JP2014222045A - Support device for floating body of floating body type ocean wind power generation equipment - Google Patents

Support device for floating body of floating body type ocean wind power generation equipment Download PDF

Info

Publication number
JP2014222045A
JP2014222045A JP2013101978A JP2013101978A JP2014222045A JP 2014222045 A JP2014222045 A JP 2014222045A JP 2013101978 A JP2013101978 A JP 2013101978A JP 2013101978 A JP2013101978 A JP 2013101978A JP 2014222045 A JP2014222045 A JP 2014222045A
Authority
JP
Japan
Prior art keywords
floating body
floating
support
offshore wind
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013101978A
Other languages
Japanese (ja)
Inventor
拓樹 中村
Takujiyu Nakamura
拓樹 中村
等 山下
Hitoshi Yamashita
等 山下
茂樹 久慈
Shigeki Kuji
茂樹 久慈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Fabric Kogyo KK
Modec Inc
Original Assignee
Tokyo Fabric Kogyo KK
Modec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Fabric Kogyo KK, Modec Inc filed Critical Tokyo Fabric Kogyo KK
Priority to JP2013101978A priority Critical patent/JP2014222045A/en
Publication of JP2014222045A publication Critical patent/JP2014222045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/40Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a support device for a floating body of floating body type ocean wind power generation equipment for swingably supporting an assembly such as a wind mill mounted on the floating body and a water wheel which is installed under water level and is driven by tidal power.SOLUTION: Six brackets 43 are fastened to an inner wall 42 of a hollow 41 of a floating body 4, and six elastic support parts 6 are attached between an attachment surface 431 of the bracket 43 and an outer circumferential surface 521 of a lower part bearing support body 52. The six elastic support parts 6 are arranged at uniform angular intervals around a center axial line 11 of a first driving shaft 21 and a second driving shaft 31. The elastic support parts 6 are formed by stacking rubber and a metal plate alternately. As the result, the elastic support parts 6 support a load which acts on a bearing support body 5, follow relative movement between the bearing support body 5 and the floating body 4 to perform shear deformation and absorb vibration energy of winds or waves acting between the bearing support body 5 and the floating body 4 to attenuate vibrations.

Description

本発明は、浮体式洋上風力発電装置を浮体に支承するための支承装置に関する。更に詳しくは、海上に浮かべられた浮体に搭載された風車と、この風車の駆動軸に連結されるとともに、水面下に設置され、潮力により駆動される水車を併用して発電する浮体式洋上風力発電装置の浮体への支承装置に関する。   The present invention relates to a support device for supporting a floating offshore wind power generator on a floating body. More specifically, a wind turbine mounted on a floating body floated on the sea and a floating type offshore that is connected to the drive shaft of this wind turbine and is installed under the surface of the water and uses a turbine driven by tidal power. The present invention relates to a support device for a floating body of a wind power generator.

環境問題、エネルギー資源の枯渇等から、種々の自然エネルギーの開発へ重点投資がなされている。この自然エネルギーの中で、陸上のように用地に制約されない洋上設置型の風力発電装置が注目されている。洋上設置型の風力発電装置には、水底に固定した基礎構造物に風車を設けた固定式のものと、水上に浮かぶ浮体に風車を設けた浮体式ものとがある。遠浅の沿岸域においては、装置コストが安価な固定式風力発電装置が一般的に使用される。しかし、水深が急激に深くなる沿岸域において固定式風力発電装置を使用すると、基礎構造物の装置コストが著しく増大する。従って、水深が急激に深くなる沿岸域が多い日本においては、浮体式洋上風力発電装置が適している。   Due to environmental problems, energy resource depletion, etc., priority investments have been made in the development of various natural energies. Among these natural energies, offshore wind turbine generators that are not constrained by land like land are attracting attention. There are two types of offshore wind power generators: a fixed type in which a windmill is provided on a foundation structure fixed to the bottom of the water, and a floating type in which a windmill is provided on a floating body that floats on the water. In shallow coastal areas, fixed wind power generators with low equipment costs are generally used. However, when a fixed wind power generator is used in a coastal area where the water depth is drastically deepened, the cost of the infrastructure for the substructure is significantly increased. Therefore, floating offshore wind power generators are suitable in Japan where there are many coastal areas where the water depth increases rapidly.

浮体式洋上風力発電装置は、洋上に浮かんでいる浮体上に風力発電装置を設置する必要があり、この浮体と風力発電装置を連結して固定する必要がある。この浮体は、移動しないようにアンカーで海底に係留されている。また、浮体上に設置された風力発電装置の洋上での安定性確保のために、中央に風車を固定する浮体を配置し、かつ、この中央の浮体の外周に、複数の外側浮体を配置したもの等も提案されている。   The floating offshore wind turbine generator needs to be installed on a floating body floating on the ocean, and the floating body and the wind turbine generator need to be connected and fixed. This floating body is moored to the sea floor with an anchor so as not to move. Further, in order to ensure the stability of the wind power generator installed on the floating body on the ocean, a floating body that fixes the windmill is disposed in the center, and a plurality of outer floating bodies are disposed on the outer periphery of the central floating body. Things have also been proposed.

更に、複数本の杭で上下に案内される浮体構造物の下面を蛇腹状の緩衝装置で支承して、浮体構造物の揺動を減衰するものが提案されている(特許文献1)。また、浮体上に搭載するものではないが、河川に固定設置したフレームに、風車と水車を同軸でクラッチを介して連結し、無風状態のときでも水車を定常的に回転させておくことで、自己起動性の良い風力発電装置が提案されている(特許文献2)。   Furthermore, there has been proposed a structure in which the lower surface of a floating structure guided up and down by a plurality of piles is supported by a bellows-shaped shock absorber to attenuate the swing of the floating structure (Patent Document 1). In addition, although not mounted on the floating body, by connecting the windmill and the waterwheel coaxially through a clutch to the frame fixedly installed in the river, by rotating the waterwheel constantly even in the windless state, A self-starting wind power generator has been proposed (Patent Document 2).

また、浮体の下部に潮力を利用するタービンを配置し、浮体の上部にこのエネルギーを蓄えるタンクを配置したものにおいて、上下のシステムを1本のポールで連結し、このポールを浮体に配置した球面軸受で支持するものも提案されている(特許文献3)。   In addition, a turbine that uses tidal power is placed at the bottom of the floating body, and a tank that stores this energy is placed at the top of the floating body. The upper and lower systems are connected by a single pole, and this pole is placed on the floating body. What is supported by a spherical bearing has also been proposed (Patent Document 3).

特開2007−321481号公報JP 2007-321481 A 特開2007−239542号公報JP 2007-239542 A 特表2010−511115号公報Special table 2010-511115 gazette

しかしながら、これらの先行技術は、浮体とこの浮体上に設置された風力発電装置は、浮体上のみに設置することを前提としたものである。回り始めに強い風力が必要な風力発電装置の自己起動性を良くするためには、風車と水車を同軸で連結した風力発電装置が好ましい。しかし、風車と水車を併用したために、浮体上から水中にまで構造物が伸びるような場合は、従来の浮体とこれに搭載される風力発電装置との連結構造では、複雑な運動を行う風力発電装置の揺動を効果的に抑制して減衰させることができない。即ち、風車と水車を併用したために、複雑な運動を行う風力発電装置を、中心軸線上の1点を中心として調心作用を行う単純な球面軸受では支承できない。   However, these prior arts are based on the premise that the floating body and the wind power generator installed on the floating body are installed only on the floating body. In order to improve the self-starting property of a wind turbine generator that requires strong wind power at the beginning of rotation, a wind turbine generator in which a wind turbine and a water turbine are connected coaxially is preferable. However, when a structure extends from the floating body to the water due to the combined use of a windmill and a watermill, the conventional structure that connects the floating body to the wind power generator mounted on the windmill generates complex motion. The vibration of the device cannot be effectively suppressed and attenuated. That is, since a windmill and a water turbine are used together, a wind power generator that performs a complicated motion cannot be supported by a simple spherical bearing that performs a centering operation around one point on the central axis.

本発明は上述のような技術背景のもとになされたものであり、下記目的を達成する。
本発明の目的は、浮体式洋上風力発電装置において、浮体に搭載された風車と、水面下に設置され、潮力により駆動される水車等のアセンブリーを、浮体に揺動可能に支持する、浮体式洋上風力発電装置の浮体への支承装置を提供することにある。
The present invention has been made based on the technical background as described above, and achieves the following object.
An object of the present invention is a floating body-type offshore wind power generator, in which a floating body mounted on the floating body and an assembly such as a turbine installed below the surface of the water and driven by tidal power are supported on the floating body so as to be swingable. An object of the present invention is to provide a support device for a floating body of an offshore wind power generator.

本発明の他の目的は、浮体式洋上風力発電装置において、浮体の上部、及び下部に搭載されたアセンブリーに、それぞれ風、潮流等でモーメント等の複合的な荷重を各々受けても、上下のアセンブリーを浮体に安定的に支承できる、浮体式洋上風力発電装置の浮体への支承装置を提供することにある。   Another object of the present invention is to provide a floating offshore wind power generator that can be mounted on the upper and lower parts of the floating body even when subjected to a composite load such as moment by wind, tidal current, etc. It is an object of the present invention to provide a support device for a floating body of a floating offshore wind power generator capable of stably supporting an assembly on the floating body.

前記課題は以下の手段によって解決される。すなわち、本発明1の浮体式洋上風力発電装置の浮体への支承装置は、水面又は洋上に浮かぶ浮体と、前記浮体に搭載されて浮体の上部に配置され、風力エネルギーを機械エネルギーに変換し、鉛直方向に配置された第1駆動軸を有する上部アセンブリーと、前記浮体に搭載されて浮体の下部に配置され、鉛直方向に配置された第2駆動軸を有し、前記第1駆動軸に前記第2駆動軸が同芯に連結された下部アセンブリーとからなる浮体式洋上風力発電装置において、前記第1駆動軸及び第2駆動軸を回転自在に軸支する軸受を支持する軸受支持体と、前記浮体と前記軸受支持体との間に介在されて前記軸受支持体を前記浮体に支承するために、ゴムと金属板を交互に積層して形成され、前記軸受支持体に受ける荷重を支持するとともに、前記軸受支持体と前記浮体との間の相対的な移動に追従して剪断変形する弾性支承部とを備えたことを特徴とする。   The said subject is solved by the following means. That is, the floating body type offshore wind power generation apparatus of the present invention 1, the support device to the floating body, the floating body floating on the surface of the water or the ocean, is mounted on the floating body and arranged on the upper part of the floating body, to convert wind energy into mechanical energy, An upper assembly having a first drive shaft disposed in a vertical direction; and a second drive shaft mounted on the floating body and disposed at a lower portion of the floating body and disposed in a vertical direction. In a floating offshore wind turbine generator comprising a lower assembly in which a second drive shaft is concentrically connected, a bearing support that supports a bearing that rotatably supports the first drive shaft and the second drive shaft; In order to support the bearing support body with the floating body interposed between the floating body and the bearing support body, it is formed by alternately laminating rubber and metal plates, and supports the load received by the bearing support body. Together with the above To follow the relative movement between the receiving support and said floating body, characterized in that an elastic bearing for shear deformation.

本発明2の浮体式洋上風力発電装置の浮体への支承装置は、本発明1において、前記弾性支承部は、前記第1駆動軸及び第2駆動軸の中心軸線を中心として等角度間隔に複数個配置されていることを特徴とする。   The floating body offshore wind power generator according to the second aspect of the present invention is the floating device according to the first aspect of the present invention, wherein the elastic bearing portion includes a plurality of the elastic bearing portions at equal angular intervals around the central axes of the first drive shaft and the second drive shaft. It is characterized by being arranged individually.

本発明3の浮体式洋上風力発電装置の浮体への支承装置は、本発明1において、前記弾性支承部は、前記軸受支持体の下方から前記第1駆動軸及び第2駆動軸の中心軸線に向かって上方に傾斜して配置されていることを特徴とする。   According to a third aspect of the present invention, there is provided a floating body offshore wind power generation apparatus according to the first aspect of the present invention, wherein the elastic bearing portion extends from a lower side of the bearing support to a central axis of the first drive shaft and the second drive shaft. It is characterized by being inclined upward.

本発明4の浮体式洋上風力発電装置の浮体への支承装置は、本発明2または3において、前記軸受支持体は、前記第1駆動軸及び第2駆動軸の中心軸線上の所定の範囲の一点を中心として揺動運動可能であることを特徴とする。   According to a fourth aspect of the present invention, there is provided a support device for a floating body of the floating offshore wind turbine generator according to the second or third aspect, wherein the bearing support is within a predetermined range on the central axis of the first drive shaft and the second drive shaft. It is characterized by swinging motion around one point.

本発明5の浮体式洋上風力発電装置の浮体への支承装置は、本発明2または3において、前記弾性支承部の端部の金属板と接着されるゴムは、前記弾性支承部の中心から離間した位置の肉厚が中心の肉厚よりも厚く形成されていることを特徴とする。   The support device for a floating body of the floating offshore wind power generator according to the fifth aspect of the present invention is the apparatus according to the second or third aspect, wherein the rubber bonded to the metal plate at the end of the elastic support portion is separated from the center of the elastic support portion. It is characterized in that the thickness at the above position is thicker than the thickness at the center.

本発明6の浮体式洋上風力発電装置の浮体への支承装置は、本発明2または3において、前記弾性支承部の端部の金属板のゴムとの接着面は、球面または円筒面に形成されていることを特徴とする。   The support device for a floating body of the floating offshore wind power generator according to the sixth aspect of the present invention is the second or third aspect of the present invention. It is characterized by.

本発明7の浮体式洋上風力発電装置の浮体への支承装置は、本発明6において、前記球面または円筒面は、前記軸受支持体の揺動中心を中心とすることを特徴とする。   The floating body type offshore wind turbine generator according to the seventh aspect of the present invention is characterized in that, in the sixth aspect, the spherical surface or the cylindrical surface is centered on the swing center of the bearing support.

本発明8の浮体式洋上風力発電装置の浮体への支承装置は、本発明2または3において、前記弾性支承部は、ゴムと金属板を交互に積層して形成された弾性支承部を、直列に複数段重ねて配置されていることを特徴とする。   The floating body type offshore wind power generation apparatus according to the present invention 8 is a floating body support apparatus according to the present invention 2 or 3, wherein the elastic support portion is formed by serially connecting elastic support portions formed by alternately laminating rubber and metal plates. It is characterized by being arranged in a plurality of stages.

本発明9の浮体式洋上風力発電装置の浮体への支承装置は、本発明8において、前記弾性支承部は、ゴムと金属板を交互に積層して形成された弾性支承部を、直列に2段重ねて配置されるとともに、前記弾性支承部の端部の金属板のゴムとの接着面は、一方が凸球面または凸円筒面に形成され、他方が凹球面または凹円筒面に形成されていることを特徴とする。   According to the ninth aspect of the present invention, there is provided a floating body offshore wind power generation apparatus according to the present invention, wherein the elastic bearing portion includes two elastic bearing portions formed by alternately laminating rubber and metal plates in series. In addition to being arranged in layers, one of the adhesive surfaces of the ends of the elastic support portions to the rubber of the metal plate is formed on a convex spherical surface or a convex cylindrical surface, and the other is formed on a concave spherical surface or a concave cylindrical surface. It is characterized by being.

本発明10の浮体式洋上風力発電装置の浮体への支承装置は、本発明8において、前記弾性支承部は、各段の連結部に金属製の中間プレートを介在させて連結することを特徴とする。   The floating body type offshore wind power generator according to the tenth aspect of the present invention is characterized in that, in the eighth aspect of the present invention, the elastic bearing portion is connected to a connecting portion of each stage via a metal intermediate plate. To do.

本発明11の浮体式洋上風力発電装置の浮体への支承装置は、本発明8において、前記弾性支承部のゴムは、前記弾性支承部の中心軸線方向の位置によって硬さを変えて形成されていることを特徴とする。   According to the eleventh aspect of the present invention, there is provided a support device for the floating body of the floating offshore wind power generation apparatus according to the eighth aspect, wherein the rubber of the elastic support portion is formed by changing the hardness according to the position in the central axis direction of the elastic support portion. It is characterized by being.

本発明12の浮体式洋上風力発電装置の浮体への支承装置は、本発明2または3において、前記下部アセンブリーは、水、又は海水の流れを機械エネルギーに変換する水車であることを特徴とする。   The floating body type offshore wind power generation apparatus according to the present invention 12 is characterized in that the lower assembly is a water wheel that converts the flow of water or seawater into mechanical energy in the present invention 2 or 3. .

本発明13の浮体式洋上風力発電装置の浮体への支承装置は、本発明2または3において、前記浮体と前記軸受支持体との間に介在され、オイルを満たしたシリンダー内のピストンのオリフィスをオイルが通過する際の抵抗力で、前記軸受支持体と前記浮体との間の振動を減衰させるオイルダンパーを備えたことを特徴とする。   The floating offshore wind power generation apparatus according to the thirteenth aspect of the present invention is the apparatus for supporting a floating body according to the second or third aspect, wherein the piston orifice in the cylinder filled with oil is interposed between the floating body and the bearing support. An oil damper is provided that attenuates vibration between the bearing support and the floating body by a resistance force when oil passes.

本発明の浮体式洋上風力発電装置の浮体への支承装置は、積層ゴムを用いたので、浮体の上部、及び下部に搭載されたアセンブリーが風、潮流等でモーメント等の荷重がかかっても、容易に変形するのでアセンブリーを浮体に安定的に支承し、軸受支持体と浮体との間に作用する風や波の振動エネルギーを吸収し、減衰させることができる。   Since the support device to the floating body of the floating offshore wind power generator of the present invention uses laminated rubber, even if the assembly mounted on the upper and lower parts of the floating body is subjected to a load such as moment by wind, tidal current, etc. Since it is easily deformed, the assembly can be stably supported on the floating body, and the vibration energy of wind and waves acting between the bearing support and the floating body can be absorbed and damped.

図1は、浮体式洋上風力発電装置の概要を示す外観図である。FIG. 1 is an external view showing an outline of a floating offshore wind turbine generator. 図2は、浮体式洋上風力発電装置の支承装置を示す図1の部分拡大図である。FIG. 2 is a partially enlarged view of FIG. 1 showing a support device for a floating offshore wind power generator. 図3は、軸受支持体を平面から見たときの支承装置の配置を示す平面図である。FIG. 3 is a plan view showing the arrangement of the bearing device when the bearing support is viewed from the plane. 図4は、支承装置の弾性支承部を二段重ねにした図2の変形例を示す断面図であり、図4(a)は荷重が加わる前の状態を示す断面図、図4(b)は荷重が加わった状態を示す断面図である。4 is a cross-sectional view showing a modification of FIG. 2 in which the elastic support portions of the support device are stacked in two stages, FIG. 4 (a) is a cross-sectional view showing a state before a load is applied, and FIG. 4 (b). FIG. 3 is a cross-sectional view showing a state where a load is applied. 図5は、支承装置の弾性支承部を一段にした変形例を示す断面図であり、図5(a)は荷重が加わる前の状態を示す断面図、図5(b)は荷重が加わった状態を示す断面図である。FIG. 5 is a cross-sectional view showing a modified example in which the elastic support portion of the support device is made one stage. FIG. 5A is a cross-sectional view showing a state before a load is applied, and FIG. It is sectional drawing which shows a state. 図6は、図5の変形例を示す断面図であり、図6(a)は荷重が加わる前の状態を示す断面図、図6(b)は荷重が加わった状態を示す断面図である。6 is a cross-sectional view showing a modification of FIG. 5, FIG. 6 (a) is a cross-sectional view showing a state before a load is applied, and FIG. 6 (b) is a cross-sectional view showing a state where a load is applied. . 図7は、支承装置の弾性支承部を二段重ねにした他の変形例を示す側面図であり、図7(a)は荷重が加わる前の状態を示す側面図、図7(b)は荷重が加わった状態を示す側面図である。FIG. 7 is a side view showing another modified example in which the elastic support portions of the support device are stacked in two stages, FIG. 7A is a side view showing a state before a load is applied, and FIG. It is a side view which shows the state to which the load was added. 図8は、支承装置の弾性支承部を二段重ねにした他の変形例を示す断面図であり、図8(a)は荷重が加わる前の状態を示す断面図、図8(b)は荷重が加わった状態を示す断面図である。FIG. 8 is a cross-sectional view showing another modification example in which the elastic support portions of the support device are stacked in two stages, FIG. 8A is a cross-sectional view showing a state before a load is applied, and FIG. It is sectional drawing which shows the state to which the load was added.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、浮体式洋上風力発電装置の概要を示す外観図である。図2は、浮体式洋上風力発電装置の支承装置を示す図1の部分拡大図である。図3は、軸受支持体を平面から見たときの支承装置の配置を示す平面図である。図1から図3に示すように、本発明の実施の形態の浮体式洋上風力発電装置1は、風車(上部アセンブリー)2、水車(下部アセンブリー)3、浮体4、軸受支持体5、弾性支承部6で構成されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an external view showing an outline of a floating offshore wind turbine generator. FIG. 2 is a partially enlarged view of FIG. 1 showing a support device for a floating offshore wind power generator. FIG. 3 is a plan view showing the arrangement of the bearing device when the bearing support is viewed from the plane. As shown in FIGS. 1 to 3, a floating offshore wind power generator 1 according to an embodiment of the present invention includes a windmill (upper assembly) 2, a water turbine (lower assembly) 3, a floating body 4, a bearing support 5, and an elastic bearing. Part 6 is configured.

浮体4は中空の円盤形状で、浮体4の上部に配置された風車2は、ダリウス型風車であり、風力エネルギーを機械エネルギーに変換する。風車2の中心には、鉛直方向に第1駆動軸21が配置され、第1駆動軸21の周囲に縦長で長方形の受風面22が等間隔に3個配置されている。浮体4の下部に配置された水車3は、サボニウス水車であり、海水の流れを機械エネルギーに変換する。水車3の中心には、鉛直方向に第2駆動軸31が配置されている。   The floating body 4 has a hollow disk shape, and the windmill 2 disposed on the top of the floating body 4 is a Darrieus type windmill, which converts wind energy into mechanical energy. A first drive shaft 21 is arranged in the vertical direction at the center of the windmill 2, and three vertically long and rectangular wind receiving surfaces 22 are arranged around the first drive shaft 21 at equal intervals. The water turbine 3 disposed at the lower part of the floating body 4 is a Savonius water turbine, and converts the flow of seawater into mechanical energy. A second drive shaft 31 is disposed in the center of the water wheel 3 in the vertical direction.

浮体4の中心部の空洞41の中心に配置された軸受支持体5は、3本の支柱を有する上部軸受支持体51と下部軸受支持体52を、図示しないボルトで結合して構成されている。第1駆動軸21の下端より若干上方の部分が、上部軸受支持体51に軸受(図1参照)23によって回転自在に軸支されている。また、第1駆動軸21の下端が、下部軸受支持体52に軸受(自動調心ころ軸受)24によって回転自在に軸支されている。すなわち、第1駆動軸21は、下部軸受支持体52に、第1駆動軸21の中心軸線11上の一点を中心として揺動運動可能に軸支されている。また、水車3の第2駆動軸31の上端部は、下部軸受支持体52に軸受(複列円すいころ軸受)32によって回転自在に軸支されている。   The bearing support 5 disposed in the center of the cavity 41 at the center of the floating body 4 is configured by connecting an upper bearing support 51 having three columns and a lower bearing support 52 with bolts (not shown). . A portion slightly above the lower end of the first drive shaft 21 is rotatably supported on the upper bearing support 51 by a bearing (see FIG. 1) 23. Further, the lower end of the first drive shaft 21 is rotatably supported by a bearing (self-aligning roller bearing) 24 on the lower bearing support 52. That is, the first drive shaft 21 is pivotally supported by the lower bearing support body 52 so as to be able to swing around a point on the central axis 11 of the first drive shaft 21. Further, the upper end portion of the second drive shaft 31 of the water turbine 3 is rotatably supported by a lower bearing support 52 by a bearing (double-row tapered roller bearing) 32.

第2駆動軸31は第1駆動軸21に同芯に連結され、第2駆動軸31と第1駆動軸21の連結部には、図示しない遊星ギヤシステムを介して発電装置7が設置されている。水車3が上方から見て時計方向に回転すると、この遊星ギヤシステムによって、風車2が反時計方向の回転を開始(起動)する。これによって、風車2の自己起動性が向上する。また、海中の水車3は錘となって、風車2の直立安定性を保つ作用を行う。   The second drive shaft 31 is concentrically connected to the first drive shaft 21, and the power generator 7 is installed at a connecting portion between the second drive shaft 31 and the first drive shaft 21 via a planetary gear system (not shown). Yes. When the water turbine 3 rotates clockwise as viewed from above, the wind turbine 2 starts (starts) rotation counterclockwise by the planetary gear system. Thereby, the self-starting property of the windmill 2 is improved. In addition, the underwater water turbine 3 acts as a weight to maintain the upright stability of the wind turbine 2.

浮体4の空洞41の内壁42には6個のブラケット43が固定され、ブラケット43の取付面431と下部軸受支持体52の外周面521との間には、6個の弾性支承部6が取付けられている。取付面431は内側上方に傾斜して形成され、外周面521は外側下方に傾斜して形成されている。弾性支承部6は、第1駆動軸21及び第2駆動軸31の中心軸線11を中心として等角度間隔に6個配置されている。   Six brackets 43 are fixed to the inner wall 42 of the cavity 41 of the floating body 4, and six elastic support portions 6 are attached between the mounting surface 431 of the bracket 43 and the outer peripheral surface 521 of the lower bearing support 52. It has been. The mounting surface 431 is formed so as to be inclined upward and inward, and the outer peripheral surface 521 is formed to be inclined downward and outward. Six elastic support portions 6 are arranged at equiangular intervals around the central axis 11 of the first drive shaft 21 and the second drive shaft 31.

弾性支承部6は、ゴムと金属板を交互に積層して形成され、金属板に対して垂直方向には硬く、金属板に対して水平方向には柔らかく形成されている。その結果、弾性支承部6は、軸受支持体5に作用する荷重を支持するとともに、軸受支持体5と浮体4との間の相対的な移動に追従して剪断変形し、軸受支持体5と浮体4との間に作用する風や波の振動エネルギーを吸収し、減衰させる。   The elastic support 6 is formed by alternately laminating rubber and metal plates, and is hard in the vertical direction with respect to the metal plates and soft in the horizontal direction with respect to the metal plates. As a result, the elastic support 6 supports the load acting on the bearing support 5 and shears and deforms following the relative movement between the bearing support 5 and the floating body 4. Absorbs and attenuates vibration energy of wind and waves acting between the floating body 4.

図2に示すように、弾性支承部6は、ゴムと金属板を交互に積層して形成された弾性支承部61、61を、直列に2段重ねて配置され、弾性支承部61と弾性支承部61の連結部に、金属製の中間プレート62を介在させて連結している。中間プレート62は、中間プレート62の両側(ブラケット43側と下部軸受支持体52側)のゴムの変位に対して角度を持たない方向に変形する特性がある。従って、中間プレート62は、ゴムの変位角を小さくして、ゴムに作用する応力を低減する効果がある。弾性支承部6は、軸受支持体5の下方から第1駆動軸21及び第2駆動軸31の中心軸線11に向かって、上方に傾斜して配置されている。   As shown in FIG. 2, the elastic bearing portion 6 is configured by arranging two elastic bearing portions 61, 61 formed by alternately laminating rubber and metal plates in series, and the elastic bearing portion 61 and the elastic bearing portion. The connection part of the part 61 is connected via a metal intermediate plate 62. The intermediate plate 62 has a characteristic that it deforms in a direction having no angle with respect to the rubber displacement on both sides of the intermediate plate 62 (the bracket 43 side and the lower bearing support 52 side). Therefore, the intermediate plate 62 has an effect of reducing the stress acting on the rubber by reducing the displacement angle of the rubber. The elastic bearing 6 is disposed so as to be inclined upward from below the bearing support 5 toward the central axis 11 of the first drive shaft 21 and the second drive shaft 31.

図2、図3に示すように、浮体4の空洞41の内壁42には、3個の別のブラケット44が固定されている。ブラケット44の取付面441と下部軸受支持体52の外周面521との間には、3個のオイルダンパー8が取付けられている。オイルダンパー8は、第1駆動軸21及び第2駆動軸31の中心軸線11を中心として、弾性支承部6、6の中間に、等角度間隔に3個配置されている。オイルダンパー8は、シリンダー内にオイルを満たし、ピストンのオリフィスをオイルが通過する際の抵抗力で、軸受支持体5と浮体4との間の振動(オイルダンパー8の中心軸線方向の振動)を減衰させ、弾性支承部6の減衰機能を補完している。   As shown in FIGS. 2 and 3, three other brackets 44 are fixed to the inner wall 42 of the cavity 41 of the floating body 4. Three oil dampers 8 are mounted between the mounting surface 441 of the bracket 44 and the outer peripheral surface 521 of the lower bearing support 52. Three oil dampers 8 are arranged at equal angular intervals in the middle of the elastic bearing portions 6 and 6 around the central axis 11 of the first drive shaft 21 and the second drive shaft 31. The oil damper 8 fills the cylinder with oil, and the vibration force between the bearing support 5 and the floating body 4 (vibration in the direction of the central axis of the oil damper 8) is a resistance force when the oil passes through the piston orifice. Damping and supplementing the damping function of the elastic bearing 6.

図4は、支承装置の弾性支承部を二段重ねにした図2の変形例を示す断面図であり、(a)は荷重が加わる前の状態を示す断面図、(b)は荷重が加わった状態を示す断面図である。図4に示すように、弾性支承部6は、ゴムと金属板を交互に積層して形成された弾性支承部61、61を、直列に2段重ねて配置され、弾性支承部61と弾性支承部61の連結部に、金属製の中間プレート62を介在させて連結している。   4 is a cross-sectional view showing a modification of FIG. 2 in which the elastic support portions of the support device are stacked in two stages, (a) is a cross-sectional view showing a state before a load is applied, and (b) is a load applied. It is sectional drawing which shows the state. As shown in FIG. 4, the elastic bearing portion 6 is formed by arranging two elastic bearing portions 61, 61 formed by alternately laminating rubber and metal plates in series, and the elastic bearing portion 61 and the elastic bearing portion. The connection part of the part 61 is connected via a metal intermediate plate 62.

弾性支承部61、61の右端部(下部軸受支持体52の外周面521に取り付けられる側)の金属板63、63は、ゴム64、64との接着面631、631の両端(弾性支承部6の中心軸線65から離間した位置)に、傾斜接着面(下部軸受支持体52の外周面521側に傾斜)632、632が形成されている。この構成によって、金属板63、63と接着されるゴム64、64は、弾性支承部6の中心軸線65から離間した位置の肉厚T2が中心軸線65近傍の肉厚T1よりも厚く形成されている。   The metal plates 63, 63 at the right end of the elastic bearings 61, 61 (the side attached to the outer peripheral surface 521 of the lower bearing support 52) are attached to both ends (elastic bearing 6) of the adhesion surfaces 631, 631 with the rubber 64, 64. Inclined adhesive surfaces (inclined on the outer peripheral surface 521 side of the lower bearing support 52) 632 and 632 are formed at positions spaced apart from the central axis 65. With this configuration, the rubbers 64 and 64 bonded to the metal plates 63 and 63 are formed such that the thickness T2 at a position apart from the central axis 65 of the elastic bearing 6 is thicker than the thickness T1 near the central axis 65. Yes.

すなわち、風力や潮力によって風車2の第1駆動軸21、水車3の第2駆動軸31、軸受支持体5が傾斜すると、下部軸受支持体52の移動に追従して弾性支承部6が剪断変形するが、ゴム64、64の変位は、下部軸受支持体52の中心に近い側が大きくなる。また、金属板63、63との接続部のゴム64、64が大きな角度で折り曲げられるため、大きな応力が接続部のゴム64、64に作用する。中心軸線65から離間した位置の肉厚T2を、中心軸線65近傍の肉厚T1よりも厚く形成することによって、ゴム64、64に作用する応力を低減することが可能となるため、耐久性が向上する。   That is, when the first drive shaft 21 of the windmill 2, the second drive shaft 31 of the water turbine 3, and the bearing support 5 are inclined by wind force or tidal power, the elastic bearing 6 is sheared following the movement of the lower bearing support 52. Although it is deformed, the displacement of the rubbers 64, 64 increases on the side closer to the center of the lower bearing support 52. Further, since the rubbers 64 and 64 at the connection portions with the metal plates 63 and 63 are bent at a large angle, a large stress acts on the rubbers 64 and 64 at the connection portions. By forming the thickness T2 at a position separated from the central axis 65 thicker than the thickness T1 in the vicinity of the central axis 65, it is possible to reduce the stress acting on the rubbers 64, 64, and thus durability is improved. improves.

図5は、支承装置の弾性支承部を一段にした変形例を示す断面図であり、(a)は荷重が加わる前の状態を示す断面図、(b)は荷重が加わった状態を示す断面図である。図5に示すように、一段の弾性支承部6の右端部(下部軸受支持体52の外周面521に取り付けられる側)の金属板66は、ゴム64との接着面661の両端(弾性支承部6の中心軸線65から離間した位置)に、傾斜接着面(下部軸受支持体52の外周面521側に傾斜)662、662が形成されている。この構成によって、金属板66と接着されるゴム64は、弾性支承部6の中心軸線65から離間した位置の肉厚T4が中心軸線65近傍の肉厚T3よりも厚く形成されている。   FIG. 5 is a cross-sectional view showing a modification in which the elastic support portion of the support device is made one stage, (a) is a cross-sectional view showing a state before a load is applied, and (b) is a cross-section showing a state where a load is applied. FIG. As shown in FIG. 5, the metal plate 66 on the right end (the side attached to the outer peripheral surface 521 of the lower bearing support 52) of the one-stage elastic support 6 is connected to both ends (elastic support of the rubber 64). 6 (positions separated from the central axis 65) are inclined adhesive surfaces (inclined toward the outer peripheral surface 521 of the lower bearing support 52) 662 and 662. With this configuration, the rubber 64 bonded to the metal plate 66 is formed such that the thickness T4 at a position apart from the central axis 65 of the elastic bearing 6 is thicker than the thickness T3 near the central axis 65.

すなわち、軸受支持体5が傾斜すると、下部軸受支持体52の移動に追従して弾性支承部6が剪断変形するが、ゴム64、64の変位は、下部軸受支持体52の中心に近い側が大きくなる。また、金属板66との接続部のゴム64が大きな角度で折り曲げられるため、大きな応力が接続部のゴム64に作用する。中心軸線65から離間した位置の肉厚T4を、中心軸線65近傍の肉厚T3よりも厚く形成することによって、ゴム64に作用する応力を低減することが可能となるため、耐久性が向上する。   That is, when the bearing support 5 is tilted, the elastic bearing 6 is sheared and deformed following the movement of the lower bearing support 52, but the displacement of the rubbers 64 and 64 is large on the side near the center of the lower bearing support 52. Become. Further, since the rubber 64 at the connection portion with the metal plate 66 is bent at a large angle, a large stress acts on the rubber 64 at the connection portion. By forming the thickness T4 at a position separated from the central axis 65 thicker than the thickness T3 in the vicinity of the central axis 65, the stress acting on the rubber 64 can be reduced, so that the durability is improved. .

図6は、図5の変形例を示す断面図であり、図6(a)は荷重が加わる前の状態を示す断面図、図6(b)は荷重が加わった状態を示す断面図である。図6では、一段の弾性支承部6の右端部(下部軸受支持体52の外周面521に取り付けられる側)の金属板66には、ゴム64との接着面として、円弧状接着面663が形成されている。円弧状接着面663は、下部軸受支持体52の中心を中心とする円弧状に形成されている。この構成によって、金属板66と接着されるゴム64は、弾性支承部6の中心軸線65から離間した位置の肉厚T6が中心軸線65近傍の肉厚T5よりも厚く形成されている。   6 is a cross-sectional view showing a modification of FIG. 5, FIG. 6 (a) is a cross-sectional view showing a state before a load is applied, and FIG. 6 (b) is a cross-sectional view showing a state where a load is applied. . In FIG. 6, an arcuate adhesive surface 663 is formed as an adhesive surface with the rubber 64 on the metal plate 66 at the right end portion (the side attached to the outer peripheral surface 521 of the lower bearing support 52) of the one-stage elastic support portion 6. Has been. The arcuate adhesive surface 663 is formed in an arc shape centered on the center of the lower bearing support 52. With this configuration, the rubber 64 bonded to the metal plate 66 is formed such that the thickness T6 at a position away from the central axis 65 of the elastic bearing 6 is thicker than the thickness T5 near the central axis 65.

すなわち、軸受支持体5が傾斜すると、下部軸受支持体52の移動に追従して弾性支承部6が剪断変形するが、ゴム64、64の変位は、下部軸受支持体52の中心に近い側が大きくなる。また、金属板66との接続部のゴム64が大きな角度で折り曲げられるため、大きな応力が接続部のゴム64に作用する。中心軸線65から離間した位置の肉厚T6を、中心軸線65近傍の肉厚T5よりも厚く形成することによって、ゴム64に作用する応力を低減することが可能となるため、耐久性が向上する。   That is, when the bearing support 5 is tilted, the elastic bearing 6 is sheared and deformed following the movement of the lower bearing support 52, but the displacement of the rubbers 64 and 64 is large on the side near the center of the lower bearing support 52. Become. Further, since the rubber 64 at the connection portion with the metal plate 66 is bent at a large angle, a large stress acts on the rubber 64 at the connection portion. By forming the thickness T6 at a position separated from the central axis 65 thicker than the thickness T5 in the vicinity of the central axis 65, the stress acting on the rubber 64 can be reduced, so that the durability is improved. .

図7は、支承装置の弾性支承部を二段重ねにした他の変形例を示す側面図であり、(a)は荷重が加わる前の状態を示す側面図、(b)は荷重が加わった状態を示す側面図である。図7に示すように、弾性支承部6は、ゴムと金属板を交互に積層して形成された弾性支承部67、67を、直列に2段重ねて配置され、弾性支承部67と弾性支承部67の連結部に、金属製の中間プレート68を介在させて連結している。   FIG. 7 is a side view showing another modified example in which the elastic support portions of the support device are stacked in two stages, (a) is a side view showing a state before a load is applied, and (b) is a load applied. It is a side view which shows a state. As shown in FIG. 7, the elastic support portion 6 is formed by stacking two elastic support portions 67 and 67 formed by alternately laminating rubber and metal plates in series, and the elastic support portion 67 and the elastic support portion. The connecting portion of the portion 67 is connected with a metal intermediate plate 68 interposed therebetween.

弾性支承部67、67は、弾性支承部6の中心軸線65の方向にゴムの硬さを変えて形成されている。すなわち、図7の実施の形態では、ゴムの成分やゴムの成分の含有量を変えることによって、弾性支承部6の中心軸線65に沿った中央部A2のゴムが柔らかく、両端A1、A3のゴムが硬く形成されている。   The elastic support portions 67 and 67 are formed by changing the hardness of rubber in the direction of the central axis 65 of the elastic support portion 6. That is, in the embodiment of FIG. 7, by changing the rubber component and the content of the rubber component, the rubber at the central portion A2 along the central axis 65 of the elastic support portion 6 is soft, and the rubber at both ends A1, A3. Is formed hard.

すなわち、軸受支持体5が傾斜すると、下部軸受支持体52の移動に追従して弾性支承部6が剪断変形するが、ゴムの変位は、下部軸受支持体52の中心に近い側が大きくなる。また、金属板との接続部のゴムが大きな角度で折り曲げられるため、大きな応力が接続部のゴムに作用する。弾性支承部6の中心軸線65に沿った中央部A2のゴムを柔らかく、両端A1、A3のゴムを硬く形成することによって、ゴムの変位を低減することが可能となるため、耐久性が向上する。   That is, when the bearing support 5 is tilted, the elastic bearing 6 is sheared and deformed following the movement of the lower bearing support 52, but the displacement of the rubber increases on the side closer to the center of the lower bearing support 52. Moreover, since the rubber at the connection portion with the metal plate is bent at a large angle, a large stress acts on the rubber at the connection portion. By forming the rubber at the central portion A2 along the central axis 65 of the elastic support portion 6 softly and forming the rubber at both ends A1 and A3 hard, it is possible to reduce the displacement of the rubber, thereby improving durability. .

図8は、支承装置の弾性支承部を二段重ねにした他の変形例を示す断面図であり、図8(a)は荷重が加わる前の状態を示す断面図、図8(b)は荷重が加わった状態を示す断面図である。図8に示すように、弾性支承部6は、ゴムと金属板を交互に積層して形成された弾性支承部61、61を、直列に2段重ねて配置され、弾性支承部61と弾性支承部61の連結部に、金属製の中間プレート62を介在させて連結している。   FIG. 8 is a cross-sectional view showing another modification example in which the elastic support portions of the support device are stacked in two stages, FIG. 8A is a cross-sectional view showing a state before a load is applied, and FIG. It is sectional drawing which shows the state to which the load was added. As shown in FIG. 8, the elastic bearing portion 6 is formed by arranging two elastic bearing portions 61, 61 formed by alternately laminating rubber and metal plates in series, and the elastic bearing portion 61 and the elastic bearing portion. The connection part of the part 61 is connected via a metal intermediate plate 62.

図8で見て、右側の弾性支承部61の右端部(下部軸受支持体52の外周面521に取り付けられる側)の金属板633は、ゴム64との接着面634が凹球面に形成されている。同様に、左側の弾性支承部61の左端部(ブラケット43の取付面431に取り付けられる側)の金属板633は、ゴム64との接着面634が凹球面に形成されている。   As shown in FIG. 8, the metal plate 633 at the right end (the side attached to the outer peripheral surface 521 of the lower bearing support 52) of the right elastic support 61 has an adhesive surface 634 with the rubber 64 formed into a concave spherical surface. Yes. Similarly, the metal plate 633 at the left end (the side attached to the attachment surface 431 of the bracket 43) of the left elastic support 61 has an adhesive surface 634 with the rubber 64 formed into a concave spherical surface.

また、図8で見て、右側の弾性支承部61の左端部(中間プレート62に取り付けられる側)の金属板635は、ゴム64との接着面636が凸球面に形成されている。同様に、左側の弾性支承部61の右端部(中間プレート62に取り付けられる側)の金属板635は、ゴム64との接着面636が凸球面に形成されている。接着面634、634及び接着面636、636の曲率半径は、下部軸受支持体52の揺動中心を中心とする曲率半径に形成されている。   As shown in FIG. 8, the metal plate 635 on the left end (the side attached to the intermediate plate 62) of the right elastic support 61 has an adhesive surface 636 with the rubber 64 formed into a convex spherical surface. Similarly, the metal plate 635 at the right end (the side attached to the intermediate plate 62) of the left elastic support 61 has an adhesive surface 636 with a rubber 64 formed into a convex spherical surface. The curvature radii of the bonding surfaces 634 and 634 and the bonding surfaces 636 and 636 are formed to have a curvature radius centered on the swing center of the lower bearing support 52.

下部軸受支持体52の揺動中心から接着面634、634及び接着面636、636までの距離が異なるため、接着面634、634及び接着面636、636の曲率半径は各々異なる。しかし、製造コストを削減するために曲率半径を同一にし、下部軸受支持体52の揺動中心から弾性支承部6の中間位置の曲率半径にしてもよい。また、製造コストを削減するために、接着面634、634を凹円筒面に形成し、接着面636、636を凸円筒面に形成してもよい。   Since the distances from the swing center of the lower bearing support 52 to the bonding surfaces 634 and 634 and the bonding surfaces 636 and 636 are different, the curvature radii of the bonding surfaces 634 and 634 and the bonding surfaces 636 and 636 are different. However, in order to reduce the manufacturing cost, the radius of curvature may be the same, and the radius of curvature at the intermediate position of the elastic bearing 6 from the swing center of the lower bearing support 52 may be used. In order to reduce the manufacturing cost, the adhesive surfaces 634 and 634 may be formed in a concave cylindrical surface, and the adhesive surfaces 636 and 636 may be formed in a convex cylindrical surface.

この構成によって、風力や潮力によって風車2の第1駆動軸21、水車3の第2駆動軸31、軸受支持体5が傾斜すると、下部軸受支持体52の移動に追従して、下部軸受支持体52の揺動中心を中心として弾性支承部6が円滑に揺動し、右側の弾性支承部61と左側の弾性支承部61がほぼ均等に傾斜する。従って、各層のゴム64、64の圧縮量と引っ張り量がほぼ均等になり、ゴム64、64に作用する局部的な過大応力を回避することが可能となるため、耐久性が向上する。   With this configuration, when the first drive shaft 21 of the wind turbine 2, the second drive shaft 31 of the water turbine 3, and the bearing support 5 are tilted by wind force or tidal power, the lower bearing support 52 follows the movement of the lower bearing support 52. The elastic support portion 6 smoothly swings about the swing center of the body 52, and the right elastic support portion 61 and the left elastic support portion 61 are inclined substantially uniformly. Accordingly, the amount of compression and the amount of tension of the rubbers 64 and 64 in each layer are almost equalized, and it is possible to avoid a local excessive stress acting on the rubbers 64 and 64, so that durability is improved.

以上、本発明の実施の形態を説明したが、本発明はこの実施の形態に限定されることはない。本発明の目的、趣旨を逸脱しない範囲内での変更が可能なことはいうまでもない。例えば、前述した本発明の実施の形態では、下部アセンブリーは、海水の流れを機械エネルギーに変換する水車であるが、その重心が水面下に配置された錘部材であってもよい。錘部材は、その重心にかかる重力が、風力等によって傾斜した風車の第1駆動軸の傾斜を戻そうとする復元力を生じさせることによって、浮体の傾斜や大型化を抑制する。   Although the embodiment of the present invention has been described above, the present invention is not limited to this embodiment. Needless to say, changes can be made without departing from the scope and spirit of the present invention. For example, in the above-described embodiment of the present invention, the lower assembly is a water wheel that converts the flow of seawater into mechanical energy, but may be a weight member that has a center of gravity disposed below the water surface. The weight member suppresses inclination and enlargement of the floating body by causing a restoring force to return the inclination of the first drive shaft of the wind turbine inclined by the wind force or the like by gravity applied to the center of gravity.

1…浮体式洋上風力発電装置
11…中心軸線
2…風車(上部アセンブリー)
21…第1駆動軸
22…受風面
23…軸受
24…軸受
3…水車(下部アセンブリー)
31…第2駆動軸
32…軸受
4…浮体
41…空洞
42…内壁
43…ブラケット
431…取付面
44…ブラケット
441…取付面
5…軸受支持体
51…上部軸受支持体
52…下部軸受支持体
521…外周面
6…弾性支承部
61…弾性支承部
62…中間プレート
63…金属板
631…接着面
632…傾斜接着面
633…金属板
634…接着面(凹球面)
635…金属板
636…接着面(凸球面)
64…ゴム
65…中心軸線
66…金属板
661…接着面
662…傾斜接着面
663…円弧状接着面
67…弾性支承部
68…中間プレート
7…発電装置
8…オイルダンパー
DESCRIPTION OF SYMBOLS 1 ... Floating offshore wind power generator 11 ... Center axis 2 ... Windmill (upper assembly)
21 ... First drive shaft 22 ... Wind receiving surface 23 ... Bearing 24 ... Bearing 3 ... Water wheel (lower assembly)
DESCRIPTION OF SYMBOLS 31 ... 2nd drive shaft 32 ... Bearing 4 ... Floating body 41 ... Cavity 42 ... Inner wall 43 ... Bracket 431 ... Mounting surface 44 ... Bracket 441 ... Mounting surface 5 ... Bearing support body 51 ... Upper bearing support body 52 ... Lower bearing support body 521 ... outer peripheral surface 6 ... elastic bearing part 61 ... elastic bearing part 62 ... intermediate plate 63 ... metal plate 631 ... adhesion surface 632 ... inclined adhesion surface 633 ... metal plate 634 ... adhesion surface (concave spherical surface)
635 ... Metal plate 636 ... Bonding surface (convex spherical surface)
64 ... Rubber 65 ... Center axis 66 ... Metal plate 661 ... Adhesive surface 662 ... Inclined adhesive surface 663 ... Arc-shaped adhesive surface 67 ... Elastic bearing part 68 ... Intermediate plate 7 ... Power generation device 8 ... Oil damper

Claims (13)

水面又は洋上に浮かぶ浮体と、
前記浮体に搭載されて浮体の上部に配置され、風力エネルギーを機械エネルギーに変換し、鉛直方向に配置された第1駆動軸を有する上部アセンブリーと、
前記浮体に搭載されて浮体の下部に配置され、鉛直方向に配置された第2駆動軸を有し、前記第1駆動軸に前記第2駆動軸が同芯に連結された下部アセンブリーと
からなる浮体式洋上風力発電装置において、
前記第1駆動軸及び第2駆動軸を回転自在に軸支する軸受を支持する軸受支持体と、
前記浮体と前記軸受支持体との間に介在されて前記軸受支持体を前記浮体に支承するために、ゴムと金属板を交互に積層して形成され、前記軸受支持体に受ける荷重を支持するとともに、前記軸受支持体と前記浮体との間の相対的な移動に追従して剪断変形する弾性支承部とを備えた
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
A floating body floating on the surface of the water or ocean,
An upper assembly mounted on the floating body and disposed on top of the floating body, converting wind energy into mechanical energy and having a first drive shaft disposed vertically;
A lower assembly mounted on the floating body and disposed at a lower portion of the floating body and having a second drive shaft disposed in a vertical direction, and the second drive shaft is concentrically connected to the first drive shaft. In the floating offshore wind turbine generator,
A bearing support that supports a bearing that rotatably supports the first drive shaft and the second drive shaft;
In order to support the bearing support body with the floating body interposed between the floating body and the bearing support body, it is formed by alternately laminating rubber and metal plates, and supports the load received by the bearing support body. And an elastic bearing portion that shears and deforms following the relative movement between the bearing support and the floating body. A bearing device for the floating body of the floating offshore wind turbine generator.
請求項1に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記弾性支承部は、前記第1駆動軸及び第2駆動軸の中心軸線を中心として等角度間隔に複数個配置されている
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support device to the floating body of the floating offshore wind turbine generator according to claim 1,
A plurality of the elastic support portions are arranged at equiangular intervals around the central axis of the first drive shaft and the second drive shaft. A support device for a floating body of a floating offshore wind turbine generator.
請求項1に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記弾性支承部は、前記軸受支持体の下方から前記第1駆動軸及び第2駆動軸の中心軸線に向かって上方に傾斜して配置されている
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support device to the floating body of the floating offshore wind turbine generator according to claim 1,
The floating bearing type offshore wind turbine generator is characterized in that the elastic bearing portion is inclined upward from the lower side of the bearing support toward the central axis of the first drive shaft and the second drive shaft. Support device for floating body.
請求項2または3に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記軸受支持体は、前記第1駆動軸及び第2駆動軸の中心軸線上の所定の範囲の一点を中心として揺動運動可能である
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating type offshore wind power generator of Claim 2 or 3,
The bearing support is capable of swinging around a point in a predetermined range on the central axis of the first drive shaft and the second drive shaft. Bearing device.
請求項2または3に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記弾性支承部の端部の金属板と接着されるゴムは、前記弾性支承部の中心軸線から離間した位置の肉厚が弾性支承部の中心軸線近傍の肉厚よりも厚く形成されている
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating type offshore wind power generator of Claim 2 or 3,
The rubber to be bonded to the metal plate at the end of the elastic support portion is formed such that the thickness at a position away from the central axis of the elastic support portion is thicker than the thickness near the central axis of the elastic support portion. A floating body type offshore wind power generator bearing device for a floating body.
請求項2または3に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記弾性支承部の端部の金属板のゴムとの接着面は、球面または円筒面に形成されている
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating type offshore wind power generator of Claim 2 or 3,
The apparatus for supporting a floating body of a floating offshore wind power generator, characterized in that the adhesive surface of the end of the elastic bearing portion with the rubber of the metal plate is formed on a spherical surface or a cylindrical surface.
請求項6に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記球面または円筒面は、前記軸受支持体の揺動中心を中心とする
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support device to the floating body of the floating offshore wind turbine generator according to claim 6,
The spherical surface or the cylindrical surface is centered on the center of oscillation of the bearing support. A support device for a floating body of a floating offshore wind turbine generator.
請求項2または3に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記弾性支承部は、ゴムと金属板を交互に積層して形成された弾性支承部を、直列に複数段重ねて配置されている
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating type offshore wind power generator of Claim 2 or 3,
The elastic support portion is formed by alternately stacking elastic support portions formed by alternately laminating rubber and metal plates in series, and supports the floating body of a floating offshore wind turbine generator. apparatus.
請求項8に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記弾性支承部は、ゴムと金属板を交互に積層して形成された弾性支承部を、直列に2段重ねて配置されるとともに、前記弾性支承部の端部の金属板のゴムとの接着面は、一方が凸球面または凸円筒面に形成され、他方が凹球面または凹円筒面に形成されている
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating offshore wind power generator according to claim 8,
The elastic support portion is formed by stacking two elastic support portions formed by alternately laminating rubber and metal plates in series, and bonding the metal plate rubber at the end of the elastic support portion. One of the surfaces is formed on a convex spherical surface or a convex cylindrical surface, and the other surface is formed on a concave spherical surface or a concave cylindrical surface. A support device for a floating body of a floating offshore wind turbine generator.
請求項8に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記弾性支承部は、各段の連結部に金属製の中間プレートを介在させて連結する
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating offshore wind power generator according to claim 8,
The elastic support portion is connected to a connecting portion of each stage with a metal intermediate plate interposed therebetween. The support device for a floating body of a floating offshore wind turbine generator.
請求項8に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記弾性支承部のゴムは、前記弾性支承部の中心軸線方向の位置によって硬さを変えて形成されている
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating offshore wind power generator according to claim 8,
The rubber of the elastic bearing part is formed by changing the hardness according to the position of the elastic bearing part in the central axis direction. The apparatus for supporting a floating body of a floating offshore wind turbine generator.
請求項2または3に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記下部アセンブリーは、水、又は海水の流れを機械エネルギーに変換する水車である
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating type offshore wind power generator of Claim 2 or 3,
The lower assembly is a water wheel that converts a flow of water or seawater into mechanical energy. A support device for a floating body of a floating offshore wind turbine generator.
請求項2または3に記載の浮体式洋上風力発電装置の浮体への支承装置において、
前記浮体と前記軸受支持体との間に介在され、オイルを満たしたシリンダー内のピストンのオリフィスをオイルが通過する際の抵抗力で、前記軸受支持体と前記浮体との間の振動を減衰させるオイルダンパーを備えた
ことを特徴とする浮体式洋上風力発電装置の浮体への支承装置。
In the support apparatus to the floating body of the floating type offshore wind power generator of Claim 2 or 3,
The vibration between the bearing support and the floating body is damped by the resistance force when the oil passes through the orifice of the piston in the cylinder filled with oil interposed between the floating body and the bearing support. An apparatus for supporting a floating offshore wind power generator equipped with an oil damper to the floating body.
JP2013101978A 2013-05-14 2013-05-14 Support device for floating body of floating body type ocean wind power generation equipment Pending JP2014222045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101978A JP2014222045A (en) 2013-05-14 2013-05-14 Support device for floating body of floating body type ocean wind power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101978A JP2014222045A (en) 2013-05-14 2013-05-14 Support device for floating body of floating body type ocean wind power generation equipment

Publications (1)

Publication Number Publication Date
JP2014222045A true JP2014222045A (en) 2014-11-27

Family

ID=52121662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101978A Pending JP2014222045A (en) 2013-05-14 2013-05-14 Support device for floating body of floating body type ocean wind power generation equipment

Country Status (1)

Country Link
JP (1) JP2014222045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147939A1 (en) * 2015-03-13 2016-09-22 株式会社グローバルエナジー Vertical shaft windmill base isolation apparatus
CN110348101A (en) * 2019-07-03 2019-10-18 中集海洋工程研究院有限公司 The wind load acquisition methods and device of offshore structures
JP2020524240A (en) * 2017-06-20 2020-08-13 エクスポネンシャル リニューワブルズ, エス.エル.Exponential Renewables, S. L. Floating structure of offshore wind turbine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147939A1 (en) * 2015-03-13 2016-09-22 株式会社グローバルエナジー Vertical shaft windmill base isolation apparatus
JP2020524240A (en) * 2017-06-20 2020-08-13 エクスポネンシャル リニューワブルズ, エス.エル.Exponential Renewables, S. L. Floating structure of offshore wind turbine
CN110348101A (en) * 2019-07-03 2019-10-18 中集海洋工程研究院有限公司 The wind load acquisition methods and device of offshore structures

Similar Documents

Publication Publication Date Title
CN103314212B (en) Float type offshore wind energy plant
US6269636B1 (en) Wave-energy chain-driven power generator
JP2022000582A (en) Device for converting wave energy into electric energy and arrangement method of the same
JP3187127U (en) Conversion device that converts wave power
CN109441733B (en) Energy-drawing-vibration-damping deep sea wind power generation floating type semi-submersible platform
EP2019922B1 (en) Production of electric energy from sea waves
US10569844B2 (en) Floating offshore wind turbine comprising a combination of damping means
TWI682099B (en) Floating wind power station with multiple energy conversion units
JP4819903B2 (en) Float for wave energy conversion equipment
CN105484959A (en) One-way conversion device and power generation system adopting same
JP2014222045A (en) Support device for floating body of floating body type ocean wind power generation equipment
JP2007032455A (en) Wind power generation device
US11506170B1 (en) Generator device using potential energy
US10024297B2 (en) Reciprocating motion energy conversion apparatus
JP5804752B2 (en) Floating body
CN201843727U (en) TLCD (Tuned Liquid Column Damper)-based vibration control system for wind power generation tower
KR100904850B1 (en) Vertical Wind Power Generator with Vibration and Sound Reduction Mechanism
JP5804753B2 (en) Floating body
JP6029191B2 (en) Single bucket drag type turbine and wave power generator
TWI644019B (en) One-way conversion device and power system having the same
JP6617907B2 (en) Floating offshore wind power generator
KR101280522B1 (en) Hydroplane type tidal current generator using a resonance
CN213870904U (en) Vibration damper for offshore floating wind turbine
CN114715341B (en) Flexible connection barge type floating wind power system and floating platform
CN211900860U (en) Efficient sea wave power generation device