JP2014222115A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2014222115A
JP2014222115A JP2013101050A JP2013101050A JP2014222115A JP 2014222115 A JP2014222115 A JP 2014222115A JP 2013101050 A JP2013101050 A JP 2013101050A JP 2013101050 A JP2013101050 A JP 2013101050A JP 2014222115 A JP2014222115 A JP 2014222115A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
flow path
heat
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101050A
Other languages
Japanese (ja)
Other versions
JP6266228B2 (en
Inventor
智志 中西
Satoshi Nakanishi
智志 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Techno Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Techno Service Co Ltd filed Critical Mitsubishi Electric Building Techno Service Co Ltd
Priority to JP2013101050A priority Critical patent/JP6266228B2/en
Publication of JP2014222115A publication Critical patent/JP2014222115A/en
Application granted granted Critical
Publication of JP6266228B2 publication Critical patent/JP6266228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent foreign substances from accumulating in a flow passage where a fluid flows in a heat exchanger.SOLUTION: In a heat exchanger 10, a first heat exchanger plate 16 and a second heat exchanger plate 18 are laminated and arranged, and gaps between layers are made to be a cooling medium flow passage 60 and a heating medium flow passage 62 alternately. At the first heat exchanger plate 16 and the second heat exchanger plate 18, a wave-type bent part is provided from an inlet end toward an outlet end of the flow passage, and a flow passage resistance is formed in the cooling medium flow passage 60 and a heating medium flow passage 62. Formation density of the bent part is sparse in the outlet end compared with the inlet end.

Description

本発明は、熱交換器に係り、特に、複数の伝熱板を積層配置し、各層間の空隙を交互に熱媒体流路及び冷媒流路とする熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger in which a plurality of heat transfer plates are stacked and a gap between each layer is alternately used as a heat medium channel and a refrigerant channel.

従来から、積層された複数の伝熱板の各層間の空隙に、熱媒体が流れる熱媒体流路と、冷媒が流れる冷媒流路とが交互に形成されて、伝熱板を介して熱媒体と冷媒とが熱交換を行う熱交換器が知られている。   Conventionally, a heat medium flow path through which a heat medium flows and a refrigerant flow path through which a refrigerant flows are alternately formed in gaps between layers of a plurality of stacked heat transfer plates, and the heat medium passes through the heat transfer plates. There is known a heat exchanger in which the refrigerant and the refrigerant exchange heat.

本発明に関連する技術として、例えば、特許文献1には、複数枚の第1伝熱板と複数枚の第2伝熱板とが交互に積層され、積層された伝熱板同士の間には、第1流体と第2流体とが伝熱板を介して熱交換をするように第1流体が流れる第1流路と第2流体が流れる第2流路とが積層方向に交互に形成されるプレート式熱交換器が開示されている。   As a technique related to the present invention, for example, in Patent Document 1, a plurality of first heat transfer plates and a plurality of second heat transfer plates are alternately stacked, and between the stacked heat transfer plates. The first flow path through which the first fluid flows and the second flow path through which the second fluid flow are alternately formed in the stacking direction so that the first fluid and the second fluid exchange heat via the heat transfer plate. A plate heat exchanger is disclosed.

特開2011−137623号公報JP 2011-137623 A

熱交換器において、例えば、熱媒体が流れる配管の腐食等によって生じる錆等の異物が熱媒体に混ざると、熱媒体流路の下流側で異物が堆積してしまうことがある。このように異物が堆積した領域では、熱媒体の滞留により熱媒体が過度に冷却される。これによって、熱媒体が凍結して熱媒体の体積が増えてしまうと伝熱板に亀裂が生じる可能性がある。   In the heat exchanger, for example, when foreign matter such as rust caused by corrosion of a pipe through which the heat medium flows is mixed with the heat medium, the foreign material may accumulate on the downstream side of the heat medium flow path. In such a region where foreign matter is accumulated, the heat medium is excessively cooled by the retention of the heat medium. As a result, if the heat medium freezes and the volume of the heat medium increases, the heat transfer plate may crack.

本発明の目的は、流体が流れる流路において異物の堆積を防止することを可能とする熱交換器を提供することである。   An object of the present invention is to provide a heat exchanger that can prevent the accumulation of foreign substances in a flow path through which a fluid flows.

本発明に係る熱交換器は、複数の伝熱板を積層配置し、各層間の空隙を交互に熱媒体流路及び冷媒流路とする熱交換器であって、各伝熱板には流路の入口端から出口端に向かって波型の折曲部が設けられて各流路に流路抵抗が形成され、折曲部の形成密度は、入口端に比べ出口端が疎であることを特徴とする。   The heat exchanger according to the present invention is a heat exchanger in which a plurality of heat transfer plates are stacked and the gaps between the layers are alternately used as a heat medium flow path and a refrigerant flow path. Corrugated bent portions are provided from the inlet end to the outlet end of the road, and flow resistance is formed in each flow path. The formation density of the bent portions is sparser at the outlet end than at the inlet end. It is characterized by.

また、本発明に係る熱交換器において、波型の折曲部は、対称軸の両側において杉綾の稜線が線対称となるように折り曲げられたヘリンボーン形状部であり、対向する積層伝熱板のへリンボーン形状部は、杉綾の稜線が点接触するように配置されていることが好ましい。   Further, in the heat exchanger according to the present invention, the corrugated bent portion is a herringbone-shaped portion that is bent so that the ridgeline of the herringbone is axisymmetric on both sides of the symmetry axis. The herringbone-shaped part is preferably arranged so that the ridgeline of the herringbone is in point contact.

また、本発明に係る熱交換器において、対向する積層伝熱板において、対称軸を重ね合わせたときのヘリンボーン形状部の面方向に沿った杉綾の向きが逆向きとなることが好ましい。   Moreover, in the heat exchanger which concerns on this invention, it is preferable that the direction of the Sayaka along the surface direction of a herringbone shape part when a symmetrical axis | shaft is piled up becomes reverse direction in the laminated heat exchanger plate which opposes.

本発明によれば、折曲部の形成密度が入口端に比べ出口端が疎となるように伝熱板が形成されている。これにより、流路抵抗は上流側に比べて下流側が小さくなるため、下流側において異物が流れやすくなる。したがって、下流側での異物の堆積を防止することができる。   According to the present invention, the heat transfer plate is formed such that the formation density of the bent portion is less sparse at the outlet end than at the inlet end. As a result, the flow path resistance is smaller on the downstream side than on the upstream side, so that foreign matter can easily flow on the downstream side. Therefore, it is possible to prevent the accumulation of foreign matters on the downstream side.

本発明に係る実施形態の熱交換器を示す図である。It is a figure which shows the heat exchanger of embodiment which concerns on this invention. 本発明に係る実施形態の熱交換器の一部を構成する第1伝熱板の平面図である。It is a top view of the 1st heat exchanger plate which constitutes a part of heat exchanger of an embodiment concerning the present invention. 本発明に係る実施形態の熱交換器の一部を構成する第2伝熱板の平面図である。It is a top view of the 2nd heat exchanger plate which constitutes a part of heat exchanger of an embodiment concerning the present invention. 本発明に係る実施形態の熱交換器において、第1伝熱板と第2伝熱板とを対向させたときの部分断面図である。In the heat exchanger of the embodiment concerning the present invention, it is a fragmentary sectional view when the 1st heat exchanger plate and the 2nd heat exchanger plate are made to oppose. 本発明に係る実施形態の熱交換器の一部を構成する第1伝熱板の第1変形例の平面図である。It is a top view of the 1st modification of the 1st heat exchanger plate which constitutes a part of heat exchanger of an embodiment concerning the present invention. 本発明に係る実施形態の熱交換器の一部を構成する第2伝熱板の第1変形例の平面図である。It is a top view of the 1st modification of the 2nd heat exchanger plate which constitutes a part of heat exchanger of an embodiment concerning the present invention. 本発明に係る実施形態の熱交換器の一部を構成する第1伝熱板の第2変形例の平面図である。It is a top view of the 2nd modification of the 1st heat exchanger plate which constitutes a part of heat exchanger of an embodiment concerning the present invention. 本発明に係る実施形態の熱交換器の一部を構成する第2伝熱板の第2変形例の平面図である。It is a top view of the 2nd modification of the 2nd heat exchanger plate which constitutes a part of heat exchanger of an embodiment concerning the present invention.

以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。また、以下では、全ての図面において対応する要素には同一の符号を付し、重複する説明を省略する。   Embodiments according to the present invention will be described below in detail with reference to the drawings. Also, in the following, corresponding elements in all drawings are denoted by the same reference numerals, and redundant description is omitted.

図1は、プレート式の熱交換器10を示す図である。図2は、熱交換器10の一部を構成する第1伝熱板16の平面図である。図3は、熱交換器10の一部を構成する第2伝熱板18の平面図である。図4(a)は、第1伝熱板16と第2伝熱板18とを対向させたときのA−A線(図2参照)の部分断面図である。図4(b)は、第1伝熱板16と第2伝熱板18とを対向させたときのB−B線(図2参照)の部分断面図である。   FIG. 1 is a diagram showing a plate-type heat exchanger 10. FIG. 2 is a plan view of the first heat transfer plate 16 constituting a part of the heat exchanger 10. FIG. 3 is a plan view of the second heat transfer plate 18 constituting a part of the heat exchanger 10. Fig.4 (a) is a fragmentary sectional view of the AA line (refer FIG. 2) when the 1st heat exchanger plate 16 and the 2nd heat exchanger plate 18 are made to oppose. FIG. 4B is a partial cross-sectional view taken along line BB (see FIG. 2) when the first heat transfer plate 16 and the second heat transfer plate 18 are opposed to each other.

熱交換器10は、2枚のフレーム12,14の間に第1伝熱板16と第2伝熱板18とが交互に重ね合わされるように積層配置されて構成される。第1伝熱板16と第2伝熱板18との間の空隙には、交互に冷媒流路60及び熱媒体流路62が形成されている。   The heat exchanger 10 is configured by stacking and arranging the first heat transfer plate 16 and the second heat transfer plate 18 between the two frames 12 and 14 alternately. In the gap between the first heat transfer plate 16 and the second heat transfer plate 18, refrigerant flow paths 60 and heat medium flow paths 62 are alternately formed.

第1伝熱板16は、四隅に冷媒の入口通路20及び出口通路22と熱媒体の入口通路24及び出口通路26とを構成するための開口28〜34が形成されている。第2伝熱板18も第1伝熱板16と開口28〜34が同様に形成されている。   In the first heat transfer plate 16, openings 28 to 34 for forming a refrigerant inlet passage 20 and outlet passage 22 and a heat medium inlet passage 24 and outlet passage 26 are formed at four corners. The second heat transfer plate 18 is also formed with openings 28 to 34 in the same manner as the first heat transfer plate 16.

最初に、フレーム12,14、第1伝熱板16及び第2伝熱板18の配置関係について具体的に説明する。図1において最も手前側に位置する第1伝熱板16で構成される第1プレート46は、四隅にシール部材47を挟んでフレーム12と接合される。   First, the arrangement relationship among the frames 12 and 14, the first heat transfer plate 16 and the second heat transfer plate 18 will be specifically described. A first plate 46 constituted by the first heat transfer plate 16 located on the most front side in FIG. 1 is joined to the frame 12 with seal members 47 sandwiched at four corners.

また、第2伝熱板18で構成される第2プレート48は、開口32及び開口34にシール部材47を挟んで、第1プレート46と接合される。これにより、第1プレート46の杉綾の稜線と第2プレート48の杉綾の稜線が複数の箇所で点接触して第1プレート46と第2プレート48との間に冷媒流路60が形成され、開口28から流入した冷媒は冷媒流路60を通って開口30から流出することが可能となる。   Further, the second plate 48 constituted by the second heat transfer plate 18 is joined to the first plate 46 with the seal member 47 sandwiched between the opening 32 and the opening 34. Thereby, the ridge line of the cedar of the first plate 46 and the ridge line of the cedar of the second plate 48 are point-contacted at a plurality of locations, and the refrigerant flow path 60 is formed between the first plate 46 and the second plate 48, The refrigerant flowing in from the opening 28 can flow out of the opening 30 through the refrigerant flow path 60.

さらに、第1伝熱板16で構成される第3プレート50は、開口28及び開口30にシール部材47を挟んで、第2プレート48と接合される。これにより、第2プレート48の杉綾の稜線と第3プレート50の杉綾の稜線が複数の箇所で点接触して第2プレート48と第3プレート50との間に熱媒体流路62が形成され、開口32から流入した熱媒体は熱媒体流路62を通って開口34から流出することが可能となる。   Further, the third plate 50 constituted by the first heat transfer plate 16 is joined to the second plate 48 with the seal member 47 sandwiched between the opening 28 and the opening 30. As a result, the ridge line of the cedar of the second plate 48 and the ridge line of the cedar of the third plate 50 are in point contact at a plurality of locations, and the heat medium flow path 62 is formed between the second plate 48 and the third plate 50. The heat medium flowing in from the opening 32 can flow out of the opening 34 through the heat medium flow path 62.

そして、第2伝熱板18で構成される第4プレート52は、開口32及び開口34にシール部材47を挟んで、第3プレート50と接合される。これにより、第3プレート50の杉綾の稜線と第2プレート48の杉綾の稜線が複数の箇所で点接触して第3プレート50と第4プレート52との間に冷媒流路60が形成され、開口28から流入した冷媒は冷媒流路60を通って開口30から流出することが可能となる。   The fourth plate 52 configured by the second heat transfer plate 18 is joined to the third plate 50 with the seal member 47 interposed between the opening 32 and the opening 34. Thereby, the ridge line of the cedar of the third plate 50 and the ridge line of the cedar of the second plate 48 are point-contacted at a plurality of locations, and the refrigerant flow path 60 is formed between the third plate 50 and the fourth plate 52, The refrigerant flowing in from the opening 28 can flow out of the opening 30 through the refrigerant flow path 60.

このようにして、図1に示すように、隣り合う伝熱板間に冷媒流路60、熱媒体流路62、冷媒流路60、熱媒体流路62、・・・の順序で各流路60,62が形成されるように、第1伝熱板16と第2伝熱板18とが交互に重ね合わされ、これらが一体的にろう付けされている。   Thus, as shown in FIG. 1, each flow path in the order of the refrigerant flow path 60, the heat medium flow path 62, the refrigerant flow path 60, the heat medium flow path 62,... The first heat transfer plate 16 and the second heat transfer plate 18 are alternately overlapped so that 60 and 62 are formed, and these are integrally brazed.

一方(図1の手前側)のフレーム12には、開口28〜34に対応して配管64〜70が接続されている。開口28に対応した配管64は冷媒導入配管、開口30に対応した配管66は冷媒導出配管、開口32に対応した配管68は熱媒体導入配管、開口34に対応した配管70は熱媒体導出配管である。   Pipes 64 to 70 are connected to the frame 12 on one side (the front side in FIG. 1) corresponding to the openings 28 to 34. A pipe 64 corresponding to the opening 28 is a refrigerant introduction pipe, a pipe 66 corresponding to the opening 30 is a refrigerant outlet pipe, a pipe 68 corresponding to the opening 32 is a heat medium introduction pipe, and a pipe 70 corresponding to the opening 34 is a heat medium outlet pipe. is there.

次に、第1伝熱板16と第2伝熱板18の具体的な構造について説明する。第1伝熱板16には、入口端から出口端に向って折曲部が形成されている。この折曲部は、波を形成する山部(図2における太線部分)と谷部(図2における細線部分)とが交互に形成されるように折り曲げられる。   Next, specific structures of the first heat transfer plate 16 and the second heat transfer plate 18 will be described. The first heat transfer plate 16 is formed with a bent portion from the inlet end toward the outlet end. This bent portion is bent so that peaks (thick line portions in FIG. 2) and valleys (thin line portions in FIG. 2) forming waves are alternately formed.

この折曲部について更に詳しく説明すると、山部と谷部の延伸方向が、図2の右方向に向うにしたがって下側に傾斜するように形成された下流側傾斜部36と、上側に傾斜するように形成された上流側傾斜部38とが交互に配置されたヘリンボーン形状となっている。   The bent portion will be described in more detail. A downstream inclined portion 36 formed so that the extending direction of the peak portion and the valley portion is inclined downward as it goes in the right direction in FIG. 2, and the inclined portion is inclined upward. Thus, it forms a herringbone shape in which the upstream inclined portions 38 formed in this manner are alternately arranged.

ここでは、図2のA−A線断面及びB−B線断面で第1伝熱板16を見たときの図4(a)及び図4(b)に示される山部と谷部の形状を第1伝熱板16の波型とする。そして、図2に示される平面で第1伝熱板16を見たときの面方向に沿ったV字形状又は逆V字形状を第1伝熱板16の杉綾とする。この場合、図2に示されるように第1伝熱板16の杉綾の稜線(図2における太線部分)は、対称軸33の両側で線対称となっている。   Here, when the 1st heat exchanger plate 16 is seen in the AA line cross section of FIG. 2, and the BB line cross section, the shape of the peak part and trough part shown by FIG. 4 (a) and FIG.4 (b) is shown. Is the wave shape of the first heat transfer plate 16. A V-shape or an inverted V-shape along the surface direction when the first heat transfer plate 16 is viewed on the plane shown in FIG. In this case, as shown in FIG. 2, the ridge line (thick line portion in FIG. 2) of the first heat transfer plate 16 is line symmetric on both sides of the symmetry axis 33.

また、図2に示されるように、第1伝熱板16の杉綾の稜線のうち、隣接する稜線の間隔は、熱媒体及び冷媒の入口端に比べて出口端の方が大きく、ここでは、例えば、出口端の稜線の間隔が、入口端の稜線の間隔の2倍であるとして説明する。このように、出口端の稜線の間隔が入口端の稜線の間隔よりも大きい場合には、第1伝熱板16の折曲部の形成密度は、入口端に比べ出口端が疎となる。   Also, as shown in FIG. 2, among the ridges of the cedars of the first heat transfer plate 16, the interval between the adjacent ridges is larger at the outlet end than the inlet end of the heat medium and the refrigerant. For example, the description will be made assuming that the interval between the ridge lines at the exit end is twice the interval between the ridge lines at the entrance end. As described above, when the interval between the ridge lines at the outlet end is larger than the interval between the ridge lines at the inlet end, the formation density of the bent portions of the first heat transfer plate 16 is sparser than that at the inlet end.

一方、図3に示されるように、第2伝熱板18も第1伝熱板16と同様に、四隅に冷媒の入口通路20及び出口通路22と熱媒体の入口通路24及び出口通路26とを構成するための開口28〜34が形成されていると共に、入口端から出口端に向って折曲部が形成されている。そして、この第2伝熱板18は、山部と谷部の延伸方向が、第1伝熱板16と異なっている。   On the other hand, as shown in FIG. 3, the second heat transfer plate 18 also has the refrigerant inlet passage 20 and the outlet passage 22 and the heat medium inlet passage 24 and the outlet passage 26 at the four corners, similarly to the first heat transfer plate 16. Are formed, and bent portions are formed from the inlet end toward the outlet end. The second heat transfer plate 18 is different from the first heat transfer plate 16 in the extending direction of the peaks and valleys.

第1伝熱板16では、図2に示されるように、左端から、下流側傾斜部36、上流側傾斜部38の順でヘリンボーン形状が構成されているのに対し、第2伝熱板18では、図3に示されるように、左端から、上流側傾斜部42、下流側傾斜部44の順でヘリンボーン形状が構成されている。   In the first heat transfer plate 16, as shown in FIG. 2, the herringbone shape is configured from the left end in the order of the downstream inclined portion 36 and the upstream inclined portion 38, whereas the second heat transfer plate 18. Then, as shown in FIG. 3, the herringbone shape is formed in the order of the upstream inclined portion 42 and the downstream inclined portion 44 from the left end.

そして、図3に示されるように、第2伝熱板18の杉綾の稜線(図3における太線部分)のうち、隣接する稜線の間隔は、熱媒体及び冷媒の入口端に比べて出口端の方が大きく、ここでは、出口端の稜線の間隔が、入口端の稜線の間隔の2倍であるとして説明する。このように、第2伝熱板18の折曲部の形成密度においても、入口端に比べ出口端が疎である。   As shown in FIG. 3, among the ridges of the cedars of the second heat transfer plate 18 (thick line part in FIG. 3), the interval between the adjacent ridges is larger than that of the inlets of the heat medium and the refrigerant. In this example, it is assumed that the interval between the ridge lines at the outlet end is twice the interval between the ridge lines at the inlet end. Thus, also in the formation density of the bending part of the 2nd heat exchanger plate 18, an exit end is sparse compared with an entrance end.

ここで、第1伝熱板16と、第1伝熱板16と対向する第2伝熱板18とは、それぞれの対称軸33と対称軸43とを重ね合わせたときに、第1伝熱板16の杉綾の向きと第2伝熱板18の杉綾の向きは逆向きとなるように積層配置される。   Here, the first heat transfer plate 16 and the second heat transfer plate 18 opposed to the first heat transfer plate 16 have the first heat transfer plate when the symmetry axis 33 and the symmetry axis 43 are overlapped. The direction of the cedar of the board 16 and the direction of the cedar of the second heat transfer board 18 are stacked so as to be opposite to each other.

上述したように、第1伝熱板16及び第2伝熱板18の折曲部の形成密度は、入口端に比べ出口端が疎である。したがって、第1伝熱板16と第2伝熱板18との重ね合わせによって形成され冷媒流路60及び熱媒体流路62を構成する溝の数は、図4(a)に示される上流側に比べて図4(b)に示される下流側の方が多くなる。   As described above, the formation density of the bent portions of the first heat transfer plate 16 and the second heat transfer plate 18 is sparse at the outlet end compared to the inlet end. Therefore, the number of grooves formed by overlapping the first heat transfer plate 16 and the second heat transfer plate 18 and constituting the refrigerant flow path 60 and the heat medium flow path 62 is the upstream side shown in FIG. Compared to FIG. 4, the downstream side shown in FIG.

そして、第1伝熱板16と第2伝熱板18が重ね合わされて形成される溝の高さは、図4(a)に示される上流側の高さをaとし、図4(b)に示される下流側の高さをa1とすると、a=a1の関係となる。また、溝の幅は、図4(a)に示される上流側の幅をbとし、図4(b)に示される下流側の幅をb1とすると、上述したように隣接する稜線の間隔は上流側に比べて下流側が2倍となるため、2×b=b1の関係となる。これにより、各溝の断面積は、上流側に比べて下流側が大きくなる。すなわち、冷媒流路60及び熱媒体流路62の流路抵抗は上流側に比べて下流側が小さくなる。 And the height of the groove | channel formed by the 1st heat exchanger plate 16 and the 2nd heat exchanger plate 18 being piled up is set to the height of the upstream shown by Fig.4 (a), and FIG.4 (b). the downstream side of the height shown in When a 1, a relationship of a = a 1. The width of the groove, the width of the upstream and b shown in FIG. 4 (a), when the width of the downstream side shown in FIG. 4 (b) and b 1, spacing ridge adjacent as described above Since the downstream side is doubled compared to the upstream side, the relationship is 2 × b = b 1 . As a result, the cross-sectional area of each groove is larger on the downstream side than on the upstream side. That is, the flow path resistance of the refrigerant flow path 60 and the heat medium flow path 62 is smaller on the downstream side than on the upstream side.

続いて、熱交換器10の動作について、図1〜図4を用いて説明する。冷媒は、図1に破線で示す矢印のように、冷媒導入配管64を経て各開口28より冷媒流路60を流れ、その後、各開口30を経て冷媒導出配管66より導出される。一方、熱媒体は、図1に実線で示す矢印のように、熱媒体導入配管68を経て各開口32より熱媒体流路62を流れ、その後、各開口34経て熱媒体導出配管70より導出される。   Then, operation | movement of the heat exchanger 10 is demonstrated using FIGS. 1-4. The refrigerant flows through the refrigerant flow path 60 from the openings 28 through the refrigerant introduction pipes 64 and then is led out from the refrigerant outlet pipe 66 through the openings 30 as indicated by broken lines in FIG. On the other hand, the heat medium flows through the heat medium flow path 62 from each opening 32 through the heat medium introducing pipe 68 and then led out from the heat medium outlet pipe 70 through each opening 34 as indicated by the solid line in FIG. The

このようにして冷媒及び熱媒体はそれぞれ冷媒流路60及び熱媒体流路62を流れ、伝熱プレート48〜56を介して冷媒と熱媒体とは熱交換を行う。そして、冷媒流路60及び熱媒体流路62内には、上述したように流路抵抗があり、冷媒及び熱媒体がそれぞれ乱流状態で流れているため、冷媒と熱媒体との熱交換は効率よく行われる。   In this way, the refrigerant and the heat medium flow through the refrigerant flow path 60 and the heat medium flow path 62, respectively, and heat exchange is performed between the refrigerant and the heat medium via the heat transfer plates 48 to 56. Since the refrigerant flow path 60 and the heat medium flow path 62 have flow path resistance as described above, and the refrigerant and the heat medium flow in a turbulent state, heat exchange between the refrigerant and the heat medium is performed. It is done efficiently.

ここで、仮に、熱媒体導入配管68の配管の腐食等によって生じる錆等の異物が熱媒体に混ざり、異物が混ざった熱媒体が熱媒体流路62を流れて下流側に向かうにつれて異物同士が集積して大きな異物となる課題を想定する。このような場合で熱交換器10では、熱媒体流路62の下流側において流路抵抗が低く形成されているため、大きな異物でも流れやすいという利点がある。また、熱媒体流路62を構成する溝の断面積も上流側に比べて下流側の方が大きいため、異物が引っ掛かりにくいという利点がある。   Here, it is assumed that foreign matter such as rust caused by corrosion of the piping of the heat medium introduction pipe 68 is mixed with the heat medium. Assume the problem of accumulating large foreign objects. In such a case, the heat exchanger 10 has an advantage that even if a large foreign substance flows easily because the flow path resistance is formed low on the downstream side of the heat medium flow path 62. Moreover, since the cross-sectional area of the groove | channel which comprises the heat-medium flow path 62 is larger on the downstream side compared with the upstream side, there exists an advantage that a foreign material cannot catch easily.

なお、熱交換器10では、第1伝熱板16及び第2伝熱板18の折曲部は、ヘリンボーン形状を有するものとして説明したが、折曲部の形成密度が入口端に比べ出口端が疎である限り、その他の形状であってもよい。   In the heat exchanger 10, the bent portions of the first heat transfer plate 16 and the second heat transfer plate 18 have been described as having a herringbone shape. However, the formation density of the bent portions is larger at the outlet end than at the inlet end. Other shapes may be used as long as is sparse.

例えば、第1伝熱板16aを図5に示されるように、右方向に向うにしたがって上側に傾斜するように形成された上流側傾斜部65を有するストライプ形状を有するものとしてもよい。この場合、第1伝熱板16aに対向する第2伝熱板18aは、図6に示されるように、右方向に向うにしたがって下側に傾斜するように形成された下流側傾斜部67を有するストライプ形状を有するものする。このとき、第1伝熱板16a及び第2伝熱板18aの稜線の間隔は、図5及び図6に示されるように、熱媒体及び冷媒の上流側に比べて下流側の方が大きい。これにより、冷媒流路60及び熱媒体流路62の流路抵抗は上流側に比べて下流側の方が小さくなるため、第1伝熱板16及び第2伝熱板18を用いた熱交換器10と同様の効果を奏する。   For example, as shown in FIG. 5, the first heat transfer plate 16 a may have a stripe shape having an upstream inclined portion 65 formed to be inclined upward as it goes rightward. In this case, as shown in FIG. 6, the second heat transfer plate 18a facing the first heat transfer plate 16a has a downstream inclined portion 67 formed to be inclined downward as it goes to the right. It has a stripe shape. At this time, the interval between the ridge lines of the first heat transfer plate 16a and the second heat transfer plate 18a is larger on the downstream side than on the upstream side of the heat medium and the refrigerant, as shown in FIGS. As a result, the flow path resistance of the refrigerant flow path 60 and the heat medium flow path 62 is smaller on the downstream side than on the upstream side, so heat exchange using the first heat transfer plate 16 and the second heat transfer plate 18 is performed. The same effect as the container 10 is produced.

また、上記では、第1伝熱板16,16a及び第2伝熱板18,18bは、稜線の間隔を下流側で大きくするものとして説明したが、対称軸33,43に対する稜線の傾斜角度を上流側に比べて下流側を大きくするものとしてもよい。例えば、図7に示されるように第1伝熱板16bでは、対称軸33に対して稜線がなす鋭角は上流側に比べて下流側が大きくなっている。また、第1伝熱板16bに対向する第2伝熱板18bでは、図8に示されるように、対称軸43に対して稜線がなす鋭角は上流側に比べて下流側が大きくなっている。これにより、冷媒流路60及び熱媒体流路62の流路抵抗は上流側に比べて下流側の方が小さくなるため、第1伝熱板16及び第2伝熱板18を用いた熱交換器10と同様の効果を奏する。   In the above description, the first heat transfer plates 16 and 16a and the second heat transfer plates 18 and 18b have been described as increasing the interval between the ridge lines on the downstream side, but the inclination angle of the ridge lines with respect to the symmetry axes 33 and 43 is set. The downstream side may be larger than the upstream side. For example, as shown in FIG. 7, in the first heat transfer plate 16b, the acute angle formed by the ridge line with respect to the symmetry axis 33 is larger on the downstream side than on the upstream side. In the second heat transfer plate 18b facing the first heat transfer plate 16b, the acute angle formed by the ridge line with respect to the symmetry axis 43 is larger on the downstream side than on the upstream side, as shown in FIG. As a result, the flow path resistance of the refrigerant flow path 60 and the heat medium flow path 62 is smaller on the downstream side than on the upstream side, so heat exchange using the first heat transfer plate 16 and the second heat transfer plate 18 is performed. The same effect as the container 10 is produced.

10 熱交換器、12,14 フレーム、16,16a,16b 第1伝熱板、18,18a,18b 第2伝熱板、20,24 入口通路、22,26 出口通路、28,30,32,34 開口、33,43 対称軸、36 下流側傾斜部、38 上流側傾斜部、42 上流側傾斜部、44 下流側傾斜部、46 第1プレート、47 シール部材、48 第2プレート、50 第3プレート、52 第4プレート、60 冷媒流路、62 熱媒体流路、64 冷媒導入配管、65 上流側傾斜部、66 冷媒導出配管、67 下流側傾斜部、68 熱媒体導入配管、70 熱媒体導出配管。   10 heat exchanger, 12, 14 frame, 16, 16a, 16b first heat transfer plate, 18, 18a, 18b second heat transfer plate, 20, 24 inlet passage, 22, 26 outlet passage, 28, 30, 32, 34 Opening, 33, 43 Axis of symmetry, 36 Downstream inclined portion, 38 Upstream inclined portion, 42 Upstream inclined portion, 44 Downstream inclined portion, 46 First plate, 47 Seal member, 48 Second plate, 50 Third Plate, 52 Fourth plate, 60 Refrigerant flow path, 62 Heat medium flow path, 64 Refrigerant introduction pipe, 65 Upstream inclined section, 66 Refrigerant outlet pipe, 67 Downstream inclined section, 68 Heat medium introduction pipe, 70 Heat medium outlet Plumbing.

Claims (3)

複数の伝熱板を積層配置し、各層間の空隙を交互に熱媒体流路及び冷媒流路とする熱交換器であって、
各伝熱板には流路の入口端から出口端に向かって波型の折曲部が設けられて各流路に流路抵抗が形成され、
折曲部の形成密度は、入口端に比べ出口端が疎であることを特徴とする熱交換器。
A heat exchanger in which a plurality of heat transfer plates are arranged in layers, and a gap between each layer is alternately used as a heat medium flow path and a refrigerant flow path,
Each heat transfer plate is provided with a corrugated bent portion from the inlet end to the outlet end of the flow path to form a flow resistance in each flow path,
The heat exchanger is characterized in that the formation density of the bent portion is sparser at the outlet end than at the inlet end.
請求項1に記載の熱交換器において、
波型の折曲部は、対称軸の両側において杉綾の稜線が線対称となるように折り曲げられたヘリンボーン形状部であり、
対向する積層伝熱板のへリンボーン形状部は、杉綾の稜線が点接触するように配置されていることを特徴とする熱交換器。
The heat exchanger according to claim 1,
The corrugated bent part is a herringbone-shaped part that is folded so that the ridgeline of Sayaka is line symmetric on both sides of the symmetry axis,
A heat exchanger characterized in that the herringbone-shaped portions of the opposed laminated heat transfer plates are arranged so that the ridgeline of Sayaka is in point contact.
請求項2に記載の熱交換器において、
対向する積層伝熱板において、対称軸を重ね合わせたときのヘリンボーン形状部の面方向に沿った杉綾の向きが逆向きとなることを特徴とする熱交換器。
The heat exchanger according to claim 2,
A heat exchanger characterized in that, in the opposed laminated heat transfer plates, the direction of the herringbone along the surface direction of the herringbone shape portion when the symmetry axes are overlapped is reversed.
JP2013101050A 2013-05-13 2013-05-13 Heat exchanger Active JP6266228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101050A JP6266228B2 (en) 2013-05-13 2013-05-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101050A JP6266228B2 (en) 2013-05-13 2013-05-13 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2014222115A true JP2014222115A (en) 2014-11-27
JP6266228B2 JP6266228B2 (en) 2018-01-24

Family

ID=52121718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101050A Active JP6266228B2 (en) 2013-05-13 2013-05-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6266228B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020776A (en) * 2014-07-15 2016-02-04 国立大学法人 東京大学 Heat exchanger
CN111121516A (en) * 2018-10-31 2020-05-08 马勒国际有限公司 Heat exchanger for air conditioning system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872165A (en) * 1954-09-04 1959-02-03 Separator Ab Plate type heat exchanger
JPS5479048U (en) * 1977-11-15 1979-06-05
JPS6183883A (en) * 1984-09-29 1986-04-28 Hisaka Works Ltd Plate type heat exchanger
JPS6325494A (en) * 1986-07-03 1988-02-02 ウエ−・シユミツト・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニ−・コマンデイトゲゼルシヤフト Plate type heat exchanger
JP2000105092A (en) * 1998-09-29 2000-04-11 Hisaka Works Ltd Plate type heat exchanger
JP2002107084A (en) * 2000-09-29 2002-04-10 Hisaka Works Ltd Plate-type heat exchanger
JP2004177061A (en) * 2002-11-28 2004-06-24 Toyo Radiator Co Ltd Wavy fin of exhaust gas cooling heat exchanger
JP2011137623A (en) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp Plate-type heat exchanger and heat pump device
JP2011158200A (en) * 2010-02-02 2011-08-18 Univ Of Tokyo Heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872165A (en) * 1954-09-04 1959-02-03 Separator Ab Plate type heat exchanger
JPS5479048U (en) * 1977-11-15 1979-06-05
JPS6183883A (en) * 1984-09-29 1986-04-28 Hisaka Works Ltd Plate type heat exchanger
JPS6325494A (en) * 1986-07-03 1988-02-02 ウエ−・シユミツト・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニ−・コマンデイトゲゼルシヤフト Plate type heat exchanger
JP2000105092A (en) * 1998-09-29 2000-04-11 Hisaka Works Ltd Plate type heat exchanger
JP2002107084A (en) * 2000-09-29 2002-04-10 Hisaka Works Ltd Plate-type heat exchanger
JP2004177061A (en) * 2002-11-28 2004-06-24 Toyo Radiator Co Ltd Wavy fin of exhaust gas cooling heat exchanger
JP2011137623A (en) * 2010-01-04 2011-07-14 Mitsubishi Electric Corp Plate-type heat exchanger and heat pump device
JP2011158200A (en) * 2010-02-02 2011-08-18 Univ Of Tokyo Heat exchanger
US20130032320A1 (en) * 2010-02-02 2013-02-07 The University Of Tokyo Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020776A (en) * 2014-07-15 2016-02-04 国立大学法人 東京大学 Heat exchanger
CN111121516A (en) * 2018-10-31 2020-05-08 马勒国际有限公司 Heat exchanger for air conditioning system

Also Published As

Publication number Publication date
JP6266228B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US9618280B2 (en) Plate-type heat exchanger, particularly for motor vehicles
CN110268216B (en) Heat exchange plate and heat exchanger
JP6166375B2 (en) Heat transfer plate and flat plate heat exchanger comprising such a heat transfer plate
KR102439518B1 (en) Heat exchanging plate and heat exchanger
DK2232185T3 (en) HEAT EXCHANGE
KR102300848B1 (en) A plate heat exchanger comprising a heat transfer plate and a plurality of such heat transfer plates
US20140158328A1 (en) Plate for heat exchanger, heat exchanger and air cooler comprising a heat exchanger
KR20140005795A (en) Plate for heat exchanger, heat exchanger and air cooler comprising a heat exchanger
WO2017002819A1 (en) Inner fin for heat exchanger
KR20180060262A (en) Plate heat exchanger
JP2004184075A (en) Heat-transfer plate and plate-type heat-exchanger
US10145625B2 (en) Dimple pattern gasketed heat exchanger
TWI421460B (en) Heat exchange element
JP6266228B2 (en) Heat exchanger
CN105387741B (en) A kind of heat exchanger plate group of Novel asymmetric channel design
KR20120118590A (en) Heat exchanger
KR102122781B1 (en) Heat exchanger plate for plate heat exchanger, and plate heat exchanger
JP2005195190A (en) Multiplate heat exchanger
TW202024554A (en) Heat transfer plate
JP2011137623A (en) Plate-type heat exchanger and heat pump device
JPWO2018198420A1 (en) Plate type heat exchanger
JP6422585B2 (en) Plate heat exchanger
CN112146484B (en) Plate heat exchanger
JP2010249432A (en) Plate type heat exchanger and refrigerating cycle device using the same
JP2016130625A (en) Heat exchanger and metal thin plate for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

R150 Certificate of patent or registration of utility model

Ref document number: 6266228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250