JP2014222204A - Seismic isolation effect monitoring method of seismic isolation building, and monitoring device - Google Patents

Seismic isolation effect monitoring method of seismic isolation building, and monitoring device Download PDF

Info

Publication number
JP2014222204A
JP2014222204A JP2013102205A JP2013102205A JP2014222204A JP 2014222204 A JP2014222204 A JP 2014222204A JP 2013102205 A JP2013102205 A JP 2013102205A JP 2013102205 A JP2013102205 A JP 2013102205A JP 2014222204 A JP2014222204 A JP 2014222204A
Authority
JP
Japan
Prior art keywords
seismic isolation
vibration
building
earthquake
factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013102205A
Other languages
Japanese (ja)
Other versions
JP6230813B2 (en
Inventor
友佳 北倉
Yuka Kitakura
友佳 北倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2013102205A priority Critical patent/JP6230813B2/en
Publication of JP2014222204A publication Critical patent/JP2014222204A/en
Application granted granted Critical
Publication of JP6230813B2 publication Critical patent/JP6230813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a seismic isolation effect monitoring method which can determine a status of a seismic isolation operation of a seismic isolation device after determining that a factor of a load acting on a building is an earthquake, and does not cause damage to sensors even at the application of a large load of the earthquake or the like, and a monitoring device.SOLUTION: A seismic isolation effect monitoring method uses an acceleration sensor which measures the vibration of a building main body placed on a seismic isolation device of a seismic isolation building, and a magnetic sensor which monitors the horizontal displacement of the seismic isolation device, and is switched between an on-state and an off-state. The method also includes a vibration source factor determination process (S1) and a seismic isolating determination process (S2). The vibration source factor determination process (S1) determines a vibration source from a feature of a vibration waveform, and at least determines, as this determination, whether the vibration source is an earthquake or a factor other than the earthquake. The seismic isolating determination process (S2) determines whether or not the seismic isolation device generates seismic isolating from a result of the on/off-switching of the magnetic sensor, and determines whether or not residual displacement is generated in the seismic isolation device.

Description

この発明は、住宅やその他の免震建物における免震装置の免震効果を監視する免震効果監視方法および監視装置に関する。   The present invention relates to a seismic isolation effect monitoring method and a monitoring apparatus for monitoring the seismic isolation effect of a seismic isolation device in a house or other seismic isolation building.

住宅やその他の免震建物における免震作用を監視するシステムとして、大きく2つの種類がある。
(1) 加速度センサを用いた非接触監視システム。
(2) 免震装置自体に触針等で免震軌道を直接に描く接触式監視システム。
There are two main types of systems for monitoring seismic isolation in houses and other seismic isolation buildings.
(1) Non-contact monitoring system using an acceleration sensor.
(2) A contact-type monitoring system that directly draws a seismic isolation track with a stylus on the seismic isolation device itself.

特開2006−249833号公報JP 2006-249833 A 特開2006−233703号公報JP 2006-233703 A 特開2012−137339号公報JP 2012-137339 A

上記(1) の非接触監視システムは、加速度センサによる振動測定値のみを用いるため、建物の免震装置の変位量を正確に把握することができない。また、地震と風等の作用している荷重を明確に判断することができず、要因を解決することができない。
上記(2) の接触式監視システムは、免震作用時に破壊する可能性がある。また、判断は移動したか否かのみであり、地震と風等の作用している荷重の要因を明確に判断することができない。そのため、要因を解決することができない。
免震建物において、建物に作用している荷重の要因が何であるかを判断するシステムは、案出されるに至っていない。
Since the non-contact monitoring system (1) uses only the vibration measurement value by the acceleration sensor, the displacement amount of the seismic isolation device of the building cannot be accurately grasped. In addition, the load acting on the earthquake and wind cannot be clearly determined, and the factor cannot be solved.
The contact monitoring system in (2) above may be destroyed during the seismic isolation action. Moreover, the judgment is only whether or not it has moved, and it is not possible to clearly judge the factors of the load acting such as earthquake and wind. Therefore, the factor cannot be solved.
In a seismic isolation building, no system has been devised to determine what is the cause of the load acting on the building.

この発明の目的は、建物に作用している荷重の要因が地震であることを判断した上で、免震装置の免震作用の状況が判断でき、また地震等の大きな荷重時もセンサ類に損傷を生じることのない免震建物の免震効果監視方法および監視装置を提供することである。
この発明の他の目的は、建物に作用している荷重の要因が風であることを判断でき、かつその場合に免震装置に残留変位が生じているか否かを知ることができるようにすることである。
The object of the present invention is to determine that the factor of the load acting on the building is an earthquake, and to determine the seismic isolation status of the seismic isolation device. The object is to provide a seismic isolation effect monitoring method and a monitoring apparatus for a seismic isolation building that does not cause damage.
Another object of the present invention is to make it possible to determine that the factor of the load acting on the building is wind and to know whether or not there is a residual displacement in the seismic isolation device. That is.

この発明の免震建物の免震効果監視方法は、免震建物における免震装置の効果を監視する免震効果監視方法であって、
前記免震建物の前記免震装置に載せられた建物本体の振動を測定する加速度センサと、前記免震装置の互いに水平変位可能な基礎側部分と建物本体側部分間の水平変位を監視し前記水平変位の所定量を境にオンとオフに切り替わる磁気センサとを用い、
前記加速度センサにより測定した振動波形の特徴から振動源を判断し、この判断として振動源が地震であるか地震以外の要因であるかの判断を少なくとも行う振動源要因判断過程と、
前記磁気センサのオンオフの切り換わりの結果から前記免震装置が所定の免震作用を生じたか否かの判断と前記免震装置に残留変位が生じているか否かの判断とのいずれか一方または両方を行う免震化判断過程、
とを含む。
The seismic isolation effect monitoring method for a seismic isolation building according to the present invention is a seismic isolation effect monitoring method for monitoring the effect of a seismic isolation device in a seismic isolation building,
An acceleration sensor for measuring the vibration of the building body mounted on the seismic isolation device of the seismic isolation building; and the horizontal displacement between the base side portion and the building body side portion of the seismic isolation device that can be horizontally displaced from each other, and Using a magnetic sensor that switches on and off at a predetermined amount of horizontal displacement,
A vibration source factor determination process for determining a vibration source from the characteristics of the vibration waveform measured by the acceleration sensor, and at least determining whether the vibration source is an earthquake or a factor other than an earthquake as this determination;
One of the determination of whether or not the seismic isolation device has produced a predetermined seismic isolation action and the determination of whether or not residual displacement has occurred in the seismic isolation device from the result of the on / off switching of the magnetic sensor or Seismic isolation judgment process to do both,
Including.

この方法によると、加速度センサと磁気センサとの2種類のセンサを用い、相互の状態を判断する。例えば、まず、振動波形の特徴から地震による振動であるか地震以外の要因による振動であるかを判断する。建物の振動は振動源が何であるかによってそれぞれ特徴を有するため、振動波形がその特徴を有するか否かで振動源が明確に分かり、地震による振動であるか否かを判断できる。この振動要因の判断の後、磁気センサのオンオフの切り換わりの結果から免震装置の免震作用の状況を判断する。前記磁気センサは、所定量の水平変位によってオンとオフに切り替わりものであるため、オンオフが切り替わった否か、その切り替わりの回数、現在オンであるかオフであるかによって、免震装置が作用して建物本体が移動したか否か、また残留変位が生じているか否かが正確に把握できる。
このように、加速度センサと磁気センサとの2種類のセンサを用い、相互の状態を判断するため、建物の移動を正確に把握すると共に、免震装置が作用した際の要因が地震であることを明確に判断することができる。免震作用を生じた状況を振動の要因と共に評価できるため、免震化、つまり所定の免震作用を生じたか否かについての評価が適切に行える。このため、免震化が適切に行われていない場合の対処法の検討が行い易い。要因が明確であるため、現地に行かなくても、状況に応じた対処を行うことができる。また、建物状況を自動で判断するため、人による判断ミスがない。
また、使用するセンサ類が加速度センサおよび磁気センサであっても、いずれも非接触センサであるため、地震などの大きな荷重の作用時も損傷しない。
According to this method, two types of sensors, an acceleration sensor and a magnetic sensor, are used to determine the mutual state. For example, first, it is determined from the characteristics of the vibration waveform whether the vibration is caused by an earthquake or is caused by a factor other than the earthquake. Since the vibration of a building has its characteristics depending on what the vibration source is, the vibration source can be clearly identified by whether or not the vibration waveform has the characteristics, and it can be determined whether or not the vibration is caused by an earthquake. After the determination of the vibration factor, the state of the seismic isolation action of the seismic isolation device is determined from the result of the on / off switching of the magnetic sensor. Since the magnetic sensor is switched on and off by a predetermined amount of horizontal displacement, the seismic isolation device operates depending on whether or not the on / off is switched, the number of times of switching, and whether it is currently on or off. Thus, it is possible to accurately grasp whether the building body has moved and whether a residual displacement has occurred.
In this way, since the two types of sensors, the acceleration sensor and the magnetic sensor, are used to determine the mutual state, the movement of the building is accurately grasped, and the factor when the seismic isolation device is activated is an earthquake Can be clearly determined. Since the situation in which the seismic isolation action has occurred can be evaluated together with the vibration factor, it is possible to appropriately evaluate whether or not a predetermined seismic isolation action has occurred. For this reason, it is easy to examine a countermeasure when seismic isolation is not properly performed. Because the factors are clear, you can take action according to the situation without going to the site. Moreover, since the building situation is automatically judged, there is no mistake in judgment by a person.
Moreover, even if the sensors to be used are an acceleration sensor and a magnetic sensor, since they are non-contact sensors, they are not damaged even when a large load such as an earthquake is applied.

この発明方法において、前記振動源要因判断過程で地震による振動であると判断された場合に、前記加速度センサによる測定値を設定値と比較して設定値未満である場合に前記免震装置が所定の免震作用を生じなかったと判断し、設定値以上である場合に前記免震化判断過程に進む作用外地震判断過程を含むようにしても良い。
建物に加わる荷重がある程度大きくなければ、免震装置は免震化しない。そのため、加速度センサによる振動の測定値が設定値未満である場合は、免震装置は作用しなかったと判断できる。
In the method of the present invention, when it is determined in the vibration source factor determination process that the vibration is caused by an earthquake, the seismic isolation device is predetermined when the measured value by the acceleration sensor is less than a set value compared with a set value. It may be determined that the seismic isolation action is not generated, and an off-action earthquake judgment process that proceeds to the seismic isolation judgment process when it is equal to or greater than a set value may be included.
If the load applied to the building is not large enough, the seismic isolation device will not be seismic isolation. Therefore, when the measured value of vibration by the acceleration sensor is less than the set value, it can be determined that the seismic isolation device did not work.

この発明方法において、前記振動源要因判断過程が、前記振動源が地震であるか地震以外の要因であるかの判断を行う地震判断過程と、この地震判断過程で地震以外の要因であると判断した場合に前記振動波形の特徴から風による振動であるか風以外の要因による振動であるかを判断する風要因判断過程とを含み、かつ前記風による振動であると判断した場合に前記磁気センサのオンオフの値から前記免震装置に残留変位が生じているか否かを判断する残留変位判断過程を設けても良い。
風荷重で建物が大きな揺れを生じ、前記免震装置の残留変位が変わることがある。このため、振動の要因が風荷重であり、前記免震装置の残留変位の有無を知ることで、風荷重に応じた対処法を適切に検討することができる。
In the method of the present invention, the vibration source factor determination process is an earthquake determination process for determining whether the vibration source is an earthquake or a non-earthquake factor, and the earthquake determination process determines that it is a factor other than an earthquake. A wind factor determination process for determining whether the vibration is caused by a wind or a factor other than wind from the characteristics of the vibration waveform, and when the magnetic sensor determines that the vibration is caused by the wind A residual displacement determination process may be provided for determining whether or not there is a residual displacement in the seismic isolation device from the on / off value of.
The building may be shaken greatly by wind load, and the residual displacement of the seismic isolation device may change. For this reason, the factor of vibration is a wind load, and by knowing the presence or absence of residual displacement of the seismic isolation device, a countermeasure according to the wind load can be appropriately examined.

この発明の免震建物の免震効果監視装置(20)は、免震建物(1)における免震装置(2)の効果を監視する装置であって、
前記建物本体(1a)の振動を測定する加速度センサ(4)と、
前記免震装置(2)の互いに水平変位可能な基礎側部分(2a)と建物本体側部分(2b)間の水平変位を監視し前記水平変位の所定量を境にオンとオフに切り替わる磁気センサ(5)と、
これら加速度センサ(4)および磁気センサ(5)の検出信号を監視して所定の処理を行う免震効果監視手段(21)とを備え、
この免震効果監視手段(21)は、
前記加速度センサ(4)により測定した振動波形の特徴から振動源を判断し、この判断として振動源が地震であるか地震以外の要因であるかの判断を少なくとも行う振動源要因判断手段(22)と、
前記磁気センサ(5)のオンオフの切り換わりの結果から前記免震装置(2)が所定の免震作用を生じたか否かの判断、および前記免震装置(2)に残留変位が生じているか否かの判断のいずれか一方または両方を行う免震化判断手段(23)、
とを有する。
A seismic isolation effect monitoring device (20) for a base isolation building according to the present invention is a device for monitoring the effect of the base isolation device (2) in the base isolation building (1),
An acceleration sensor (4) for measuring vibration of the building body (1a);
A magnetic sensor that monitors the horizontal displacement between the base side portion (2a) and the building body side portion (2b) of the seismic isolation device (2) that can be horizontally displaced, and switches on and off at a predetermined amount of the horizontal displacement. (5) and
Seismic isolation effect monitoring means (21) for monitoring the detection signals of the acceleration sensor (4) and the magnetic sensor (5) and performing predetermined processing,
This seismic isolation monitoring means (21)
A vibration source factor determination means (22) for determining a vibration source from the characteristics of the vibration waveform measured by the acceleration sensor (4) and at least determining whether the vibration source is an earthquake or a factor other than an earthquake. When,
Judgment as to whether or not the seismic isolation device (2) has produced a predetermined seismic isolation action from the result of on / off switching of the magnetic sensor (5), and whether there is residual displacement in the seismic isolation device (2) Seismic isolation determination means (23) for performing either or both of determination of whether or not,
And have.

この構成の免震効果監視装置によると、この発明の免震効果監視方法につき説明したと同様に、建物(1)に作用している荷重の要因が地震であることを判断した上で、免震装置(2)の免震作用の状況が判断できる。また、地震等の大きな荷重時もセンサ類(4,5)に損傷を生じることがない。   According to the seismic isolation effect monitoring device of this configuration, in the same manner as described for the seismic isolation effect monitoring method of the present invention, after determining that the factor of the load acting on the building (1) is an earthquake, The seismic isolation status of the seismic device (2) can be judged. In addition, the sensors (4, 5) are not damaged even during a large load such as an earthquake.

この発明装置において、前記振動源要因判断手段(22)で地震による振動であると判断された場合に、前記加速度センサ(4)による測定値を設定値と比較して設定値未満である場合に前記免震装置(2)が所定の免震作用を生じなかったと判断し、設定値以上である場合に前記免震化判断手段23による処理を行わせる作用外地震判断部(25b)を含んでいても良い。
この構成の場合、建物(1)に作用している荷重の要因が風であることを判断でき、かつその場合に免震装置(2)に残留変位が生じているか否かを知ることができる。
In the apparatus according to the present invention, when the vibration source factor determining means (22) determines that the vibration is caused by an earthquake, the measured value by the acceleration sensor (4) is compared with a set value and is less than the set value. It includes a seismic isolation unit (25b) that determines that the seismic isolation device (2) did not produce a predetermined seismic isolation effect and causes the seismic isolation determination means 23 to perform processing when the seismic isolation device 23 exceeds a set value. May be.
In the case of this configuration, it can be determined that the factor of the load acting on the building (1) is wind, and in that case, it can be known whether or not there is a residual displacement in the seismic isolation device (2). .

この発明の免震建物の免震効果監視方法および監視装置は、加速度センサと磁気センサとの2種類のセンサを用い、振動波形の特徴から建物に作用している荷重の要因が地震であることを判断し、また磁気センサから免震装置の所定の免震作用を判断し、両センサの相互の状態を判断するため、建物に作用している荷重の要因が地震であることを判断した上で、免震装置の免震作用の状況が判断でき、また地震等の大きな荷重時もセンサ類に損傷を生じることのないという効果が得られる。   The seismic isolation building monitoring method and monitoring apparatus according to the present invention uses two types of sensors, an acceleration sensor and a magnetic sensor, and the factor of the load acting on the building is an earthquake from the characteristics of the vibration waveform. In order to determine the seismic isolation action of the seismic isolation device from the magnetic sensor and to determine the mutual state of both sensors, it is determined that the cause of the load acting on the building is an earthquake. Thus, it is possible to determine the state of the seismic isolation action of the seismic isolation device, and to obtain an effect that the sensors are not damaged even when a large load such as an earthquake occurs.

この発明において、振動波形の特徴から風による振動であるか風以外の要因による振動であるかを判断する風要因判断過程とを含み、前記風による振動であると判断した場合に前記磁気センサのオンオフの値から前記免震装置に残留変位が生じているか否かを判断する残留変位過程を設けた場合は、建物に作用している荷重の要因が風であることを判断でき、かつその場合に免震装置に残留変位が生じているか否かを知ることができる。   In the present invention, it includes a wind factor determination process for determining whether the vibration is caused by wind or a factor other than wind from the characteristics of the vibration waveform, and when it is determined that the vibration is caused by the wind, If a residual displacement process that determines whether or not there is a residual displacement in the seismic isolation device from the on / off value, it can be determined that the factor of the load acting on the building is wind, and in that case It is possible to know whether there is any residual displacement in the seismic isolation device.

この発明の一実施形態に係る免震建物の免震効果監視方法に用いる免震効果監視装置の説明図である。It is explanatory drawing of the seismic isolation effect monitoring apparatus used for the seismic isolation effect monitoring method of the base isolation building which concerns on one Embodiment of this invention. 同免震効果監視装置の概念構成を示すブロック図である。It is a block diagram which shows the conceptual structure of the seismic isolation effect monitoring apparatus. 同免震効果監視方法の概要の説明図である。It is explanatory drawing of the outline | summary of the seismic isolation effect monitoring method. 同免震効果監視方法の概略の流れ図である。It is a schematic flowchart of the seismic isolation effect monitoring method. 同免震効果監視方法の各過程を示す流れ図である。It is a flowchart which shows each process of the seismic isolation effect monitoring method. 同流れ図の一部を拡大して示す図である。It is a figure which expands and shows a part of the flowchart. 同流れ図の残り部分を拡大して示す図である。It is a figure which expands and shows the remaining part of the same flowchart.

この発明の一実施形態を図面と共に説明する。この免震建物の免震効果監視方法は、免震建物1における免震装置2の免震の効果を監視する方法である。前記免震建物1は、基礎3上に設けられた免震装置2上に建物本体1aが載せられている。免震建物1は、戸建住宅、集合住宅、事務所ビル等のいずれであっても良い。免震装置2は、免震架台となる形式のものであれば良く、この例では対向面が凹球面状の基礎側部材2aと建物本体側部分2bとの間に鋼球等の球体2cを介在させ、基礎側部材2aと建物本体側部分2bとの水平変位を可能とすると共に、原点復帰機能を持つ形式とされている。免震装置2は、この他に基礎側部材2aと建物本体側部分2bを摩擦接触させる形式や、粘弾性体で原点復帰機能を有するものであっても良い。   An embodiment of the present invention will be described with reference to the drawings. This seismic isolation effect monitoring method for a base isolation building is a method for monitoring the base isolation effect of the base isolation device 2 in the base isolation building 1. The seismic isolation building 1 has a building main body 1 a mounted on a seismic isolation device 2 provided on a foundation 3. The seismic isolation building 1 may be a detached house, an apartment house, an office building, or the like. The seismic isolation device 2 only needs to be of a type that becomes a base isolation frame. In this example, a spherical body 2c such as a steel ball is provided between the foundation side member 2a having a concave spherical surface and the building body side portion 2b. The base side member 2a and the building main body side portion 2b are allowed to be horizontally displaced and have a function of returning to the origin. In addition to this, the seismic isolation device 2 may be a type in which the foundation side member 2a and the building main body side portion 2b are brought into frictional contact, or a viscoelastic body having a function of returning to the origin.

この免震効果監視方法は、前記免震建物1の建物本体1aの振動を測定する加速度センサ4と、前記免震装置2の基礎側部分2aと建物本体側部分2b間の水平変位を監視する磁気センサ5と、情報処理装置6とを用いる。加速度センサ4には、任意方向の加速度の値と、その加速度が生じた方向とが測定されるものを用いる。磁気センサ5は、例えば近接スイッチからなり、この例では、基礎側部分2aに設けられた強磁性体からなる被検出体5aと、建物本体側部分2bに設けられて被検出体5aを検出するセンサ素子5bとからなり、基礎側部分2aと建物本体側部分2bの相対的な水平変位の所定量を境にオンとオフに切り替わる。例えば、水平変位が所定量以内ではオンを維持し、所定量を超えるとオフになる。前記所定量は、適宜に定められる量、または磁気センサ5が特性として持つ量である。被検出体5aとセンサ素子5bとは、いずれを建物本体側部分2bに設置してもよい。   This seismic isolation effect monitoring method monitors the horizontal displacement between the acceleration sensor 4 for measuring the vibration of the building main body 1a of the base isolation building 1 and the base side portion 2a and the building main body side portion 2b of the base isolation device 2. A magnetic sensor 5 and an information processing device 6 are used. As the acceleration sensor 4, a sensor that measures an acceleration value in an arbitrary direction and a direction in which the acceleration occurs is used. The magnetic sensor 5 is composed of, for example, a proximity switch. In this example, the magnetic sensor 5 is provided on the foundation-side portion 2a and made of a ferromagnetic material, and is provided on the building body-side portion 2b to detect the detection object 5a. The sensor element 5b is switched on and off at a predetermined amount of relative horizontal displacement between the foundation side portion 2a and the building body side portion 2b. For example, it remains on when the horizontal displacement is within a predetermined amount, and turns off when it exceeds the predetermined amount. The predetermined amount is a suitably determined amount or an amount that the magnetic sensor 5 has as a characteristic. Either the detected body 5a or the sensor element 5b may be installed in the building body side portion 2b.

情報処理装置6は、パーソナルコンピュータ等のコンピュータであり、記憶手段7に記憶された免震効果監視プログラム8をCPU(中央処理装置)9で実行することにより、この実施形態の免震効果監視方法における後述の各過程を行う。免震効果監視プログラム8は、情報処理装置6の持つOS(オペレーションプログラム)上で実行可能なアプリケーションプログラムである。前記加速度センサ4および磁気センサ5の出力する信号は、情報処理装置6に入出力ポート10から入力される。情報処理装置6は、この他に、キーボート等の入力機器11と、液晶ディスプレイ等の画像を表示する画面表示装置12とが備えられ、または接続されている。なお、情報処理装置6は、タブレット端末や、スマートフォン等と呼ばれる多機能電話端末であっても良い。加速度センサ4および磁気センサ5の出力する信号は、この例では情報処理装置6にリアルタイムで取り込まれるが、記憶装置(図示せず)に、加速度センサ4の振動測定情報と磁気センサ5のオンオフの検出状態を時間的に関連させて記憶しておいて、例えば定期的に、または任意時に情報処理装置6に取り込み、免震効果の判断を行うようにしても良い。   The information processing device 6 is a computer such as a personal computer, and the seismic isolation effect monitoring program 8 stored in the storage means 7 is executed by a CPU (central processing unit) 9, whereby the seismic isolation effect monitoring method of this embodiment is executed. Each process described later in FIG. The seismic isolation effect monitoring program 8 is an application program that can be executed on the OS (operation program) of the information processing apparatus 6. Signals output from the acceleration sensor 4 and the magnetic sensor 5 are input to the information processing device 6 from the input / output port 10. In addition to this, the information processing device 6 includes or is connected to an input device 11 such as a keyboard and a screen display device 12 that displays an image such as a liquid crystal display. Note that the information processing device 6 may be a tablet terminal, a multi-function telephone terminal called a smartphone or the like. In this example, the signals output from the acceleration sensor 4 and the magnetic sensor 5 are taken into the information processing device 6 in real time, but the vibration measurement information of the acceleration sensor 4 and the on / off state of the magnetic sensor 5 are stored in a storage device (not shown). The detection state may be stored in association with time, and may be taken into the information processing device 6 periodically or at any time, for example, to determine the seismic isolation effect.

なお、免震効果監視プログラム8と情報処理装置6のCPU9等のハードウェア構成とで、免震効果監視装置20の免震効果監視手段21が構成されるが、これについては、後に図2と共に説明する。   The seismic isolation effect monitoring means 21 of the seismic isolation effect monitoring device 20 is composed of the seismic isolation effect monitoring program 8 and the hardware configuration such as the CPU 9 of the information processing device 6. explain.

この免震効果監視方法は、図3および図4に概要の流れ図を示し、図5〜図7に詳細の流れ図を示すように、次の各過程を含む。これらの各過程は、情報処理装置6によって処理を行う過程であって、いずれも免震効果監視プログラム8の持つ各手順を実行する過程である。図5〜図7の各ステップは免震効果監視プログラム8における各手順を示すが、免震効果監視方法の各過程として説明する。   This seismic isolation effect monitoring method includes the following steps as shown in FIGS. 3 and 4 and a detailed flowchart in FIGS. 5 to 7. Each of these processes is a process in which the information processing apparatus 6 performs a process, and each of them is a process of executing each procedure of the seismic isolation effect monitoring program 8. Each step in FIGS. 5 to 7 shows each procedure in the seismic isolation effect monitoring program 8 and will be described as each process of the seismic isolation effect monitoring method.

まず、図3,図4と共に概要を説明する。この免震効果監視方法は、振動源要因判断過程S1と、免震化判断過程S2と、対処法提案過程S3とを含む。なお、図3では、各過程の前に、その過程で用いるセンサを図示している。
振動源要因判断過程S1では、加速度センサ4により測定した振動波形の特徴から振動源を判断し、この判断として振動源が地震であるか地震以外の要因であるかの判断を少なくとも行う。免震建物1の振動は、振動源が何であるかによってそれぞれ特徴を有するため、振動波形がその特徴を有するか否かで振動源が明確に分かり、地震による振動であるか否かを判断できる。
First, an outline will be described with reference to FIGS. This seismic isolation effect monitoring method includes a vibration source factor determination process S1, a seismic isolation determination process S2, and a countermeasure proposal process S3. In FIG. 3, a sensor used in each process is illustrated before each process.
In the vibration source factor determination process S1, the vibration source is determined from the characteristics of the vibration waveform measured by the acceleration sensor 4, and at least determination as to whether the vibration source is an earthquake or a factor other than an earthquake is made as this determination. Since the vibration of the base-isolated building 1 has its characteristics depending on what the vibration source is, the vibration source can be clearly identified by whether or not the vibration waveform has the characteristics, and it can be determined whether the vibration is caused by an earthquake. .

免震化判断過程S2は、磁気センサ5のオンオフの切り換わりの結果から前記免震装置2が所定の免震作用を生じたか否か、つまり免震化を行ったか否かの判断と、免震装置2に残留変位が生じているか否かの判断とのいずれか一方または両方を行う。この例では両方の判断を行う。磁気センサ5は、所定量の水平変位によってオンとオフに切り替わるものであるため、オンオフが切り替わった否かによって、免震装置2が作用して建物本体1aが移動したか否か、つまり免震化が行われた否かが分かり、現在オンであるかオフであるかによって残留変位が生じているか否かが把握できる。   The seismic isolation determination process S2 includes determining whether or not the seismic isolation device 2 has produced a predetermined seismic isolation action based on the on / off switching result of the magnetic sensor 5, that is, whether or not seismic isolation has been performed. One or both of the determination as to whether or not residual displacement has occurred in the seismic device 2 is performed. In this example, both determinations are made. Since the magnetic sensor 5 is switched on and off by a predetermined amount of horizontal displacement, whether or not the building main body 1a is moved by the seismic isolation device 2 depending on whether the on / off switching is performed, that is, the seismic isolation is performed. Whether or not the residual displacement has occurred can be grasped depending on whether it is currently on or off.

対処法提案過程S3は、振動源要因判断過程S1および免震化判断過程S2の判断結果に応じて、定められた対処法の提案を画面表示装置12(図1)に出力する過程である。対処法提案過程S3は、必ずしも自動で行わなくても良く、前記各過程S1,S2の判断結果から人が対処法を検討しても良い。   The coping method proposing process S3 is a process of outputting a predetermined coping method proposal to the screen display device 12 (FIG. 1) according to the determination results of the vibration source factor determining process S1 and the seismic isolation determining process S2. The coping method suggestion step S3 does not necessarily have to be performed automatically, and a person may consider the coping method from the judgment results of the steps S1 and S2.

前記振動源要因判断過程S1は、詳しくは、それぞれ振動波形の特徴から、振動源が地震であるか否かを判断する地震判断過程S1a、地震以外の要因である場合に風による振動であるか否かを判断する風要因判断過程S1b、その他要因判断過程(1) S1c、およびその他要因判断過程(2) S1dを含む。また、地震判断過程S1aは、前記地震判断過程S1aで地震による振動であると判断された場合に、加速度センサ4による測定値を設定値と比較して設定値未満である場合に免震装置2が所定の免震作用を生じなかったと判断し、設定値以上である場合に前記免震化判断過程S2に進む作用外地震判断過程S1aaを含む。   Specifically, the vibration source factor determination process S1 is an earthquake determination process S1a for determining whether or not the vibration source is an earthquake from the characteristics of the vibration waveform. It includes a wind factor determination process S1b for determining whether or not, other factor determination process (1) S1c, and other factor determination process (2) S1d. Further, when the earthquake determination process S1a is determined to be a vibration caused by an earthquake in the earthquake determination process S1a, the seismic isolation device 2 is compared with the measured value by the acceleration sensor 4 compared to the set value. Includes a non-action seismic determination process S1aa that proceeds to the seismic isolation determination process S2 when it is determined that a predetermined seismic isolation action has not occurred and is equal to or greater than a set value.

前記振動源要因判断過程S1で判断する振動波形の特徴の例を説明する。
地震の波形の特徴は、振動時間が短時間(例えば3分以下)、応答スペクトルが最大となる振動数が1Hz程度以下、初期微動(小さい揺れ)の後に主要動(大きい揺れ)が観測されることである。したがって、測定された振動が、設定分(例えば5分)以下で、応答スペクトルが最大となる振動数が、設定値(例えば3Hz程度)以下で、振動の大きさが設定値(例えば10Gal未満が1秒以上観測された後に10Gal以上が観測)を満たしている場合は、振動源が地震であると判断する。
An example of the characteristics of the vibration waveform determined in the vibration source factor determination step S1 will be described.
The characteristics of the earthquake waveform are that the vibration time is short (for example, 3 minutes or less), the frequency at which the response spectrum is maximum is about 1 Hz or less, and the main movement (large shaking) is observed after the initial fine movement (small shaking). That is. Therefore, the measured vibration is less than a set value (for example, 5 minutes), the frequency at which the response spectrum is maximum is less than a set value (for example, about 3 Hz), and the magnitude of vibration is less than the set value (for example, less than 10 Gal). If 10 Gal or more is observed after observation for 1 second or more, it is determined that the vibration source is an earthquake.

風の波形の特徴は、加速度が小さく(1〜3Gal程度)、方向別では縦揺れの方が小さく、長時間(10分程度以上)、応答スペクトルが最大となる振動数が建物の固有振動数程度である。したがって、測定された振動が、設定加速度範囲(例えば、0.5〜5Gal)以内、横揺れが縦揺れよりも大きい、振動時間が設定時間(例えば5分)以上、応答スペクトルが最大となる振動数が設定範囲(例えば3〜10Hz)内である場合は、振動源が風であると判断する。   The characteristic of the wind waveform is that the acceleration is small (about 1 to 3 Gal), the pitch is smaller in each direction, the vibration frequency is the longest (about 10 minutes or more), and the response spectrum is maximum. Degree. Therefore, the measured vibration is within a set acceleration range (for example, 0.5 to 5 Gal), the roll is larger than the pitch, the vibration time is longer than the set time (for example, 5 minutes), and the response spectrum is maximized. When the number is within a set range (for example, 3 to 10 Hz), it is determined that the vibration source is wind.

その他(1) の特徴は、事故などの災害による衝突波形の特徴であり、大きさ加速度(100Gal程度)が一度入り、その後に自由振動し、応答スペクトルが最大となる振動数が建物の固有振動数程度である。したがって、その他要因判断過程(1) S1cでは、設定加速度(例えば50Gal)が一度入り、その後に自由振動し、応答スペクトルが最大となる振動数が設定範囲(例えば3〜10Hz)内である場合は、振動源が「その他(1) 」であると判断する。   The other feature (1) is the characteristic of the collision waveform due to disasters such as accidents. The magnitude acceleration (about 100 Gal) enters once, and then the free vibration occurs, and the frequency that maximizes the response spectrum is the natural vibration of the building. A few. Accordingly, in the other factor determination process (1) S1c, when the set acceleration (for example, 50 Gal) once enters, and then the free vibration occurs and the frequency at which the response spectrum becomes maximum is within the set range (for example, 3 to 10 Hz) , It is determined that the vibration source is “other (1)”.

その他(2) の特徴は、交通振動の特徴であり、加速度が小さく(1〜3Gal程度)、方向別では縦揺れの方が横揺れよりも大きく、短時間(1分以下)である。したがって、その他要因判断過程(2) S1cでは、加速度が設定範囲(例えば、0.5〜5Gal)内であり縦揺れの方が横揺れよりも大きく、振動が設定時間(例えば2分以内)である場合に、振動源が「その他(2) 」であると判断する。
なお、上記の例では、振動源毎の全ての特徴につき条件を判断するようにしたが、振動源の種類を区別できればよく、上記のうちのいずれかの判断条件を省略しても良い。
The other feature (2) is the characteristic of traffic vibration, with small acceleration (about 1 to 3 Gal), and by direction, the pitching is greater than the rolling and is short (less than 1 minute). Therefore, in the other factor judgment process (2) S1c, the acceleration is within the set range (for example, 0.5 to 5 Gal), the pitch is greater than the roll, and the vibration is within the set time (for example, within 2 minutes). In some cases, it is determined that the vibration source is “Other (2)”.
In the above example, the conditions are determined for all the characteristics of each vibration source. However, it is only necessary to distinguish the types of vibration sources, and any of the above determination conditions may be omitted.

前記免震化判断過程S2は、免震化有無判断過程S2aと、残留変位判断過程S2bとを含む。免震化有無判断過程S2aは、磁気センサ5のオンとオフとの切り替わりがあった場合に、免震化、つまり所定の免震作用が生じたと判断する。
残留変位判断過程S2bは、振動の終了時点で磁気センサ5がオンであると残留変位がないと判断し、オフであると残留変位があると判断する。
The seismic isolation determination process S2 includes a seismic isolation presence determination process S2a and a residual displacement determination process S2b. The seismic isolation presence / absence determination process S2a determines that seismic isolation, that is, a predetermined seismic isolation effect has occurred when the magnetic sensor 5 is switched on and off.
In the residual displacement determination step S2b, it is determined that there is no residual displacement if the magnetic sensor 5 is on at the end of the vibration, and it is determined that there is residual displacement if it is off.

つぎに、図5〜図7と共に、この免震効果監視方法の具体的な各過程を説明する。図5は全体を示し、図5の一部を図6に、残り部分を図7にそれぞれ拡大して示す。
図6に示すように、まず、加速度センサ4の測定した加速度波形が地震特有の特徴を有しているか否かを判断する(地震判断過程S1a)。
Next, specific steps of the seismic isolation effect monitoring method will be described with reference to FIGS. FIG. 5 shows the whole, and a part of FIG. 5 is enlarged and shown in FIG.
As shown in FIG. 6, first, it is determined whether or not the acceleration waveform measured by the acceleration sensor 4 has an earthquake-specific characteristic (earthquake determination process S1a).

地震特有の特徴を有していない場合は、図7に示す過程に進む。地震特有の特徴を有している場合は、加速度が100Gal以上であるか否かを判断する(作用外地震判断過程S1aa)。建物に加わる荷重がある程度大きくなければ、免震装置2は免震化しない。そのため、加速度センサ4による振動の測定値が設定値(この例では100Gal)未満である場合は、免震装置は作用しなかったと判断できる。
100Gal未満である場合は、振動終了時の磁気センサ5(以下「最終マグ」と略称する)が、オンであるか否かを判断する(S2b)。オンでなければ、免震化せず、残留変位有りと判断する(b11)。この場合、免震装置(免震層)2の点検を行い、建物の引き戻しを行う対処法の提案を画面表示装置12に出力する(S3)。なお、「提案を画面表示装置12に出力する」という事項につき、以下は単に「提案を示す」と称す。オンである場合は、免震化せず、また残留変位無しと判断する(b12)。
If it does not have the characteristics peculiar to earthquakes, the process proceeds to the process shown in FIG. When it has the characteristic peculiar to an earthquake, it is determined whether or not the acceleration is 100 Gal or more (earthquake determination process S1aa). If the load applied to the building is not large to some extent, the seismic isolation device 2 is not seismically isolated. Therefore, when the measured value of vibration by the acceleration sensor 4 is less than the set value (100 Gal in this example), it can be determined that the seismic isolation device did not act.
If it is less than 100 Gal, it is determined whether or not the magnetic sensor 5 at the end of vibration (hereinafter abbreviated as “final mug”) is on (S2b 1 ). If it is not on, it is determined that there is a residual displacement without seismic isolation (b 11 ). In this case, the seismic isolation device (seismic isolation layer) 2 is inspected, and a proposal of a countermeasure for pulling back the building is output to the screen display device 12 (S3 1 ). Note that, regarding the matter of “outputting the proposal to the screen display device 12”, the following is simply referred to as “showing the proposal”. If it is on, it is determined that the seismic isolation is not performed and there is no residual displacement (b 12 ).

前記作用外地震判断過程S1aaで、加速度が100Gal以上であるときは、磁気センサ5がオンからオフに変化したか、またはオフからオンを1回以上動作したか否かを判断する(免震化有無判断過程S2a)。条件非充足(NG)の場合は、最終マグがオンであるかを判断する(S2b)。オンでない場合は、免震化可能性あり、残留変位有りであり(b21)、建物の引き戻しを行う対処法の提案を示す(S3)。オンである場合は、免震化可能性あり、残留変位無しであると判断される(b22)。
前記免震化有無判断過程S2aで条件充足の場合は、免震化した場合であり、最終マグがオンであるかを判断する(S2b)。オンでない場合は、免震化し、残留変位有りであり(b31)、建物の引き戻しを行う対処法の提案を示す(S3)。オンである場合は、免震化あり、残留変位無しであると判断される(b32)。
When the acceleration is 100 Gal or more in the non-action earthquake determination process S1aa, it is determined whether the magnetic sensor 5 has changed from on to off or has been operated from off to on at least once (seismic isolation). Presence / absence determination step S2a). If the condition is not satisfied (NG), it is determined whether the last mug is on (S2b 2 ). When it is not ON, there is a possibility of seismic isolation, there is a residual displacement (b 21 ), and a proposal of a countermeasure for pulling back the building is shown (S 3 2 ). When it is on, it is determined that there is a possibility of seismic isolation and that there is no residual displacement (b 22 ).
If the condition is satisfied in the seismic isolation presence determination step S2a, it is determined that the seismic isolation has been performed, and it is determined whether the final mug is on (S2b 3 ). If it is not on, it is seismically isolated and there is a residual displacement (b 31 ), and a suggestion of a countermeasure for pulling back the building is shown (S 3 3 ). If it is on, it is determined that there is seismic isolation and no residual displacement (b 32 ).

前記地震判断過程S1aで地震特有の特徴を有していないと判断された場合は、図7の風要因判断過程S1bに進み、加速度波形が風特有の特徴を有しているか否かを判断する。風特有の特徴を有している場合は、振動発生直前の磁気センサ5がオンであるか否かを判断する(S2b)。オンでない場合は、マグがオフからオンになったか否かを判断する(S2b)。オフからオンになったのではない場合は、もともと残留変位有りと判断し(b51)、建物の引き戻しを行う対処法の提案を示す(b3)。オフからオンになった場合は、残留変位無しであるが、風で戻ったか、または風で動いていない場合であり(b52)、風で戻った場合は、風揺れを固定する対処法の提案を行う(S3)。
前記振動発生直前の磁気センサ5がオンであるか否かの判断過程(S2b)で、オンであると判断した場合は、磁気センサ5がオンからオフになったか否かを判断する(S2b)。オンからオフになったのではない場合は、残留変位無しで、かつ風で動いていないと判断する(b61)。オンからオフになった場合は、風で動き、残留変位有りと判断する(b62)。この場合は、風揺れを固定する対策を行い、かつ建物を引き戻す対処法を提案する(S3)。
If it is determined in the earthquake determination process S1a that there is no characteristic peculiar to an earthquake, the process proceeds to the wind factor determination process S1b in FIG. 7 to determine whether the acceleration waveform has a characteristic peculiar to the wind. . If a wind-specific features, determines whether the magnetic sensor 5 immediately before the vibration generator is on (S2b 4). If not, it is determined whether or not the mug has been turned on (S2b 5 ). If it is not switched from off to on, it is determined that there is a residual displacement originally (b 51 ), and a proposal of a countermeasure for pulling back the building is shown (b 3 4 ). When turned from off to on, there is no residual displacement, but it has returned by the wind or is not moving by the wind (b 52 ). Make a proposal (S3 5 ).
If it is determined in the determination process (S2b 4 ) whether or not the magnetic sensor 5 immediately before the occurrence of vibration is on, it is determined whether or not the magnetic sensor 5 has been turned off from on (S2b 4 ). 6 ). If it is not turned off from on, it is determined that there is no residual displacement and the wind is not moving (b 61 ). If turned off from on, move in the wind, it is determined that there is residual displacement (b 62). In this case, a countermeasure for fixing the wind sway and a countermeasure for pulling back the building are proposed (S3 6 ).

前記風要因判断過程S1bで風特有の特徴を有していないと判断された場合は、振動波形が「その他(1) 」の特徴を有しているか否かを判断する(S1c)。この特徴を有している場合は、振動発生直前の磁気センサ5がオンであるか否かを判断する(S2b)。オンでない場合は、マグがオフからオンになったか否かを判断する(S2b)。オフからオンになったのではない場合は、もともと残留変位有りと判断し(b81)、建物の引き戻しを行う対処法の提案を示す(S3)。オフからオンになった場合は、残留変位無しであるが、振動で戻ったか、または振動で動いていない場合であり(b82)、建物を補修する対処法の提案を行う(S3)。
前記振動発生直前の磁気センサ5がオンであるか否かの判断過程(S2b)で、オンであると判断した場合は、磁気センサ5がオンからオフになったか否かを判断する(S2b)。オンからオフになったのではない場合は、残留変位無しで、かつ振動で動いていないと判断する(b91)。この場合は、建物を補修する提案を行う(S3)オンからオフになった場合は、振動により建物が動き、残留変位有りと判断する(b92)。この場合は、建物を補修しかつ建物を引き戻す対処法を提案する(S3)。
If it is determined in the wind factor determination step S1b that there is no characteristic peculiar to the wind, it is determined whether or not the vibration waveform has a characteristic of “other (1)” (S1c). If it has this feature, it is determined whether or not the magnetic sensor 5 immediately before the occurrence of vibration is on (S2b 7 ). If not, it is determined whether the mug has been turned on from off (S2b 8 ). If it is not switched from off to on, it is determined that there is a residual displacement originally (b 81 ), and a proposal of a countermeasure for pulling back the building is shown (S 3 7 ). When turned from off to on, there is no residual displacement, but it has returned by vibration or is not moving by vibration (b 82 ), and a countermeasure for repairing the building is proposed (S 3 8 ).
If it is determined that the magnetic sensor 5 immediately before the occurrence of vibration is on in the determination process (S2b 7 ), it is determined whether the magnetic sensor 5 has been turned off from on (S2b 7 ). 9 ). If it is not turned from on to off, it is determined that there is no residual displacement and that it is not moved by vibration (b 91 ). In this case, a proposal for repairing the building is made (S3 8 ). When the building is turned off from on, the building moves due to vibration and it is determined that there is a residual displacement (b 92 ). In this case, the coping method which repairs a building and pulls back a building is proposed (S3 9 ).

「その他(1) 」の特徴を有しているか否かの判断過程(S1c)で、その特徴を有していないと判断された場合は、振動波形が「その他(2) 」の特徴を有しているか否かの判断を行う(S1d)。この特徴を有している場合は、振動発生直前の磁気センサ5がオンであるか否かを判断する(S2b10)。オンでない場合は、マグがオフからオンになったか否かを判断する(S2b11)。オフからオンになったのではない場合は、もともと残留変位有りと判断し(b111)、建物の引き戻しを行う対処法の提案を示す(S310)。オフからオンになった場合は、残留変位無しであるが、交通振動で戻ったか、または交通振動で動いていない場合である(b112)。
前記振動発生直前の磁気センサ5がオンであるか否かの判断過程(S2b10)で、オンであると判断した場合は、磁気センサ5がオンからオフになったか否かを判断する(S2b12)。オンからオフになったのではない場合は、残留変位無しで、かつ交通振動で動いていないと判断する(b121)。オンからオフになった場合は、交通振動により建物が動き、残留変位有りと判断する(b112)。この場合は、振動の原因を追求し、交通振動への対策を行い、建物を引き戻す対処法を提案する(S311)。
If it is determined in the determination process (S1c) whether or not it has the characteristics of “other (1)”, the vibration waveform has the characteristics of “other (2)”. It is determined whether or not (S1d). If it has this feature, it is determined whether or not the magnetic sensor 5 immediately before the occurrence of vibration is on (S2b 10 ). If not, it is determined whether the mug has been turned on from off (S2b 11 ). If it is not switched from off to on, it is determined that there is a residual displacement originally (b 111 ), and a proposal of a countermeasure for pulling back the building is shown (S 3 10 ). When turned from off to on, there is no residual displacement, but it has returned due to traffic vibration or is not moving due to traffic vibration (b 112 ).
If it is determined that the magnetic sensor 5 immediately before the occurrence of vibration is on in the determination process (S2b 10 ), it is determined whether the magnetic sensor 5 has been turned off from on (S2b 10 ). 12 ). If it is not switched from ON to OFF, it is determined that there is no residual displacement and the vehicle is not moving due to traffic vibration (b 121 ). If it is turned off from on, the building moves due to traffic vibration and it is determined that there is a residual displacement (b 112 ). In this case, the cause of the vibration is pursued, a countermeasure against the traffic vibration is taken, and a countermeasure for pulling back the building is proposed (S 311 ).

なお、図5において、複数の過程を1点鎖線で囲むと共に参照符号を付し、図4に示す各過程との関係を示した。すなわち、図4に示す各過程は、図5に1点鎖線で囲んだ各個別の過程を含む。   In FIG. 5, a plurality of processes are surrounded by a one-dot chain line and attached with a reference symbol to show the relationship with each process shown in FIG. 4. That is, each process shown in FIG. 4 includes each individual process surrounded by a one-dot chain line in FIG.

この免震効果監視方法は、このような一連の判断を行う。この方法によると、いずれも非接触式のセンサである加速度センサ4と磁気センサ5との2種のセンサを用い、相互の状態を最適に判断するため、建物の移動を正確に把握すると共に、免震装置2が稼働した際の要因を明確に判断することができる。そのため、次の各利点が得られる。   This seismic isolation effect monitoring method makes such a series of judgments. According to this method, both the acceleration sensor 4 and the magnetic sensor 5 which are non-contact type sensors are used, and the movement of the building is accurately grasped in order to determine the mutual state optimally. A factor when the seismic isolation device 2 is operated can be clearly determined. Therefore, the following advantages can be obtained.

・免震建物1の監視状態から振動発生の要因を明確に判断することができる。
・要因が明確であるため、現地に行かなくても、状況に応じた対処を採ることができる。
・建物1の状況を自動で判断するため、人による判断ミスがない。
・非接触センサを用いるため、地震等の大きな荷重時も損傷しない。
・ The cause of vibration can be clearly determined from the monitoring status of the base-isolated building 1.
・ Since the factors are clear, it is possible to take measures according to the situation without going to the site.
・ Since the situation of building 1 is judged automatically, there is no human error in judgment.
-Since non-contact sensors are used, they will not be damaged even when large loads such as earthquakes occur.

次に、図2と共にこの免震建物の免震効果監視装置20につき説明する。この免震効果監視装置20は、前記免震建物1における前記免震装置2の効果を監視する装置であって、前記加速度センサ4と、前記磁気センサ5と、前記免震効果監視手段21とを備える。免震効果監視手段21は、前述のように、図1の免震効果監視プログラム8と、これを実行する情報処理装置6とで、図2に示す次の各機能達成手段を構成したものである。免震効果監視手段21は、振動源要因判断手段22と、免震化判断手段23と、対処法提案手段24とを備える。   Next, the seismic isolation effect monitoring device 20 of this base isolation building will be described with reference to FIG. The seismic isolation effect monitoring device 20 is a device that monitors the effect of the seismic isolation device 2 in the seismic isolation building 1, and includes the acceleration sensor 4, the magnetic sensor 5, and the seismic isolation effect monitoring unit 21. Is provided. As described above, the seismic isolation effect monitoring means 21 comprises the following function achievement means shown in FIG. 2 with the seismic isolation effect monitoring program 8 of FIG. 1 and the information processing apparatus 6 executing the program. is there. The seismic isolation effect monitoring unit 21 includes a vibration source factor determination unit 22, a seismic isolation determination unit 23, and a countermeasure proposal unit 24.

振動源要因判断手段22は、加速度センサ4により測定した振動波形の特徴から振動源を判断し、この判断として振動源が地震であるか地震以外の要因であるかの判断を少なくとも行う手段である。
免震化判断手段23は、前記磁気センサ5のオンオフの切り換わりの結果から前記免震装置2が所定の免震作用である免震化を生じたか否かの判断と前記免震装置2に残留変位が生じているか否かの判断とのいずれか一方または両方を行う手段であり、この例では両方を行う。
対処法提案手段24は、振動源要因判断手段22および免震化判断手段23の判断結果に応じて、定められた対処法の提案を画面表示装置12(図1)に出力する手段である。対処法提案手段24は、詳しくは図4〜図7の対処法提案過程S3につき説明した処理を行う。
The vibration source factor determination means 22 is a means for determining the vibration source from the characteristics of the vibration waveform measured by the acceleration sensor 4, and at least determining whether the vibration source is an earthquake or a factor other than an earthquake. .
The seismic isolation determination means 23 determines whether or not the seismic isolation device 2 has undergone seismic isolation, which is a predetermined seismic isolation function, based on the on / off switching result of the magnetic sensor 5 and the seismic isolation device 2. This is means for performing either one or both of the determination as to whether or not the residual displacement has occurred. In this example, both are performed.
The coping method proposing means 24 is means for outputting a predetermined coping method proposal to the screen display device 12 (FIG. 1) in accordance with the judgment results of the vibration source factor judgment means 22 and the seismic isolation judgment means 23. Specifically, the coping method proposing means 24 performs the processing described in the coping method proposing process S3 of FIGS.

振動源要因判断手段22は、詳しくは、図4の免震化要因判断過程S1で説明した各処理を行う。振動源要因判断手段22は、地震判断部25と、風要因判断部26と、その他要因判断部27とを有する。地震判断部25は、図4の地震判断過程S1aにつき説明した処理を行う手段であり、主地震判断部25aと、作用外地震判断部25bとを有する。地震判断部25は、図5の過程S1aの判断を行う手段である。作用外地震判断部25bは、図5の過程S1aaの判断を行う手段である。主地震判断部25aは、図6の過程S2a以降の各判断を行う。
風要因判断部26は、図4、図5、図7の風要因判断過程S1bにつき説明した判断を行う。その他要因判断部27は、図4、図5、図7のその他要因判断過程(1) S1c、およびその他要因判断過程(2) S1dで説明した処理を行う手段である。
Specifically, the vibration source factor determination means 22 performs each process described in the seismic isolation factor determination step S1 of FIG. The vibration source factor determination unit 22 includes an earthquake determination unit 25, a wind factor determination unit 26, and another factor determination unit 27. The earthquake determination unit 25 is a means for performing the processing described with respect to the earthquake determination process S1a of FIG. 4, and includes a main earthquake determination unit 25a and an out-of-action earthquake determination unit 25b. The earthquake determination unit 25 is a means for determining the process S1a in FIG. The non-action earthquake determination unit 25b is means for determining the process S1aa in FIG. The main earthquake determination unit 25a makes each determination after step S2a in FIG.
The wind factor determination unit 26 performs the determination described for the wind factor determination process S1b in FIGS. The other factor determination unit 27 is a means for performing the processing described in the other factor determination process (1) S1c and the other factor determination process (2) S1d in FIGS.

免震化判断手段23は、詳しくは、図4の免震化判断過程S2で説明した各処理を行う手段であり、免震化有無判断部28、および残留変位判断部29を有する。免震化有無判断部28は、図4〜図7の免震化有無判断過程S2aで説明した各処理を行う。残留変位判断部29は、図4〜図7の残留変位判断過程S2bで説明した各処理を行う。   Specifically, the seismic isolation determination means 23 is a means for performing each process described in the seismic isolation determination process S2 of FIG. 4 and includes a seismic isolation presence determination section 28 and a residual displacement determination section 29. The seismic isolation presence / absence determination unit 28 performs each process described in the seismic isolation presence / absence determination process S2a of FIGS. The residual displacement determination unit 29 performs each process described in the residual displacement determination step S2b of FIGS.

この構成の免震効果監視装置によると、前記免震効果監視方法を実施でき、この免震効果監視方法につき説明した各作用,効果が得られる。   According to the seismic isolation effect monitoring device having this configuration, the seismic isolation effect monitoring method can be implemented, and the actions and effects described with respect to the seismic isolation effect monitoring method can be obtained.

1…免震建物
1a…建物本体
2…免震装置
2a…基礎側部材
2b…建物本体側部分
3…基礎
4…加速度センサ
5…磁気センサ
6…情報処理装置
5a…被検出体
5b…センサ素子
8…免震効果監視プログラム
20…免震効果監視装置
21…免震効果監視手段
22…免震化判断手段
23…免震化判断手段
24…対処法提案手段
25…地震判断部
26…風要因判断部
27…その他要因判断部
28…免震化有無判断部
29…残留変位判断部
DESCRIPTION OF SYMBOLS 1 ... Base-isolated building 1a ... Building body 2 ... Seismic isolation device 2a ... Foundation side member 2b ... Building body side part 3 ... Foundation 4 ... Acceleration sensor 5 ... Magnetic sensor 6 ... Information processing device 5a ... Detected object 5b ... Sensor element 8 ... Seismic isolation effect monitoring program 20 ... Seismic isolation effect monitoring device 21 ... Seismic isolation effect monitoring means 22 ... Seismic isolation determination means 23 ... Seismic isolation determination means 24 ... Countermeasure proposal means 25 ... Earthquake determination section 26 ... Wind factor Judgment unit 27 ... Other factor judgment unit 28 ... Seismic isolation presence / absence judgment unit 29 ... Residual displacement judgment unit

Claims (5)

免震建物における免震装置の効果を監視する免震効果監視方法であって、
前記免震建物の前記免震装置に載せられた建物本体の振動を測定する加速度センサと、前記免震装置の互いに水平変位可能な基礎側部分と建物本体側部分間の水平変位を監視し前記水平変位の所定量を境にオンとオフに切り替わる磁気センサとを用い、
前記加速度センサにより測定した振動波形の特徴から振動源を判断し、この判断として振動源が地震であるか地震以外の要因であるかの判断を少なくとも行う振動源要因判断過程と、
前記磁気センサのオンオフの切り換わりの結果から前記免震装置が所定の免震作用を生じたか否かの判断、および前記免震装置に残留変位が生じているか否かの判断のいずれか一方または両方を行う免震化判断過程、
とを含む免震建物の免震効果監視方法。
A seismic isolation effect monitoring method for monitoring the effect of a seismic isolation device in a base isolation building,
An acceleration sensor for measuring the vibration of the building body mounted on the seismic isolation device of the seismic isolation building; and the horizontal displacement between the base side portion and the building body side portion of the seismic isolation device that can be horizontally displaced from each other, and Using a magnetic sensor that switches on and off at a predetermined amount of horizontal displacement,
A vibration source factor determination process for determining a vibration source from the characteristics of the vibration waveform measured by the acceleration sensor, and at least determining whether the vibration source is an earthquake or a factor other than an earthquake as this determination;
One of determination of whether or not the seismic isolation device has produced a predetermined seismic isolation action from the result of on / off switching of the magnetic sensor, and determination of whether or not residual displacement has occurred in the seismic isolation device or Seismic isolation judgment process to do both,
Seismic isolation effect monitoring method for base-isolated buildings.
請求項1に記載の免震建物の免震効果監視方法において、前記振動源要因判断過程で地震による振動であると判断された場合に、前記加速度センサによる測定値を設定値と比較して設定値未満である場合に前記免震装置が所定の免震作用を生じなかったと判断し、設定値以上である場合に前記免震化判断過程に進む作用外地震判断過程を含む免震建物の免震効果監視方法。   The seismic isolation effect monitoring method for a seismic isolation building according to claim 1, wherein when the vibration source factor determination process determines that the vibration is caused by an earthquake, the measurement value by the acceleration sensor is set in comparison with a set value. It is determined that the seismic isolation device did not produce a predetermined seismic isolation action when the value is less than the value, and the seismic isolation building including the off-action earthquake judgment process that proceeds to the seismic isolation judgment process when the value exceeds the set value Seismic effect monitoring method. 請求項1または請求項2に記載の免震建物の免震効果監視方法において、前記振動源要因判断過程は、前記振動源が地震であるか地震以外の要因であるかの判断を行う地震判断過程と、この地震判断過程で地震以外の要因であると判断した場合に前記振動波形の特徴から風による振動であるか風以外の要因による振動であるかを判断する風要因判断過程とを含み、前記風による振動であると判断した場合に前記磁気センサのオンオフの値から前記免震装置に残留変位が生じているか否かを判断する残留変位判断過程を設けた免震建物の免震効果監視方法。   3. The seismic isolation effect monitoring method according to claim 1 or 2, wherein the vibration source factor determination process determines whether the vibration source is an earthquake or a factor other than an earthquake. And a wind factor judgment process for judging whether the vibration is caused by a wind or a factor other than the wind from the characteristics of the vibration waveform when the earthquake judgment process judges that the factor is other than an earthquake. The seismic isolation effect of the base isolation building provided with the residual displacement determination process for determining whether or not the base isolation device has a residual displacement from the on / off value of the magnetic sensor when it is determined that the vibration is caused by the wind Monitoring method. 免震建物における免震装置の効果を監視する免震効果監視装置であって、
前記免震建物の前記免震装置に載せられた建物本体の振動を測定する加速度センサと、 前記免震装置の互いに水平変位可能な基礎側部分と建物本体側部分間の水平変位を監視し前記水平変位の所定量を境にオンとオフに切り替わる磁気センサと、
これら加速度センサおよび磁気センサの検出信号を監視して所定の処理を行う免震効果監視手段とを備え、
この免震効果監視手段は、
前記加速度センサにより測定した振動波形の特徴から振動源を判断し、この判断として振動源が地震であるか地震以外の要因であるかの判断を少なくとも行う振動源要因判断手段と、
前記磁気センサのオンオフの切り換わりの結果から前記免震装置が所定の免震作用を生じたか否かの判断、および前記免震装置に残留変位が生じているか否かの判断のいずれか一方または両方を行う免震化判断手段、
とを有する免震建物の免震効果監視装置。
A seismic isolation effect monitoring device for monitoring the effect of a seismic isolation device in a seismic isolation building,
An acceleration sensor that measures the vibration of the building body mounted on the seismic isolation device of the base isolation building; and the horizontal displacement between the base side portion and the building main body side portion of the base isolation device that can be horizontally displaced with respect to each other. A magnetic sensor that switches on and off at a predetermined amount of horizontal displacement;
Seismic isolation effect monitoring means for monitoring the detection signals of these acceleration sensors and magnetic sensors and performing predetermined processing,
This seismic isolation monitoring means
A vibration source factor determining means for determining a vibration source from the characteristics of the vibration waveform measured by the acceleration sensor, and at least determining whether the vibration source is an earthquake or a factor other than an earthquake as this determination;
One of determination of whether or not the seismic isolation device has produced a predetermined seismic isolation action from the result of on / off switching of the magnetic sensor, and determination of whether or not residual displacement has occurred in the seismic isolation device or Seismic isolation judgment means to do both,
A seismic isolation monitoring device for seismic isolation buildings.
請求項4に記載の免震建物の免震効果監視装置において、前記振動源要因判断手段で地震による振動であると判断された場合に、前記加速度センサによる測定値を設定値と比較して設定値未満である場合に前記免震装置が所定の免震作用を生じなかったと判断し、設定値以上である場合に前記免震化判断手段による処理を行わせる作用外地震判断手段を含む免震建物の免震効果監視装置。   5. The seismic isolation effect monitoring device for a seismic isolation building according to claim 4, wherein when the vibration source factor determining means determines that the vibration is caused by an earthquake, the measured value by the acceleration sensor is set by comparison with a set value. It is determined that the seismic isolation device did not produce a predetermined seismic isolation action when the value is less than the value, and the seismic isolation means includes an off-effect seismic judgment means for performing processing by the seismic isolation judgment means when it is equal to or greater than a set value Seismic isolation effect monitoring device for buildings.
JP2013102205A 2013-05-14 2013-05-14 Method and apparatus for monitoring seismic isolation effect of base-isolated building Active JP6230813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013102205A JP6230813B2 (en) 2013-05-14 2013-05-14 Method and apparatus for monitoring seismic isolation effect of base-isolated building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102205A JP6230813B2 (en) 2013-05-14 2013-05-14 Method and apparatus for monitoring seismic isolation effect of base-isolated building

Publications (2)

Publication Number Publication Date
JP2014222204A true JP2014222204A (en) 2014-11-27
JP6230813B2 JP6230813B2 (en) 2017-11-15

Family

ID=52121789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102205A Active JP6230813B2 (en) 2013-05-14 2013-05-14 Method and apparatus for monitoring seismic isolation effect of base-isolated building

Country Status (1)

Country Link
JP (1) JP6230813B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161416A (en) * 2015-03-02 2016-09-05 大和ハウス工業株式会社 Base isolation device management system and base isolation device management method
JP2020076670A (en) * 2018-11-08 2020-05-21 昭和電線ケーブルシステム株式会社 Aseismic isolation device monitoring system
CN112163293A (en) * 2020-09-25 2021-01-01 中南大学 Vibration reduction and isolation device research and development analysis system considering friction influence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164098A (en) * 1997-08-12 1999-03-05 Ohbayashi Corp Quality control system for laminated rubber
JP2007224606A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Vibration isolating operation authentication apparatus of base isolation building

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164098A (en) * 1997-08-12 1999-03-05 Ohbayashi Corp Quality control system for laminated rubber
JP2007224606A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Vibration isolating operation authentication apparatus of base isolation building

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016161416A (en) * 2015-03-02 2016-09-05 大和ハウス工業株式会社 Base isolation device management system and base isolation device management method
JP2020076670A (en) * 2018-11-08 2020-05-21 昭和電線ケーブルシステム株式会社 Aseismic isolation device monitoring system
JP7178876B2 (en) 2018-11-08 2022-11-28 昭和電線ケーブルシステム株式会社 Seismic isolation device monitoring system
CN112163293A (en) * 2020-09-25 2021-01-01 中南大学 Vibration reduction and isolation device research and development analysis system considering friction influence
CN112163293B (en) * 2020-09-25 2023-03-21 中南大学 Vibration reduction and isolation device research and development analysis system considering friction influence

Also Published As

Publication number Publication date
JP6230813B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP3952851B2 (en) Seismic performance evaluation method and apparatus for buildings
Roy et al. ARX model-based damage sensitive features for structural damage localization using output-only measurements
TW201233986A (en) Method for analyzing structure safety
JP6587874B2 (en) Detection system, signal processing apparatus, and detection method
Dawari et al. Structural damage identification using modal curvature differences
JP6230813B2 (en) Method and apparatus for monitoring seismic isolation effect of base-isolated building
JP6506922B2 (en) Structure verification system, structure verification device, structure verification program
US11835670B2 (en) Seismic observation device, seismic observation method, and recording medium in which seismic observation program is recorded
Kordestani et al. Localization of damaged cable in a tied‐arch bridge using Arias intensity of seismic acceleration response
JP2016197014A (en) Building damage intensity estimating system, and method
JP2009103672A (en) Analysis method for discriminating between earthquake and vibration caused by noise
Lei et al. Identification of tall shear buildings under unknown seismic excitation with limited output measurements
JP6389663B2 (en) Structure verification system, structure verification device, structure verification program
JP2016017847A (en) Structure verification system, structure verification device, and structure verification program
JP2019055874A (en) Information processing device
JP2016017848A (en) Structure verification system, structure verification device, and structure verification program
Lynch Damage characterization of the IASC-ASCE structural health monitoring benchmark structure by transfer function pole migration
JP7145646B2 (en) Building damage determination method and building damage determination system
JP2014102231A (en) Safety evaluation device in seismic isolation architectural structure
Xu et al. Estimation of maximum drift of MDOF shear structures using only one accelerometer
Abdelbarr et al. Decomposition approach for damage detection, localization, and quantification for a 52-story building in downtown Los Angeles
JPH10142041A (en) Quake-sensing apparatus
WO2014128965A1 (en) Earthquake prediction device
TWI467212B (en) System and method for instant seismic analysis of building floors, and storage medium thereof
Roy et al. Effect of soil–structure-interaction on identified modal parameters and damage localization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171018

R150 Certificate of patent or registration of utility model

Ref document number: 6230813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250