JP2014220600A - High-speed wavelength change monitor and light shield device employing the same - Google Patents

High-speed wavelength change monitor and light shield device employing the same Download PDF

Info

Publication number
JP2014220600A
JP2014220600A JP2013097119A JP2013097119A JP2014220600A JP 2014220600 A JP2014220600 A JP 2014220600A JP 2013097119 A JP2013097119 A JP 2013097119A JP 2013097119 A JP2013097119 A JP 2013097119A JP 2014220600 A JP2014220600 A JP 2014220600A
Authority
JP
Japan
Prior art keywords
optical
output port
signal output
light
wavelength change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013097119A
Other languages
Japanese (ja)
Inventor
真 下小園
Makoto Shimokozono
真 下小園
石井 啓之
Hiroyuki Ishii
啓之 石井
伸浩 布谷
Nobuhiro Nunotani
伸浩 布谷
加藤 和利
Kazutoshi Kato
和利 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Kyushu University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nippon Telegraph and Telephone Corp filed Critical Kyushu University NUC
Priority to JP2013097119A priority Critical patent/JP2014220600A/en
Publication of JP2014220600A publication Critical patent/JP2014220600A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2/00Demodulating light; Transferring the modulation of modulated light; Frequency-changing of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-speed wavelength change monitor for instantaneously detecting a wavelength change with respect to light of any arbitrary wavelength outputted from a wavelength variable laser, and a light shield device for instantaneously shielding output light while using the high-speed wavelength change monitor.SOLUTION: Monitor light 1 is branched from transmission light inputted from a light source 200 by a first optical splitter 101, and monitor light 2 is further branched from the transmission light by a second optical splitter 102. The monitor light 1 branched by the first optical splitter 101 is delayed for T1 sec by an optical retarder 103, and the delayed monitor light 1 and the monitor light 2 are multiplexed by an optical multiplexer 104. A differential frequency electric signal between the delayed monitor light 1 and the monitor light 2 which are multiplexed is generated by a photo mixer 105 and inputted to a high-pass filter 106 which selectively transmits a frequency band equal to or higher than a frequency F in the differential frequency electric signal. A strength of the electric signal transmitted through the high-pass filter 106 is detected by a detector 107, and a wavelength change of the transmission light is detected from a strength change of the electric signal.

Description

本発明は、レーザ光源の波長変化を短時間に検出する高速波長変化モニタおよび、この高速波長変化モニタからの波長変化検出信号を用いて光の出力経路を遮断する光遮断装置に関する。   The present invention relates to a high-speed wavelength change monitor that detects a wavelength change of a laser light source in a short time and a light blocking device that blocks a light output path using a wavelength change detection signal from the high-speed wavelength change monitor.

現在の光通信では、光信号の波長を長期間固定することにより、特定のノード間に波長パスを形成して長期間固定的に通信を行う、いわゆる波長パス方式がとられている。波長パス方式では、光通信ネットワークの故障時の波長パスの再構築や突発的な通信量の増大に対応した波長パスの追加などが必要になった場合には、光信号の波長を変えてこれに対応している。   In the current optical communication, a so-called wavelength path method is adopted in which the wavelength of an optical signal is fixed for a long period of time, thereby forming a wavelength path between specific nodes and performing communication for a long period of time. In the wavelength path method, when it becomes necessary to reconstruct a wavelength path in the event of a failure in an optical communication network or to add a wavelength path to cope with sudden increases in traffic, the wavelength of the optical signal can be changed. It corresponds to.

上記波長パス方式においては光信号の波長を変えるために波長可変レーザが用いられている。波長可変光源としては、小型でかつ少ない電力で波長変化が可能な半導体波長可変レーザが一般的である。   In the wavelength path system, a tunable laser is used to change the wavelength of the optical signal. As the wavelength tunable light source, a semiconductor wavelength tunable laser that is small and capable of changing the wavelength with a small amount of power is generally used.

半導体波長可変レーザの動作原理は以下のようである。すなわち、半導体レーザの共振器の一部または全体の屈折率を温度または電流によって変化させ、共振器内に存在できる波長を選択的に限定する。広範囲な波長変化を生じさせる構造として、超周期構造回折格子分布回折型レーザ(非特許文献1)などが開発されている。この超周期構造回折格子分布回折型レーザは、いわゆる縦モードと呼ばれる、一定間隔で並んだとびとびの波長が共振器内で存在できるように設計され、これらの波長のうちの1つを選択的に増幅することにより単一の波長でレーザ発振させるものである。この方法により100nm以上の波長域で任意の波長で発振することが報告されている。   The operating principle of the semiconductor wavelength tunable laser is as follows. That is, the refractive index of a part or the whole of the resonator of the semiconductor laser is changed by temperature or current to selectively limit the wavelengths that can exist in the resonator. As a structure that causes a wide range of wavelength changes, a super-periodic structure diffraction grating distributed diffraction laser (Non-patent Document 1) and the like have been developed. This superperiodic structure grating distributed diffractive laser is designed so that discrete wavelengths, called so-called longitudinal modes, arranged at regular intervals can exist in the resonator, and one of these wavelengths is selectively selected. The laser oscillation is performed at a single wavelength by amplification. It has been reported that this method oscillates at an arbitrary wavelength in a wavelength region of 100 nm or more.

但し、超周期構造回折格子分布回折型レーザなどの縦モードを利用した波長可変レーザは、小さな操作量で波長が変化するという利点があるが、その反面、半導体レーザに対する外乱や半導体レーザ自体の劣化などの変化に対して、意図しない波長変化が生じやすいという欠点を持っている。そのため、波長モニタ装置で常に波長変化をモニタし、意図しない波長変化が生じた場合には出力光を遮断する機能を必要とする。   However, a wavelength tunable laser using a longitudinal mode, such as a super-periodic structure diffraction grating distributed diffraction laser, has the advantage that the wavelength changes with a small amount of operation. In spite of such changes, there is a drawback that unintended wavelength changes are likely to occur. For this reason, the wavelength monitor device always needs to have a function of monitoring the wavelength change and blocking the output light when the unintended wavelength change occurs.

従来の波長モニタ装置は、光フィルタを透過した光の強度を光検出器で電気信号に変え、電気信号の大きさで波長を算出するというものである。常に一定の波長を出力するレーザをモニタする場合は、その固定された波長からの波長変化を検出するだけでよいため、アナログ回路などで高速に信号処理をすることが可能である。   The conventional wavelength monitor device calculates the wavelength based on the magnitude of the electrical signal by changing the intensity of the light transmitted through the optical filter into an electrical signal with a photodetector. When monitoring a laser that always outputs a constant wavelength, it is only necessary to detect a change in wavelength from the fixed wavelength, so that signal processing can be performed at high speed using an analog circuit or the like.

N. Fujiwara, et al., “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technology Letters, 2008, Volume 20 , Issue 12, p.1015-1017N. Fujiwara, et al., “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technology Letters, 2008, Volume 20, Issue 12, p.1015-1017

しかしながら、波長可変レーザを従来の波長モニタ装置でモニタする場合は、任意の波長に対して、その波長から波長変化が生じた際、波長変化を電気信号の大きさとして検出するための四則演算などのデジタル信号処理が必要なため、デジタル信号処理に要する時間が数マイクロ秒以上かかり、瞬時に出力光を遮断することができないという課題があった。   However, when monitoring a wavelength tunable laser with a conventional wavelength monitor device, when a wavelength change occurs from an arbitrary wavelength, four arithmetic operations for detecting the wavelength change as the magnitude of an electric signal, etc. Since the digital signal processing is necessary, the time required for the digital signal processing takes several microseconds or more, and there is a problem that the output light cannot be interrupted instantaneously.

そこで本発明は、このような課題に鑑みてなされたもので、波長可変レーザから出力される任意の波長の光に対して、瞬時に波長変化を検出する高速波長変化モニタを提供することを目的とする。またこの高速波長変化モニタをもちいて瞬時に出力光を遮断する光遮断装置を提供することを目的とする。   Accordingly, the present invention has been made in view of such problems, and an object thereof is to provide a high-speed wavelength change monitor that instantaneously detects a wavelength change with respect to light having an arbitrary wavelength output from a wavelength tunable laser. And Another object of the present invention is to provide a light blocking device that instantaneously blocks output light using this high-speed wavelength change monitor.

上記の課題を解決するために、本発明は、レーザ光源の波長変化をモニタする装置であって、被測定光を少なくとも第1の経路と第2の経路に分岐する第1の光分岐器と、前記第2の経路をさらに第3の経路と第4の経路に分岐する第2の光分岐器と、前記第1の経路上に設置された第1の光遅延器と、前記第1および第3の経路が接続された少なくとも2つの入力ポートと少なくとも1つの出力ポートを有する光合波器と、前記光合波器の出力ポートが接続された光入力ポートと差周波電気信号出力ポートを有するフォトミキサと、前記フォトミキサの差周波電気信号出力ポートが接続された電気入力ポートと差周波電気信号出力ポートを有するハイパスフィルタと、前記ハイパスフィルタの差周波電気信号出力ポートが接続された電気入力ポートと検出信号出力を有するディテクタと、を備えたことを特徴とする。   In order to solve the above problems, the present invention is an apparatus for monitoring a wavelength change of a laser light source, and includes a first optical branching device that branches light to be measured into at least a first path and a second path, , A second optical branching device that further branches the second route into a third route and a fourth route, a first optical delay device installed on the first route, the first and An optical multiplexer having at least two input ports connected to the third path and at least one output port, and a photo having an optical input port connected to the output port of the optical multiplexer and a difference frequency electric signal output port A mixer, a high-pass filter having a difference frequency electric signal output port connected to the difference frequency electric signal output port of the photomixer, and an electric input connected to the difference frequency electric signal output port of the high pass filter. A detector having a port and a detection signal output, characterized by comprising a.

請求項2に記載の発明は、レーザ光源の波長変化をモニタする装置であって、被測定光を少なくとも第1の経路と第2の経路に分岐する第1の光分岐器と、前記第2の経路をさらに第3の経路と第4の経路に分岐する第2の光分岐器と、前記第3の経路上に設置された第1の光遅延器と、前記第1および第3の経路が接続された少なくとも2つの入力ポートと少なくとも1つの出力ポートを有する光合波器と、前記光合波器の出力ポートが接続された光入力ポートと差周波電気信号出力ポートを有するフォトミキサと、前記フォトミキサの差周波電気信号出力ポートが接続された電気入力ポートと差周波電気信号出力ポートを有するハイパスフィルタと、前記ハイパスフィルタの差周波電気信号出力ポートが接続された電気入力ポートと検出信号出力を有するディテクタと、を備えたことを特徴とする。   According to a second aspect of the present invention, there is provided a device for monitoring a wavelength change of a laser light source, the first optical branching device for branching measured light into at least a first path and a second path, and the second A second optical branching device that further branches the first path into a third path and a fourth path, a first optical delay device installed on the third path, and the first and third paths An optical multiplexer having at least two input ports and at least one output port connected to each other, a photomixer having an optical input port to which the output port of the optical multiplexer is connected, and a difference frequency electrical signal output port, and A high-pass filter having a difference frequency electric signal output port connected to a difference frequency electric signal output port of the photomixer, an electric input port connected to the difference frequency electric signal output port of the high pass filter, and detection Characterized in that and a detector having a signal output.

請求項3に記載の発明は、レーザ光源の波長変化をモニタする装置であって、被測定光を少なくとも第1の経路と第2の経路に分岐する第1の光分岐器と、前記第2の経路をさらに第3の経路と第4の経路に分岐する第2の光分岐器と、前記第1の経路上に設置された第1の光遅延器と、前記第1および第3の経路が接続された少なくとも2つの入力ポートと少なくとも1つの出力ポートを有する光合波器と、前記光合波器の出力ポートが接続された光入力ポートと差周波電気信号出力ポートを有するフォトミキサと、前記フォトミキサの差周波電気信号出力ポートが接続された電気入力ポートと差周波電気信号出力ポートを有するローパスフィルタと、前記ローパスフィルタの差周波電気信号出力ポートが接続された電気入力ポートと検出信号出力を有するディテクタと、を備えたことを特徴とする。   According to a third aspect of the present invention, there is provided a device for monitoring a change in wavelength of a laser light source, wherein the first optical branching device branches the measured light into at least a first path and a second path, and the second A second optical branching device that further branches the first path into a third path and a fourth path, a first optical delay device installed on the first path, and the first and third paths An optical multiplexer having at least two input ports and at least one output port connected to each other, a photomixer having an optical input port to which the output port of the optical multiplexer is connected, and a difference frequency electrical signal output port, and A low-pass filter having a difference frequency electric signal output port connected to a difference frequency electric signal output port of the photomixer, an electric input port connected to the difference frequency electric signal output port of the low pass filter, and detection Characterized in that and a detector having a signal output.

請求項4に記載の発明は、レーザ光源の波長変化をモニタする装置であって、被測定光を少なくとも第1の経路と第2の経路に分岐する第1の光分岐器と、前記第2の経路をさらに第3の経路と第4の経路に分岐する第2の光分岐器と、前記第3の経路上に設置された第1の光遅延器と、前記第1および第3の経路が接続された少なくとも2つの入力ポートと少なくとも1つの出力ポートを有する光合波器と、前記光合波器の出力ポートが接続された光入力ポートと差周波電気信号出力ポートを有するフォトミキサと、前記フォトミキサの差周波電気信号出力ポートが接続された電気入力ポートと差周波電気信号出力ポートを有するローパスフィルタと、前記ローパスフィルタの差周波電気信号出力ポートが接続された電気入力ポートと検出信号出力を有するディテクタと、を備えたことを特徴とする。   According to a fourth aspect of the present invention, there is provided a device for monitoring a wavelength change of a laser light source, wherein the first optical branching device branches the measured light into at least a first path and a second path, and the second A second optical branching device that further branches the first path into a third path and a fourth path, a first optical delay device installed on the third path, and the first and third paths An optical multiplexer having at least two input ports and at least one output port connected to each other, a photomixer having an optical input port to which the output port of the optical multiplexer is connected, and a difference frequency electrical signal output port, and A low-pass filter having a difference frequency electric signal output port connected to a difference frequency electric signal output port of the photomixer, an electric input port connected to the difference frequency electric signal output port of the low pass filter, and detection Characterized in that and a detector having a signal output.

請求項5に記載の発明は、レーザ光源の送信光の波長変化を検出して前記送信光を遮断する光遮断装置であって、請求項1乃至4に記載の高速波長変化モニタ装置と、前記高速波長変化モニタ装置から出力された前記送信光が入力される第2の光遅延器と、前記高速波長変化モニタ装置から出力された検出信号に基づき、前記第2の光遅延器から出力された前記送信光を遮断する光シャッタと、を備えたことを特徴とする。   The invention according to claim 5 is an optical blocking device that detects a wavelength change of transmission light of a laser light source and blocks the transmission light, and the high-speed wavelength change monitoring device according to claim 1, Based on the second optical delay device to which the transmission light output from the high-speed wavelength change monitor device is input and the detection signal output from the high-speed wavelength change monitor device, the second optical delay device has output from the second optical delay device And an optical shutter that blocks the transmission light.

本発明の高速波長変化モニタによれば、任意の波長に対して、その波長からの波長変化を瞬時に検出でき、さらに検出した波長変化にもとづき波長可変レーザの出力光経路を光シャッタにより遮断できるため、意図しない波長の光を送信しないという信頼性の高いレーザ光源システムを実現できる。   According to the high-speed wavelength change monitor of the present invention, a wavelength change from an arbitrary wavelength can be detected instantaneously, and the output optical path of the wavelength tunable laser can be blocked by an optical shutter based on the detected wavelength change. Therefore, a highly reliable laser light source system that does not transmit light of an unintended wavelength can be realized.

本発明の一実施形態に係る高速波長変化モニタの構成を示す図である。It is a figure which shows the structure of the high-speed wavelength change monitor which concerns on one Embodiment of this invention. (a)はモニタ光2の光周波数の時間変化を示す図であり、(b)は光遅延器後のモニタ光1の光周波数の時間変化を示す図であり、(c)はディテクタで検出される電気信号の強度の変化を示す図である。(A) is a figure which shows the time change of the optical frequency of the monitor light 2, (b) is a figure which shows the time change of the optical frequency of the monitor light 1 after an optical delay device, (c) is detected with a detector. It is a figure which shows the change of the intensity | strength of the electric signal to be performed. 本発明の一実施形態に係る高速波長変化モニタの構成を示す図である。It is a figure which shows the structure of the high-speed wavelength change monitor which concerns on one Embodiment of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施形態1)
図1に、本発明の一実施形態に係る高速波長変化モニタの構成を示す。図1に示すように、この高速波長変化モニタ100は、光源200から入力される送信光からモニタ光1を第1の光分岐器101で分岐し、第1の光分岐器101の後段で第2の光分岐器102でさらに送信光からモニタ光2を分岐する。第1の光分岐器101で分岐したモニタ光1は光遅延器103でT1秒遅延させ、この遅延されたモニタ光1と第2の光分岐器102で分岐したモニタ光2とを光合波器104で合波する。合波された遅延されたモニタ光1とモニタ光2との差周波電気信号をフォトミキサ105で生成し、差周波電気信号の高周波成分である周波数F以上の周波数帯を選択的に透過するハイパスフィルタ106に入力する。ハイパスフィルタ106を透過してきた電気信号の強度をディテクタ107で検出し、その電気信号の強度変化から光源200から出射された送信光の波長変化を検出する。
(Embodiment 1)
FIG. 1 shows the configuration of a high-speed wavelength change monitor according to an embodiment of the present invention. As shown in FIG. 1, the high-speed wavelength change monitor 100 branches the monitor light 1 from the transmission light input from the light source 200 by the first optical branching device 101, and the second stage after the first optical branching device 101. The second optical splitter 102 further splits the monitor light 2 from the transmitted light. The monitor light 1 branched by the first optical splitter 101 is delayed by T1 seconds by the optical delay device 103, and the delayed monitor light 1 and the monitor light 2 branched by the second optical splitter 102 are optical multiplexers. Combine at 104. A high-pass that selectively generates a difference frequency electric signal between the combined delayed monitor light 1 and the monitor light 2 by the photomixer 105 and selectively transmits a frequency band equal to or higher than the frequency F that is a high frequency component of the difference frequency electric signal. Input to the filter 106. The detector 107 detects the intensity of the electrical signal that has passed through the high-pass filter 106, and detects the change in the wavelength of the transmitted light emitted from the light source 200 from the change in the intensity of the electrical signal.

ここで一例として、光遅延器103は入力されたモニタ光1を約100ナノ秒遅延させるものとし、ハイパスフィルタ106の透過周波数帯域を1GHz以上と設定する。   Here, as an example, the optical delay device 103 delays the input monitor light 1 by about 100 nanoseconds, and sets the transmission frequency band of the high-pass filter 106 to 1 GHz or more.

この場合、光合波器104には現在の光源からの出射光の一部であるモニタ光2と100ナノ秒前の光源からの出射光の一部であるモニタ光1とが入力される。フォトミキサ105ではモニタ光1とモニタ光2との差周波電気信号であるビート信号が生成される。すなわち、光源の現在の光周波数と約100ナノ秒前の光周波数との差の周波数を持つ電気信号が生成されることになる。   In this case, the optical multiplexer 104 receives the monitor light 2 that is a part of the light emitted from the current light source and the monitor light 1 that is a part of the light emitted from the light source 100 nanoseconds before. The photomixer 105 generates a beat signal that is a difference frequency electrical signal between the monitor light 1 and the monitor light 2. That is, an electrical signal having a frequency difference between the current optical frequency of the light source and the optical frequency about 100 nanoseconds before is generated.

ハイパスフィルタ106は高周波成分を透過するため、モニタ光1とモニタ光2の周波数差が大きい時、すなわち互いの波長差が大きい時には、フォミキサ105で生成される高周波成分がハイパスフィルタ106で透過される。そのため、ハイパスフィルタ106を透過する電気信号の強度が増加し、その結果ディテクタ107で検出される電気信号強度が増大する。本実施形態のように、ハイパスフィルタの透過周波数帯域を1GHz以上と設定した場合、光源200の波長すなわち光周波数が100ナノ秒以内に1GHz以上変化すると、モニタ光1とモニタ光2の光周波数差が1GHzを超える。このように光周波数差が1GHzを超えると、フォトミキサ105で1GHz以上の周波数の電気信号が生成され、これらはハイパスフィルタ106を透過してディテクタ107に入力される。ディテクタ107で検出される電気信号の増大を検知することにより、光源200で波長変化が起こったことを検知することが可能となる。   Since the high-pass filter 106 transmits high-frequency components, when the frequency difference between the monitor light 1 and the monitor light 2 is large, that is, when the mutual wavelength difference is large, the high-frequency filter generated by the phomixer 105 is transmitted by the high-pass filter 106. . For this reason, the intensity of the electric signal passing through the high-pass filter 106 increases, and as a result, the electric signal intensity detected by the detector 107 increases. When the transmission frequency band of the high-pass filter is set to 1 GHz or more as in the present embodiment, the optical frequency difference between the monitor light 1 and the monitor light 2 when the wavelength of the light source 200, that is, the optical frequency changes by 1 GHz or more within 100 nanoseconds. Exceeds 1 GHz. When the optical frequency difference exceeds 1 GHz as described above, an electric signal having a frequency of 1 GHz or more is generated by the photomixer 105, and these signals pass through the high-pass filter 106 and are input to the detector 107. By detecting an increase in the electrical signal detected by the detector 107, it is possible to detect that a wavelength change has occurred in the light source 200.

図2(a)にモニタ光2の光周波数の時間変化、図2(b)に光遅延器103後のモニタ光1の光周波数の時間変化、図2(c)にディテクタ107で検出される電気信号の強度の変化を例示する。ここでモニタ光2は時刻t1において光周波数が変化しており、これに伴い約100ナノ秒後の時刻t2において遅延器103後のモニタ光1の光周波数が変化している。時刻t1とt2の間ではモニタ光2と遅延器103後のモニタ光1の光周波数とが異なることから、この時間帯(t1〜t2)で1GHz以上の周波数の電気信号が生成される。ここで生成された電気信号はハイパスフィルタ106を透過するため、ディテクタ107で検出される電気信号の強度が増大し、光周波数が変化したことが検知可能となる。   FIG. 2 (a) shows the time change of the optical frequency of the monitor light 2, FIG. 2 (b) shows the time change of the optical frequency of the monitor light 1 after the optical delay device 103, and FIG. The change in the intensity of the electrical signal is illustrated. Here, the optical frequency of the monitor light 2 changes at time t1, and accordingly, the optical frequency of the monitor light 1 after the delay device 103 changes at time t2 after about 100 nanoseconds. Since the optical frequencies of the monitor light 2 and the monitor light 1 after the delay device 103 are different between the times t1 and t2, an electric signal having a frequency of 1 GHz or more is generated in this time zone (t1 to t2). Since the electric signal generated here passes through the high-pass filter 106, the intensity of the electric signal detected by the detector 107 increases, and it can be detected that the optical frequency has changed.

尚、図1に示す高速波長変化モニタでは、モニタ光1を光遅延器103で遅延させたが、光分岐器101と光合波器104との間に設置されている光遅延器103を光分岐器102と光合波器104との間に設置してモニタ光1を遅延させる代わりにモニタ光2を遅延させてもよい。   In the high-speed wavelength change monitor shown in FIG. 1, the monitor light 1 is delayed by the optical delay unit 103, but the optical delay unit 103 installed between the optical branching unit 101 and the optical multiplexer 104 is optically branched. The monitor light 2 may be delayed instead of being installed between the optical device 102 and the optical multiplexer 104 to delay the monitor light 1.

(実施形態2)
図3に、本発明の一実施形態に係る高速波長変化モニタの構成を示す。図3に示すように、この光遮断装置は、光源200と、実施形態1で説明した波長変化モニタ装置と、送信光をT2秒遅延させる光遅延器301と、電気信号を受信してから光を遮断するまでの動作時間がT3秒の光シャッタ302から構成されている。
(Embodiment 2)
FIG. 3 shows the configuration of a high-speed wavelength change monitor according to an embodiment of the present invention. As shown in FIG. 3, the light blocking device includes a light source 200, the wavelength change monitoring device described in the first embodiment, an optical delay device 301 that delays transmission light for T2 seconds, and an optical signal after receiving an electrical signal. The optical shutter 302 has an operation time of T3 seconds until it is shut off.

ここで一例として、光遅延器301は入力された送信光を約1マイクロ秒遅延させるものとし、光シャッタ302は波長変化モニタ装置から送出される波長変化検出信号を受信して光を遮断するまでの動作速度を約500ナノ秒(0.5マイクロ秒)と設定する。   Here, as an example, it is assumed that the optical delay device 301 delays the input transmission light by about 1 microsecond, and the optical shutter 302 receives the wavelength change detection signal transmitted from the wavelength change monitor device until the light is cut off. Is set to about 500 nanoseconds (0.5 microseconds).

この場合、光遅延器301により送信光は1マイクロ秒遅延しているため、波長変化した送信光が光シャッタ302に到達する前に光が遮断される。その結果、波長変化後の送信光が出力されることを防ぐことが可能となる。   In this case, since the transmission light is delayed by 1 microsecond by the optical delay device 301, the light is blocked before the transmission light whose wavelength has changed reaches the optical shutter 302. As a result, it is possible to prevent the transmission light after the wavelength change from being output.

以上、本発明の実施形態を詳述してきたが、具体的な構成は各実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更なども含まれる。   As mentioned above, although embodiment of this invention was explained in full detail, the concrete structure is not restricted to each embodiment, The design change etc. of the range which does not deviate from the summary of this invention are included.

本実施形態の高速波長変化モニタおよび光遮断装置では、ハイパスフィルタを用いて、透過する電気信号の強度の増加を検出して動作させた例を示したが、ローパスフィルタを用いて、透過する電気信号の減少を検出して動作させてもよい。   In the high-speed wavelength change monitor and the light blocking device according to the present embodiment, an example in which an increase in the intensity of the transmitted electric signal is detected using a high-pass filter is shown. Operation may be performed by detecting a decrease in signal.

100 高速波長変化モニタ
101、102 光分岐器
103、301 光遅延器
104 光合波器
105 フォトミキサ
106 ハイパスフィルタ
107 ディテクタ
200 光源
302 光シャッタ
DESCRIPTION OF SYMBOLS 100 High-speed wavelength change monitor 101,102 Optical branching device 103,301 Optical delay device 104 Optical multiplexer 105 Photomixer 106 High pass filter 107 Detector 200 Light source 302 Optical shutter

Claims (5)

レーザ光源の波長変化をモニタする装置であって、
被測定光を少なくとも第1の経路と第2の経路に分岐する第1の光分岐器と、
前記第2の経路をさらに第3の経路と第4の経路に分岐する第2の光分岐器と、
前記第1の経路上に設置された第1の光遅延器と、
前記第1および第3の経路が接続された少なくとも2つの入力ポートと少なくとも1つの出力ポートを有する光合波器と、
前記光合波器の出力ポートが接続された光入力ポートと差周波電気信号出力ポートを有するフォトミキサと、
前記フォトミキサの差周波電気信号出力ポートが接続された電気入力ポートと差周波電気信号出力ポートを有するハイパスフィルタと、
前記ハイパスフィルタの差周波電気信号出力ポートが接続された電気入力ポートと検出信号出力を有するディテクタと、
を備えたことを特徴とする高速波長変化モニタ装置。
An apparatus for monitoring the wavelength change of a laser light source,
A first optical branching device for branching measured light into at least a first path and a second path;
A second optical branching device that further branches the second route into a third route and a fourth route;
A first optical delay device installed on the first path;
An optical multiplexer having at least two input ports and at least one output port to which the first and third paths are connected;
A photomixer having an optical input port to which an output port of the optical multiplexer is connected and a differential frequency electric signal output port;
A high-pass filter having an electrical input port to which the difference frequency electrical signal output port of the photomixer is connected and a difference frequency electrical signal output port;
An electrical input port to which the difference frequency electrical signal output port of the high pass filter is connected and a detector having a detection signal output;
A high-speed wavelength change monitor device comprising:
レーザ光源の波長変化をモニタする装置であって、
被測定光を少なくとも第1の経路と第2の経路に分岐する第1の光分岐器と、
前記第2の経路をさらに第3の経路と第4の経路に分岐する第2の光分岐器と、
前記第3の経路上に設置された第1の光遅延器と、
前記第1および第3の経路が接続された少なくとも2つの入力ポートと少なくとも1つの出力ポートを有する光合波器と、
前記光合波器の出力ポートが接続された光入力ポートと差周波電気信号出力ポートを有するフォトミキサと、
前記フォトミキサの差周波電気信号出力ポートが接続された電気入力ポートと差周波電気信号出力ポートを有するハイパスフィルタと、
前記ハイパスフィルタの差周波電気信号出力ポートが接続された電気入力ポートと検出信号出力を有するディテクタと、
を備えたことを特徴とする高速波長変化モニタ装置。
An apparatus for monitoring the wavelength change of a laser light source,
A first optical branching device for branching measured light into at least a first path and a second path;
A second optical branching device that further branches the second route into a third route and a fourth route;
A first optical delay device installed on the third path;
An optical multiplexer having at least two input ports and at least one output port to which the first and third paths are connected;
A photomixer having an optical input port to which an output port of the optical multiplexer is connected and a differential frequency electric signal output port;
A high-pass filter having an electrical input port to which the difference frequency electrical signal output port of the photomixer is connected and a difference frequency electrical signal output port;
An electrical input port to which the difference frequency electrical signal output port of the high pass filter is connected and a detector having a detection signal output;
A high-speed wavelength change monitor device comprising:
レーザ光源の波長変化をモニタする装置であって、
被測定光を少なくとも第1の経路と第2の経路に分岐する第1の光分岐器と、
前記第2の経路をさらに第3の経路と第4の経路に分岐する第2の光分岐器と、
前記第1の経路上に設置された第1の光遅延器と、
前記第1および第3の経路が接続された少なくとも2つの入力ポートと少なくとも1つの出力ポートを有する光合波器と、
前記光合波器の出力ポートが接続された光入力ポートと差周波電気信号出力ポートを有するフォトミキサと、
前記フォトミキサの差周波電気信号出力ポートが接続された電気入力ポートと差周波電気信号出力ポートを有するローパスフィルタと、
前記ローパスフィルタの差周波電気信号出力ポートが接続された電気入力ポートと検出信号出力を有するディテクタと、
を備えたことを特徴とする高速波長変化モニタ装置。
An apparatus for monitoring the wavelength change of a laser light source,
A first optical branching device for branching measured light into at least a first path and a second path;
A second optical branching device that further branches the second route into a third route and a fourth route;
A first optical delay device installed on the first path;
An optical multiplexer having at least two input ports and at least one output port to which the first and third paths are connected;
A photomixer having an optical input port to which an output port of the optical multiplexer is connected and a differential frequency electric signal output port;
A low-pass filter having an electrical input port to which the difference frequency electrical signal output port of the photomixer is connected and a difference frequency electrical signal output port;
An electrical input port to which the difference frequency electrical signal output port of the low-pass filter is connected and a detector having a detection signal output;
A high-speed wavelength change monitor device comprising:
レーザ光源の波長変化をモニタする装置であって、
被測定光を少なくとも第1の経路と第2の経路に分岐する第1の光分岐器と、
前記第2の経路をさらに第3の経路と第4の経路に分岐する第2の光分岐器と、
前記第3の経路上に設置された第1の光遅延器と、
前記第1および第3の経路が接続された少なくとも2つの入力ポートと少なくとも1つの出力ポートを有する光合波器と、
前記光合波器の出力ポートが接続された光入力ポートと差周波電気信号出力ポートを有するフォトミキサと、
前記フォトミキサの差周波電気信号出力ポートが接続された電気入力ポートと差周波電気信号出力ポートを有するローパスフィルタと、
前記ローパスフィルタの差周波電気信号出力ポートが接続された電気入力ポートと検出信号出力を有するディテクタと、
を備えたことを特徴とする高速波長変化モニタ装置。
An apparatus for monitoring the wavelength change of a laser light source,
A first optical branching device for branching measured light into at least a first path and a second path;
A second optical branching device that further branches the second route into a third route and a fourth route;
A first optical delay device installed on the third path;
An optical multiplexer having at least two input ports and at least one output port to which the first and third paths are connected;
A photomixer having an optical input port to which an output port of the optical multiplexer is connected and a differential frequency electric signal output port;
A low-pass filter having an electrical input port to which the difference frequency electrical signal output port of the photomixer is connected and a difference frequency electrical signal output port;
An electrical input port to which the difference frequency electrical signal output port of the low-pass filter is connected and a detector having a detection signal output;
A high-speed wavelength change monitor device comprising:
レーザ光源の送信光の波長変化を検出して前記送信光を遮断する光遮断装置であって、
請求項1乃至4に記載の高速波長変化モニタ装置と、
前記高速波長変化モニタ装置から出力された前記送信光が入力される第2の光遅延器と、
前記高速波長変化モニタ装置から出力された検出信号に基づき、前記第2の光遅延器から出力された前記送信光を遮断する光シャッタと、
を備えたことを特徴とする光遮断装置。
A light blocking device that detects a wavelength change of transmission light of a laser light source and blocks the transmission light,
The high-speed wavelength change monitoring device according to claim 1,
A second optical delay device to which the transmission light output from the high-speed wavelength change monitoring device is input;
An optical shutter that blocks the transmission light output from the second optical delay device based on the detection signal output from the high-speed wavelength change monitoring device;
A light shielding device comprising:
JP2013097119A 2013-05-02 2013-05-02 High-speed wavelength change monitor and light shield device employing the same Pending JP2014220600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013097119A JP2014220600A (en) 2013-05-02 2013-05-02 High-speed wavelength change monitor and light shield device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013097119A JP2014220600A (en) 2013-05-02 2013-05-02 High-speed wavelength change monitor and light shield device employing the same

Publications (1)

Publication Number Publication Date
JP2014220600A true JP2014220600A (en) 2014-11-20

Family

ID=51938709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013097119A Pending JP2014220600A (en) 2013-05-02 2013-05-02 High-speed wavelength change monitor and light shield device employing the same

Country Status (1)

Country Link
JP (1) JP2014220600A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480136A (en) * 1987-09-22 1989-03-27 Nec Corp Optical output interference system
JPH10164018A (en) * 1996-11-26 1998-06-19 Fujitsu Ltd Light transmitter, terminal station equipment having the same and optical communication system
JPH10303817A (en) * 1997-04-24 1998-11-13 Nec Eng Ltd Optical subscriber system
US20050180470A1 (en) * 2004-01-15 2005-08-18 Dan Sadot Measurement of wavelength transients in tunable lasers
JP2006067013A (en) * 2004-08-24 2006-03-09 Sumitomo Electric Ind Ltd Optical transmission system
JP2009264929A (en) * 2008-04-25 2009-11-12 Yokogawa Electric Corp Mode hop detection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480136A (en) * 1987-09-22 1989-03-27 Nec Corp Optical output interference system
JPH10164018A (en) * 1996-11-26 1998-06-19 Fujitsu Ltd Light transmitter, terminal station equipment having the same and optical communication system
JPH10303817A (en) * 1997-04-24 1998-11-13 Nec Eng Ltd Optical subscriber system
US20050180470A1 (en) * 2004-01-15 2005-08-18 Dan Sadot Measurement of wavelength transients in tunable lasers
JP2006067013A (en) * 2004-08-24 2006-03-09 Sumitomo Electric Ind Ltd Optical transmission system
JP2009264929A (en) * 2008-04-25 2009-11-12 Yokogawa Electric Corp Mode hop detection system

Similar Documents

Publication Publication Date Title
US10181696B2 (en) Photonic integrated circuit
JP5738436B2 (en) Laser radar equipment
JP6705353B2 (en) Optical fiber strain and temperature measuring device
JP5654891B2 (en) Optical fiber characteristic measuring apparatus and method
US10158208B2 (en) Method for measuring and suppressing repetition rate phase noise of femtosecond laser using optical fiber delay line
KR101856882B1 (en) Method and apparatus for measuring phase noise of repetition rate of a pulse laser
US9755401B2 (en) Laser, laser modulation method and laser combination system
JPWO2008007615A1 (en) Synchronous optical signal generator and synchronous optical signal generation method
JP5715660B2 (en) Optical sampling apparatus and optical sampling method
JP2014165384A (en) Semiconductor laser module
JP5008011B2 (en) Optical fiber sensor array and optical fiber sensor array system
US20130170828A1 (en) Monitoring and Controlling Optical Nodes
JP5334619B2 (en) Optical path length control device
JP2014220600A (en) High-speed wavelength change monitor and light shield device employing the same
JP2009264929A (en) Mode hop detection system
US6919963B2 (en) Apparatus for detecting wavelength drift and method therefor
JP5404434B2 (en) Phase control device
US10205520B2 (en) Method and device for measuring optical signal-to-noise ratio
Saeedi et al. Differential optical ring modulator: Breaking the bandwidth/quality-factor trade-off
JP2012026777A (en) Optical fiber type temperature sensor
JP2018157247A (en) Fault detection device and fault detection method
JP2013074187A (en) Mode synchronous semiconductor laser device and control method for mode synchronous semiconductor laser
US10873398B1 (en) Dispersion monitor apparatus
Jiang et al. Experimental Study of Integrated Cascade Silicon Bragg Gratings for Optical Delay Lines
Yao Photonic integrated circuits for microwave signal generation and processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314