JP2014221899A - METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING β-GLUCAN AS MAIN COMPONENT - Google Patents
METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING β-GLUCAN AS MAIN COMPONENT Download PDFInfo
- Publication number
- JP2014221899A JP2014221899A JP2014124659A JP2014124659A JP2014221899A JP 2014221899 A JP2014221899 A JP 2014221899A JP 2014124659 A JP2014124659 A JP 2014124659A JP 2014124659 A JP2014124659 A JP 2014124659A JP 2014221899 A JP2014221899 A JP 2014221899A
- Authority
- JP
- Japan
- Prior art keywords
- glucan
- extraction
- extract
- residue
- mushroom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Plant Substances (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Preparation Of Fruits And Vegetables (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
本発明は、マイタケなどのキノコからβ−グルカンを主体とする多糖類を抽出する方法に関する。 The present invention relates to a method for extracting a polysaccharide mainly composed of β-glucan from mushrooms such as maitake.
マイタケには様々な生理活性物質が含まれており、特にβ−グルカンなどの多糖類は抗腫瘍活性を有することで知られている(非特許文献1)。
これまで、溶媒・液性・温度など、様々な条件を組み合わせて、マイタケから生理活性物質を抽出することが試みられてきたが、抗腫瘍活性を有するとされる多糖類は難溶性成分が多く、高収率で得ることが困難であった。マイタケからβ−グルカンを主体とした多糖類を取り出す方法として、水やアルカリ水溶液を用いて多糖類を抽出し、さらにアルコール沈澱法やクロマトグラフィ法などでβ−グルカンを主体とする画分を分画・精製する方法が行われてきた(特許文献1、非特許文献2)。
最近、担子菌類、特に木材腐朽菌によって木質部中に産生された色素や生理活性物質、あるいは菌体中に含まれる色素や生理活性物質を、効率よく、選択的に抽出分離する方法として、担子菌類産生物を含む菌体粉末又は木質粉末を、先ず開放圧力下、100〜140℃の水蒸気又は熱水で処理して、上記産生物の易溶成分を抽出分離したのち、さらに残留物を100℃よりも高い温度の加圧熱水で処理して上記産生物の難溶成分を抽出分離するという方法が報告されている(特許文献2)。
Maitake contains various physiologically active substances, and in particular, polysaccharides such as β-glucan are known to have antitumor activity (Non-patent Document 1).
Until now, attempts have been made to extract physiologically active substances from maitake by combining various conditions such as solvent, liquidity, and temperature. However, polysaccharides that have antitumor activity have many poorly soluble components. It was difficult to obtain in a high yield. To extract polysaccharides mainly composed of β-glucan from maitake, extract the polysaccharides using water or alkaline aqueous solution, and then fractionate fractions mainly composed of β-glucan by alcohol precipitation or chromatography. -The method of refinement | purification has been performed (patent document 1, nonpatent literature 2).
Recently, basidiomycetes, a method for efficiently and selectively extracting and separating pigments and physiologically active substances produced in woody parts by basidiomycetes, especially wood decaying fungi, or pigments and physiologically active substances contained in cells The cell powder or woody powder containing the product is first treated with water vapor or hot water at 100 to 140 ° C. under an open pressure to extract and separate the readily soluble components of the product, and the residue is further removed at 100 ° C. A method of extracting and separating the hardly soluble component of the product by treating with pressurized hot water at a higher temperature is reported (Patent Document 2).
しかし、上述の特許文献1や非特許文献2などの方法では抽出物中のβ−グルカンなどの多糖類の収率が低く、そのため、抽出物をさらに精製しても低い収量でしか有用成分が得られないという問題がある。 However, in the methods such as Patent Document 1 and Non-Patent Document 2 described above, the yield of polysaccharides such as β-glucan in the extract is low. Therefore, even if the extract is further purified, useful components are only present in a low yield. There is a problem that it cannot be obtained.
そこで、本発明者らは、上記問題を解決すべく、鋭意研究を重ねた結果、特定の圧力及び温度の水で抽出することで、マイタケなどのキノコからβ−グルカンを主体とする多糖類を、高収率で効率よく得られることを見出し、本発明を完成させた。
すなわち、本発明は、キノコを、約2〜約3MPaの範囲の圧力下にある約140〜約180℃の範囲の温度の水で処理することを特徴とする、β−グルカンを主体とする多糖類の抽出方法に関する。
Therefore, as a result of intensive studies to solve the above problems, the present inventors have extracted polysaccharides mainly composed of β-glucan from mushrooms such as maitake mushrooms by extracting with water at a specific pressure and temperature. The present invention was completed by finding that it can be efficiently obtained in a high yield.
That is, the present invention treats mushrooms with water having a temperature in the range of about 140 to about 180 ° C. under a pressure in the range of about 2 to about 3 MPa. The present invention relates to a method for extracting saccharides.
本発明によれば、マイタケなどのキノコからβ−グルカンを主体とする多糖類を効率よく高収率で抽出することができる。 According to the present invention, polysaccharides mainly composed of β-glucan can be efficiently extracted at high yield from mushrooms such as maitake.
本発明でβ−グルカンを主体とする多糖類とは、β−グルカンそのものの他、β−グルカンを含む多糖類、例えば、β−グルカンに、D−グルコース以外の糖類や、D−グルコース以外の糖類を含む多糖類などが結合してなるヘテロ多糖、及びβ−グルカンとタンパク質との複合体などをいう。 In the present invention, the polysaccharide mainly composed of β-glucan is not only β-glucan itself but also a polysaccharide containing β-glucan, for example, β-glucan, saccharide other than D-glucose, and other than D-glucose. It refers to a heteropolysaccharide formed by binding a polysaccharide containing a saccharide, and a complex of β-glucan and protein.
本発明で使用できるキノコは、特に制限されないが、担子菌類及び子嚢菌類などが例示される。
上記担子菌類としては、
・ヒダナシタケ目、例えば、タコウキン科(マイタケ、シロマイタケ、トンビマイタケ、チョレイマイタケ、マスタケなど)、ハナビラタケ科(ハナビラタケなど);マンネンタケ科(マンネンタケ、コフキサルノコシカケなど)、エゾハリタケ科(ブナハリタケなど);
・ハラタケ目、例えば、ヒラタケ科(シイタケ、エリンギ、ヒラタケ、トキイロヒラタケ、ウスヒラタケ、タモギタケなど)、キシメジ科(エノキタケ、ハタケシメジ、シャカシメジ、ホンシメジ、ブナシメジ、ニオウシメジ、ムラサキシメジ、マツタケ、ムキタケ、ナラタケなど)、モエギタケ科(ナメコ、クリタケ、ヌメリスギタケなど)、ハラタケ科(アガリクス、ツクリタケ(通称:マッシュルーム)、ハラタケなど)、ウラベニガサ科(フクロタケなど)、オキナタケ科(ヤナギマツタケなど)、ヒトヨタケ科(ササクレヒトヨタケなど);
・ベニタケ目、例えば、サンゴハリタケ科(ヤマブシタケなど);
・キクラゲ目、例えば、キクラゲ科(キクラゲなど);
・シロキクラゲ目、例えば、シロキクラゲ科(シロキクラゲなど);
・スッポンタケ目、例えば、スッポンタケ科(キヌガサタケなど)
などが例示される。
上記子嚢菌類としては、
・チャワンタケ目、例えば、アミガサタケ科(アミガサタケなど);
・バッカクキン目、例えば、バッカクキン科〔冬虫夏草(冬虫夏草属の総称)など〕;
・カイキン目、例えば、セイヨウショウロ科〔トリュフ(セイヨウシショウロ属の総称)など〕
などが例示される。
好ましくは担子菌類、より好ましくはヒダナシタケ目のキノコ、さらに好ましくはタコウキン科のキノコ、最も好ましくはマイタケである。
Mushrooms that can be used in the present invention are not particularly limited, and examples include basidiomycetes and ascomycetes.
As the above basidiomycetes,
・ Oyster mushrooms, for example, Octopusaceae (Maitake, Shiromaitake, Tombaimaitake, Choreimaitake, Mustache, etc.), Hanabiratake (Hanaburitake, etc.);
Agaric, for example, oyster mushrooms (shiitake, eringi, oyster mushrooms, tomato oyster mushrooms, ushiratake mushrooms, tamogi mushrooms, etc.) , Moegitake family (nameko, Kuritatake, Numerisugitake, etc.), Agaricaceae (Agaricus, Tsukuritake (commonly known as mushrooms), Agaricus, etc.) ;
・ Agaricidae, for example, Coralhariaceae (Yamabushitake, etc.);
・ Jellyfish, for example, jellyfish (eg, jellyfish);
* Pleurotus jellyfish, for example, the family Aceraceae (such as the jellyfish);
Suppontake, for example, Suppontake department (such as Kinugasatake)
Etc. are exemplified.
As the above ascomycetes,
-Chawantake, for example, Amphiidae (such as Amigasatake);
・ Buckakkin eyes, for example, Bakakukinkin [Cycium caterpillar (generic name for Cordyceps genus)];
・ Lepidoptera, for example, Aceraceae [Truffles (generic name for Astragalus), etc.]
Etc. are exemplified.
Preferred are basidiomycetes, more preferred are mushrooms of the order mushrooms, still more preferred are mushrooms of the family Octeridae, most preferred maitake.
本発明では、キノコとして、その子実体又はその菌糸体若しくは胞子を使用することができる。子実体又はその菌糸体若しくは胞子を原型のままで処理してもよいが、β−グルカンを主体とする多糖類の抽出効率が高まる点から、子実体又はその菌糸体若しくは胞子を破砕して、砕片、細片、粉末状、フレーク状、又はペースト状にして使用することが好ましい。 In the present invention, the fruit body or the mycelium or spore can be used as the mushroom. The fruit body or its mycelium or spore may be processed as it is, but from the point of increasing the extraction efficiency of polysaccharides mainly composed of β-glucan, the fruit body or its mycelium or spore is crushed, It is preferable to use in the form of crushed pieces, fine pieces, powders, flakes, or pastes.
β−グルカンを主体とする多糖類の抽出効率を高めることを目的に、キノコを本発明の抽出工程に付する前に適切な溶媒で前処理して、キノコに含有される脂肪類や可溶糖類などの可溶性成分を除去するのが好ましい。このとき使用される溶媒は、キノコ中の脂肪類や可溶糖類などの可溶性成分を溶出し得るものであれば特に制限されず、例えば水や有機溶媒、例えばエタノール、メタノール、又はアセトンなどが使用でき、水又はエタノールが好適に使用できる。これら溶媒は、単独で使用しても、2種以上の混合溶媒として使用してもよい。
この前処理の条件、例えば温度や圧力などは、特に制限されず、例えば、室温・常圧下で前処理を行い得るが、可溶性成分の除去を促進するため、熱水、特に還流下で前処理を行うのが好ましい。この場合、キノコ固形分の約50〜60%が除去され得る。キノコと溶媒との混合比も、特に制限されず、可溶性成分の除去が高まる点から、キノコ100重量部に対して、溶媒を約500〜約2000重量部加えるのが好ましい。前処理時間も、特に制限されないが、可溶性成分の除去が高まる点から、約1〜約3時間が好ましい。
For the purpose of increasing the extraction efficiency of polysaccharides mainly composed of β-glucan, mushrooms are pretreated with an appropriate solvent before being subjected to the extraction process of the present invention, and fats and solubles contained in the mushrooms It is preferred to remove soluble components such as sugars. The solvent used at this time is not particularly limited as long as it can elute soluble components such as fats and soluble saccharides in mushrooms. For example, water or an organic solvent such as ethanol, methanol, or acetone is used. Water or ethanol can be preferably used. These solvents may be used alone or as a mixed solvent of two or more.
The pretreatment conditions, such as temperature and pressure, are not particularly limited. For example, the pretreatment can be performed at room temperature and normal pressure, but in order to promote the removal of soluble components, the pretreatment is performed under hot water, particularly under reflux. Is preferably performed. In this case, about 50-60% of the mushroom solids can be removed. The mixing ratio of the mushroom and the solvent is not particularly limited, and it is preferable to add about 500 to about 2000 parts by weight of the solvent with respect to 100 parts by weight of the mushroom from the viewpoint of increasing the removal of soluble components. The pretreatment time is not particularly limited, but is preferably about 1 to about 3 hours from the viewpoint of enhancing the removal of soluble components.
上記の前処理は、可溶性成分の除去を高めるため、反復して行ってもよい。すなわち、前処理したキノコを、本発明の抽出工程に付する前に、再度前処理に付するなどして、前処理を2回以上、好ましくは3回〜5回反復して行ってもよい。 The above pretreatment may be repeated to enhance the removal of soluble components. That is, the pretreatment may be repeated twice or more, preferably 3 to 5 times, by subjecting the pretreated mushroom to the pretreatment again before being subjected to the extraction step of the present invention. .
本発明の抽出工程では、前述のキノコを、亜臨界水、すなわち約2〜約3MPaの範囲の圧力下にある約140〜約180℃の範囲の温度の水で処理して、β−グルカンを主体とする多糖類を抽出する。具体的には、例えば、キノコに水を加えて、圧力を2〜3MPaの範囲に加圧し、温度を140〜180℃の範囲に加温して、必要に応じて攪拌しながら、抽出を行う。
上記の抽出工程では、β−グルカンを主体とする多糖類を高収率で効率よく抽出するため、上記の温度は約140〜約160℃が好ましく、上記の圧力は約2MPaが好ましい。
また、キノコと水との混合比は、特に制限されないが、β−グルカンを主体とする多糖類を高収率で効率よく抽出するため、キノコ100重量部に対して、溶媒を約1000〜約3000重量部、特に約1500重量部加えるのが好ましい。
抽出時間は、特に制限されないが、β−グルカンを主体とする多糖類を高収率で効率よく抽出するため、約0.5〜約3時間、特に約1時間が好ましい。
In the extraction process of the present invention, the aforementioned mushrooms are treated with subcritical water, ie, water at a temperature in the range of about 140 to about 180 ° C. under a pressure in the range of about 2 to about 3 MPa to produce β-glucan. Extract the main polysaccharide. Specifically, for example, water is added to mushrooms, the pressure is increased to a range of 2 to 3 MPa, the temperature is increased to a range of 140 to 180 ° C., and extraction is performed while stirring as necessary. .
In the extraction step, the temperature is preferably about 140 to about 160 ° C., and the pressure is preferably about 2 MPa in order to efficiently extract a polysaccharide mainly composed of β-glucan with high yield.
Further, the mixing ratio of the mushroom and water is not particularly limited, but in order to efficiently extract a polysaccharide mainly composed of β-glucan in a high yield, the solvent is added at about 1000 to about 100 parts by weight with respect to 100 parts by weight of the mushroom. It is preferred to add 3000 parts by weight, especially about 1500 parts by weight.
The extraction time is not particularly limited, but is preferably about 0.5 to about 3 hours, particularly about 1 hour in order to efficiently extract a polysaccharide mainly composed of β-glucan with high yield.
上記の抽出工程後、キノコと水との混合物をろ過や遠心分離などにかけることで残渣を取り除いて、β−グルカンを主体とする多糖類を含有する抽出液を得てもよい。さらに、得られた抽出液を濃縮、例えば減圧濃縮することで濃縮抽出液を得てもよい。得られた抽出液や濃縮抽出液をそのまま乾燥して、例えば凍結乾燥若しくは噴霧乾燥して、固形抽出物を得てもよい。 After the above extraction step, the residue may be removed by subjecting a mixture of mushrooms and water to filtration, centrifugation, or the like to obtain an extract containing a polysaccharide mainly composed of β-glucan. Furthermore, you may obtain a concentrated extract by concentrating the obtained extract, for example, concentrate | evaporating under reduced pressure. The obtained extract or concentrated extract may be dried as it is, for example, freeze-dried or spray-dried to obtain a solid extract.
前述の抽出工程は、具体的には、例えば、次のようにして行ってもよい。先ず、キノコ及び水を圧力容器に封入する。そこに圧力容器内部の圧力を高めるために窒素ガスなどの気体を注入して、約2〜約3MPa、例えば約2MPaの高圧状態にする。その高圧状態のままで圧力容器の内部のキノコと水の混合物を攪拌しながら、約140〜約180℃に加温して、約1時間、加圧熱水抽出を行う。
上記の加圧熱水抽出工程を終えたら、圧力容器内部の気体を抜いて常圧に戻し、キノコと水の混合物を回収する。次いで、この混合物から残渣を遠心分離機又はガラスフィルターによって取り除き、抽出液を得る。さらに、この得られた抽出液を乾燥して、薄茶色の固形抽出物を得ることができる。この固形抽出物は水に易溶で、β−グルカンを主体とする多糖類を高濃度(例えば、約30〜50%)に含有し得る。
Specifically, the above-described extraction step may be performed as follows, for example. First, mushrooms and water are sealed in a pressure vessel. In order to increase the pressure inside the pressure vessel, a gas such as nitrogen gas is injected to obtain a high pressure state of about 2 to about 3 MPa, for example, about 2 MPa. While maintaining the high pressure state, the mixture of mushrooms and water inside the pressure vessel is stirred, heated to about 140 to about 180 ° C., and subjected to pressurized hot water extraction for about 1 hour.
When the above pressurized hot water extraction step is completed, the gas inside the pressure vessel is removed and returned to normal pressure, and the mixture of mushrooms and water is recovered. Next, the residue is removed from the mixture by a centrifuge or a glass filter to obtain an extract. Furthermore, the obtained extract can be dried to obtain a light brown solid extract. This solid extract is easily soluble in water and can contain a polysaccharide mainly composed of β-glucan at a high concentration (for example, about 30 to 50%).
本発明の抽出工程は、β−グルカンを主体とする多糖類の収率を高めるため、反復して行ってもよい。すなわち、残渣を再度抽出工程に付するなどして、抽出工程を2回以上、好ましくは3回〜5回反復して行ってもよい。 The extraction process of the present invention may be performed repeatedly in order to increase the yield of polysaccharides mainly composed of β-glucan. That is, the extraction process may be repeated twice or more, preferably 3 to 5 times, for example, by subjecting the residue to the extraction process again.
本発明で得られる抽出物はさらなる精製工程に付してもよい。例えば、前記の抽出工程で得られた抽出液、濃縮抽出液、又は固形抽出物などの抽出物を、さらにアルコール沈澱法やクロマトグラフィ法を用いて精製して、β−グルカンを主体とする多糖類をより高濃度に含む精製物あるいは純度の高いβ−グルカンを主体とする多糖類を得ることができる。あるいは、限界ろ過法を用いて精製してもよい。 The extract obtained in the present invention may be subjected to further purification steps. For example, a polysaccharide mainly composed of β-glucan obtained by further purifying an extract such as an extract, a concentrated extract, or a solid extract obtained in the extraction step using an alcohol precipitation method or a chromatography method. Can be obtained as a purified product containing a higher concentration of or a highly purified β-glucan. Or you may refine | purify using a ultrafiltration method.
以下、実施例を挙げて本発明を更に詳しく具体的に説明するが、本発明はこれらに限定されるものではない。また、%は特に示さない限り重量%を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Moreover, unless otherwise indicated,% means weight%.
実施例1
マイタケ粉末80gに水800mLを加えて加熱し、還流状態で1時間抽出した。抽出後、遠心分離機でろ液と残渣に分けた。残渣にろ液と同量の熱水を加え、再び同様の操作を繰り返した。この操作をもう一度繰り返し、得られたろ液と残渣を乾燥させ、熱水抽出物と熱水抽出残渣を得た。
次に、熱水抽出残渣30gと水450mLを圧力容器に封入し、窒素ガスを注入した(約2MPa)。攪拌しながら160℃・1時間、加圧熱水抽出を行った。
抽出後は、内部の気体を抜いて常圧に戻し、試料を回収した。試料は遠心分離機により固形分と液状部分を分離させた。固形分と液状部分を乾燥させ、加圧熱水抽出残渣と加圧熱水抽出物をそれぞれ得た。上記抽出のフローを図1に示した。
Example 1
To 80 g of maitake powder, 800 mL of water was added and heated, followed by extraction under reflux for 1 hour. After extraction, the filtrate and residue were separated using a centrifuge. The same amount of hot water as the filtrate was added to the residue, and the same operation was repeated again. This operation was repeated once more, and the obtained filtrate and residue were dried to obtain a hot water extract and a hot water extraction residue.
Next, 30 g of hot water extraction residue and 450 mL of water were sealed in a pressure vessel, and nitrogen gas was injected (about 2 MPa). While stirring, extraction with pressurized hot water was performed at 160 ° C. for 1 hour.
After extraction, the internal gas was removed to return to normal pressure, and the sample was collected. Samples were separated from solids and liquids by a centrifuge. The solid content and the liquid part were dried to obtain a pressurized hot water extraction residue and a pressurized hot water extract, respectively. The extraction flow is shown in FIG.
比較例1
マイタケ粉末200gに80%エタノール水溶液1400mLを加えて加熱し、還流状態で1時間抽出した。抽出後、ガラスフィルターでろ過し、ろ液と残渣を得た。残渣にろ液と同量の80%エタノール水溶液を加え、再び同様の操作を繰り返した。この操作をもう一度繰り返し、得られたろ液と残渣を乾燥させ、80%エタノール抽出物と80%エタノール抽出残渣を得た。
80%エタノール抽出残渣は、さらに熱水抽出を行った。80%エタノール抽出残渣200gに水1400mLを加えて加熱し、還流状態で1時間抽出した。抽出後、ガラスフィルターでろ過し、ろ液と残渣を得た。残渣にろ液と同量の熱水を加え、再び同様の操作を繰り返した。この操作をもう一度繰り返し、得られたろ液と残渣を乾燥させ、熱水抽出物と熱水抽出残渣を得た。
熱水抽出残渣は、さらにオートクレーブ抽出を行った。熱水抽出残渣100gに水700mLを加えて、オートクレーブ内で120℃・1時間抽出した。抽出後、ガラスフィルターでろ過し、ろ液と残渣を得た。残渣にろ液と同量の熱水を加え、再び同様の操作を繰り返した。この操作をもう一度繰り返し、得られたろ液と残渣を乾燥させ、オートクレーブ抽出物とオートクレーブ抽出残渣を得た。
オートクレーブ抽出残渣は、さらにアンモニア抽出を行った。オートクレーブ抽出残渣10gに10%アンモニア水溶液100mLを加えて加熱し、還流状態で1時間抽出した。抽出後、ガラスフィルターでろ過し、ろ液と残渣を得た。残渣にろ液と同量の熱水を加え、再び同様の操作を繰り返した。ろ液が中性になるまで同様の操作を繰り返し、計4回の抽出を行った。得られたろ液と残渣を乾燥させ、10%アンモニア抽出物と10%アンモニア抽出残渣を得た。上記抽出のフローを図2に示した。
Comparative Example 1
To 200 g of maitake powder, 1400 mL of an 80% ethanol aqueous solution was added and heated, followed by extraction at reflux for 1 hour. After extraction, the mixture was filtered through a glass filter to obtain a filtrate and a residue. The same amount of 80% ethanol aqueous solution as the filtrate was added to the residue, and the same operation was repeated again. This operation was repeated once more, and the obtained filtrate and residue were dried to obtain an 80% ethanol extract and an 80% ethanol extraction residue.
The 80% ethanol extraction residue was further subjected to hot water extraction. 1200 mL of water was added to 200 g of 80% ethanol extraction residue, heated, and extracted for 1 hour under reflux. After extraction, the mixture was filtered through a glass filter to obtain a filtrate and a residue. The same amount of hot water as the filtrate was added to the residue, and the same operation was repeated again. This operation was repeated once more, and the obtained filtrate and residue were dried to obtain a hot water extract and a hot water extraction residue.
The hot water extraction residue was further subjected to autoclave extraction. To 100 g of the hot water extraction residue, 700 mL of water was added and extracted in an autoclave at 120 ° C. for 1 hour. After extraction, the mixture was filtered through a glass filter to obtain a filtrate and a residue. The same amount of hot water as the filtrate was added to the residue, and the same operation was repeated again. This operation was repeated once more, and the obtained filtrate and residue were dried to obtain an autoclave extract and an autoclave extraction residue.
The autoclave extraction residue was further subjected to ammonia extraction. To 10 g of the autoclave extraction residue, 100 mL of a 10% aqueous ammonia solution was added and heated, followed by extraction at reflux for 1 hour. After extraction, the mixture was filtered through a glass filter to obtain a filtrate and a residue. The same amount of hot water as the filtrate was added to the residue, and the same operation was repeated again. The same operation was repeated until the filtrate became neutral, and extraction was performed 4 times in total. The obtained filtrate and residue were dried to obtain 10% ammonia extract and 10% ammonia extraction residue. The extraction flow is shown in FIG.
上記で得られた実施例1及び比較例1について、各分画の収率とβ−グルカン含有率を調べた。「収率」は、抽出に用いたマイタケ粉末量に対する各分画の収量の割合を表す。「β−グルカン含有率」は日本食品分析センターが採用している酵素法に拠って求めた。酵素法とは酵素によりα−グルカンを分解し、残ったグルカンをβ−グルカンとして定量する方法である。また、マイタケ粉末のβ−グルカン含有率に対する、各分画のβ−グルカン含有率の割合を、抽出物についてはβ−グルカン抽出率として、抽出残渣についてはβ−グルカン残存率として、以下の式で求めた。
得られた結果は、実施例1については表1に、比較例1については表2にそれぞれ示した。
For Example 1 and Comparative Example 1 obtained above, the yield of each fraction and the β-glucan content were examined. “Yield” represents the ratio of the yield of each fraction to the amount of maitake powder used for extraction. The “β-glucan content” was determined based on the enzyme method adopted by the Japan Food Analysis Center. The enzymatic method is a method in which α-glucan is degraded by an enzyme and the remaining glucan is quantified as β-glucan. In addition, the ratio of β-glucan content of each fraction to β-glucan content of maitake powder, β-glucan extraction rate for the extract, β-glucan residual rate for the extraction residue, I asked for it.
The obtained results are shown in Table 1 for Example 1 and Table 2 for Comparative Example 1, respectively.
表1及び図1から、2段階の抽出工程で、マイタケに含まれるβ−グルカンの約50%が加圧熱水抽出物に含まれており、実施例1では効率よく抽出できていることがわかった。一方、表2及び図2から、4段階の抽出工程でも、マイタケに含まれるβ−グルカンのほとんどが残渣に残っており、比較例1では抽出効率が低いことがわかった。 From Table 1 and FIG. 1, in the two-stage extraction process, about 50% of β-glucan contained in maitake is contained in the pressurized hot water extract, and it can be extracted efficiently in Example 1. all right. On the other hand, it was found from Table 2 and FIG. 2 that even in the four-stage extraction process, most of the β-glucan contained in the maitake remained in the residue, and Comparative Example 1 showed low extraction efficiency.
実施例1で得られた加圧熱水抽出物について以下の項目を評価した。
(1) 平均分子量測定
GPC法を用い、実施例1で得られた加圧熱水抽出物の平均分子量を測定した。なお、平均分子量はプルラン分子量基準の相対値で示した。得られた結果は表3に示した。
The following items were evaluated for the pressurized hot water extract obtained in Example 1.
(1) Average molecular weight measurement
The average molecular weight of the pressurized hot water extract obtained in Example 1 was measured using the GPC method. The average molecular weight is shown as a relative value based on pullulan molecular weight. The results obtained are shown in Table 3.
(2) 分子量分布測定(限外ろ過法)
実施例1で得られた加圧熱水抽出物を約0.5g秤取り、50mLの蒸留水に溶解させて試料溶液を調製した。はじめに、限外ろ過膜としてPBQK膜(分画分子量:50,000)を用い、下記の方法で限外ろ過を実施し、回収したろ液(40mL×3)とセルに残った試料溶液残渣(10mL)を各々凍結乾燥し、重量を測定した。次に、ろ液乾燥物をすべて合わせて50mL蒸留水に再溶解し、PBCC膜(分画分子量:5,000)を限外ろ過膜として用いて限外ろ過を実施した。同様にろ液(40mL×3)とセルに残った試料溶液残渣(10mL)を各々回収し、凍結乾燥後、重量を測定した。
以上の工程により、実施例1で得られた加圧熱水抽出物を分子量50,000以上、5,000〜50,000、及び5,000以下の3つの画分に分けた。得られた結果は表4に示した。表中のパーセンテージは、蒸留水に溶解させた加圧熱水抽出物の重量に対する各分画の凍結乾燥後の重量の割合を示す。
(限外ろ過方法)
アミコン撹拌式セル(Model 8050 φ44.5mm)に限外ろ過膜をはさみこみ、セルに試料溶液を加えた。撹拌しながら、窒素ガスを吹き込んで圧力をかけ、ろ過膜を通ったろ液を回収した。ろ液がセルに加えた試料溶液の量の80%に達したら、窒素の吹き込みと撹拌を停止させた。ろ液を回収し、セルに回収したろ液と同量の蒸留水を加え、限外ろ過を再開した。これを2回繰り返した。
(2) Molecular weight distribution measurement (ultrafiltration method)
About 0.5 g of the pressurized hot water extract obtained in Example 1 was weighed and dissolved in 50 mL of distilled water to prepare a sample solution. First, a PBQK membrane (fractionated molecular weight: 50,000) was used as an ultrafiltration membrane, ultrafiltration was carried out by the following method, and the collected filtrate (40 mL × 3) and the sample solution residue remaining in the cell ( 10 mL) were each lyophilized and weighed. Next, all the dried filtrates were combined and redissolved in 50 mL distilled water, and ultrafiltration was performed using a PBCC membrane (fractionated molecular weight: 5,000) as an ultrafiltration membrane. Similarly, the filtrate (40 mL × 3) and the sample solution residue (10 mL) remaining in the cell were collected, and after lyophilization, the weight was measured.
Through the above steps, the pressurized hot water extract obtained in Example 1 was divided into three fractions having a molecular weight of 50,000 or more, 5,000 to 50,000, and 5,000 or less. The results obtained are shown in Table 4. The percentages in the table indicate the ratio of the weight of each fraction after lyophilization to the weight of the pressurized hot water extract dissolved in distilled water.
(Ultrafiltration method)
An ultrafiltration membrane was sandwiched in an Amicon stirring cell (Model 8050 φ44.5 mm), and a sample solution was added to the cell. While stirring, nitrogen gas was blown in to apply pressure, and the filtrate that passed through the filtration membrane was recovered. When the filtrate reached 80% of the amount of sample solution added to the cell, nitrogen blowing and agitation were stopped. The filtrate was recovered, the same amount of distilled water as the recovered filtrate was added to the cell, and ultrafiltration was resumed. This was repeated twice.
(3) 糖鎖結合位置の決定
上記(2)の限外ろ過法により得た分子量50,000以上の画分について、グルコース結合部分の1-3,1-4、及び1-6結合の量比をメチル化分析法で測定した。得られた結果は表5に示した。
(3) Determination of the sugar chain binding position For the fraction with a molecular weight of 50,000 or more obtained by the ultrafiltration method in (2) above, the amount ratio of 1-3, 1-4, and 1-6 bonds of the glucose binding moiety was determined. Measured by methylation analysis. The results obtained are shown in Table 5.
(4) 抗腫瘍評価試験
実施例1で得られた加圧熱水抽出物450mgを4.5mlの注射用蒸留水に浮遊させて100mg/mlの濃度の試料液を調製した。また、市販の抗腫瘍剤の一種であるTS−1〔商品名ティーエスワン(登録商標)カプセル25、大鵬薬品工業株式会社〕1カプセルの内容物を12.5mlの注射用蒸留水に溶解させ2mg/mlの濃度の試料液を調製した。
凍結保存したS−180細胞(マウス由来Sarcoma 180)をPBS(-)で遠心洗浄した後、約106個をマウス(ICR系、6週齢、雌)の腹腔内に移植し、約7〜10日後に増殖した腫瘍細胞を含んだ腹水を採取した。次いで、上記採取した腹水を腫瘍細胞数105個/マウスの量で別のマウス(ICR系、6週齢、雌)腹側皮内に注入して、腫瘍細胞を移植した。次いで、これら腫瘍細胞を移植したマウスを7匹ずつ3群に群分けして、各群に、それぞれ蒸留水、実施例1の加圧熱水抽出物試料液、及びTS−1試料液を、表6に示した用量で、移植日から19日までの間、毎日経口投与した。移植後22日にマウスを脱血死させ、腫瘍を摘出してその重量を測定した。また、投与期間中、体重測定を2回/週行った。さらに、腫瘍細胞数106個/マウスの量を用いた試験も同様に行った。得られた結果は表6に示した。
(4) Anti-tumor evaluation test 450 mg of the pressurized hot water extract obtained in Example 1 was suspended in 4.5 ml of distilled water for injection to prepare a sample solution having a concentration of 100 mg / ml. Moreover, TS-1 (trade name TS-1 (registered trademark) capsule 25, Taiho Pharmaceutical Co., Ltd.), a kind of commercially available antitumor agent, is dissolved in 12.5 ml of distilled water for injection to give 2 mg. A sample solution having a concentration of / ml was prepared.
Cryopreserved S-180 cells (derived from mouse Sarcoma 180) PBS (-) was centrifugally washed with, grafted Approximately 106 mice (ICR type, 6 weeks old, female) intraperitoneally about 7 Ascites fluid containing tumor cells grown after 10 days was collected. Next, the collected ascites was injected into the ventral skin of another mouse (ICR line, 6 weeks old, female) in an amount of 10 5 tumor cells / mouse to transplant tumor cells. Next, the mice transplanted with these tumor cells were divided into 3 groups of 7 mice, and distilled water, the pressurized hot water extract sample solution of Example 1 and the TS-1 sample solution were respectively added to each group. The doses shown in Table 6 were orally administered daily from the day of transplantation until the 19th day. On the 22nd day after transplantation, the mice were bled to death, the tumors were removed and their weights were measured. During the administration period, body weight was measured twice / week. Further, a test using an amount of 10 6 tumor cells / mouse was similarly performed. The obtained results are shown in Table 6.
表6から、実施例1で得られた加圧熱水抽出物を投与した群は、蒸留水を投与した群に比べて、腫瘍重量が低下していることが認められた。また、蒸留水や実施例1の加圧熱水抽出物を投与した群ではマウスの体重は順調に増加し、斃死した例はなかったが、TS−1投与群では投与8日後まではマウスの体重は増加したものの、その後は減少に転じ、ついには7匹中4匹まで斃死するに至った。
以上から、実施例1で得られた加圧熱水抽出物はS−180腫瘍に対して抗腫瘍効果があること、安全性に優れていることが認められた。
From Table 6, it was recognized that the tumor weight decreased in the group administered with the pressurized hot water extract obtained in Example 1 compared with the group administered with distilled water. Moreover, in the group administered with distilled water or the pressurized hot water extract of Example 1, the body weight of the mice increased steadily, and there was no case of drowning, but in the TS-1 administration group, the mice were up to 8 days after administration. Although the body weight increased, it turned to a decrease thereafter, and finally, 4 out of 7 animals were drowned.
From the above, it was confirmed that the pressurized hot water extract obtained in Example 1 has an antitumor effect against S-180 tumor and is excellent in safety.
本発明によれば、β−グルカンを主体とした多糖類を高濃度に含有する抽出物を得ることができる。本発明の抽出物は、β−グルカンを主体とした多糖類を高濃度に含有するので、β−グルカンを主体とする多糖類の高純度精製にも有利に使用することができる。
また、本発明の抽出物は、水溶性なので生体に取り込まれやすく、医薬品、特に腫瘍の予防及び/又は治療用医薬品、医薬部外品、化粧品、あるいは健康食品、健康補助食品、特定保健用食品、又は栄養補助食品などの食品、あるいは動物用飼料に利用できる。
According to the present invention, an extract containing a polysaccharide mainly composed of β-glucan at a high concentration can be obtained. Since the extract of the present invention contains a polysaccharide mainly composed of β-glucan at a high concentration, it can be advantageously used for high-purity purification of a polysaccharide mainly composed of β-glucan.
In addition, the extract of the present invention is water-soluble, so it can be easily taken into the living body, and it is a pharmaceutical, particularly a pharmaceutical for tumor prevention and / or treatment, a quasi-drug, a cosmetic, or a health food, health supplement, or food for specified health use. Or foods such as dietary supplements or animal feeds.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014124659A JP2014221899A (en) | 2014-06-17 | 2014-06-17 | METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING β-GLUCAN AS MAIN COMPONENT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014124659A JP2014221899A (en) | 2014-06-17 | 2014-06-17 | METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING β-GLUCAN AS MAIN COMPONENT |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009176229A Division JP2011026525A (en) | 2009-07-29 | 2009-07-29 | METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING beta-GLUCAN AS MAIN COMPONENT |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014221899A true JP2014221899A (en) | 2014-11-27 |
Family
ID=52121556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014124659A Pending JP2014221899A (en) | 2014-06-17 | 2014-06-17 | METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING β-GLUCAN AS MAIN COMPONENT |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014221899A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106188333A (en) * | 2016-09-18 | 2016-12-07 | 广西大学 | A kind of extracting method of Sparassia crispa (Wulf.) Fr. polysaccharide |
JP2017537215A (en) * | 2014-12-08 | 2017-12-14 | イノ ファーム カンパニー リミテッド | Biocompatible composition and method for producing the same |
CN109942722A (en) * | 2019-03-13 | 2019-06-28 | 江苏盈科生物制药有限公司 | A kind of production method of lentinan |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11196818A (en) * | 1998-01-08 | 1999-07-27 | Shingo Kikuchi | Production of essence product from plants and mushrooms on factory scale |
JP2002030101A (en) * | 2000-07-17 | 2002-01-31 | Cremona:Kk | PREPARATION PROCESS FOR EXTRACTING beta-D-GLUCAN CONTAINED IN AGARICUS BLAZEI MURILL INTO LIQUID |
JP2007204717A (en) * | 2006-02-06 | 2007-08-16 | Nagaoka Univ Of Technology | Method for obtaining mushroom-derived polysaccharide |
JP2008138195A (en) * | 2006-11-09 | 2008-06-19 | Mizota Corp | Method and apparatus for extracting useful material from ganoderma amboinense |
JP2011026525A (en) * | 2009-07-29 | 2011-02-10 | Wood One:Kk | METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING beta-GLUCAN AS MAIN COMPONENT |
-
2014
- 2014-06-17 JP JP2014124659A patent/JP2014221899A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11196818A (en) * | 1998-01-08 | 1999-07-27 | Shingo Kikuchi | Production of essence product from plants and mushrooms on factory scale |
JP2002030101A (en) * | 2000-07-17 | 2002-01-31 | Cremona:Kk | PREPARATION PROCESS FOR EXTRACTING beta-D-GLUCAN CONTAINED IN AGARICUS BLAZEI MURILL INTO LIQUID |
JP2007204717A (en) * | 2006-02-06 | 2007-08-16 | Nagaoka Univ Of Technology | Method for obtaining mushroom-derived polysaccharide |
JP2008138195A (en) * | 2006-11-09 | 2008-06-19 | Mizota Corp | Method and apparatus for extracting useful material from ganoderma amboinense |
JP2011026525A (en) * | 2009-07-29 | 2011-02-10 | Wood One:Kk | METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING beta-GLUCAN AS MAIN COMPONENT |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017537215A (en) * | 2014-12-08 | 2017-12-14 | イノ ファーム カンパニー リミテッド | Biocompatible composition and method for producing the same |
CN106188333A (en) * | 2016-09-18 | 2016-12-07 | 广西大学 | A kind of extracting method of Sparassia crispa (Wulf.) Fr. polysaccharide |
CN109942722A (en) * | 2019-03-13 | 2019-06-28 | 江苏盈科生物制药有限公司 | A kind of production method of lentinan |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011026525A (en) | METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING beta-GLUCAN AS MAIN COMPONENT | |
Mizuno et al. | Reishi, Ganoderma lucidum and Ganoderma tsugae: bioactive substances and medicinal effects | |
Wasser | Review of Medicinal Mushrooms Advances: Good News from Old Allies. | |
JP2859843B2 (en) | Antitumor substance extracted from Maitake | |
CA1072034A (en) | Method of producing nitrogen-containing polysaccharides | |
CN108047343B (en) | Preparation method and application of fritillaria pallidiflora total polysaccharide | |
WO2009017462A2 (en) | New ganoderma tsugae var. jannieae strain tay-i and biologically active biomass and extracts therefrom | |
US20100056473A1 (en) | Method of extracting fucoidan | |
CN104558115A (en) | Antioxidant polypeptide with Raja porosa meat protein as well as preparation method and application of antioxidant polypeptide | |
CN106084087A (en) | A kind of preparation method of Fructus Trichosanthis polysaccharide | |
JP2014221899A (en) | METHOD FOR EXTRACTING POLYSACCHARIDE COMPRISING β-GLUCAN AS MAIN COMPONENT | |
WO2009102008A1 (en) | Low-molecular-weight substance derived from maitake mushroom and having immunostimulating activity and anti-tumor activity | |
JP2007031665A (en) | Glycoprotein extracted from grifola frondosa | |
JP4451100B2 (en) | Immunostimulant and anticancer agent containing Tamogitake fruit body composition as active ingredient | |
CN103275237B (en) | Preparation method and application of eggplant branch polysaccharide | |
JP2011236183A (en) | Method for extracting ergosterol peroxide derived from mushrooms | |
WO2009017463A2 (en) | NOVEL β-GLUCANS ISOLATED FROM HIGHER BASIDIOMYCETES MUSHROOM GANODERMA TSUGAE VAR. JANNIEAE | |
KR101156775B1 (en) | Anti-cancer activity of Ganoderma lucidum extract, and extractive method using basic alcohol | |
KR100729213B1 (en) | Exo-biopolymer isolated from submerged mycelial culture of Grifola frondosa increasing immune activity | |
KR0178290B1 (en) | Extracting method with high concentration of principle ingredients from a fruit body of basidomyces | |
Smith | Investigating British Columbia wild mushrooms for growth-inhibitory activity | |
JPH05306233A (en) | Hot water extract of lyophyllum ulmarium | |
JPH05117304A (en) | Water-soluble polysaccharide originating from yamabushitake (fungus) and antitumor agent mainly containing the same | |
Wang et al. | Mushrooms: Isolation and Purification of Exopolysaccharides | |
JPH07238031A (en) | Antihyperglycemic agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150224 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150319 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151104 |