負極合材層6に適した負極活物質としては、例えば天然黒鉛、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素などの炭素材料のほかに硫化物系無機固体電解質と合材化されるものであれば限定されない。例えば、チタン酸リチウム(LiTi12)等の金属酸化物も用いることが出来る。本実施の形態においては、天然・人造などの黒鉛を採用している。 On the other hand, examples of the negative electrode active material suitable for the negative electrode mixture layer 6 include materials that are compounded with sulfide-based inorganic solid electrolytes in addition to carbon materials such as natural graphite, artificial graphite, graphite carbon fiber, and resin-fired carbon. If it is, it will not be limited. For example, a metal oxide such as lithium titanate (Li 4 Ti 5 O 12 ) can also be used. In this embodiment, natural or artificial graphite is employed.

また、正極活物質及び負極活物質の表面に、ジルコニア(ZrO)、アルミナ(Al)、チタン酸リチウム(LiTi12)、ニオブ酸リチウム(LiNbO)、炭素(C)等をそれぞれコーティングしたものをそれぞれの電極活物質として使用することができる。 Further, on the surfaces of the positive electrode active material and the negative electrode active material, zirconia (ZrO 2 ), alumina (Al 2 O 3 ), lithium titanate (Li 4 Ti 5 O 12 ), lithium niobate (LiNbO 3 ), carbon (C ) Etc. can be used as each electrode active material.

リチウムイオン伝導性固体電解質としては、有機化合物又は無機化合物さらには有機及び無機化合物の混合物から成る材料を用いることができ、リチウムイオン電池分野で公知のものを使用することができる。本実施の形態においては、硫化物系無機固体電解質は、イオン伝導性が他の無機化合物よりも高いことが知られているため、硫化物系無機固体電解質を採用している。具体的には、LiS−P系、LiS−GeS系、LiS−Ge系、LiS−GeS−P系、LiS−GeS−ZnS系、LiS−SiS系等のガラスセラミックスが挙げられる。本実施の形態においては、LiS−P系ガラスセラミックスを採用している。 As the lithium ion conductive solid electrolyte, a material composed of an organic compound or an inorganic compound, or a mixture of an organic and an inorganic compound can be used, and those known in the field of lithium ion batteries can be used. In the present embodiment, it is known that the sulfide-based inorganic solid electrolyte has higher ionic conductivity than other inorganic compounds, and therefore a sulfide-based inorganic solid electrolyte is employed. Specifically, Li 2 S—P 2 S 5 system, Li 2 S—GeS 2 system, Li 2 S—Ge 2 S 2 system, Li 2 S—GeS 2 —P 2 S 5 system, Li 2 S— Examples thereof include glass ceramics such as GeS 2 —ZnS and Li 2 S—SiS 2 . In the present embodiment, Li 2 S—P 2 S 5 glass ceramics is employed.

本実施の形態においては、固体電解質層5は、材料について特に限定されるものではなく、有機化合物又は無機化合物さらには有機及び無機化合物の混合物から成る材料を用いることができ、リチウムイオン電池分野で公知のものを使用することができる。本実施の形態においては、硫化物系無機固体電解質は、イオン伝導性が他の無機化合物よりも高いことが知られているため、硫化物系無機固体電解質を採用している。具体的には、LiS−P系、LiS−GeS系、LiS−Ge系、LiS−GeS−P系、LiS−GeS−ZnS系、LiS−SiS系等のガラスセラミックスが挙げられる。本実施の形態においては、LiS−P系ガラスセラミックスを採用している。
<全固体電池の製造装置>
本発明に係る全固体電池の製造装置の実施の形態について図2〜6を用いて説明する。
In the present embodiment, the material of the solid electrolyte layer 5 is not particularly limited, and a material composed of an organic compound or an inorganic compound, or a mixture of an organic and an inorganic compound can be used. A well-known thing can be used. In the present embodiment, it is known that the sulfide-based inorganic solid electrolyte has higher ionic conductivity than other inorganic compounds, and therefore a sulfide-based inorganic solid electrolyte is employed. Specifically, Li 2 S—P 2 S 5 system, Li 2 S—GeS 2 system, Li 2 S—Ge 2 S 2 system, Li 2 S—GeS 2 —P 2 S 5 system, Li 2 S— Examples thereof include glass ceramics such as GeS 2 —ZnS and Li 2 S—SiS 2 . In the present embodiment, Li 2 S—P 2 S 5 glass ceramics is employed.
<All-solid battery manufacturing equipment>
Embodiments of an all-solid battery manufacturing apparatus according to the present invention will be described with reference to FIGS.

この製造装置は、図2に示すように、大きく分けて、全固体電池の構成部材(被プレス部材)を保持して金型の機能を果たすための装置本体(保持装置)20と、この装置本体20に保持された構成部材を押圧して全固体電池を成形するための押圧機(プレス機ともいえる)40とから構成されている。   As shown in FIG. 2, the manufacturing apparatus is roughly divided into an apparatus main body (holding apparatus) 20 for holding the constituent members (pressed members) of the all-solid-state battery and performing the function of the mold, and the apparatus. It is comprised from the press (it can also be said a press) 40 for pressing the structural member hold | maintained at the main body 20 and shape | molding an all-solid-state battery.

上記押圧機40は、図2及び図3に示すように、全固体電池の構成部材を載置し得る基台部41と、この基台部41の上方位置に左右一対の支柱材42を介して設けられたクラウン部43と、このクラウン部43に設けられて油圧シリンダ(加圧装置の一例)44により下方に突出される押込み具45とから構成されている。   As shown in FIGS. 2 and 3, the pressing device 40 includes a base portion 41 on which the constituent members of the all-solid-state battery can be placed, and a pair of left and right support members 42 above the base portion 41. And a pushing tool 45 that is provided on the crown portion 43 and protrudes downward by a hydraulic cylinder (an example of a pressurizing device) 44.

上記装置本体20は、押圧機40の基台部41の上面に配置される支持台21と、この支持台21の中央に形成された凹状部21a内に配置されて全固体電池の構成部材(例えば、第1電極層4、固体電解質層5及び第2電極合材層6から成る積層体)を載置し得る載置面Sを有する受け台22と(実際には、後述する下側可動部材にも全固体電池の構成部材が載置されることになる)、上記支持台21の四隅に設けられるとともに一方の対角線上で立設された2本の第1支柱材(支柱用ボルトともいえる)23及びこれら2本の第1支柱材23と異なる他方の対角線上で立設され且つ第1支柱材23より短くされた2本の第2支柱材(支柱用ボルトともいえる)24と、上記支持台21に2本の第1支柱材23を介して所定高さでもって配置される固定板25と、上記支持台21に立設された2本の第1支柱材23に上下方向で移動可能に案内されるとともにこれら各第1支柱材23に外嵌されたコイルばね26により上方に付勢されて配置される板状の上側可動部材27と、図3及び図4に示すように上記支持台21に立設された2本の第2支柱材24に上下方向で移動可能に案内されるとともに左右に設けられたピン状付勢具28により上方に付勢され且つ上記受け台22を上下方向で案内し得る開口部29aが設けられた板状の下側可動部材29と、上記上側可動部材27にピン状保持材30により保持されるとともに下端に弾性部材31が取り付けられた取付体32が着脱自在に設けられた押圧部材33とから構成されている。ここで、弾性部材31は、天然ゴム、合成ゴム、シリコンゴムなどのものが例示される。   The apparatus main body 20 is disposed in a support base 21 disposed on the upper surface of the base portion 41 of the pressing machine 40 and a concave portion 21a formed in the center of the support base 21 and is a constituent member of an all-solid battery ( For example, a receiving base 22 having a mounting surface S on which a first electrode layer 4, a solid electrolyte layer 5, and a second electrode mixture layer 6 can be mounted (actually, a lower movable member described later) The component members of the all-solid-state battery are also placed on the members), and the two first support members (both support bolts) provided at the four corners of the support base 21 and erected on one diagonal line 23) and two second strut members 24 (also referred to as strut bolts) 24, which are erected on the other diagonal line different from these two first strut members 23 and shorter than the first strut members 23, The support table 21 is arranged with a predetermined height via two first support members 23. The fixed plate 25 and the two first support members 23 erected on the support 21 are guided so as to be movable in the vertical direction and coil springs 26 are externally fitted to the first support members 23. Is moved in the vertical direction to the plate-like upper movable member 27 that is urged upward by the two, and to the two second support members 24 erected on the support base 21 as shown in FIGS. A plate-like lower movable member 29 provided with an opening 29a that can be guided and urged upward by pin-like urging tools 28 provided on the left and right sides and can guide the cradle 22 in the vertical direction. And a pressing member 33 detachably provided with a mounting body 32 held by the upper movable member 27 by a pin-shaped holding member 30 and having an elastic member 31 attached to the lower end thereof. Here, examples of the elastic member 31 include natural rubber, synthetic rubber, and silicon rubber.

また、上記下側可動部材29は、図3に示すように、ピン状付勢具28が長く突出された高い待機位置(イ)と、図4に示すように、ピン状付勢具28が半分程度が突出された低いプレス準備位置(ロ)との間で昇降可能にされており、またこのプレス準備位置(ロ)を保持するための保持具34が設けられている。この保持具34としては、例えば受け台22側に水平ピン35を介して鉛直面内で揺動自在(回動自在)に設けられるとともに下側可動部材29に設けられた係合ピン36に係脱自在な係止用フック37が用いられる(係合ピンとフックとから成るという構成でもよい)。なお、図1には、この保持具34は図示していない。   Further, the lower movable member 29 has a high standby position (A) in which the pin-like urging tool 28 protrudes long as shown in FIG. 3, and a pin-like urging tool 28 as shown in FIG. It is possible to move up and down with a lower press preparation position (B) projecting about half, and a holding tool 34 for holding the press preparation position (B) is provided. As this holder 34, for example, it is provided on the pedestal 22 side via a horizontal pin 35 so as to be swingable (rotatable) in a vertical plane, and to an engagement pin 36 provided on the lower movable member 29. A detachable locking hook 37 is used (a configuration in which an engaging pin and a hook are used may be used). In FIG. 1, the holder 34 is not shown.

また、上記押圧部材33は、図5に示すように、上側可動部材27に形成された開口部27a内に配置されるとともに平面視において90度異なる位置に設けられた上記ピン状保持部材30により2方から押圧されて支持されている。この構成によれば、押圧力に応じて、適切な硬度の押圧部材33に交換することができる。   Further, as shown in FIG. 5, the pressing member 33 is disposed in the opening 27a formed in the upper movable member 27 and is provided by the pin-shaped holding member 30 provided at a position different by 90 degrees in plan view. It is pressed from two directions and supported. According to this structure, it can replace | exchange for the press member 33 of appropriate hardness according to pressing force.

さらに、押込み具45と押圧部材33との接続部には、球体係合部39が具備されている。具体的には、図3及び図4に示すように、押込み具45の押圧部材33側(下方側)に球体39a(半球体)を備え、且つ押付部材33の押込み具45側(上方側)に凹状曲面の係合溝39bを設け、球体39aと係合溝39bが係合するように構成されている。この構成によって、押圧部材33に押付け力が作用したとき、その下面が被プレス材である構成部材の表面に僅かな傾きがある場合でも、その表面に追従して構成部材の表面に均等に力が加わるようにされている。   Furthermore, a spherical body engaging portion 39 is provided at a connection portion between the pushing tool 45 and the pressing member 33. Specifically, as shown in FIGS. 3 and 4, a spherical body 39 a (hemisphere) is provided on the pressing member 33 side (lower side) of the pushing tool 45, and the pushing tool 45 side (upper side) of the pressing member 33 is provided. An engaging groove 39b having a concave curved surface is provided, and the spherical body 39a and the engaging groove 39b are engaged with each other. With this configuration, when a pressing force is applied to the pressing member 33, even if the lower surface of the pressing member 33 has a slight inclination on the surface of the constituent member that is a pressed material, the pressing member 33 follows the surface and is evenly applied to the surface of the constituent member. Has been added.

また、上記下側可動部材29の中央には、図6に示すように、受け台22を案内し得る開口部29aが形成されるとともに、その周囲には、より広い幅を有する段状案内部29bが形成されており、第1複合集電部材1を案内・載置し得るようにされている。   Further, as shown in FIG. 6, an opening 29a capable of guiding the cradle 22 is formed at the center of the lower movable member 29, and a stepped guide portion having a wider width is formed around the opening 29a. 29b is formed so that the first composite current collecting member 1 can be guided and placed.

本実施の形態に係る製造装置によれば、全固体電池を加圧する際に、変形自在な弾性部材31を介して押圧することにより、押圧部材33のみを用いる場合と比較して、圧縮に伴い弾性部材31の形状が変化し、各電極合材層3,6の表面形状に沿って各集電部材1a,2aを変形させて配することができるため、各電極合材層3,6及び固体電解質層5並びにこれらと各集電部材1a,2aとの間に空隙のない成形体を得ることができる。また、第1絶縁部材1bと第2絶縁部材2bとの間に接着層8を設けることで、各層間の空隙が低減された押圧状態を確実に維持することができるため、全固体電池の内部短絡が抑制される。
<全固体電池の製造方法>
本発明に係る全固体電池の製造方法の実施の形態について図7を用いて説明する。
According to the manufacturing apparatus according to the present embodiment, when the all solid state battery is pressurized, the pressure is applied through the elastic member 31 that is deformable, so that compared with the case where only the pressing member 33 is used, the compression is accompanied. Since the shape of the elastic member 31 is changed and the current collecting members 1a and 2a can be deformed and arranged along the surface shape of the electrode mixture layers 3 and 6, the electrode mixture layers 3 and 6 and It is possible to obtain a molded body having no voids between the solid electrolyte layer 5 and the current collecting members 1a and 2a. Further, by providing the adhesive layer 8 between the first insulating member 1b and the second insulating member 2b, it is possible to reliably maintain a pressed state in which the gaps between the respective layers are reduced. Short circuit is suppressed.
<All-solid battery manufacturing method>
An embodiment of the method for producing an all solid state battery according to the present invention will be described with reference to FIG.

本実施の形態において、全固体電池の製造方法は、第1複合集電部材1に第1集電部材1aの表面で且つ第1絶縁部材1bよりも内方に第1電極合材の粉体を積層し第1電極層4を形成する工程と、第1電極層4の表面に固体電解質の粉体を積層して固体電解質層5を形成した後、第2電極合材の粉体をさらに積層して第2電極合材層6を形成する工程と、第2複合集電部材2の第2絶縁部材2bに接着層8を配置する工程とを備える。さらに、第1絶縁部材1bと第2絶縁部材2bに配置された接着層8とが対向するように配置し、且つ第2絶縁部材2bを第2電極合材層6の周囲に位置させた状態で、弾性部材31を介して押圧部材33により、第2集電部材2aを第2電極合材層6の表面形状に沿って押圧して変形させるとともに、第1絶縁部材1bと第2絶縁部材2bとを接着層8により接着させることができる。   In the present embodiment, the method for manufacturing an all-solid-state battery is as follows: the first composite current collecting member 1 is a powder of the first electrode mixture on the surface of the first current collecting member 1a and inward of the first insulating member 1b. And forming the first electrode layer 4, and forming the solid electrolyte layer 5 by laminating the solid electrolyte powder on the surface of the first electrode layer 4, and then further adding the powder of the second electrode mixture A step of laminating and forming the second electrode mixture layer 6; and a step of disposing the adhesive layer 8 on the second insulating member 2b of the second composite current collecting member 2. Furthermore, the first insulating member 1b and the second insulating member 2b are arranged so that the adhesive layer 8 is opposed to each other, and the second insulating member 2b is positioned around the second electrode mixture layer 6 Thus, the second current collecting member 2a is pressed and deformed along the surface shape of the second electrode mixture layer 6 by the pressing member 33 via the elastic member 31, and the first insulating member 1b and the second insulating member are deformed. 2b can be adhered by the adhesive layer 8.

具体的には、まず、第1及び第2複合集電部材1,2をそれぞれ組み立てる。なお、第1及び第2複合集電部材1,2は同一の構成である。第1及び第2集電部材1a,2aの表面に、その周辺に沿って、中央部に開口部9,10を有する第1及び第2絶縁部材1b,2bを接着材又は熱融着により接着する。すなわち、第1及び第2集電部材1a,2aは開口部9,10の位置にて露出した状態である。   Specifically, first, the first and second composite current collecting members 1 and 2 are each assembled. The first and second composite current collecting members 1 and 2 have the same configuration. First and second insulating members 1b and 2b having openings 9 and 10 at the center along the periphery of the surfaces of the first and second current collecting members 1a and 2a are bonded by an adhesive or heat fusion. To do. That is, the first and second current collecting members 1 a and 2 a are exposed at the positions of the openings 9 and 10.

第1複合集電部材1の開口部9に第1電極合材の粉体を積層して、第1電極合材層3を形成する。すなわち、第1集電部材1aに固体電解質の粉体を積層して固体電解質層5を形成する。この固体電解質層5の表面に第2電極合材の粉体を積層して第2電極合材層6を形成する。以下、便宜上、この積層体を主積層体Xと称する。   The first electrode mixture layer 3 is formed by laminating the powder of the first electrode mixture in the opening 9 of the first composite current collecting member 1. That is, the solid electrolyte layer 5 is formed by laminating the solid electrolyte powder on the first current collecting member 1a. The second electrode composite material layer 6 is formed by laminating the powder of the second electrode composite material on the surface of the solid electrolyte layer 5. Hereinafter, for convenience, this laminate is referred to as a main laminate X.

一方、第2複合集電部材2の第2絶縁部材2bの表面(第2集電部材1aの接着されていない側の面)に接着層8を設ける。以下、便宜上、この積層体を副積層体Yと称する。
次に、主積層体Xと副積層体Yとを接着層8を介して接着する。
On the other hand, the adhesive layer 8 is provided on the surface of the second insulating member 2b of the second composite current collecting member 2 (the surface on the side where the second current collecting member 1a is not adhered). Hereinafter, for convenience, this laminate is referred to as a sub laminate Y.
Next, the main laminate X and the sub laminate Y are bonded through the adhesive layer 8.

すなわち、図7(a)及び図3に示すように、主積層体Xを受け台22の載置面Sに載せて、副積層体Yを下側可動支持部材29に載せ、第1絶縁部材1bと第2絶縁部材2bに配置された接着層8とが対向するように配置する。   That is, as shown in FIGS. 7A and 3, the main laminated body X is placed on the mounting surface S of the receiving table 22, the sub laminated body Y is placed on the lower movable support member 29, and the first insulating member It arrange | positions so that 1b and the contact bonding layer 8 arrange | positioned at the 2nd insulating member 2b may oppose.

図7(b)に示すように、押圧機40の(図示せず)押込み具45(図示せず)から押圧力が伝達された押圧部材33により、副積層体Yを主積層体Xへ近づけ押圧する。具体的には、押圧機40を下降させることで押圧部材33を下降させ、さらに弾性部材31が下降することにより下側可動支持部材29を押し下げることによって、第2複合集電部材2の第2集電部材2aが主積層体Xに平行に積層される。押圧を継続すると主積層体Xに含まれる空気が押し出されて主積層体Xが圧縮される。   As shown in FIG. 7 (b), the sub laminate Y is brought close to the main laminate X by the pressing member 33 to which the pressing force is transmitted from the pushing tool 45 (not shown) of the pressing machine 40 (not shown). Press. Specifically, the pressing member 33 is lowered by lowering the pressing device 40, and the lower movable support member 29 is pushed down by lowering the elastic member 31. The current collecting member 2a is laminated in parallel with the main laminate X. When the pressing is continued, the air contained in the main laminate X is pushed out and the main laminate X is compressed.

このとき、図7(c)に示すように、押圧部材33は弾性部材31を介して、第2集電部材2aを第2電極合材層6の表面形状に沿って押圧して変形させるとともに、第2絶縁部材2bを第2電極合材層6の周囲に位置させる。具体的には、引き続き押圧すると、押出される空気が減少するため、主積層体Xの嵩は減少しにくくなり、押圧の進行に伴って弾性部材が第2電極合材層6の表面形状に合わせて変形して主積層体Xを第2集電部材2aで包み込む。これと同時に第2複合集電部材2に具備した接着層8が第1複合集電材1に圧着され、複合集電材1,2同士が粉体層を密封する。   At this time, as shown in FIG. 7C, the pressing member 33 presses and deforms the second current collecting member 2 a along the surface shape of the second electrode mixture layer 6 via the elastic member 31. The second insulating member 2 b is positioned around the second electrode mixture layer 6. Specifically, when the pressure is continued, the air to be pushed out decreases, so that the bulk of the main laminate X becomes difficult to decrease, and the elastic member becomes the surface shape of the second electrode mixture layer 6 with the progress of pressing. The main laminate X is wrapped with the second current collecting member 2a by being deformed together. At the same time, the adhesive layer 8 provided on the second composite current collector 2 is pressed against the first composite current collector 1, and the composite current collectors 1 and 2 seal the powder layer.

さらに、押圧部材33により、接着層8を押圧することにより、第1絶縁部材1b及び第2絶縁部材2bを強固に接着する。
本実施の形態に係る製造方法によれば、圧力をかけながら第2集電部材2aを変形させたことにより第2集電部材2aは第2電極合材層2の表面形状に変形されるとともに、粉体層内部の空気を押し出しながら密封したことにより、粉体が流動される空隙が形成されにくい全固体電池を製造することができる。
Further, the first insulating member 1b and the second insulating member 2b are firmly bonded by pressing the adhesive layer 8 with the pressing member 33.
According to the manufacturing method according to the present embodiment, the second current collecting member 2a is deformed into the surface shape of the second electrode mixture layer 2 by deforming the second current collecting member 2a while applying pressure. By sealing the powder layer while extruding air inside the powder layer, an all-solid battery in which a void through which the powder flows can be hardly formed can be manufactured.

また、この製造方法によれば、全固体電池を加圧する際に、変形自在な弾性部材31を介して押圧することにより、押圧部材33のみを用いる場合と比較して、圧縮に伴い弾性部材31の形状が変化し、各電極合材層3,6の表面形状に沿って各集電部材1a,2aを変形させて配することができるため、各電極合材層3,6及び固体電解質層5並びにこれらと各集電部材1a,2aとの間に空隙のない成形体を得ることができる。また、第1絶縁部材1bと第2絶縁部材2bとの間に接着層8を設けることで、各層間の空隙が低減された押圧状態を確実に維持することができるため、全固体電池の内部短絡が抑制される。   In addition, according to this manufacturing method, when the all solid state battery is pressurized, the elastic member 31 is compressed with the compression by pressing the elastic member 31 via the deformable elastic member 31 as compared with the case where only the pressing member 33 is used. The current collecting members 1a and 2a can be deformed and arranged along the surface shape of the electrode mixture layers 3 and 6, so that the electrode mixture layers 3 and 6 and the solid electrolyte layer can be arranged. 5 and a molded body having no gap between them and each of the current collecting members 1a and 2a can be obtained. Further, by providing the adhesive layer 8 between the first insulating member 1b and the second insulating member 2b, it is possible to reliably maintain a pressed state in which the gaps between the respective layers are reduced. Short circuit is suppressed.

そして、この製造方法によれば、弾性部材31を介して押圧することによって、粒子間の空気を追い出しながら各層を圧縮する作業と、第1複合集電部材1及び第2複合集電部材2で封止する作業とを1つの工程で行うことができる。さらに接着層8を加圧することにより第1複合集電部材1と第2複合集電部材2とが強固に接着されるため、粉体層をより確実に包装することができる。   And according to this manufacturing method, the operation | work which compresses each layer, expelling the air between particle | grains by pressing through the elastic member 31, and the 1st composite current collection member 1 and the 2nd composite current collection member 2 The sealing operation can be performed in one step. Furthermore, since the 1st composite current collection member 1 and the 2nd composite current collection member 2 are adhere | attached firmly by pressurizing the contact bonding layer 8, a powder layer can be packaged more reliably.

さらには、上述の全固体電池を単セルとした場合に、上述のように単セルに耐崩壊性を有するため、単セル積層工程や、支持体との複合封止工程等の単セルの連結作業においても、崩壊による内部短絡を抑制することができる。ひいては、製造時の操作性が向上し、歩留が向上する。   Furthermore, when the above-mentioned all-solid-state battery is a single cell, the single cell has a collapse resistance as described above, so the single cell connection step such as the single cell stacking step or the composite sealing step with the support is performed. Even in work, internal short circuit due to collapse can be suppressed. As a result, the operability at the time of manufacture is improved and the yield is improved.

最後に、一般的な全固体電池の内部短絡の原因である製造時の成形体の崩壊について説明する。この崩壊は大きく以下の3つのパターンに分けられる。本実施の形態に係る製造方法によれば、これら第1乃至第3のパターンの崩壊を抑制することが可能である。   Finally, the collapse of the molded product during production, which is a cause of internal short circuit in a general all solid state battery, will be described. This collapse is roughly divided into the following three patterns. According to the manufacturing method according to the present embodiment, it is possible to suppress the collapse of these first to third patterns.

まず、第1のパターンについて説明する。主積層体Xは、中央部の厚さが厚く、周辺部の厚さが薄い。仮に、この主積層体Xに副積層体Yを載せて、弾性部材を介さずに剛体の押圧部材のみを用いて押圧する場合、押圧部材33は集電部材1a,2aに対して平行に維持されるため、押圧された圧力は厚さの厚い中央部分にのみ負荷される。このため、粉体層の外周部は非成形又は成形不十分となり、脆くなる。すなわち、第1のパターンとは、その後の工程において何らかの衝撃等が加わった場合、成形体のうち脆い外周部が崩壊し全固体電池の内部短絡が発生することである。これに対して、本実施の形態によれば、全固体電池を加圧する際に、変形自在な弾性部材31を介して押圧することにより、押圧部材33のみを用いる場合と比較して、圧縮に伴い弾性部材31の形状が変化し、電極合材層3,6の表面形状に沿って集電部材1a,2aを変形させて配することができるため、各電極合材層3,6及び固体電解質層5並びにこれらと各集電部材1a,2aとの間に空隙のない、外周部の成形が十分に可能な成形体を得ることができる。   First, the first pattern will be described. The main laminate X has a thick central portion and a thin peripheral portion. If the sub-laminate Y is placed on the main laminate X and pressed using only a rigid pressing member without an elastic member, the pressing member 33 is maintained parallel to the current collecting members 1a and 2a. Therefore, the pressed pressure is applied only to the thick central portion. For this reason, the outer peripheral part of the powder layer becomes non-molded or insufficiently molded and becomes brittle. That is, the first pattern is that when some impact or the like is applied in the subsequent process, a fragile outer peripheral portion of the molded body is collapsed and an internal short circuit of the all solid state battery is generated. On the other hand, according to the present embodiment, when pressurizing the all solid state battery, pressing is performed through the deformable elastic member 31, thereby compressing the all solid state battery as compared with the case where only the pressing member 33 is used. Accordingly, the shape of the elastic member 31 is changed, and the current collecting members 1a and 2a can be deformed and arranged along the surface shape of the electrode mixture layers 3 and 6. It is possible to obtain a molded body in which the outer peripheral portion can be sufficiently molded without a gap between the electrolyte layer 5 and the current collecting members 1a and 2a.

次に、第2のパターンとは、製造時の押圧の速度が速過ぎることにより起こる気流によって粉体が飛散し、成形体が崩壊してしまうものである。ここで言う気流とは、粉体の粒子間の空気が圧縮により粉体層の外へ押し出されることにより発生するものである。これに対して、本実施の形態によれば、押圧部33の降下が油圧により行われるので、加圧の速度を制御することが容易となり、第2のパターンによる崩壊が抑制される。   Next, the second pattern is one in which the powder is scattered by an air flow generated when the pressing speed at the time of manufacture is too high, and the molded body collapses. The airflow referred to here is generated when air between powder particles is pushed out of the powder layer by compression. On the other hand, according to the present embodiment, since the lowering of the pressing portion 33 is performed by hydraulic pressure, it becomes easy to control the pressurization speed, and the collapse due to the second pattern is suppressed.

そして、第3のパターンとは、上述のとおり、主積層体Xの粉体層において、各層の厚さが急に変化する部分(不連続部分)にて、断層が生じることである。特に固体電解質層5は、電気絶縁層として機能しているので、固体電解質層5にて断層が生じると内部短絡が生じる。これに対して、本実施の形態によれば、弾性部材を介して押圧部材で押圧することによって、弾性部材は押圧時に粉体層の表面形状に沿って変形するため、粉体層の厚さの差によって負荷される押圧力が不均等になることを抑制することができる。すなわち、主積層体Xの厚みのばらつきに対応して弾性部材31が変形するので、積層体Xは均等に加圧され、断層を生じることが抑制される。また、押付けが完了しても、第2複合集電部材2が第2電極合材層6及び固体電解質層5に密着するため、空気及び粒子が移動できる空隙が形成されにくくなる。その結果、成形体の外周部の崩壊が抑制され、崩壊しにくい構造の全固体電池を製造することができる。なお、本実施の形態においては、電極合材層3,6の側面を傾斜させることで、粉体層における各層の厚さの急な変化(不連続状態)が解消されることにより、押圧時に成形体に生じる内部応力による断層の発生が抑制されるため、内部短絡を抑制することもできる。   And as above-mentioned, in the powder layer of the main laminated body X, a 3rd pattern is that a fault arises in the part (discontinuous part) where the thickness of each layer changes suddenly. In particular, since the solid electrolyte layer 5 functions as an electrical insulating layer, an internal short circuit occurs when a fault occurs in the solid electrolyte layer 5. On the other hand, according to the present embodiment, since the elastic member is deformed along the surface shape of the powder layer when pressed by pressing with the pressing member via the elastic member, the thickness of the powder layer It is possible to prevent the pressing force applied by the difference between the two from becoming uneven. That is, since the elastic member 31 is deformed corresponding to the variation in the thickness of the main laminate X, the laminate X is evenly pressurized and the occurrence of a fault is suppressed. Further, even if the pressing is completed, the second composite current collecting member 2 is in close contact with the second electrode mixture layer 6 and the solid electrolyte layer 5, so that it is difficult to form a void in which air and particles can move. As a result, it is possible to manufacture an all-solid battery having a structure in which the outer peripheral portion of the molded body is prevented from collapsing and hardly collapses. In the present embodiment, by inclining the side surfaces of the electrode mixture layers 3 and 6, the sudden change (discontinuous state) of the thickness of each layer in the powder layer is eliminated, so that when pressing Since generation of a fault due to internal stress generated in the molded body is suppressed, an internal short circuit can also be suppressed.

上述のように、本実施の形態に係る、全固体電池並びに全固体電池の製造方法及び全固体電池の製造装置によれば、これらの第1〜第3のパターンによる崩壊それぞれについて、解決することができる。
[変形例]
本実施の形態においては、下側に第1電極層4として正極層を配置する場合について説明したが、当然、下側に第1電極層4として負極層を配置しても構わない。
As described above, according to the all-solid-state battery, the all-solid-state battery manufacturing method, and the all-solid-state battery manufacturing apparatus according to the present embodiment, each of the collapses according to the first to third patterns is solved. Can do.
[Modification]
Although the case where the positive electrode layer is disposed as the first electrode layer 4 on the lower side has been described in the present embodiment, the negative electrode layer may naturally be disposed as the first electrode layer 4 on the lower side.

また、本実施の形態においては、全固体電池の平面視形状が正方形状であるものを例示したが、これに限定されない。例えば、平面視形状が円形状の場合、中央部の開口部9,10も円形状でも構わない。また、全固体電池の平面視形状と、各絶縁部材1b,2bの開口部9,10の平面視形状とは、異ならせてもよい。   Moreover, in this Embodiment, although the planar view shape of the all-solid-state battery was illustrated as a square shape, it is not limited to this. For example, when the planar view shape is circular, the central openings 9 and 10 may also be circular. Moreover, you may make the planar view shape of an all-solid-state battery different from the planar view shape of the opening parts 9 and 10 of each insulation member 1b, 2b.

そして、本実施の形態においては、押圧部材33を下方に移動させることにより成形体を得る構成としたが、これに限定されない。例えば、受け台22を上方に移動させて、又は受け台22を上方に移動させるとともに押圧部材33を下方に移動させることにより、成形体を得るような構成としてもよい。
[実施例]
以下、本実施の形態に係る全固体電池の実施例について、説明する。
And in this Embodiment, although it was set as the structure which obtains a molded object by moving the press member 33 below, it is not limited to this. For example, it is good also as a structure which obtains a molded object by moving the cradle 22 upwards or moving the cradle 22 upwards, and moving the press member 33 below.
[Example]
Hereinafter, examples of the all solid state battery according to the present embodiment will be described.

一辺が28mmの正方形で厚さ20μmのアルミ箔(第1集電体1a)に、一辺が22mmの正方形の開口部9を中央部に有する一辺が40mmの正方形で厚さ50μmのPET(ポリエチレンテレフタレート)製の第1絶縁部材1bが、一辺が22mmの正方形の開口部を中央部に有する一辺が26mmの正方形の感圧接着材1cを介して接着された正極複合集電部材1を作製した。一辺が40mmの正方形で厚さ10μmの銅箔(第2集電体2a)に、一辺が28mmの正方形の開口部10を中央部に有する一辺が50mmの正方形で厚さ50μmのPET製の第2絶縁部材2bが、一辺が36mmの開口部を中央部に有する一辺が28mmの正方形の感圧接着材2cを介して接着された負極複合集電部材2を作製した。さらに、負極複合集電部材2には、正極複合集電部材1との接着に用いる感圧接着層(接着層8)を、第2絶縁部材2bにおいて、銅箔を接着した面の反対面に設けている。この感圧接着層(接着層8)は一辺が36mmの正方形で中央部に設けられた開口部が一辺が28mmの正方形をしたものである。   PET (polyethylene terephthalate) having a square with a side of 28 mm and a square with an opening 9 of a square with a side of 22 mm in the center and an aluminum foil (first current collector 1a) with a side of 28 mm and a thickness of 20 μm and a side of 40 mm. The positive electrode current collector 1 was prepared by bonding the first insulating member 1b made of) through a square pressure-sensitive adhesive 1c having a square opening of 22 mm on one side and a square of 26 mm on one side. A copper foil (second collector 2a) having a square of 40 mm on one side and a thickness of 10 μm, a square having an opening 10 having a square of 28 mm on one side in the center and a square of 50 mm on one side and having a thickness of 50 μm. 2 A negative electrode composite current collecting member 2 was prepared in which the insulating member 2b was bonded via a square pressure-sensitive adhesive 2c having a side having a side of 36 mm and a side having a side of 28 mm. Further, the negative electrode composite current collecting member 2 is provided with a pressure-sensitive adhesive layer (adhesive layer 8) used for adhesion to the positive electrode composite current collector 1 on the opposite surface of the second insulating member 2b to which the copper foil is adhered. Provided. This pressure-sensitive adhesive layer (adhesive layer 8) is a square having a side of 36 mm and an opening provided in the center thereof is a square having a side of 28 mm.

固体電解質としてのLiS−P系のガラスセラミックスと、正極活物質としてのNCA系複合酸化物とを8:2の重量比で混合して正極合材を調製した。LiS−P系のガラスセラミックスと、負極活物質としての黒鉛とを7:3の重量比で混合して負極合材を調製した。 A Li 2 S—P 2 S 5 -based glass ceramic as a solid electrolyte and an NCA-based composite oxide as a positive electrode active material were mixed at a weight ratio of 8: 2 to prepare a positive electrode mixture. And glass ceramics Li 2 S-P 2 S 5 based anode active and graphite as material 7: a mixture of negative electrode mixture material was prepared in a weight ratio of 3.

そして、正極複合集電部材1の開口部9に110mgの正極合材の粉体を一辺が20mmの正方形状に成膜(積層)して正極合材層3を形成した。また、正極合材層3の上に、85mgの固体電解質の粉体を一辺が26mmの正方形状に成膜(積層)して固体電解質層5を形成した。この固体電解質層5に、110mgの負極合材の粉体を一辺24mmの正方形状に成膜した。このように主積層体Xを作製した。   Then, 110 mg of the positive electrode mixture powder was formed (laminated) into a square shape having a side of 20 mm in the opening 9 of the positive electrode composite current collecting member 1 to form the positive electrode mixture layer 3. On the positive electrode mixture layer 3, 85 mg of solid electrolyte powder was formed (laminated) into a square shape with a side of 26 mm to form the solid electrolyte layer 5. On this solid electrolyte layer 5, 110 mg of the negative electrode composite powder was formed in a square shape with a side of 24 mm. In this way, the main laminate X was produced.

この主積層体Xを受け台22の載置面Sに載せ、副積層体Yを下側可動支持部材29に載せた。押圧部材33の先端部には一辺が48mmの正方形で厚さ5mmのシリコン製のゴム板(弾性部材31)を装着した。最終的に2.94×10N(300kgf)の力で加圧し、成形体を作製した。 The main laminate X was placed on the mounting surface S of the receiving table 22, and the sub laminate Y was placed on the lower movable support member 29. A silicon rubber plate (elastic member 31) having a square shape with a side of 48 mm and a thickness of 5 mm was attached to the tip of the pressing member 33. Finally, it was pressed with a force of 2.94 × 10 3 N (300 kgf) to produce a molded body.

そして、この全固体電池を支持体(一辺40mm、厚さ0.3mmのステンレス板)2枚で挟み、電気取り出し用のタブを具備した熱融着性ラミネートで真空封止した。この時、電気取り出し用のタブを支持体であるステンレス板に接触させることでラミネート内の全固体電池との電気的接続を確保した。真空封止した全固体電池を油圧プレス機にて3.92×10N(40ton)の力にて加圧して完成電池とした。なお、電極合材の調製から真空封止までの工程は、露点−80℃以下の環境で行った。 The all-solid battery was sandwiched between two supports (a stainless plate having a side of 40 mm and a thickness of 0.3 mm), and vacuum-sealed with a heat-fusible laminate equipped with a tab for electrical extraction. At this time, electrical connection with the all-solid-state battery in the laminate was ensured by bringing the tab for electrical extraction into contact with the stainless steel plate as the support. The all-solid battery that was vacuum-sealed was pressurized with a force of 3.92 × 10 5 N (40 ton) with a hydraulic press to obtain a finished battery. In addition, the process from preparation of an electrode compound material to vacuum sealing was performed in an environment with a dew point of −80 ° C. or lower.

上記工程にて10個の全固体電池を作製したところ、全ての全固体電池において、内部短絡が発生しなかった。
[比較例1]
比較のために、押圧部材33の先端に弾性部材31を装着せず、それ以外は実施例1と同様の方法且つ同一の条件で全固体電池を作製した。作製した10個の全固体電池中、5個の全固体電池で内部短絡が発生した。内部短絡が発生した電池は、負極複合集電部材2と正極複合集電部材1の接着が不完全であり、全固体電池の外周部において両極の複合集電部材1,2間に空隙が形成されていた。また、これらを解体したところ粉体層の外周部が欠損していた。
[比較例2]
また、正極複合集電部材1と負極複合集電部材2を貼り合せる感圧接着層8を設けず、それ以外は実施例1と同様の方法且つ同一の条件で全固体電池を作製した。2.94×10N(300kgf)の力で押圧したが、押圧を止めると、負極複合集電部材2と正極複合集電部材1の間に空隙が生じた。作製した10個の全固体電池中、7個の全固体電池で内部短絡が発生した。上述のことから、真空封止する工程で内部短絡が発生したと考えられる。
When 10 all-solid-state batteries were produced in the above process, no internal short circuit occurred in all the all-solid-state batteries.
[Comparative Example 1]
For comparison, an elastic member 31 was not attached to the tip of the pressing member 33, and an all-solid battery was manufactured in the same manner and under the same conditions as in Example 1 except that. An internal short circuit occurred in 5 all solid batteries among the 10 all solid batteries produced. In the battery in which the internal short circuit has occurred, the adhesion between the negative electrode composite current collector member 2 and the positive electrode composite current collector member 1 is incomplete, and a gap is formed between the composite current collector members 1 and 2 of both electrodes at the outer periphery of the all-solid battery. It had been. Moreover, when these were disassembled, the outer periphery of the powder layer was missing.
[Comparative Example 2]
In addition, an all-solid battery was produced in the same manner and under the same conditions as in Example 1 except that the pressure-sensitive adhesive layer 8 for bonding the positive electrode composite current collector member 1 and the negative electrode composite current collector member 2 was not provided. Although it was pressed with a force of 2.94 × 10 3 N (300 kgf), when the pressing was stopped, a gap was generated between the negative electrode composite current collector member 2 and the positive electrode composite current collector member 1. An internal short circuit occurred in 7 all solid batteries among the 10 all solid batteries produced. From the above, it is considered that an internal short circuit occurred in the process of vacuum sealing.

1 第1複合集電部材
1a 第1集電部材
1b 第1絶縁部材
1c 接着材
2 第2複合集電部材
2a 第2集電部材
2b 第2絶縁部材
2c 接着材
3 第1電極合材層
4 第1電極層
5 固体電解質層
6 第2電極合材層
7 第2電極層
8 接着層
9 開口部
10 開口部
X 主積層体
Y 副積層体
20 装置本体
21 支持台
21a 凹状部
22 受け台
23 第1支柱材
24 第2支柱材
25 固定板
26 コイルばね
27 上側可動部材
28 ピン状付勢具
29 下側可動部材
29a 開口部
30 ピン状保持具
31 弾性部材
32 取付体
33 押圧部材
34 保持具
35 水平ピン
36 係合ピン
37 係止用フック
38 押さえピン
39 球体係合部
39a 球体
39b 凹状曲面の係合溝
40 押圧機
41 基台部
42 支柱材
43 クラウン部
44 油圧シリンダ
45 押込み具
DESCRIPTION OF SYMBOLS 1 1st composite current collection member 1a 1st current collection member 1b 1st insulation member 1c adhesive material 2 2nd composite current collection member 2a 2nd current collection member 2b 2nd insulation member 2c adhesive material 3 1st electrode compound-material layer 4 1st electrode layer 5 Solid electrolyte layer 6 2nd electrode compound material layer 7 2nd electrode layer 8 Adhesive layer 9 Opening part 10 Opening part X Main laminated body Y Sub laminated body 20 Device main body 21 Supporting base 21a Concave part 22 Receiving base 23 First strut material 24 Second strut material 25 Fixed plate 26 Coil spring 27 Upper movable member 28 Pin-shaped biasing member 29 Lower movable member 29a Opening portion 30 Pin-shaped holder 31 Elastic member 32 Attachment body 33 Pressing member 34 Holding tool 35 Horizontal pin 36 Engagement pin 37 Hook for locking 38 Holding pin 39 Spherical body engaging part 39a Spherical body 39b Concave groove engaging groove 40 Pressing machine 41 Base part 42 Supporting part 43 Crown part 44 Sunda 45 pusher

Claims (6)

薄板状の第1集電部材及び当該第1集電部材の表面の周辺部に接着される薄板状の第1絶縁部材から成る第1複合集電部材と、当該第1複合集電部材及び前記第1集電部材の表面で且つ第1絶縁部材よりも内方に積層される第1電極合材層とから成る正極又は負極の第1電極層と、
固体電解質層と、
薄板状の第2集電部材及び当該第2集電部材の表面の周辺部に接着される薄板状の第2絶縁部材から成る第2複合集電部材と、当該第2複合集電部材及び前記第2集電部材の表面で且つ第2絶縁部材よりも内方に積層される第2電極合材層とから成る負極又は正極の第2電極層とを備え、
前記固体電解質層を前記第1及び第2電極合材層の間に配置して、第1及び第2電極層を各絶縁部材を対向させて積層する際に前記第1絶縁部材及び前記第2絶縁部材の間に接着層を介在させるとともに、弾性部材を介して押圧部材により押圧することにより、第2集電部材、各電極合材層及び前記固体電解質層の間に空隙が生じないようにされたことを特徴とする全固体電池。
A first composite current collecting member comprising a thin plate-like first current collecting member and a thin plate-like first insulating member bonded to a peripheral portion of the surface of the first current collecting member, the first composite current collecting member, A positive electrode or negative electrode first electrode layer comprising a first electrode mixture layer laminated on the surface of the first current collecting member and inward of the first insulating member;
A solid electrolyte layer;
A second composite current collecting member composed of a thin plate-like second current collecting member and a thin plate-like second insulating member bonded to a peripheral portion of the surface of the second current collecting member; the second composite current collecting member; A second electrode layer of a negative electrode or a positive electrode comprising a second electrode mixture layer laminated on the surface of the second current collecting member and inward of the second insulating member,
When the solid electrolyte layer is disposed between the first and second electrode mixture layers and the first and second electrode layers are laminated with the insulating members facing each other, the first insulating member and the second insulating member are stacked. An adhesive layer is interposed between the insulating members and pressed by the pressing member via the elastic member so that no gap is generated between the second current collecting member, each electrode mixture layer and the solid electrolyte layer. All-solid-state battery characterized by being made.
各電極合材層の少なくとも一方の側面が層の厚み方向に対して傾斜していることを特徴とする請求項1に記載の全固体電池。   The all-solid-state battery according to claim 1, wherein at least one side surface of each electrode mixture layer is inclined with respect to the thickness direction of the layer. 側面の傾斜角度は、各層の層面方向に対して10〜60°であることを特徴とする請求項2に記載の全固体電池。   The all-solid-state battery according to claim 2, wherein an inclination angle of the side surface is 10 to 60 ° with respect to a layer surface direction of each layer. 固体電解質層の表面は、各電極層の表面よりも面積が大きいことを特徴とする請求項1乃至3のいずれか一項に記載の全固体電池。   The all-solid-state battery according to any one of claims 1 to 3, wherein the surface of the solid electrolyte layer has a larger area than the surface of each electrode layer. 請求項1乃至4のいずれか一項に記載の全固体電池の製造方法であって、
第1複合集電部材に第1集電部材の表面で且つ第1絶縁部材よりも内方に第1電極合材の粉体を積層し第1電極層を形成する工程と、
前記第1電極層の表面に固体電解質の粉体を積層して固体電解質層を形成した後、第2電極合材の粉体をさらに積層して第2電極合材層を形成する工程と、
第2複合集電部材の第2絶縁部材に接着層を配置する工程とを備え、
さらに、前記第1絶縁部材と前記第2絶縁部材に配置された前記接着層とが対向するように配置し、且つ前記第2絶縁部材を前記第2電極合材層の周囲に位置させた状態で、
弾性部材を介して押圧部材により、前記第2集電部材を前記第2電極合材層の表面形状に沿って押圧して変形させるとともに、第1絶縁部材と第2絶縁部材とを接着層により接着させることを特徴とする全固体電池の製造方法。
It is a manufacturing method of the all-solid-state battery as described in any one of Claims 1 thru | or 4, Comprising:
Forming a first electrode layer by laminating powder of the first electrode mixture on the surface of the first current collecting member and inward of the first insulating member on the first composite current collecting member;
Forming a solid electrolyte layer by laminating solid electrolyte powder on the surface of the first electrode layer, and further laminating powder of the second electrode mixture to form a second electrode mixture layer;
Providing an adhesive layer on the second insulating member of the second composite current collecting member,
Further, the first insulating member and the adhesive layer disposed on the second insulating member are arranged so as to face each other, and the second insulating member is positioned around the second electrode mixture layer so,
The second current collecting member is pressed and deformed along the surface shape of the second electrode mixture layer by the pressing member via the elastic member, and the first insulating member and the second insulating member are bonded by the adhesive layer. A method for producing an all-solid-state battery, comprising bonding.
請求項1乃至4のいずれか一項に記載の全固体電池の製造装置であって、
第1絶縁部材を有する第1電極層、固体電解質層及び第2電極層の第2電極合材から成る主積層体を支持する受け台と、
第2複合集電部材及び第2絶縁部材に設けられた接着層から成る副積層体を支持し得るとともに前記受け台よりも上方に配置され且つ上下方向で移動可能に設けられた可動支持部材と、
当該可動支持部材よりも上方に配置されるとともに下端に弾性部材が設けられた押圧部材とを具備し、
前記受け台に支持された前記主積層体に前記可動支持部材に支持された前記副積層体を積層し押圧させて全固体電池を形成する際に、
前記押圧部材を下方に及び/又は前記受け台を上方に移動させることにより、前記可動支持部材に支持された副積層体と前記受け台に支持された主積層体とを接触させた後、さらに前記押圧部材を下方に及び/又は前記受け台を上方に移動させることにより、前記弾性部材を介して、前記第2絶縁部材を前記第2電極合材層の周囲に位置させた状態で、前記第2集電部材を前記第2電極合材層の表面に沿って変形させるとともに、前記接着層により前記第1絶縁部材と前記第2絶縁部材とを互いに接着させるようにしたことを特徴とする全固体電池の製造装置。
An apparatus for producing an all-solid battery according to any one of claims 1 to 4,
A cradle for supporting a main laminate comprising a first electrode layer having a first insulating member, a solid electrolyte layer, and a second electrode mixture of a second electrode layer;
A movable support member capable of supporting a sub-layered body composed of an adhesive layer provided on the second composite current collecting member and the second insulating member and disposed above the cradle and movably provided in the vertical direction; ,
A pressing member disposed above the movable support member and provided with an elastic member at the lower end;
When forming the all-solid battery by laminating and pressing the sub-laminate supported by the movable support member on the main laminate supported by the cradle,
After contacting the sub-laminate supported by the movable support member and the main laminate supported by the cradle by moving the pressing member downward and / or the cradle upward, By moving the pressing member downward and / or the cradle upward, the second insulating member is positioned around the second electrode mixture layer via the elastic member, The second current collecting member is deformed along the surface of the second electrode mixture layer, and the first insulating member and the second insulating member are bonded to each other by the adhesive layer. All-solid battery manufacturing equipment.
JP2013100817A 2013-05-13 2013-05-13 All-solid battery manufacturing method and all-solid battery manufacturing apparatus Active JP6095472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100817A JP6095472B2 (en) 2013-05-13 2013-05-13 All-solid battery manufacturing method and all-solid battery manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100817A JP6095472B2 (en) 2013-05-13 2013-05-13 All-solid battery manufacturing method and all-solid battery manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2014222564A true JP2014222564A (en) 2014-11-27
JP6095472B2 JP6095472B2 (en) 2017-03-15

Family

ID=52121998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100817A Active JP6095472B2 (en) 2013-05-13 2013-05-13 All-solid battery manufacturing method and all-solid battery manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6095472B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192265A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Manufacturing method of all-solid-state secondary battery
WO2016208271A1 (en) * 2015-06-23 2016-12-29 日立造船株式会社 All-solid-state secondary battery and production method therefor
JP2017183120A (en) * 2016-03-31 2017-10-05 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
WO2017187494A1 (en) * 2016-04-26 2017-11-02 日立造船株式会社 All-solid-state secondary battery
WO2018116983A1 (en) * 2016-12-22 2018-06-28 日立造船株式会社 Method and apparatus for producing all-solid-state battery
JP2019046716A (en) * 2017-09-05 2019-03-22 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
US20200076002A1 (en) * 2016-12-16 2020-03-05 Hitachi Zosen Corporation All-solid state secondary cell and production method for same
WO2021010231A1 (en) * 2019-07-18 2021-01-21 株式会社村田製作所 Solid-state battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127466A (en) * 1989-10-09 1991-05-30 Brother Ind Ltd Manufacture of sheet-form storage battery
JP2000348695A (en) * 1999-03-31 2000-12-15 Sanyo Electric Co Ltd Thin battery and its manufacture
JP2001283915A (en) * 2000-03-30 2001-10-12 Sony Corp Manufacturing method of battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127466A (en) * 1989-10-09 1991-05-30 Brother Ind Ltd Manufacture of sheet-form storage battery
JP2000348695A (en) * 1999-03-31 2000-12-15 Sanyo Electric Co Ltd Thin battery and its manufacture
JP2001283915A (en) * 2000-03-30 2001-10-12 Sony Corp Manufacturing method of battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016192265A (en) * 2015-03-31 2016-11-10 日立造船株式会社 Manufacturing method of all-solid-state secondary battery
US10651506B2 (en) 2015-06-23 2020-05-12 Hitachi Zosen Corporation All-solid-state secondary battery and method of producing the same
JP2017010786A (en) * 2015-06-23 2017-01-12 日立造船株式会社 All solid secondary battery and manufacturing method therefor
CN107683543A (en) * 2015-06-23 2018-02-09 日立造船株式会社 Solid state secondary battery and its manufacture method
EP3316382A4 (en) * 2015-06-23 2018-05-02 Hitachi Zosen Corporation All-solid-state secondary battery and production method therefor
CN107683543B (en) * 2015-06-23 2020-03-27 日立造船株式会社 All-solid-state secondary battery and method for manufacturing same
WO2016208271A1 (en) * 2015-06-23 2016-12-29 日立造船株式会社 All-solid-state secondary battery and production method therefor
JP2017183120A (en) * 2016-03-31 2017-10-05 日立造船株式会社 All-solid secondary battery and manufacturing method thereof
WO2017187494A1 (en) * 2016-04-26 2017-11-02 日立造船株式会社 All-solid-state secondary battery
CN109075396A (en) * 2016-04-26 2018-12-21 日立造船株式会社 Solid state secondary battery
EP3451435A4 (en) * 2016-04-26 2019-11-20 Hitachi Zosen Corporation All-solid-state secondary battery
US11784353B2 (en) * 2016-12-16 2023-10-10 Hitachi Zosen Corporation All-solid state secondary cell and production method for the same
US20200076002A1 (en) * 2016-12-16 2020-03-05 Hitachi Zosen Corporation All-solid state secondary cell and production method for same
JPWO2018116983A1 (en) * 2016-12-22 2019-10-24 日立造船株式会社 Manufacturing method and manufacturing apparatus for all solid state battery
EP3561938A4 (en) * 2016-12-22 2020-02-26 Hitachi Zosen Corporation Method and apparatus for producing all-solid-state battery
KR20190095426A (en) * 2016-12-22 2019-08-14 히다치 조센 가부시키가이샤 Manufacturing method and apparatus of all-solid-state battery
CN110114931A (en) * 2016-12-22 2019-08-09 日立造船株式会社 The manufacturing method and its manufacturing device of all-solid-state battery
CN110114931B (en) * 2016-12-22 2022-04-08 日立造船株式会社 Method and apparatus for manufacturing all-solid-state battery
US11302958B2 (en) 2016-12-22 2022-04-12 Hitachi Zosen Corporation Method and apparatus for producing all-solid-state battery
KR102541296B1 (en) * 2016-12-22 2023-06-08 히다치 조센 가부시키가이샤 All-solid-state battery manufacturing method and manufacturing apparatus
WO2018116983A1 (en) * 2016-12-22 2018-06-28 日立造船株式会社 Method and apparatus for producing all-solid-state battery
JP2019046716A (en) * 2017-09-05 2019-03-22 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP7135282B2 (en) 2017-09-05 2022-09-13 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2021010231A1 (en) * 2019-07-18 2021-01-21 株式会社村田製作所 Solid-state battery

Also Published As

Publication number Publication date
JP6095472B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6095472B2 (en) All-solid battery manufacturing method and all-solid battery manufacturing apparatus
KR102508379B1 (en) All-solid-state secondary battery and production method therefor
JP5218586B2 (en) Solid lithium secondary battery and manufacturing method thereof
JP6576072B2 (en) Manufacturing method of all-solid-state secondary battery
WO2014024926A1 (en) All-solid-state battery and method for manufacturing same
JP5686191B2 (en) Solid battery manufacturing method
CN108963320A (en) battery
JP6206237B2 (en) Manufacturing method of all solid state battery
JP5929748B2 (en) Manufacturing method of all solid state battery
JP2017073374A (en) Bipolar type lithium ion battery and manufacturing method thereof
JP6324296B2 (en) All solid state secondary battery
CN110870128A (en) Coin-shaped battery and method for manufacturing same
JP7042426B2 (en) Solid electrolytes and batteries
JP2014127272A (en) Method for manufacturing electrode for all solid state battery
JP2017208250A (en) All-solid type lithium secondary battery and method for manufacturing the same
WO2017187494A1 (en) All-solid-state secondary battery
CN110192300A (en) Laminated secondary cell and its manufacturing method and apparatus
JP6726503B2 (en) All-solid secondary battery and manufacturing method thereof
JP2016134254A (en) Method of manufacturing all-solid battery
JP2013196933A (en) Solid state battery manufacturing method
CN111384451A (en) Laminated body
JP7270162B2 (en) battery
JP5375263B2 (en) Battery manufacturing method and manufacturing apparatus
JP2019197728A (en) All-solid battery and manufacturing method thereof
JP6071225B2 (en) Manufacturing method of all-solid-state secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R150 Certificate of patent or registration of utility model

Ref document number: 6095472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250