JP2014221446A - Reaction apparatus - Google Patents

Reaction apparatus Download PDF

Info

Publication number
JP2014221446A
JP2014221446A JP2013101162A JP2013101162A JP2014221446A JP 2014221446 A JP2014221446 A JP 2014221446A JP 2013101162 A JP2013101162 A JP 2013101162A JP 2013101162 A JP2013101162 A JP 2013101162A JP 2014221446 A JP2014221446 A JP 2014221446A
Authority
JP
Japan
Prior art keywords
microwave
temperature
liquid
heated
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101162A
Other languages
Japanese (ja)
Other versions
JP6231295B2 (en
Inventor
裕太 大木
Hirota Oki
裕太 大木
高橋 直行
Naoyuki Takahashi
直行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Rikakikai Co Ltd
Original Assignee
Tokyo Rikakikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Rikakikai Co Ltd filed Critical Tokyo Rikakikai Co Ltd
Priority to JP2013101162A priority Critical patent/JP6231295B2/en
Publication of JP2014221446A publication Critical patent/JP2014221446A/en
Application granted granted Critical
Publication of JP6231295B2 publication Critical patent/JP6231295B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a reaction apparatus which uses a microwave as a heat source and with which temperature of a liquid to be heated can be controlled to be constant while accurately measuring absorbed electric power of the microwave used for heating the liquid to be heated.SOLUTION: A liquid to be heated in a thermostat bath is irradiated with a microwave from an inlet side coaxial waveguide converter via a microwave inlet. Electric power of the microwave absorbed by the liquid to be heated is calculated by using: electric power of the microwave introduced from the inlet side coaxial waveguide converter; electric power of the microwave guided from a microwave outlet of the thermostat bath to an outlet side coaxial waveguide converter; and reflective electric power of the microwave returned to a microwave oscillator. When temperature of the liquid to be heated is elevated due to an exothermic reaction, the temperature of the liquid to be heated is kept to be equal to temperature before the reaction by reducing electric power of the microwave to be absorbed.

Description

本発明は、反応装置に関し、詳しくは、反応容器内の被加熱液にマイクロ波を照射しながら前記被加熱液の温度を一定に制御することが可能な反応装置に関する。   The present invention relates to a reaction apparatus, and more particularly to a reaction apparatus capable of controlling the temperature of the liquid to be heated to be constant while irradiating microwaves to the liquid to be heated in a reaction vessel.

マイクロ波を照射しながら被加熱物の温度を一定に制御するマイクロ波加熱装置として、被加熱物が流れる流通管の周囲に低誘電率の熱交換用の熱媒体を循環させる外管を設けたものが知られている(例えば、特許文献1参照。)。また、反応熱量を測定する反応装置において、反応槽、温度センサ、ヒーター装置、ジャケット、チラーユニット、エアブロー装置、制御装置を含み、制御装置によってヒーター装置などを制御することにより、反応槽内の液剤の加熱・冷却効果を高める加熱・冷却機構が知られている(例えば、特許文献2参照。)。   As a microwave heating device that controls the temperature of the object to be heated while irradiating microwaves, an outer tube that circulates a heat medium for heat exchange with a low dielectric constant is provided around the circulation tube through which the object to be heated flows. The thing is known (for example, refer patent document 1). Moreover, in the reaction apparatus for measuring the amount of reaction heat, it includes a reaction tank, a temperature sensor, a heater device, a jacket, a chiller unit, an air blow device, and a control device. By controlling the heater device and the like by the control device, the liquid agent in the reaction vessel There is known a heating / cooling mechanism for enhancing the heating / cooling effect (see, for example, Patent Document 2).

特開2010−192147号公報JP 2010-192147 A 特開2012−166181号公報JP 2012-166181 A

特許文献1に記載された加熱装置では、マイクロ波が外管と流通管との間を流れる熱媒体に吸収されるため、被加熱物を加熱するために消費されたマイクロ波の量(電力)を正確に測定することができなかった。また、ヒートフロー式により熱量測定を行う際には、反応熱量を校正するためのキャリブレーションヒーターを被加熱物中に沈める必要があるが、マイクロ波の加熱や電波漏れの影響が考えられるため、キャリブレーションを行うことができなかった。このため、反応熱量を測定できないので、マイクロ波の反応進行状況の確認ができなかった。さらに、流通管周囲の構造も脆弱であり、誘電率の低い非加熱液の昇温が困難であり、エネルギー効率が低く、温度範囲も狭いという問題があった。また、特許文献2に記載された加熱・冷却機構では、被加熱物(液剤)の加熱源としてマイクロ波を使用していないため、加熱効率が十分に高いとは言えなかった。   In the heating apparatus described in Patent Document 1, since microwaves are absorbed by the heat medium flowing between the outer tube and the flow tube, the amount of microwaves consumed to heat the object to be heated (electric power) Could not be measured accurately. In addition, when performing calorimetric measurement with the heat flow method, it is necessary to submerge a calibration heater for calibrating the reaction calorie in the object to be heated, but because of the effects of microwave heating and radio wave leakage, Calibration could not be performed. For this reason, since the amount of reaction heat cannot be measured, the progress of the microwave reaction could not be confirmed. Furthermore, the structure around the circulation pipe is also fragile, it is difficult to raise the temperature of the non-heating liquid having a low dielectric constant, there is a problem that the energy efficiency is low, and the temperature range is narrow. Further, the heating / cooling mechanism described in Patent Document 2 does not use microwaves as a heating source for the object to be heated (liquid agent), and thus cannot be said to have sufficiently high heating efficiency.

そこで本発明は、加熱源としてマイクロ波を使用するとともに、金属製の恒温槽を使用し、被加熱物である被加熱液を加熱するために用いられたマイクロ波の吸収電力を正確に測定しながら被加熱液の温度を一定に制御することが可能な反応装置を提供することを目的としている。   Therefore, the present invention uses a microwave as a heating source and uses a metal thermostat to accurately measure the absorbed power of the microwave used to heat the liquid to be heated, which is the object to be heated. An object of the present invention is to provide a reaction apparatus capable of controlling the temperature of the liquid to be heated to be constant.

上記目的を達成するため、本発明の反応装置は、被加熱液を収容可能な反応容器と、該反応容器を挿通可能な反応容器挿通孔を有する金属製の恒温槽と、該恒温槽の対向する一対の側面に対向してそれぞれ設けられたマイクロ波導入口及びマイクロ波導出口と、前記マイクロ波導入口に連結された入口側同軸導波管変換器及び前記マイクロ波導出口に連結された出口側同軸導波管変換器と、マイクロ波発振器から出力されて前記入口側同軸導波管変換器を介して前記反応容器に導入されるマイクロ波の電力を測定する入口側電力検出手段と、入口側同軸導波管変換器から導入されて反応容器を経て出口側同軸導波管変換器に導出されたマイクロ波の電力を測定する出口側電力検出手段と、マイクロ波発振器まで戻ってきたマイクロ波の反射電力を測定する反射電力検出手段と、前記入口側電力検出手段で測定したマイクロ波の電力と出口側電力検出手段で測定したマイクロ波の電力と反射電力検出手段で測定したマイクロ波の電力とに基づいて前記被加熱液に吸収されたマイクロ波の電力を算出する吸収電力算出手段と、前記反応容器内に反応薬液を注入する反応薬液注入部と、前記反応容器内の被加熱液の温度を測定する被加熱液温度測定手段と、前記恒温槽を加熱する加熱手段及び恒温槽を冷却する冷却手段及び恒温槽の温度を測定する恒温槽温度測定手段と、前記被加熱液温度測定手段で測定した被加熱液の温度又は前記恒温槽温度測定手段で測定した恒温槽の温度に基づいて前記加熱手段及び冷却手段を制御する恒温槽温度制御手段と、前記被加熱液温度測定手段で測定した被加熱液の温度又は設定出力に基づいて前記マイクロ波発振器から出力されるマイクロ波の電力を制御するマイクロ波出力制御手段とを備え、マイクロ波シングルモード(TE10モード)を熱源とし、マイクロ波の進行波が恒温槽に吸収されずに被加熱液に1回だけ当たって通過することにより被加熱液にマイクロ波を直接照射可能であり、前記恒温槽内に配置される前記被加熱液は、前記マイクロ波シングルモードの吸収にとって最適な位置に配置されることを特徴としている。   In order to achieve the above object, the reaction apparatus of the present invention includes a reaction vessel capable of containing a liquid to be heated, a metal thermostat having a reaction vessel insertion hole through which the reaction vessel can be inserted, and an opposite of the thermostat. A microwave inlet and a microwave outlet provided to face the pair of side surfaces, an inlet-side coaxial waveguide converter connected to the microwave inlet, and an outlet-side coaxial waveguide connected to the microwave outlet. A wave tube converter, an inlet-side power detection means for measuring the microwave power output from the microwave oscillator and introduced into the reaction vessel via the inlet-side coaxial waveguide converter, and the inlet-side coaxial waveguide An outlet-side power detection means for measuring the microwave power introduced from the wave tube converter and led to the outlet-side coaxial waveguide converter through the reaction vessel, and the reflected wave of the microwave returned to the microwave oscillator Based on the reflected power detecting means for measuring the power, the microwave power measured by the inlet side power detecting means, the microwave power measured by the outlet side power detecting means, and the microwave power measured by the reflected power detecting means The absorption power calculation means for calculating the microwave power absorbed by the liquid to be heated, the reactive chemical liquid injection part for injecting the reactive chemical liquid into the reaction container, and the temperature of the heated liquid in the reaction container are measured. The temperature measurement means for heating, the heating means for heating the thermostat, the cooling means for cooling the thermostat, the thermostat temperature measurement means for measuring the temperature of the thermostat, and the liquid temperature measurement means for measurement Measured by the temperature of the liquid to be heated or the temperature of the thermostat measured by the temperature measuring means of the thermostat, the temperature control means for controlling the heating means and the cooling means, and the temperature measurement means for the temperature of the liquid to be heated. Microwave output control means for controlling the power of the microwave output from the microwave oscillator based on the temperature of the liquid to be heated or the set output, and using the microwave single mode (TE10 mode) as a heat source, The traveling wave is not absorbed by the thermostat and can be directly irradiated with microwaves by hitting the liquid to be heated only once, and the liquid to be heated disposed in the thermostat is It is characterized by being arranged at an optimum position for absorption of the microwave single mode.

さらに、本発明の反応装置は、前記恒温槽が、前記マイクロ波導入口及びマイクロ波導出口とは異なる恒温槽の側面に、前記反応容器内の状態を観察するための観察窓と明かり取り窓とが対向して設けられていることを特徴としている。また、前記マイクロ波が2.45GHzであって、前記反応容器が該マイクロ波を吸収しにくい材質で形成されていることを特徴としている。   Furthermore, the reaction apparatus of the present invention has an observation window and a light extraction window for observing the state in the reaction vessel on a side surface of the thermostatic chamber different from the microwave inlet and the microwave outlet. It is characterized by being provided facing each other. The microwave is 2.45 GHz, and the reaction vessel is formed of a material that hardly absorbs the microwave.

加えて、前記入口側同軸導波管変換器が前記マイクロ波導入口に向かって高さ寸法が一定で幅寸法が漸次幅狭となる形状を有し、出口側同軸導波管変換器が前記マイクロ波導出口に向かって高さ寸法が一定で幅寸法が漸次幅狭となる形状を有していることを特徴としている。   In addition, the inlet-side coaxial waveguide converter has a shape in which the height dimension is constant toward the microwave inlet and the width dimension is gradually narrowed. It is characterized in that the height dimension is constant toward the wave outlet and the width dimension is gradually narrowed.

また、前記反応容器が該反応容器を保持する保持筒に保持された状態で前記反応容器挿通孔に挿通され、前記保持筒には、前記マイクロ波導入口及び前記マイクロ波導出口に対応した開口がそれぞれ設けられていることを特徴とし、前記保持筒が外側形状が前記反応容器挿通孔に対応した形状で、反応容器に接する内側形状が異なる複数種類の保持筒の中から、使用する反応容器の外側形状に対応した内側形状を有する保持筒を選択して用いることを特徴としている。   Further, the reaction vessel is inserted into the reaction vessel insertion hole in a state of being held by a holding cylinder holding the reaction vessel, and the holding cylinder has openings corresponding to the microwave introduction port and the microwave outlet port, respectively. The holding cylinder has an outer shape corresponding to the reaction vessel insertion hole, and the outer shape of the reaction vessel to be used is selected from a plurality of types of holding tubes having different inner shapes in contact with the reaction vessel. A holding cylinder having an inner shape corresponding to the shape is selected and used.

本発明の反応装置によれば、金属製の恒温槽を使用し、該恒温槽の側面にマイクロ波導入口及びマイクロ波導出口を設けているので、恒温槽にマイクロ波が吸収されることはなく、入口側同軸導波管変換器からマイクロ波導入口を介して恒温槽内の被加熱液にマイクロ波を照射し、入口側同軸導波管変換器から導入したマイクロ波の電力と、恒温槽のマイクロ波導出口から出口側同軸導波管変換器に導出されたマイクロ波の電力と、マイクロ波発振器まで戻ったマイクロ波の反射電力とから被加熱液に吸収されたマイクロ波の電力を算出することができる。発熱反応によって被加熱液が昇温したときに、マイクロ波の吸収電力を減少させることにより被加熱液の温度を反応前と同じ温度に保つことができる。また、マイクロ波の吸収電力を正確に測定できるので、マイクロ波反応のエンタルピー、反応速度、安全性確認や反応進行状況を確認することができる。さらに、恒温槽を金属製としたので、構造が堅牢となり、安全性や使い勝手の向上が図れる。また、誘電率の低い非加熱液であっても効率よく昇温させることができ、温度範囲も広く取ることが可能となる。   According to the reactor of the present invention, a metal thermostat is used, and a microwave inlet and a microwave outlet are provided on the side of the thermostat, so that microwaves are not absorbed by the thermostat, Microwaves are irradiated from the inlet-side coaxial waveguide converter to the liquid to be heated in the thermostatic chamber through the microwave inlet, and the microwave power introduced from the inlet-side coaxial waveguide converter and the microwave in the thermostatic chamber It is possible to calculate the microwave power absorbed in the liquid to be heated from the microwave power derived from the wave outlet to the outlet coaxial waveguide converter and the reflected microwave power returned to the microwave oscillator. it can. When the temperature of the liquid to be heated rises due to an exothermic reaction, the temperature of the liquid to be heated can be kept at the same temperature as before the reaction by reducing the absorbed power of the microwave. Moreover, since the absorbed power of the microwave can be measured accurately, the enthalpy, reaction speed, safety confirmation and reaction progress of the microwave reaction can be confirmed. Furthermore, since the thermostat is made of metal, the structure is robust, and safety and usability can be improved. Further, even a non-heated liquid having a low dielectric constant can be efficiently heated and a wide temperature range can be obtained.

さらに、恒温槽の温度を一定に保った状態で、マイクロ波発振器から出力するマイクロ波の電力を調整することにより、反応熱によって温度が変化する被加熱液の温度を一定に保つことができ、このときに吸収されたマイクロ波の電力を利用して演算することにより、反応熱[W]及び反応熱量[J]を算出することができる。さらに、マイクロ波の電力を一定に保った状態で、恒温槽の温度を一定に保ちながら被加熱液の温度変化を測定したり、被加熱液の温度を一定に保つように恒温槽の温度を変化させたりすることによっても、反応熱[W]及び反応熱量[J]を算出することができる。したがって、キャリブレーションヒーターを用いることなく、ヒートフロー式による熱量測定を行うこともできる。   Furthermore, by adjusting the power of the microwave output from the microwave oscillator while keeping the temperature of the thermostat constant, the temperature of the liquid to be heated whose temperature changes due to reaction heat can be kept constant, The heat of reaction [W] and the amount of heat of reaction [J] can be calculated by calculating using the microwave power absorbed at this time. Furthermore, while maintaining the microwave power constant, measure the temperature change of the liquid to be heated while keeping the temperature of the constant temperature bath constant, or adjust the temperature of the constant temperature bath to keep the temperature of the liquid to be heated constant. The reaction heat [W] and the reaction heat quantity [J] can also be calculated by changing the values. Therefore, the calorific value can be measured by a heat flow method without using a calibration heater.

本発明の反応装置の一形態例を示すブロック図である。It is a block diagram which shows one example of a reactor of this invention. 反応装置の反応部をバッチ式とした一例を示す断面図である。It is sectional drawing which shows an example which made the reaction part of the reaction apparatus batch type. 図2のIII−III断面図である。FIG. 3 is a sectional view taken along line III-III in FIG. 2. 同じくバッチ式反応部の分解斜視図である。It is a disassembled perspective view of a batch type reaction part similarly. 同じくバッチ式反応部の斜視図である。It is a perspective view of a batch type reaction part similarly. 反応装置の反応部をフロー式とした一例を示す断面図である。It is sectional drawing which shows an example which made the reaction part of the reaction apparatus the flow type. 同じくフロー式反応部の斜視図である。It is a perspective view of a flow type reaction part similarly. バッチ式及びフロー式における反応時の状態を示す説明図である。It is explanatory drawing which shows the state at the time of reaction in a batch type and a flow type. バッチ式反応部を使用して反応により温度変化した被加熱液の温度を、測定した被加熱液の温度に基づいてマイクロ波電力を調節することにより一定に保持するようにしたときの状態の一例を示す説明図である。An example of a state in which the temperature of the liquid to be heated that has been changed by the reaction using the batch-type reaction unit is kept constant by adjusting the microwave power based on the measured temperature of the liquid to be heated. It is explanatory drawing which shows. 同じく反応により温度変化した被加熱液の温度を、測定した被加熱液の温度に基づいて恒温槽の温度を調節することにより一定に保持するようにしたときの状態の一例を示す説明図である。It is explanatory drawing which shows an example of the state when it is made to hold | maintain constant the temperature of the to-be-heated liquid similarly temperature-changed by reaction by adjusting the temperature of a thermostat based on the temperature of the to-be-heated liquid measured. . 同じく反応により温度変化した被加熱液によって温度変化する恒温槽の温度を、測定した恒温槽の温度に基づいて一定に保持するようにしたときの状態の一例を示す説明図である。It is explanatory drawing which shows an example of a state when it is made to hold | maintain constant the temperature of the thermostat which changes the temperature with the to-be-heated liquid similarly temperature-changed by reaction based on the temperature of the measured thermostat. 図9に示す状態で実験を行ったときの、被加熱液と反応薬液とを反応させたときの被加熱液の温度と、入口側電力検出手段で測定したマイクロ波の電力と、被加熱液が吸収したマイクロ波の電力との変化の一例を示す図である。When the experiment was performed in the state shown in FIG. 9, the temperature of the liquid to be heated when the liquid to be heated and the reaction chemical liquid were reacted, the power of the microwave measured by the inlet side power detection means, and the liquid to be heated It is a figure which shows an example of the change with the electric power of the microwave which absorbed. 同じく図9に示す状態で実験を行ったときの各値の変化の一例を示す図である。FIG. 10 is also a diagram illustrating an example of changes in values when an experiment is performed in the state illustrated in FIG. 9. 図10に示す状態で実験を行ったときの各値の変化の一例を示す図である。It is a figure which shows an example of a change of each value when experimenting in the state shown in FIG. 図10に示す状態で実験を行ったときの各値の変化の他の例を示す図である。It is a figure which shows the other example of a change of each value when experimenting in the state shown in FIG.

図1乃至図5は、本発明の反応装置の反応容器としてバッチ式の反応容器を使用した例を示すもので、被加熱液Lを収容可能な試験管などからなる反応容器11と、マイクロ波を吸収しない金属材料、例えば熱伝導性の良好なアルミニウムで形成された直方体形状の恒温槽12とで反応部13が形成されている。反応容器11の内部には、マイクロ波を吸収したり、反射したりしない光ファイバー式温度センサ14が挿入されており、反応容器11の上部開口には、光ファイバー式温度センサ14の挿通部15aと、反応容器11内に反応薬液を注入する際に使用する反応薬液注入部15bと、反応容器11内からガスを排出するガスパージ管15cとを備えたキャップ部材15が装着される。   1 to 5 show an example in which a batch-type reaction vessel is used as a reaction vessel of the reaction apparatus of the present invention. A reaction vessel 11 composed of a test tube or the like that can contain a liquid to be heated L, and a microwave The reaction portion 13 is formed of a metal material that does not absorb water, for example, a rectangular parallelepiped shaped constant temperature bath 12 made of aluminum having good thermal conductivity. An optical fiber temperature sensor 14 that does not absorb or reflect microwaves is inserted inside the reaction vessel 11, and an insertion portion 15 a of the optical fiber temperature sensor 14 is inserted into the upper opening of the reaction vessel 11. A cap member 15 including a reactive chemical liquid injection portion 15 b used when injecting a reactive chemical liquid into the reaction vessel 11 and a gas purge pipe 15 c that discharges gas from the reaction vessel 11 is attached.

前記恒温槽12には、前記反応容器11を直接又は保持筒16を介して挿通可能な反応容器挿通孔17が恒温槽12の中央部を鉛直方向に貫通した状態で設けられるとともに、対向する一対の2面には、同一の長方形状を有するマイクロ波導入口18とマイクロ波導出口19とが貫通状態で対向してそれぞれ設けられている。また、恒温槽12の対向する一対の他の2面には、反応容器11内の状態を観察するための観察窓20と明かり取り窓21とが貫通状態で対向してそれぞれ設けられている。   The thermostatic chamber 12 is provided with a reaction vessel insertion hole 17 through which the reaction vessel 11 can be inserted directly or via a holding cylinder 16 in a state of penetrating through the central portion of the thermostatic bath 12 in the vertical direction, and a pair of opposed chambers. On the two surfaces, a microwave inlet 18 and a microwave outlet 19 having the same rectangular shape are provided facing each other in a penetrating state. An observation window 20 for observing the state in the reaction vessel 11 and a light-extracting window 21 are respectively provided facing each other on the other two surfaces of the pair of thermostatic chambers 12 in a penetrating state.

さらに、マイクロ波導入口18やマイクロ波導出口19、観察窓20や明かり取り窓21から外れた位置の恒温槽12の内部には、恒温槽12をあらかじめ設定された温度に調節するための冷却手段としての冷却水流路22と、加熱手段としてのヒータ23と、恒温槽12の温度を測定するための恒温槽温度測定手段としての温度センサ24とが設けられており、冷却水流路22に接続した冷却水配管22aには、冷却水の流れを制御する電磁弁22bが設けられている。また、温度センサ24で測定した温度に基づいて前記ヒータ23及び前記電磁弁22bを制御する恒温槽温度制御部25が設けられており、恒温槽温度制御部25は、基本的に、恒温槽12を一定の温度に保持するように設定されている。   Further, inside the thermostatic chamber 12 at a position removed from the microwave inlet port 18, the microwave outlet port 19, the observation window 20, and the light extraction window 21, as a cooling means for adjusting the thermostatic chamber 12 to a preset temperature. The cooling water flow path 22, the heater 23 as a heating means, and a temperature sensor 24 as a constant temperature bath temperature measurement means for measuring the temperature of the constant temperature bath 12 are provided, and the cooling connected to the cooling water flow path 22 is provided. The water pipe 22a is provided with an electromagnetic valve 22b that controls the flow of cooling water. Further, a thermostatic chamber temperature control unit 25 for controlling the heater 23 and the electromagnetic valve 22b based on the temperature measured by the temperature sensor 24 is provided. The thermostatic chamber temperature control unit 25 is basically the thermostatic chamber 12. Is maintained at a constant temperature.

保持筒16は、反応容器挿通孔17の内径より小さな外径を有する反応容器11を使用する際に、反応容器11を保持して反応容器挿通孔17内に挿入するためのものであって、恒温槽12と同様に、熱伝導性の良好なアルミニウムで形成された一対の半割体16a,16aを組み合わせた有底円筒状に形成されている。半割体16a,16aの内側には、反応容器11の外側形状に対応した形状の保持溝16b,16bが、上端から下端近傍にわたってそれぞれ設けられており、上下外周には、リング状のコイルスプリング26を装着するための周溝16c,16cがそれぞれ設けられている。また、上下方向中間部には、マイクロ波導入口18やマイクロ波導出口19、観察窓20や明かり取り窓21に対応した開口16d,16eがそれぞれ設けられている。   The holding cylinder 16 is for holding the reaction vessel 11 and inserting it into the reaction vessel insertion hole 17 when using the reaction vessel 11 having an outer diameter smaller than the inner diameter of the reaction vessel insertion hole 17. Similar to the thermostatic bath 12, it is formed in a bottomed cylindrical shape in which a pair of halves 16a, 16a made of aluminum having good thermal conductivity are combined. Inside the halves 16a and 16a, holding grooves 16b and 16b having shapes corresponding to the outer shape of the reaction vessel 11 are provided from the upper end to the vicinity of the lower end, respectively, and ring-shaped coil springs are provided on the upper and lower outer peripheries. Circumferential grooves 16c and 16c for mounting 26 are provided. Further, openings 16d and 16e corresponding to the microwave introduction port 18, the microwave lead-out port 19, the observation window 20, and the light extraction window 21 are provided in the intermediate portion in the vertical direction, respectively.

保持筒16で反応容器11を保持する際には、半割体16a,16aの保持溝16b,16bで反応容器11を挟み、上下の周溝16c,16cにコイルスプリング26を装着して半割体16a,16aを締め付けることにより、半割体16a,16aの保持溝16b内に反応容器11を挟持する。このとき、保持筒16の底部に、適宜な高さを有するリング状の合成樹脂製スペーサ27をクッション材を兼ねて配置し、反応容器11内の被加熱液Lの位置をマイクロ波導入口18やマイクロ波導出口19の位置に対応する状態にする。また、恒温槽12の上部には、保持筒16を覆う筒状の遮蔽部材28を設け、外部へのマイクロ波の漏洩を防止する。恒温槽12の底面には、マイクロ波の漏洩を防止するとともに保持筒16を下方から支持する支持板29が取り付けられており、支持板29の下方には、反応容器11内に投入された磁性撹拌子30aを回転させるためのマグネチックスターラ30が配置される(図8(A)参照)。   When the reaction vessel 11 is held by the holding cylinder 16, the reaction vessel 11 is sandwiched between the holding grooves 16b and 16b of the halves 16a and 16a, and coil springs 26 are attached to the upper and lower circumferential grooves 16c and 16c to halve the reaction vessel 11. By tightening the bodies 16a, 16a, the reaction vessel 11 is sandwiched in the holding grooves 16b of the halves 16a, 16a. At this time, a ring-shaped synthetic resin spacer 27 having an appropriate height is disposed on the bottom of the holding cylinder 16 also as a cushioning material, and the position of the liquid L to be heated in the reaction vessel 11 is changed to the microwave inlet 18 or A state corresponding to the position of the microwave outlet 19 is set. In addition, a cylindrical shielding member 28 that covers the holding cylinder 16 is provided on the top of the thermostatic chamber 12 to prevent leakage of microwaves to the outside. A support plate 29 that prevents microwave leakage and supports the holding cylinder 16 from below is attached to the bottom surface of the thermostatic bath 12. The magnetic plate charged into the reaction vessel 11 is placed below the support plate 29. A magnetic stirrer 30 for rotating the stirrer 30a is disposed (see FIG. 8A).

前記マイクロ波導入口18には、マイクロ波導入口18を通して反応容器11にマイクロ波を導入するための入口側同軸導波管変換器31が連結されており、該入口側同軸導波管変換器31には、インピーダンス調整用のチューナ32を介してマイクロ波発振器33が設けられている。このマイクロ波発振器33は、出力したマイクロ波の電力と入口側同軸導波管変換器31からの反射波の電力とを測定する入口側電力検出手段及び反射電力検出手段としての機能も有しており、これによって反応容器11に導入したマイクロ波の電力を正確に測定することができるように形成されている。また、前記マイクロ波導出口19には、反応容器11を通過したマイクロ波の電力を測定する機能としての出口側電力検出手段34を備えた出口側同軸導波管変換器35が設けられている。   The microwave inlet 18 is connected to an inlet-side coaxial waveguide converter 31 for introducing a microwave into the reaction vessel 11 through the microwave inlet 18, and is connected to the inlet-side coaxial waveguide converter 31. Is provided with a microwave oscillator 33 via a tuner 32 for impedance adjustment. The microwave oscillator 33 also has functions as an entrance-side power detection unit and a reflected power detection unit that measure the output microwave power and the reflected wave power from the entrance-side coaxial waveguide converter 31. Thus, the microwave power introduced into the reaction vessel 11 can be accurately measured. The microwave outlet 19 is provided with an outlet-side coaxial waveguide converter 35 provided with outlet-side power detection means 34 as a function of measuring the power of the microwave that has passed through the reaction vessel 11.

入口側同軸導波管変換器31及び出口側同軸導波管変換器35は、全体として角筒状に形成されており、恒温槽12との連結部がマイクロ波導入口18及びマイクロ波導出口19の開口と同じ大きさの開口を有しており、恒温槽12と反対側の端部には、同軸ケーブルを介して各変換器内にアンテナ(導体棒)31a,35aを設けるための同軸コネクタを備えたアンテナ装着部31b,35bがそれぞれ設けられている。また、各変換器31,35の上下の天板36a及び底板36bは、全長にわたって平行に形成され、前後の側面板36c、36dの内面は、恒温槽12のマイクロ波導入口18又はマイクロ波導出口19側からアンテナ装着部31b,35bに向かって漸次拡開する斜面形状に形成されている。例えば、恒温槽12からアンテナ装着部31b,35bまでの距離は、通常、70〜122mm程度に設定され、恒温槽12側の幅寸法に対してアンテナ装着部31b,35b側の幅寸法が2〜3倍程度になるように設定されている。   The inlet-side coaxial waveguide converter 31 and the outlet-side coaxial waveguide converter 35 are formed in a rectangular tube shape as a whole, and the connection portion with the thermostatic chamber 12 is connected to the microwave inlet 18 and the microwave outlet 19. A coaxial connector for providing antennas (conductor rods) 31a and 35a in each converter via a coaxial cable is provided at the end opposite to the thermostatic bath 12 at the end opposite to the constant temperature bath 12. Provided antenna mounting portions 31b and 35b are provided. Further, the top and bottom top plates 36a and bottom plates 36b of the converters 31 and 35 are formed in parallel over the entire length, and the inner surfaces of the front and rear side plates 36c and 36d are the microwave inlet port 18 or the microwave outlet port 19 of the thermostatic bath 12. It is formed in a slope shape that gradually expands from the side toward the antenna mounting portions 31b and 35b. For example, the distance from the thermostatic bath 12 to the antenna mounting portions 31b and 35b is normally set to about 70 to 122 mm, and the width dimension on the antenna mounting portions 31b and 35b side is 2 to 2 with respect to the width dimension on the thermostatic bath 12 side. It is set to be about 3 times.

前記マイクロ波発振器33には、該マイクロ波発振器33から出力する2.45GHzのマイクロ波の電力を調節するマイクロ波出力制御手段37が設けられており、このマイクロ波出力制御手段37は、基本的に、前記光ファイバー式温度センサ14で測定した被加熱液Lの温度があらかじめ設定された一定の温度を保持するように、マイクロ波発振器33から出力するマイクロ波の電力を調節するように設定されている。   The microwave oscillator 33 is provided with microwave output control means 37 for adjusting the power of the 2.45 GHz microwave output from the microwave oscillator 33. The microwave output control means 37 is basically configured as follows. In addition, the microwave power output from the microwave oscillator 33 is set to be adjusted so that the temperature of the liquid L to be heated measured by the optical fiber temperature sensor 14 is maintained at a predetermined temperature. Yes.

また、入口側同軸導波管変換器31の入口側電力検出手段で測定したマイクロ波の電力と出口側同軸導波管変換器35の出口側電力検出手段で測定したマイクロ波の電力とは、吸収電力算出手段を備えた演算記録手段38に入力して両者の差を演算することにより、反応容器11内の被加熱液Lに吸収された電力、すなわち、被加熱液Lを加熱するために用いられた電力を求めることができる。   The microwave power measured by the inlet-side power detector of the inlet-side coaxial waveguide converter 31 and the microwave power measured by the outlet-side power detector of the outlet-side coaxial waveguide converter 35 are: In order to heat the liquid L to be heated, that is, the electric power absorbed in the liquid to be heated L in the reaction vessel 11 by calculating the difference between the two by inputting to the calculation recording means 38 having the absorbed electric power calculation means. The power used can be determined.

図6及び図7に示すように、前記恒温槽12は、フロー式の反応管にも対応することができる。なお、以下の説明において、前記バッチ式で示した反応装置の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。   As shown in FIG.6 and FIG.7, the said thermostat 12 can respond also to a flow-type reaction tube. In the following description, the same components as those of the reaction apparatus shown in the batch system are denoted by the same reference numerals, and detailed description thereof is omitted.

フロー式の反応管41は、上下方向に延びた小径流通管41aの中間で、マイクロ波導入口18及びマイクロ波導出口19の位置に対応する部分に大径反応部41bを設けたもので、前記保持筒16と同様に、半割体42a,42aを組み合わせて形成される流通管用保持筒42に保持された状態で恒温槽12の反応容器挿通孔17内に挿通される。流通管用保持筒42の各半割体42a,42aにそれぞれ形成された流通管用保持溝42b,42bは、中間部に大径反応部41bを収容可能な大径溝部42cが設けられ、該大径溝部42cの上下に小径流通管41aを収容可能な小径溝部42dがそれぞれ設けられている。また、流通管用保持筒42に反応管41を保持する際には、大径反応部41bの下部に、大径反応部41bの位置調整とクッションとを兼ねたリング状の合成樹脂製スペーサ43が配置される。さらに、反応容器挿通孔17内に挿通された状態で恒温槽12の上下に突出した流通管用保持筒42の外周は,前記同様の遮蔽部材44で覆われて外部へのマイクロ波MWの漏洩が防止される。   The flow-type reaction tube 41 is provided with a large-diameter reaction portion 41b at a portion corresponding to the position of the microwave inlet 18 and the microwave outlet 19 in the middle of the small-diameter flow tube 41a extending in the vertical direction. Similarly to the tube 16, the tube is inserted into the reaction vessel insertion hole 17 of the thermostatic bath 12 while being held by the flow tube holding tube 42 formed by combining the halves 42 a and 42 a. The flow pipe holding grooves 42b and 42b formed in the respective halves 42a and 42a of the flow pipe holding cylinder 42 are provided with a large diameter groove portion 42c capable of accommodating the large diameter reaction portion 41b at the intermediate portion, and the large diameter. Small-diameter groove portions 42d that can accommodate the small-diameter flow pipes 41a are respectively provided above and below the groove portions 42c. Further, when the reaction tube 41 is held in the flow tube holding cylinder 42, a ring-shaped synthetic resin spacer 43 serving as a position adjustment and cushion for the large diameter reaction portion 41b is provided below the large diameter reaction portion 41b. Be placed. Furthermore, the outer periphery of the flow tube holding cylinder 42 protruding up and down in the constant temperature bath 12 while being inserted into the reaction vessel insertion hole 17 is covered with the same shielding member 44 as described above, and leakage of the microwave MW to the outside is prevented. Is prevented.

図8(A)に示すように、バッチ式の反応容器11を使用した場合は、冷却水循環装置51から冷却水を恒温槽12の冷却水流路22に流通させるとともに、ヒータ23を制御して恒温槽12をあらかじめ設定された被加熱液L設定温度より低い一定の温度に保ちながら、マイクロ波MWを磁性撹拌子30aで撹拌されている被加熱液Lに照射して被加熱液Lを加熱することにより、被加熱液Lを被加熱液L設定温度に保持する。   As shown in FIG. 8A, when the batch-type reaction vessel 11 is used, the cooling water is circulated from the cooling water circulation device 51 to the cooling water flow path 22 of the thermostatic bath 12, and the heater 23 is controlled to control the temperature. While maintaining the tank 12 at a constant temperature lower than the preset temperature of the heated liquid L, the heated liquid L is heated by irradiating the heated liquid L stirred by the magnetic stirrer 30a with the microwave MW. As a result, the liquid L to be heated is held at the set temperature of the liquid L to be heated.

また、図8(B)に示すように、フロー式の反応管41を使用した場合は、被加熱液Lとなる第1反応液容器52及び第2反応液容器53からそれぞれポンプ52a,53aによって供給された第1反応液と第2反応液とを混合部54で混合し、混合した混合液を反応管41の下部から反応管41に流通させ、反応管41の上部から反応後の製品液を製品液容器55に取り出すようにすればよい。また、混合部54には、第1反応液と第2反応液とを十分に混合させるため、マグネチックスターラーなどの撹拌手段56を設けておくことが好ましい。フロー式の場合も、恒温槽12をあらかじめ設定された混合液設定温度より低い一定の温度に保ちながら、マイクロ波MWを混合液に照射して混合液を加熱することにより、混合液を混合液設定温度に保持する。これにより、一定の温度で第1反応液と第2反応液とを連続的に反応させることができ、安定した状態の製品液を得ることができる。   In addition, as shown in FIG. 8B, when a flow type reaction tube 41 is used, pumps 52a and 53a are used to pump the first reaction liquid container 52 and the second reaction liquid container 53, respectively, to be heated liquid L. The supplied first reaction liquid and second reaction liquid are mixed in the mixing unit 54, the mixed liquid is circulated from the lower part of the reaction tube 41 to the reaction tube 41, and the product liquid after the reaction from the upper part of the reaction tube 41. May be taken out into the product liquid container 55. Moreover, it is preferable to provide the mixing part 54 with stirring means 56 such as a magnetic stirrer in order to sufficiently mix the first reaction liquid and the second reaction liquid. In the case of the flow type as well, the liquid mixture is heated by irradiating the liquid mixture with microwave MW while maintaining the constant temperature bath 12 at a constant temperature lower than the preset liquid mixture temperature. Hold at the set temperature. Thereby, a 1st reaction liquid and a 2nd reaction liquid can be made to react continuously at fixed temperature, and the product liquid of the stable state can be obtained.

図9乃至図11は、バッチ式の反応容器11を使用して反応熱量を測定する際の制御方式の各例をそれぞれ示すものである。図9に示す反応熱量の測定方式は、被加熱液Lの温度に基づいてマイクロ波MWの電力を調節するものであり、図10に示す方式は、被加熱液Lの温度に基づいて恒温槽12の温度を調節するものであり、図11に示す方式は、恒温槽12の温度に基づいて恒温槽の加熱量又は冷却量を調節するものである。   FIG. 9 to FIG. 11 show examples of control methods when the reaction heat quantity is measured using the batch-type reaction vessel 11. The method for measuring the amount of reaction shown in FIG. 9 adjusts the power of the microwave MW based on the temperature of the liquid to be heated L, and the method shown in FIG. The temperature shown in FIG. 11 is for adjusting the amount of heating or cooling of the thermostatic bath based on the temperature of the thermostatic bath 12.

図9に示す反応熱量の測定方式では、恒温槽温度制御部25が温度センサ24で測定した恒温槽12の温度に基づいて冷却水流路22の電磁弁22bとヒータ23とを制御し、恒温槽12を一定の温度に保つとともに、光ファイバー式温度センサ14で測定した被加熱液Lの温度に基づいてマイクロ波出力制御手段37がマイクロ波発振器33の出力を調節することにより、被加熱液Lの温度を一定に保つように設定している。   9, the thermostatic chamber temperature control unit 25 controls the electromagnetic valve 22b and the heater 23 in the cooling water flow path 22 based on the temperature of the thermostatic chamber 12 measured by the temperature sensor 24, and the thermostatic chamber. 12 is maintained at a constant temperature, and the microwave output control means 37 adjusts the output of the microwave oscillator 33 based on the temperature of the liquid to be heated L measured by the optical fiber type temperature sensor 14. It is set to keep the temperature constant.

図10に示す反応熱量の測定方式では、マイクロ波出力制御手段37は、マイクロ波発振器33から一定電力のマイクロ波MWを出力し、恒温槽温度制御部25は、光ファイバー式温度センサ14で測定した被加熱液Lの温度に基づいて冷却水流路22の電磁弁22bとヒータ23とを制御することにより、被加熱液Lの温度を一定に保つように設定している。このとき、温度センサ24は、恒温槽12の温度を測定するだけとなる。   In the reaction heat quantity measurement method shown in FIG. 10, the microwave output control means 37 outputs a microwave MW with a constant power from the microwave oscillator 33, and the thermostat temperature control unit 25 measures with the optical fiber temperature sensor 14. The temperature of the liquid to be heated L is set to be constant by controlling the electromagnetic valve 22b and the heater 23 of the cooling water passage 22 based on the temperature of the liquid to be heated L. At this time, the temperature sensor 24 only measures the temperature of the thermostatic bath 12.

図11に示す反応熱量の測定方式では、マイクロ波出力制御手段37は、マイクロ波発振器33から一定電力のマイクロ波MWを出力し、恒温槽温度制御部25は、温度センサ24で測定した恒温槽12の温度に基づいて冷却水流路22の電磁弁22bとヒータ23とを制御し、恒温槽12の温度を調節することにより、被加熱液Lの温度を一定に保つように設定している。このとき、光ファイバー式温度センサ14は、被加熱液Lの温度を測定するだけとなる。   In the reaction heat quantity measurement method shown in FIG. 11, the microwave output control means 37 outputs a microwave MW having a constant power from the microwave oscillator 33, and the thermostatic chamber temperature control unit 25 is controlled by the temperature sensor 24. The temperature of the liquid L to be heated is set to be constant by controlling the solenoid valve 22b and the heater 23 of the cooling water passage 22 based on the temperature of 12 and adjusting the temperature of the thermostatic bath 12. At this time, the optical fiber temperature sensor 14 only measures the temperature of the liquid L to be heated.

いずれの方式の場合も、マイクロ波シングルモード(TE10モード)を熱源とし、マイクロ波の進行波が、マイクロ波が恒温槽12に吸収されずに被加熱液Lに1回だけ当たって通過することにより被加熱液Lにマイクロ波を直接照射可能であり、前記恒温槽12内に配置される前記被加熱液Lは、前記マイクロ波シングルモードの吸収にとって最適な位置に配置される。また、光ファイバー式温度センサ14、温度センサ24、恒温槽温度制御部25、マイクロ波出力制御手段37の測定情報や制御情報は、図示しない演算記録手段に取り込まれて記憶、記録などの処理が行われる。   In any case, the microwave single mode (TE10 mode) is used as a heat source, and the microwave traveling wave passes through the liquid L to be heated only once without being absorbed by the thermostat 12. Therefore, the liquid L to be heated can be directly irradiated with the microwave, and the liquid L to be heated disposed in the thermostat 12 is disposed at an optimum position for absorption of the microwave single mode. In addition, measurement information and control information of the optical fiber temperature sensor 14, temperature sensor 24, thermostatic chamber temperature control unit 25, and microwave output control means 37 are taken into a calculation recording means (not shown) to perform processing such as storage and recording. Is called.

図9に示す制御方法で、被加熱液Lの温度が一定に保たれている状態で、反応薬液注入部15bからあらかじめ設定された量の反応薬液を反応容器11内に注入(滴下)し、被加熱液Lと反応薬液とを反応させる。このとき、反応熱によって反応薬液と混合した被加熱液Lの温度が上昇すると、光ファイバー式温度センサ14で測定した被加熱液Lの温度上昇に応じてマイクロ波出力制御手段37がマイクロ波発振器33の出力(電力)を減少させることにより、被加熱液Lの温度を、反応前の温度と同じ温度にする。   In the control method shown in FIG. 9, in a state where the temperature of the liquid L to be heated is kept constant, a predetermined amount of the reactive chemical liquid is injected (dropped) into the reaction vessel 11 from the reactive chemical liquid injection section 15b, The liquid L to be heated is reacted with the reactive chemical solution. At this time, when the temperature of the liquid to be heated L mixed with the reaction chemical liquid increases due to the reaction heat, the microwave output control means 37 causes the microwave oscillator 33 to respond to the temperature increase of the liquid to be heated L measured by the optical fiber type temperature sensor 14. By reducing the output (electric power), the temperature of the liquid L to be heated is made the same as the temperature before the reaction.

このときの被加熱液Lの温度Trと、マイクロ波発振器33から入口側同軸導波管変換器31に出力されたマイクロ波MWにおける導波管入口電力MWinから、該導波管入口電力MWinからマイクロ波導出口19から導出された電力(出口側電力MWout)とマイクロ波発振器33まで戻った反射電力MWrefとを差し引いて算出した被加熱液Lが吸収したマイクロ波の電力Pとの経時変化を図12に示す。なお、図12に示す実験では、被加熱液Lの設定温度は50℃である。   From the temperature Tr of the liquid L to be heated at this time, from the waveguide inlet power MWin in the microwave MW output from the microwave oscillator 33 to the inlet-side coaxial waveguide converter 31, from the waveguide inlet power MWin The time-dependent change of the power P of the microwave absorbed by the liquid to be heated L calculated by subtracting the power derived from the microwave outlet 19 (exit-side power MWout) and the reflected power MWref returned to the microwave oscillator 33 is illustrated. 12 shows. In the experiment shown in FIG. 12, the set temperature of the liquid L to be heated is 50 ° C.

最初に被加熱液Lの温度Trを50℃に加熱するまでの間は、マイクロ波発振器33から出力されたマイクロ波の導波管入口電力MWin及び被加熱液Lが吸収したマイクロ波の電力Pは、共に高い値を示しているが、約300秒後に被加熱液Lの温度Trが50℃の一定状態になると、両電力MWin,Pは略一定の値となる。600秒経過したときに反応薬液を注入して被加熱液Lと反応薬液とを反応させると、常温の反応薬液が混合することによって一旦被加熱液Lの温度Trが低下するため、両電力MWin,Pの値が一時的に上昇するが、反応熱によって被加熱液Lの温度Trが上昇すると、光ファイバー式温度センサ14で測定した被加熱液Lの温度上昇に応じてマイクロ波出力制御手段37がマイクロ波発振器33から出力するマイクロ波の導波管入口電力MWinを減少させ、これに伴って被加熱液Lが吸収したマイクロ波の電力Pも減少することにより、被加熱液Lの温度Trが50℃に近付いていく。反応終了後は、反応熱による温度上昇がなくなるので、両電力MWin,Pは僅かずつ上昇して被加熱液Lの温度Trを50℃に保持する。   Until the temperature Tr of the liquid L to be heated is first heated to 50 ° C., the microwave waveguide power MWin output from the microwave oscillator 33 and the microwave power P absorbed by the liquid L to be heated are used. Both show high values, but when the temperature Tr of the liquid L to be heated reaches a constant state of 50 ° C. after about 300 seconds, both the electric powers MWin and P become substantially constant values. When 600 seconds have passed and the reaction liquid is injected to react the heated liquid L and the reaction liquid, the temperature Tr of the liquid L to be heated once decreases due to mixing of the normal temperature reaction liquid. , P temporarily rise, but when the temperature Tr of the liquid L to be heated rises due to reaction heat, the microwave output control means 37 according to the temperature rise of the liquid L to be heated measured by the optical fiber type temperature sensor 14. Decreases the microwave waveguide inlet power MWin output from the microwave oscillator 33, and the microwave power P absorbed by the liquid L to be heated is reduced accordingly, whereby the temperature Tr of the liquid L to be heated is reduced. Approaches 50 ° C. After the completion of the reaction, the temperature rise due to the reaction heat disappears, so both electric powers MWin and P rise little by little to keep the temperature Tr of the liquid L to be heated at 50 ° C.

図12から求めた被加熱液Lの温度Trと反応熱(熱量)dQと反応率Xconvの経時変化を図13に示す。熱量dQは、吸収した電力Pから演算処理して求めた補正された熱量である。熱量dQを積算したものが反応熱量Qであり、反応熱量Qの熱転化率が反応率Xconvである。   FIG. 13 shows changes with time of the temperature Tr, the heat of reaction (calorie) dQ, and the reaction rate Xconv of the liquid L to be heated obtained from FIG. The amount of heat dQ is a corrected amount of heat obtained by calculating from the absorbed power P. The sum of the heat quantity dQ is the reaction heat quantity Q, and the thermal conversion rate of the reaction heat quantity Q is the reaction rate Xconv.

反応熱によって被加熱液Lの温度Trが上昇すると、700秒付近から熱量dQが増加し、反応率Xconvが最初は急激に上昇し、次第に緩やかに上昇する。そして900秒付近で反応が終了すると、熱量dQがゼロとなり、反応率Xconvは1で安定する。したがって、反応が進行して反応率Xconvがベースラインに設定した0から1(反応終了)になる間の熱量dQが被加熱液Lと反応薬液とが反応したときの反応熱量で、反応率Xconvが反応率、即ち反応進行状況となる。したがって、吸収された電力Pの変化を測定して演算処理するだけの簡単な操作で、かつ、短時間で反応熱量及び反応進行状況を求めることが可能となる。   When the temperature Tr of the liquid L to be heated rises due to reaction heat, the amount of heat dQ increases from around 700 seconds, and the reaction rate Xconv increases rapidly at first, and then gradually increases. When the reaction is completed in the vicinity of 900 seconds, the amount of heat dQ becomes zero, and the reaction rate Xconv is stabilized at 1. Therefore, the amount of heat dQ while the reaction proceeds and the reaction rate Xconv becomes 0 to 1 (reaction completion) set to the baseline is the reaction heat amount when the liquid L to be heated reacts with the reaction chemical solution, and the reaction rate Xconv Becomes the reaction rate, that is, the reaction progress. Therefore, it is possible to obtain the amount of reaction heat and the progress of the reaction in a short time with a simple operation of measuring the change in the absorbed power P and performing arithmetic processing.

すなわち、この反応熱量測定法では、恒温槽12の温度を、被加熱液Lの設定温度より10〜20℃低い一定温度に維持しながら、反応容器11内の被加熱液Lを一定温度に維持するようにマイクロ波の電力(被加熱液Lが吸収する電力P)を連続的に調節する。この状態で反応が始まり、反応熱によって被加熱液Lの温度Trが上昇すると、被加熱液Lが吸収するマイクロ波の電力Pは、反応によって発生したそのときの熱量dQと等しい量だけ減少する。   That is, in this reaction calorimetry, while maintaining the temperature of the thermostat 12 at a constant temperature that is 10 to 20 ° C. lower than the set temperature of the heated liquid L, the heated liquid L in the reaction vessel 11 is maintained at a constant temperature. In this way, the microwave power (power P absorbed by the liquid L to be heated) is continuously adjusted. When the reaction starts in this state and the temperature Tr of the liquid L to be heated rises due to reaction heat, the microwave power P absorbed by the liquid L to be heated decreases by an amount equal to the amount of heat dQ generated by the reaction. .

ここで、吸収電力P[W]は、マイクロ波導入口18から導入されたマイクロ波の電力(入口側電力MWin)[W]と、マイクロ波導出口19から導出された電力(出口側電力MWout)[W]と、マイクロ波発振器33まで戻った電力(反射電力MWref[W])とから、式1によって求めることができる。   Here, the absorbed power P [W] includes the microwave power (inlet side power MWin) [W] introduced from the microwave inlet 18 and the power (outlet side power MWout) derived from the microwave outlet 19 [ W] and the power returned to the microwave oscillator 33 (reflected power MWref [W]) can be obtained by Equation 1.

P[W]=MWin−MWout−MWref・・・式1   P [W] = MWin−MWout−MWref Equation 1

さらに、被加熱液Lの熱量変化PC[W]は、マイクロ波導入口18から導入されるマイクロ波の設定電力MWinSET[W]と前記吸収電力P[W]との差、即ち式2によって求めることができる。   Further, the heat quantity change PC [W] of the liquid L to be heated is obtained by the difference between the set power MWinSET [W] of the microwave introduced from the microwave introduction port 18 and the absorbed power P [W], that is, Equation 2. Can do.

PC[W]=MWinSET−P・・・式2   PC [W] = MWinSET-P Equation 2

そして、式3に示すように、熱量変化PC[W]からベースラインBLを決定し、これを差し引いたものが実際の発熱量dQ(ドットQ)[W]であり、この発熱量dQ[W]を毎秒積算したものが反応熱量Q[J]となる。   Then, as shown in Expression 3, the base line BL is determined from the heat amount change PC [W], and the value obtained by subtracting this is the actual heat generation amount dQ (dot Q) [W], and this heat generation amount dQ [W ] Is integrated every second to obtain the reaction heat quantity Q [J].

Q[J]=Σ(PC−BL)・・・式3   Q [J] = Σ (PC−BL) Equation 3

一方、図10に示す被加熱液Lの温度に基づいて恒温槽12の温度を調節する方法(内温モード)により、キャリブレーションヒーターを用いることなく、従来と同様にしてヒートフローHF[W]による反応熱量測定も可能である。この内温モードでは、反応前後で被加熱液Lの温度Trと恒温槽12の温度Tjとの内外の温度が平衡になり、内外温度差が一定の定常状態となる。このときマイクロ波を一定の出力で照射することにより、非加熱物である被加熱液Lのマイクロ波の吸収量(吸収電力)P[W]は一定となり、これをレファレンスとして温度の平衡状態が変化した場合でも、定常状態で新しい温度平衡となり、内外温度差も変化して一定の温度差となる。この2つの定常状態における内外温度差の引算により求めた内外温度差の変化量(Tr−Tj)をΔT[K]とすると、ヒートフローHF[W]の計算に必要な変数UA[W/K]又は総括伝熱係数U[W/m.K]を、下記式4又は式5にて求めることができ、これにより、マイクロ波加熱においても、ヒートフローHF[W]による反応熱量測定が可能となる。 On the other hand, the method of adjusting the temperature of the constant temperature bath 12 based on the temperature of the liquid L to be heated (internal temperature mode) shown in FIG. It is also possible to measure the calorific value of the reaction. In this internal temperature mode, the internal and external temperatures of the temperature Tr of the liquid L to be heated and the temperature Tj of the thermostat 12 are balanced before and after the reaction, and a steady state in which the internal and external temperature difference is constant. At this time, the microwave absorption amount (absorbed power) P [W] of the liquid L to be heated, which is a non-heated material, becomes constant by irradiating the microwave with a constant output, and this is used as a reference to determine the temperature equilibrium state Even if it changes, it becomes a new temperature equilibrium in the steady state, and the temperature difference inside and outside also changes and becomes a constant temperature difference. When the change amount (Tr−Tj) of the internal / external temperature difference obtained by subtracting the internal / external temperature difference in the two steady states is ΔT 0 [K], the variable UA [W required for the calculation of the heat flow HF [W] / K] or overall heat transfer coefficient U [W / m 2 . K] can be obtained by the following formula 4 or formula 5, and thus, the reaction heat quantity can be measured by the heat flow HF [W] even in the microwave heating.

UA[W/K]=P[W]÷ΔT[K]・・・式4
U[W/m.K]=P[W]÷ΔT[K]÷A[m]・・・式5
UA [W / K] = P [W] ÷ ΔT 0 [K] Equation 4
U [W / m 2 . K] = P [W] ÷ ΔT 0 [K] ÷ A [m 2 ]...

前記マイクロ波の吸収量(吸収電力)P[W]は、導波管入口電力MWin[W]と、導波管出口電力MWout[W]と、反射電力MWref[W]とから、式6によって求めることができる。   The microwave absorption amount (absorbed power) P [W] is calculated from the waveguide inlet power MWin [W], the waveguide outlet power MWout [W], and the reflected power MWref [W] according to Equation 6. Can be sought.

P[W]=MWin−MWout−MWref・・・式6   P [W] = MWin−MWout−MWref Equation 6

また、ヒートフローHF[W]は、前記総括伝熱係数U[W/m.K]と、伝熱面積A[m]と、被加熱液Lの温度Tr[℃]と、恒温槽12の温度Tj[℃]と、リアクションマス(反応質量)mr[g]と、比熱c[J/g.K]と、被加熱液Lの温度変化速度dTr/dt[K/s]と、反応薬液の温度差によるエネルギーロスdQdos[W]とから、式7によって求めることができる。 In addition, the heat flow HF [W] is the overall heat transfer coefficient U [W / m 2 . K], heat transfer area A [m 2 ], temperature Tr [° C.] of the liquid L to be heated, temperature Tj [° C.] of the constant temperature bath 12, reaction mass (reaction mass) mr [g], specific heat c [J / g. K], the temperature change rate dTr / dt [K / s] of the liquid L to be heated, and the energy loss dQdos [W] due to the temperature difference between the reactant chemical liquids.

HF=UA*ΔT+mr*c*(dTr/dt)+dQdos・・・式7 HF = UA * ΔT 0 + mr * c * (dTr / dt) + dQdos Equation 7

得られたヒートフローHFからベースラインbaselineを決定して差し引いたものが実際の発熱量dQ[W]であり、式8に示すように、この発熱量dQを毎秒積算したものが積算熱量Q[J]となる。   The actual heat value dQ [W] is obtained by determining and subtracting the baseline baseline from the obtained heat flow HF. As shown in Equation 8, the value obtained by integrating this heat value dQ every second is the integrated heat value Q [ J].

Q[J]=Σ(HF−baseline)・・・式8   Q [J] = Σ (HF-baseline) Equation 8

ここで、前記式7によれば、ヒートフローHFは、被加熱液Lの温度Trと恒温槽12の温度Tjとの差に依存し、雰囲気温度の影響を受けないこと、また、被加熱液Lの温度Trが変動した場合には、リアクションマスmrと比熱cと温度変化速度dTr/dtと積により補正が可能であるから、反応速度が速くても、遅くても対応可能であることがわかる。そして、式7において、滴下のロスがなく、被加熱液Lの温度Trが一定のとき、ヒートフローHFは、次の式9で表すことができる。   Here, according to the formula 7, the heat flow HF depends on the difference between the temperature Tr of the liquid L to be heated and the temperature Tj of the thermostat 12 and is not affected by the ambient temperature. If the temperature Tr of L fluctuates, it can be corrected by the product of the reaction mass mr, the specific heat c, and the temperature change rate dTr / dt, so that it can be handled regardless of whether the reaction rate is fast or slow. Recognize. And in Formula 7, when there is no loss of dripping and the temperature Tr of the liquid L to be heated is constant, the heat flow HF can be expressed by the following Formula 9.

HF=UA*ΔT・・・式9 HF = UA * ΔT 0 Formula 9

式7と式9において、ヒートフローHFをマイクロ波の吸収量(吸収電力)P[W]に置き換えて展開すると、式10に示す比熱cを求めるキャリブレーション式と、式11に示す総括伝熱係数UA[W/K]を求めるキャリブレーション式とが得られる。   In Equation 7 and Equation 9, when heat flow HF is replaced with microwave absorption (absorbed power) P [W] and developed, a calibration equation for obtaining specific heat c shown in Equation 10 and a general heat transfer shown in Equation 11 A calibration equation for obtaining the coefficient UA [W / K] is obtained.

c={P−UA*(Tr−Tj)}÷(mr*dTr/dt)・・・式10
UA=P÷ΔT・・・式11
c = {P-UA * (Tr-Tj)} / (mr * dTr / dt) Equation 10
UA = P ÷ ΔT 0 Equation 11

比熱cは、反応液温度上昇中に、変数UAは、反応液温度安定時に、それぞれ測定するので、キャリブレーションを、反応前、反応後の2回行うことにより、反応熱量を高精度で求めることができる。この内温モードで実験を行ったときの各値の変化の一例を図14及び図15に示す。図15では、滴下率(0〜1):Xdos、反応率(0〜1):Xconv、未反応薬液の蓄積率(0〜1):Xacuum、実際の発熱量[W]:dQを示している。   The specific heat c is measured while the temperature of the reaction solution rises, and the variable UA is measured when the reaction solution temperature is stable. Therefore, the heat of reaction can be obtained with high accuracy by performing calibration twice before and after the reaction. Can do. An example of a change in each value when the experiment is performed in the internal temperature mode is shown in FIGS. In FIG. 15, the dropping rate (0 to 1): Xdos, the reaction rate (0 to 1): Xconv, the unreacted chemical solution accumulation rate (0 to 1): Xacum, and the actual calorific value [W]: dQ are shown. Yes.

11…反応容器、12…恒温槽、13…反応部、14…光ファイバー式温度センサ、15…キャップ部材、15a…光ファイバー式温度センサの挿通部、15b…反応薬液注入部、15c…ガスパージ管、16…保持筒、16a…半割体、16b…保持溝、16c…周溝、16d,16e…開口、17…反応容器挿通孔、18…マイクロ波導入口、19…マイクロ波導出口、20…観察窓、21…明かり取り窓、22…冷却水流路、22a…冷却水配管、22b…電磁弁、23…ヒータ、24…温度センサ、25…恒温槽温度制御部、26…コイルスプリング、27…合成樹脂製スペーサ、28…遮蔽部材、29…支持板、30…マグネチックスターラ、30a…磁性撹拌子、31…入口側同軸導波管変換器、31a…アンテナ、31b…アンテナ装着部、32…チューナ、33…マイクロ波発振器、34…出口側電力検出手段、35…出口側同軸導波管変換器、35a…アンテナ、35b…アンテナ装着部、36a…天板、36b…底板、36c、36d…側面板、37…マイクロ波出力制御手段、38…演算記録手段、41…反応管、41a…小径流通管、41b…大径反応部、42…流通管用保持筒、42a…半割体、42b…流通管用保持溝、42c…大径溝部、42d…小径溝部、43…合成樹脂製スペーサ、44…遮蔽部材、51…冷却水循環装置、52…第1反応液容器、53…第2反応液容器、52a,53a…ポンプ、54…混合部、55…製品液容器、56…撹拌手段、L…被加熱液、MW…マイクロ波   DESCRIPTION OF SYMBOLS 11 ... Reaction container, 12 ... Constant temperature bath, 13 ... Reaction part, 14 ... Optical fiber type temperature sensor, 15 ... Cap member, 15a ... Insertion part of optical fiber type temperature sensor, 15b ... Reactant liquid injection part, 15c ... Gas purge pipe, 16 DESCRIPTION OF SYMBOLS ... Holding cylinder, 16a ... Half-divided body, 16b ... Holding groove, 16c ... Circumferential groove, 16d, 16e ... Opening, 17 ... Reaction container insertion hole, 18 ... Microwave inlet, 19 ... Microwave outlet, 20 ... Observation window, DESCRIPTION OF SYMBOLS 21 ... Light extraction window, 22 ... Cooling water flow path, 22a ... Cooling water piping, 22b ... Solenoid valve, 23 ... Heater, 24 ... Temperature sensor, 25 ... Constant temperature chamber temperature control part, 26 ... Coil spring, 27 ... Product made from synthetic resin Spacer, 28 ... shielding member, 29 ... support plate, 30 ... magnetic stirrer, 30a ... magnetic stirrer, 31 ... inlet side coaxial waveguide converter, 31a ... antenna, 31b ... a Tena mounting part, 32 ... tuner, 33 ... microwave oscillator, 34 ... exit side power detection means, 35 ... exit side coaxial waveguide converter, 35a ... antenna, 35b ... antenna mounting part, 36a ... top plate, 36b ... Bottom plate, 36c, 36d ... side plate, 37 ... microwave output control means, 38 ... calculation recording means, 41 ... reaction tube, 41a ... small diameter flow pipe, 41b ... large diameter reaction section, 42 ... flow tube holding cylinder, 42a ... Half-divided body, 42b ... retaining groove for flow pipe, 42c ... large diameter groove, 42d ... small diameter groove, 43 ... synthetic resin spacer, 44 ... shielding member, 51 ... cooling water circulation device, 52 ... first reaction liquid container, 53 ... Second reaction liquid container, 52a, 53a ... pump, 54 ... mixing section, 55 ... product liquid container, 56 ... stirring means, L ... liquid to be heated, MW ... microwave

Claims (6)

被加熱液を収容可能な反応容器と、該反応容器を挿通可能な反応容器挿通孔を有する金属製の恒温槽と、該恒温槽の対向する一対の側面に対向してそれぞれ設けられたマイクロ波導入口及びマイクロ波導出口と、前記マイクロ波導入口に連結された入口側同軸導波管変換器及び前記マイクロ波導出口に連結された出口側同軸導波管変換器と、マイクロ波発振器から出力されて前記入口側同軸導波管変換器を介して前記反応容器に導入されるマイクロ波の電力を測定する入口側電力検出手段と、入口側同軸導波管変換器から導入されて反応容器を経て出口側同軸導波管変換器に導出されたマイクロ波の電力を測定する出口側電力検出手段と、マイクロ波発振器まで戻ってきたマイクロ波の反射電力を測定する反射電力検出手段と、前記入口側電力検出手段で測定したマイクロ波の電力と出口側電力検出手段で測定したマイクロ波の電力と前記反射電力検出手段で測定したマイクロ波の電力とに基づいて前記被加熱液に吸収されたマイクロ波の電力を算出する吸収電力算出手段と、前記反応容器内に反応薬液を注入する反応薬液注入部と、前記反応容器内の被加熱液の温度を測定する被加熱液温度測定手段と、前記恒温槽を加熱する加熱手段及び恒温槽を冷却する冷却手段及び恒温槽の温度を測定する恒温槽温度測定手段と、前記被加熱液温度測定手段で測定した被加熱液の温度又は前記恒温槽温度測定手段で測定した恒温槽の温度に基づいて前記加熱手段及び冷却手段を制御する恒温槽温度制御手段と、前記被加熱液温度測定手段で測定した被加熱液の温度又は設定出力に基づいて前記マイクロ波発振器から出力されるマイクロ波の電力を制御するマイクロ波出力制御手段とを備え、マイクロ波シングルモードを熱源とし、マイクロ波の進行波が恒温槽に吸収されずに被加熱液に1回だけ当たって通過することにより被加熱液にマイクロ波を直接照射可能であり、前記恒温槽内に配置される前記被加熱液は、前記マイクロ波シングルモードの吸収にとって最適な位置に配置されることを特徴とする反応装置。   A reaction vessel capable of containing a liquid to be heated, a metal thermostat having a reaction vessel insertion hole through which the reaction vessel can be inserted, and a microwave guide provided to face a pair of opposite side surfaces of the thermostat An inlet and a microwave outlet, an inlet-side coaxial waveguide converter connected to the microwave inlet, an outlet-side coaxial waveguide converter connected to the microwave outlet, and output from a microwave oscillator Inlet side power detection means for measuring the power of the microwave introduced into the reaction vessel via the inlet side coaxial waveguide converter, and the outlet side through the reaction vessel introduced from the inlet side coaxial waveguide converter An exit side power detection means for measuring the power of the microwave led to the coaxial waveguide converter, a reflected power detection means for measuring the reflected power of the microwave returned to the microwave oscillator, and the entrance side power Based on the microwave power measured by the detection means, the microwave power measured by the outlet side power detection means, and the microwave power measured by the reflected power detection means, the microwave absorbed by the liquid to be heated is measured. Absorbed power calculation means for calculating electric power, reactive chemical liquid injection part for injecting a reactive chemical liquid into the reaction container, heated liquid temperature measuring means for measuring the temperature of the heated liquid in the reaction container, and the thermostatic chamber A heating means for heating the heating chamber, a cooling means for cooling the constant temperature bath, a constant temperature bath temperature measurement means for measuring the temperature of the constant temperature bath, and a temperature of the heated liquid measured by the heated liquid temperature measurement means or the constant temperature bath temperature measuring means Based on the temperature or setting output of the liquid to be heated measured by the liquid temperature measuring means to be heated and the temperature control means for controlling the heating means and the cooling means based on the temperature of the constant temperature bath measured in step And a microwave output control means for controlling the power of the microwave output from the microwave oscillator. The microwave single mode is used as a heat source, and the microwave traveling wave is not absorbed by the thermostat and is once applied to the liquid to be heated. It is possible to directly irradiate the liquid to be heated with the microwave by passing through it, and the liquid to be heated arranged in the thermostat is arranged at an optimum position for absorption of the microwave single mode. A reactor characterized by. 前記恒温槽は、前記マイクロ波導入口及びマイクロ波導出口とは異なる恒温槽の側面に、前記反応容器内の状態を観察するための観察窓と明かり取り窓とが対向して設けられていることを特徴とする請求項1記載の反応装置。   The temperature chamber is provided with an observation window and a light extraction window facing each other on the side surface of the temperature chamber different from the microwave inlet and the microwave outlet. The reaction apparatus according to claim 1, wherein 前記マイクロ波は、2.45GHzであって、前記反応容器は、該マイクロ波を吸収しにくい材質で形成されていることを特徴とする請求項1又は2記載の反応装置。   3. The reaction apparatus according to claim 1, wherein the microwave is 2.45 GHz, and the reaction vessel is formed of a material that hardly absorbs the microwave. 前記入口側同軸導波管変換器は、前記マイクロ波導入口に向かって高さ寸法が一定で幅寸法が漸次幅狭となる形状を有し、出口側同軸導波管変換器は、前記マイクロ波導出口に向かって高さ寸法が一定で幅寸法が漸次幅狭となる形状を有していることを特徴とする請求項1乃至3のいずれか1項記載の反応装置。   The inlet-side coaxial waveguide converter has a shape in which the height dimension is constant toward the microwave inlet and the width dimension is gradually narrowed, and the outlet-side coaxial waveguide converter is The reactor according to any one of claims 1 to 3, wherein the reactor has a shape in which the height dimension is constant toward the outlet and the width dimension is gradually narrowed. 前記反応容器は、該反応容器を保持する保持筒に保持された状態で前記反応容器挿通孔に挿通され、前記保持筒には、前記マイクロ波導入口及び前記マイクロ波導出口に対応した開口がそれぞれ設けられていることを特徴とする請求項1乃至4のいずれか1項記載の反応装置。   The reaction container is inserted into the reaction container insertion hole while being held by a holding cylinder that holds the reaction container, and the holding cylinder is provided with openings corresponding to the microwave introduction port and the microwave outlet port, respectively. The reaction apparatus according to any one of claims 1 to 4, wherein the reaction apparatus is provided. 前記保持筒は、外側形状が前記反応容器挿通孔に対応した形状で、反応容器に接する内側形状が異なる複数種類の保持筒の中から、使用する反応容器の外側形状に対応した内側形状を有する保持筒を選択して用いることを特徴とする請求項5記載の反応装置。   The holding cylinder has an inner shape corresponding to the outer shape of the reaction container to be used from among a plurality of types of holding cylinders having outer shapes corresponding to the reaction container insertion holes and different inner shapes contacting the reaction container. 6. The reaction apparatus according to claim 5, wherein a holding cylinder is selected and used.
JP2013101162A 2013-05-13 2013-05-13 Reactor Active JP6231295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101162A JP6231295B2 (en) 2013-05-13 2013-05-13 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101162A JP6231295B2 (en) 2013-05-13 2013-05-13 Reactor

Publications (2)

Publication Number Publication Date
JP2014221446A true JP2014221446A (en) 2014-11-27
JP6231295B2 JP6231295B2 (en) 2017-11-15

Family

ID=52121284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101162A Active JP6231295B2 (en) 2013-05-13 2013-05-13 Reactor

Country Status (1)

Country Link
JP (1) JP6231295B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110876915A (en) * 2018-09-05 2020-03-13 捷微科技股份有限公司 Temperature control light source device for photochemical reaction tank and photochemical reaction tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796080A (en) * 1995-10-03 1998-08-18 Cem Corporation Microwave apparatus for controlling power levels in individual multiple cells
JP2006302721A (en) * 2005-04-22 2006-11-02 Idx Corp High pressure heating device with microwave
JP2009282041A (en) * 1999-05-28 2009-12-03 Cepheid Cartridge for controlling chemical reaction
WO2012153793A1 (en) * 2011-05-10 2012-11-15 独立行政法人産業技術総合研究所 Material state measurement, detection method, and detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5796080A (en) * 1995-10-03 1998-08-18 Cem Corporation Microwave apparatus for controlling power levels in individual multiple cells
JP2000500061A (en) * 1995-10-03 2000-01-11 シーイーエム・コーポレーション Microwave device for controlling power level in individual multiplex cells
JP2009282041A (en) * 1999-05-28 2009-12-03 Cepheid Cartridge for controlling chemical reaction
JP2006302721A (en) * 2005-04-22 2006-11-02 Idx Corp High pressure heating device with microwave
WO2012153793A1 (en) * 2011-05-10 2012-11-15 独立行政法人産業技術総合研究所 Material state measurement, detection method, and detection device

Also Published As

Publication number Publication date
JP6231295B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
Kappe How to measure reaction temperature in microwave-heated transformations
EP1859258B1 (en) Differential scanning calorimeter (dsc) with temperature controlled furnace
Bozzoli et al. Estimation of the local heat-transfer coefficient in the laminar flow regime in coiled tubes by the Tikhonov regularisation method
Kumar et al. Coiled flow inverter as a heat exchanger
Schulz et al. Kinetics of the Reaction h+ D2= Hd+ d
JP6112725B2 (en) Substance state measurement, detection method and detection apparatus
Merlone et al. Design and capabilities of the temperature control system for the Italian experiment based on precision laser spectroscopy for a new determination of the Boltzmann constant
JP6231295B2 (en) Reactor
Zhang et al. Numerical modeling and optimal design of microwave-heating falling film evaporation
Huang et al. Numerical simulation of microwave heating on chemical reaction in dilute solution
Tremaine et al. Solution calorimetry under hydrothermal conditions
Siguemoto et al. Evaluation and modeling of a microwave‐assisted unit for continuous flow pasteurization of liquid foods: Residence time distribution, time–temperature history, and integrated lethality
CN105738009B (en) A kind of calibrating installation for temperature monitoring
Frantz et al. Experimental analysis of forced convective heat transfer of nitrate salt in a circular tube at high Reynolds numbers and temperatures
US6157009A (en) Advanced reactive system screening tool
KR102029509B1 (en) Rod position detection apparatus and method
JPS6119935B2 (en)
Luchinkin et al. Heat transfer in liquid metal at an upward flow in a pipe in transverse magnetic field
JP4893930B2 (en) Blackbody furnace
JPS6165148A (en) Calorimeter
Sturm et al. Microwave reactor concepts: From resonant cavities to traveling fields
KR101480379B1 (en) Inspection apparatus for thermometer and hygrometer based on phase transition and method for controlling and inspecting thereof
CN107308895B (en) Constant-temperature microwave continuous flow reactor
Peterson et al. Evaluating applicator designs for heating nanoparticle flow chemistries using single-mode microwave energy
RU2755841C1 (en) Apparatus for measuring the parameters of a medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171019

R150 Certificate of patent or registration of utility model

Ref document number: 6231295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250