JP2014220216A - Composite particle for nonaqueous electrolyte secondary battery - Google Patents

Composite particle for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014220216A
JP2014220216A JP2013100766A JP2013100766A JP2014220216A JP 2014220216 A JP2014220216 A JP 2014220216A JP 2013100766 A JP2013100766 A JP 2013100766A JP 2013100766 A JP2013100766 A JP 2013100766A JP 2014220216 A JP2014220216 A JP 2014220216A
Authority
JP
Japan
Prior art keywords
composite
silicon
atom
active material
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013100766A
Other languages
Japanese (ja)
Inventor
金柱 車
Kinchu Kuruma
金柱 車
みゆき 千田
Miyuki Senda
みゆき 千田
大道 高弘
Takahiro Omichi
高弘 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2013100766A priority Critical patent/JP2014220216A/en
Publication of JP2014220216A publication Critical patent/JP2014220216A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a composite particle improving cycle characteristics of a nonaqueous secondary battery furthermore by increasing capacity thereof furthermore, and further increasing initial charge/discharge efficiency thereof.SOLUTION: A composite particle 100 includes a lithium ion conductor and a negative electrode active material or a positive electrode active material, and is formed before initial charging/discharging. The lithium ion conductor is preferably is a compound 11 represented by LiaSibOc, and exists inside the active material or on the surface thereof. A surface of the composite particle is covered with a carbonaceous material in a thickness of 1-10 nm. Furthermore, the active material is preferable for a negative electrode, and includes silicon and/or a silicon compound 12 represented by SiOx.

Description

本発明は、非水電解質二次電池用、特にはリチウムイオン二次電池用の複合粒子、電極材料、及び電極に関する。また、本発明は、非水電解質二次電池、特にはリチウムイオン二次電池に関する。   The present invention relates to composite particles, electrode materials, and electrodes for non-aqueous electrolyte secondary batteries, particularly for lithium ion secondary batteries. The present invention also relates to a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery.

近年、ノート型パソコン、携帯電話、デジタルカメラ、携帯用音楽プレイヤー等の電子機器類、電気機器類等の小型化及び高機能化に伴い、これらに用いられる非水電解質二次電池の高容量化及び長寿命化(サイクル特性)の要求が高まっている。また、非水電解質二次電池は、二酸化炭素排出量の低減を可能とする自動車(EV、HEV)等の交通機関の動力源となるので、地球の温暖化対策等の環境の側面からも非水電解質二次電池の需要が高まっている。以上の状況を踏まえて、近年、非水電解質二次電池、特にはリチウムイオン二次電池の研究開発が盛んに行われている。   In recent years, with the downsizing and higher functionality of electronic devices such as notebook computers, mobile phones, digital cameras, portable music players, and electrical devices, the capacity of non-aqueous electrolyte secondary batteries used in these devices has increased. In addition, there is an increasing demand for longer life (cycle characteristics). In addition, the non-aqueous electrolyte secondary battery is a power source for transportation such as automobiles (EV, HEV) that can reduce carbon dioxide emissions. The demand for water electrolyte secondary batteries is increasing. Based on the above situation, research and development of non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, have been actively conducted in recent years.

例えば、特許文献1では、組成式LixSi(但し、0≦x≦5)で示されるリチウムを含有するケイ素を活物質とする負極と、遷移金属を構成元素として含む金属酸化物を活物質とする正極と、有機溶媒又は高分子にリチウム化合物を溶解もしくは固溶したリチウムイオン導電性の非水電解質とを用いたことを特徴とする非水電解質二次電池が提案されている。また、特許文献2では、正極活物質を有する正極、負極材料を有する負極及び非水電解質を構成要素とする非水二次電池に於いて、該正極活物質がリチウムの挿入放出可能な遷移金属酸化物であり、該負極材料がリチウムの挿入放出可能な金属ケイ化物から金属を除去したケイ素であることを特徴とする非水二次電池が提案されている。 For example, in Patent Document 1, a negative electrode using silicon containing lithium represented by a composition formula Li x Si (where 0 ≦ x ≦ 5) and a metal oxide containing a transition metal as a constituent element as an active material There has been proposed a non-aqueous electrolyte secondary battery using the positive electrode and a lithium ion conductive non-aqueous electrolyte in which a lithium compound is dissolved or dissolved in an organic solvent or polymer. Further, in Patent Document 2, in a non-aqueous secondary battery including a positive electrode having a positive electrode active material, a negative electrode having a negative electrode material, and a non-aqueous electrolyte, the positive electrode active material is a transition metal capable of inserting and releasing lithium. There has been proposed a non-aqueous secondary battery which is an oxide and whose negative electrode material is silicon obtained by removing metal from a metal silicide capable of inserting and releasing lithium.

特開平7−29602号公報Japanese Patent Laid-Open No. 7-29602 特許第3941235号公報Japanese Patent No. 3941235

しかしながら、非水電解質二次電池、特にはリチウムイオン二次電池の更なる高容量化及び長寿命化(サイクル特性の向上)が望まれているのが現状である。本発明は、このような現状を踏まえて本発明者らが鋭意検討した結果、見出されたものである。   However, the present situation is that further enhancement of capacity and longer life (improvement of cycle characteristics) of non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries are desired. The present invention has been found as a result of intensive studies by the present inventors based on the current situation.

すなわち、本発明は、非水電解質二次電池の容量を更に高めて、サイクル特性を一層向上させ、さらに、初回充放電効率を高める、複合粒子、複合体、その複合粒子又はその複合体を含む電極材料、及びその電極材料を含む電極、並びにその電極を含む非水電解質二次電池を提供することを目的とする。   That is, the present invention includes composite particles, composites, composite particles thereof, or composites thereof that further increase the capacity of the nonaqueous electrolyte secondary battery, further improve cycle characteristics, and further improve the initial charge / discharge efficiency. An object is to provide an electrode material, an electrode including the electrode material, and a nonaqueous electrolyte secondary battery including the electrode.

上述の目的は、以下の第(1)項〜第(18)項によって達成される。
(1)リチウムイオン伝導体及び電極用活物質を含み、初回充放電前に形成される、複合粒子。
(2)そのリチウムイオン伝導体がその電極用活物質の内部に存在する、第(1)項に記載の複合粒子。
(3)そのリチウムイオン伝導体がその電極用活物質の表面に存在する、第(1)項又は第(2)項に記載の複合粒子。
(4)そのリチウムイオン伝導体がリチウムシリケートである、第(1)項から第(3)項のいずれか1項に記載の複合粒子。
(5)そのリチウムシリケートが、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表される化合物である、第(4項に記載の複合粒子。
(6)B原子、C原子、N原子、F原子、P原子、S原子、Ti原子、V原子、Ni原子、Cu原子、Ge原子、In原子、及びSn原子から成る群から選ばれる少なくとも1種の原子を更に含む、第(1)項から第(5)項のいずれか1項に記載の複合粒子。
(7)第(1)項から第(6)項のいずれか1項に記載の複合粒子と、炭素系材料含有層とを含む複合体。
(8)その炭素系材料含有層が複合粒子の表面に被覆されてなる、第(7)項に記載の複合体。
(9)その炭素系材料含有層が1nmから10nmの厚みである、第(7)項又は第(8)項に記載の複合体。
(10)SiC化合物を更に含む、第(7)項から第(9)項のいずれか1項に記載の複合体。
(11)その電極用活物質が負極用活物質である、第(1)項から第(6)項のいずれか1項に記載の複合粒子。
(12)その負極用活物質が、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物を含む、第(11)項に記載の複合粒子。
(13)その電極用活物質が負極用活物質である、第(7)項から第(10)項のいずれか1項に記載の複合体。
(14)その負極用活物質が、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物を含む、第(13)項に記載の複合体。
(15)第(11)項又は第(12)項に記載の複合粒子と、導電助剤と、バインダーとを含む、負極材料。
(16)第(13)項又は第(14)項に記載の複合体と、導電助剤と、バインダーとを含む、負極材料。
(17)第(15)項又は第(16)項に記載の負極材料と集電体とから成る、非水電解質二次電池用負極。
(18)第(17)項に記載の非水電解質二次電池用負極を少なくとも含む、非水電解質二次電池。
The above object is achieved by the following items (1) to (18).
(1) Composite particles comprising a lithium ion conductor and an electrode active material and formed before the first charge / discharge.
(2) The composite particle according to item (1), wherein the lithium ion conductor is present in the electrode active material.
(3) The composite particle according to (1) or (2), wherein the lithium ion conductor is present on the surface of the electrode active material.
(4) The composite particle according to any one of items (1) to (3), wherein the lithium ion conductor is lithium silicate.
(5) The lithium silicate is a compound represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8). Item (Composite particles according to item 4).
(6) At least one selected from the group consisting of B atom, C atom, N atom, F atom, P atom, S atom, Ti atom, V atom, Ni atom, Cu atom, Ge atom, In atom, and Sn atom The composite particle according to any one of items (1) to (5), further comprising a seed atom.
(7) A composite comprising the composite particles according to any one of items (1) to (6) and a carbon-based material-containing layer.
(8) The composite according to (7), wherein the carbon-based material-containing layer is coated on the surface of the composite particle.
(9) The composite according to (7) or (8), wherein the carbon-based material-containing layer has a thickness of 1 nm to 10 nm.
(10) The composite according to any one of items (7) to (9), further comprising a SiC compound.
(11) The composite particle according to any one of items (1) to (6), wherein the electrode active material is a negative electrode active material.
(12) The composite particle according to (11), wherein the negative electrode active material contains silicon and / or a silicon compound represented by SiO x (0 <X ≦ 2).
(13) The composite according to any one of items (7) to (10), wherein the electrode active material is a negative electrode active material.
(14) The composite according to item (13), wherein the negative electrode active material contains silicon and / or a silicon compound represented by SiO x (0 <X ≦ 2).
(15) A negative electrode material comprising the composite particles according to the item (11) or the item (12), a conductive additive, and a binder.
(16) A negative electrode material comprising the composite according to (13) or (14), a conductive additive, and a binder.
(17) A negative electrode for a non-aqueous electrolyte secondary battery, comprising the negative electrode material according to (15) or (16) and a current collector.
(18) A nonaqueous electrolyte secondary battery comprising at least the negative electrode for a nonaqueous electrolyte secondary battery according to item (17).

本発明によれば、初回充放電効率性に優れる、複合粒子、複合体、その複合粒子又はその複合体を含む電極材料、及びその電極材料を含む電極、並びにその電極を含む非水電解質二次電池が提供される。また、本発明によれば、非水電解質二次電池の容量を更に高めて、サイクル特性を一層向上させる、複合粒子、複合体、その複合粒子又はその複合体を含む電極材料、及びその電極材料を含む電極、並びにその電極を含む非水電解質二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the composite particle which is excellent in initial charge / discharge efficiency, the composite, the electrode material containing the composite particle or the composite, the electrode containing the electrode material, and the nonaqueous electrolyte secondary containing the electrode A battery is provided. In addition, according to the present invention, the capacity of the nonaqueous electrolyte secondary battery is further increased to further improve the cycle characteristics, and the composite particles, the composite, the composite particles or the electrode material including the composite, and the electrode material And a non-aqueous electrolyte secondary battery including the electrode.

本発明の複合粒子の1つの態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows one aspect | mode of the composite particle of this invention. 本発明の複合粒子の別の1つの態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows another one aspect | mode of the composite particle of this invention. 実施例1−1によって得られた、本発明の複合粒子1−1のNMR(7Li−DD/MAS)分析結果を示す図である。It is a figure which shows the NMR (7Li-DD / MAS) analysis result of the composite particle | grains 1-1 of this invention obtained by Example 1-1. 実施例1−1によって得られた、本発明の複合粒子1−1のNMR(29Si−DD/MAS)分析結果を示す図である。It is a figure which shows the NMR (29Si-DD / MAS) analysis result of the composite particle | grains 1-1 of this invention obtained by Example 1-1. 実施例1−1によって得られた、本発明の複合粒子1−1のXRD分析結果を示す図である。It is a figure which shows the XRD analysis result of the composite particle | grains 1-1 of this invention obtained by Example 1-1. 実施例2−1〜実施例2−4によって得られた、本発明の複合体2−1〜2−4のNMR(7Li−DD/MAS)分析結果を示す図である。It is a figure which shows the NMR (7Li-DD / MAS) analysis result of the composites 2-1 to 2-4 of this invention obtained by Example 2-1 to Example 2-4. 実施例2−3によって得られた、本発明の複合体2−3のXRD分析結果(a)と実施例2−4によって得られた、本発明の複合体2−4のXRD分析結果(b)とを示す図である。The XRD analysis result (a) of the complex 2-3 of the present invention obtained by Example 2-3 and the XRD analysis result (b) of the complex 2-4 of the present invention obtained by Example 2-4 ). 実施例2−1によって得られた、本発明の複合体2−1のXRD分析結果(c)と、実施例2−2によって得られた、本発明の複合体2−2のXRD分析結果(d)とを示す図である。The XRD analysis result (c) of the complex 2-1 of the present invention obtained in Example 2-1 and the XRD analysis result of the complex 2-2 of the present invention obtained in Example 2-2 ( FIG. 実施例2−1によって得られた、本発明の複合体のFESTEM観察の結果を示す写真である。It is a photograph which shows the result of the FESTEM observation of the composite_body | complex of this invention obtained by Example 2-1.

(複合粒子)
本発明の複合粒子は、リチウムイオン伝導体及び電極用活物質を含み、初回充放電前に形成される、複合粒子である。本発明の複合粒子が初回充放電前に形成されることで、本発明の複合粒子は、非水電解質二次電池、特にはリチウムイオン二次電池の初回充放電効率((初回放電容量)/(初回充電容量)×100(%))を高めることができる。また、本発明の複合粒子は、非水電解質二次電池、特にはリチウムイオン二次電池の容量を更に高めることができ、さらに、サイクル特性を一層向上させることできる。
(Composite particles)
The composite particle of the present invention is a composite particle that includes a lithium ion conductor and an electrode active material and is formed before the first charge / discharge. By forming the composite particles of the present invention before the first charge / discharge, the composite particles of the present invention can be used for the first charge / discharge efficiency ((first discharge capacity) / of a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery. (Initial charge capacity) × 100 (%)) can be increased. Further, the composite particles of the present invention can further increase the capacity of a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery, and can further improve cycle characteristics.

本発明の複合粒子に含まれるリチウムイオン伝導体は、リチウムイオンを含む化合物であり、リチウムイオンを運ぶことができる媒体である。なお、リチウムイオン伝導体の性能を向上させるためには、リチウムイオンを多く入れること、リチウムイオンを早く移動できること等が必要である。リチウムイオンを多く入れることは、充放電の電気量が多いことの結果につながり、また、リチウムイオンを早く移動できることは出力が早いことの結果につながる。   The lithium ion conductor contained in the composite particle of the present invention is a compound containing lithium ions, and is a medium capable of carrying lithium ions. In order to improve the performance of the lithium ion conductor, it is necessary to add a lot of lithium ions, to move lithium ions quickly, and the like. Inclusion of a large amount of lithium ions leads to a result of a large amount of charge and discharge, and the ability to move lithium ions quickly leads to a result of fast output.

本発明の複合粒子は、リチウムイオン伝導体が電極用活物質の内部に存在することが好ましい。リチウムイオン伝導体は電極用活物質の内部の一部に存在してもよいし、電極用活物質の内部の全体に存在してもよい。リチウムイオン伝導体が電極用活物質の内部に存在する場合、リチウムイオン伝導体の相として存在してもよい。ここで、「内部」とは、複合粒子に含まれる電極用活物質全体から「外部」の部分を除いた部分をいう。「外部」とは、複合二次粒子に含まれる電極用活物質の表面の領域と、電極用活物質の表面からの所定の距離に相当する面で切断したときの表面側の部分とを含む趣旨である。例えば、電極活物質が球状の物質であれば、「外部」とは、電極活物質の表面の領域と、表面からの球状電極活物質の半径の所定の距離に相当する球面で切断したときの表面側の部分とを含む趣旨である。   In the composite particles of the present invention, the lithium ion conductor is preferably present inside the electrode active material. The lithium ion conductor may exist in a part of the inside of the electrode active material, or may exist in the whole inside of the electrode active material. When the lithium ion conductor is present inside the electrode active material, it may be present as a phase of the lithium ion conductor. Here, “inside” means a portion obtained by removing the “outside” portion from the entire electrode active material contained in the composite particle. “External” includes the surface area of the electrode active material contained in the composite secondary particles and the surface-side portion when cut by a plane corresponding to a predetermined distance from the surface of the electrode active material. It is the purpose. For example, if the electrode active material is a spherical material, the term “external” refers to a region on the surface of the electrode active material and a spherical surface corresponding to a predetermined distance of the radius of the spherical electrode active material from the surface. And a portion on the surface side.

本発明の複合粒子は、リチウムイオン伝導体が電極用活物質の表面に存在することが好ましい。リチウムイオン伝導体が電極用活物質の表面の一部に存在してもよいし、リチウムイオン伝導体が電極用活物質の表面の全体を被覆するように存在してもよい。リチウムイオン伝導体が電極用活物質の表面に存在する場合、リチウムイオン伝導体の相として存在してもよい。また、リチウムイオン伝導体が電極用活物質の表面に存在する場合、リチウムイオン伝導体相の膜として存在してもよい。さらに、リチウムイオン伝導体相とSEI膜(Solid Electrolyte Interphase)とが、表面被膜として電極用活物質の表面に形成されてもよい。本発明における「内部」と「外部」と「表面」との定義は上述のとおりである。   In the composite particle of the present invention, the lithium ion conductor is preferably present on the surface of the electrode active material. The lithium ion conductor may be present on a part of the surface of the electrode active material, or the lithium ion conductor may be present so as to cover the entire surface of the electrode active material. When the lithium ion conductor is present on the surface of the electrode active material, it may be present as a phase of the lithium ion conductor. Moreover, when a lithium ion conductor exists on the surface of the active material for electrodes, it may exist as a film of a lithium ion conductor phase. Further, a lithium ion conductor phase and an SEI film (Solid Electrolyte Interphase) may be formed on the surface of the electrode active material as a surface coating. The definitions of “inside”, “outside” and “surface” in the present invention are as described above.

本発明の複合粒子の平均粒子径は任意の大きさを有することができ、例えば1nm以上、又は3nm以上であって、1μm以下、500nm以下、100nm以下、50nm以下、30nm以下、20nm以下、又は10nm以下の平均粒子径を有することができる。   The average particle diameter of the composite particles of the present invention can have any size, for example, 1 nm or more, or 3 nm or more, and 1 μm or less, 500 nm or less, 100 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, or It can have an average particle size of 10 nm or less.

本発明の複合粒子の平均粒子径は、レーザ回折散乱法にしたがった粒度分布を測定することにより求めることができる。また、粒子の平均一次粒子径は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)等による観察によって、撮影した画像を元に直接粒子径を計測し、集合数100以上からなる粒子群を解析することで、数平均一次粒子径として求めることができる。なお、具体的には例えば、平均一次粒子径は、TEM観察を行い、10万倍の倍率により画像解析を行って、500以上の集合を元に算出することができる。   The average particle size of the composite particles of the present invention can be determined by measuring the particle size distribution according to the laser diffraction scattering method. In addition, the average primary particle diameter of the particles is a particle having an aggregate number of 100 or more by directly measuring the particle diameter based on the photographed image by observation with a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like. By analyzing the group, the number average primary particle diameter can be obtained. Specifically, for example, the average primary particle diameter can be calculated based on a set of 500 or more by performing TEM observation and performing image analysis at a magnification of 100,000 times.

本発明の複合粒子に含まれるリチウムイオン伝導体は、本発明の目的を達成して、本発明の効果を奏すれば特に限定されることはないが、例えば、LiS、LiP25、LiAlOx、LiTiOx、LiNiOx、LiGeOx、LiFeOx、LiVOx、LiBH4、リチウムシリケート等が挙げられ、リチウムシリケートであることが好ましい。 The lithium ion conductor contained in the composite particles of the present invention is not particularly limited as long as the object of the present invention is achieved and the effects of the present invention are achieved. For example, LiS, LiP 2 O 5 , LiAlOx LiTiOx, LiNiOx, LiGeOx, LiFeOx, LiVOx, LiBH 4 , lithium silicate, and the like, and lithium silicate is preferable.

リチウムシリケートは、本発明の目的を達成して、本発明の効果を奏すれば特に限定されることはないが、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表される化合物であることが好ましい。 Lithium silicate is not particularly limited as long as the object of the present invention is achieved and the effects of the present invention are achieved, but Li a Si b O c (where 1 ≦ a ≦ 5 and 1 ≦ b ≦ 3 and 1 ≦ c ≦ 8).

好ましいLiaSibcで表される化合物中のaは、1≦a≦5であれば任意の値でよく、bは、1≦b≦3であれば任意の値でよく、cは、1≦c≦8であれば任意の値でよい。LiaSibcの具体的な化合物としては、例えば、Li4SiO4、Li2SiO3が挙げられ、Li4SiO4であることが好ましい。 In the preferable compound represented by Li a Si b O c , a may be any value if 1 ≦ a ≦ 5, b may be any value if 1 ≦ b ≦ 3, and c is Any value can be used as long as 1 ≦ c ≦ 8. Specific examples of Li a Si b O c include Li 4 SiO 4 and Li 2 SiO 3 , and Li 4 SiO 4 is preferable.

本発明の複合粒子は、B原子、C原子、N原子、F原子、P原子、S原子、Ti原子、V原子、Ni原子、Cu原子、Ge原子、In原子、及びSn原子から成る群から選ばれる少なくとも1種の原子を更に含むことが好ましく、B原子、C原子、N原子、F原子、P原子、S原子、Ti原子、V原子、Ni原子、Cu原子、Ge原子、In原子、及びSn原子から成る群から選ばれる原子を2種以上で組み合わせたものでもよい。   The composite particle of the present invention is composed of a group consisting of B atom, C atom, N atom, F atom, P atom, S atom, Ti atom, V atom, Ni atom, Cu atom, Ge atom, In atom, and Sn atom. It is preferable to further include at least one selected atom, and B atom, C atom, N atom, F atom, P atom, S atom, Ti atom, V atom, Ni atom, Cu atom, Ge atom, In atom, And a combination of two or more atoms selected from the group consisting of Sn atoms.

本発明の複合粒子に含まれる電極用活物質は、負極用活物質であることが好ましい。なお、本発明の複合粒子に含まれる電極用活物質は、正極用活物質でもよい。以下、本発明の複合粒子に含まれる電極用活物質が負極用活物質の場合について、詳細に説明をする。   The electrode active material contained in the composite particles of the present invention is preferably a negative electrode active material. The electrode active material contained in the composite particle of the present invention may be a positive electrode active material. Hereinafter, the case where the active material for electrodes contained in the composite particles of the present invention is the active material for negative electrodes will be described in detail.

本発明の複合粒子、すなわち、負極用複合粒子に含まれる負極用活物質は、酸化還元反応を行う物質であれば特に限定されることはない。例えば、非水電解質二次電池がリチウムイオン二次電池であれば、リチウムイオンを吸蔵・放出可能な材料を含めば、特に限定されることはなく、本発明の複合粒子、すなわち、負極用複合粒子に含まれる負極用活物質は、例えば、炭素材料、シリコン、SiOX(0<X≦2)で表されるシリコン化合物、スズ(Sn)、シリコン(Si)系合金、スズ(Sn)系合金、スズ(Sn)酸化物、これらの任意の組み合わせ等を含むことが挙げられるが、シリコン、SiOX(0<X≦2)で表されるシリコン化合物、又はシリコン及びSiOX(0<X≦2)で表されるシリコン化合物を含むことが好ましく、SiOを含むことがより好ましい。なお、SiOX中のXは、0<X≦2であれば任意の値でよい。 The negative electrode active material contained in the composite particle of the present invention, that is, the negative electrode composite particle is not particularly limited as long as it is a substance that undergoes a redox reaction. For example, if the non-aqueous electrolyte secondary battery is a lithium ion secondary battery, the composite particle of the present invention, that is, the composite for negative electrode is not particularly limited as long as it includes a material capable of inserting and extracting lithium ions. The negative electrode active material contained in the particles is, for example, a carbon material, silicon, a silicon compound represented by SiO x (0 <X ≦ 2), tin (Sn), a silicon (Si) -based alloy, tin (Sn) -based Examples thereof include an alloy, tin (Sn) oxide, and an arbitrary combination thereof. Silicon, a silicon compound represented by SiO x (0 <X ≦ 2), or silicon and SiO x (0 <X It is preferable to include a silicon compound represented by ≦ 2), and it is more preferable to include SiO. X in SiO x may be any value as long as 0 <X ≦ 2.

例えば、原料となるシリコン粒子の製造のためには、特表2010−514585公報で示されるようなシリコン粒子の製造方法を用いることができる。具体的には、シリコン粒子としては、レーザー熱分解法、特にCO2レーザーを用いたレーザー熱分解法によって得られたシリコン粒子を挙げることができる。 For example, a method for producing silicon particles as disclosed in JP-T-2010-514585 can be used for producing silicon particles as a raw material. Specifically, examples of silicon particles include silicon particles obtained by a laser pyrolysis method, particularly a laser pyrolysis method using a CO 2 laser.

負極用活物質はドーピング元素を含んでもよい。ドーピング元素によって、1.0×1020原子/cm3超の濃度でドープされていてもよい。ドーピング元素は、周期律表の13族及び15族の元素からなる群より選択されよく、例えばホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、チタン(Ti)、リン(P)、ヒ素(As)、アンチモン(Sb)、窒素及びそれらの組み合わせから成る群より選択されてよい。 The negative electrode active material may contain a doping element. Depending on the doping element, it may be doped at a concentration of more than 1.0 × 10 20 atoms / cm 3 . The doping element may be selected from the group consisting of Group 13 and Group 15 elements of the Periodic Table, such as boron (B), aluminum (Al), gallium (Ga), indium (In), titanium (Ti), phosphorus It may be selected from the group consisting of (P), arsenic (As), antimony (Sb), nitrogen and combinations thereof.

本発明の複合粒子の製造方法は、シリコン化合物(例えば、Si、SiO、SiO2等)と、リチウム(Li)、炭酸リチウム(Li2CO3)、過酸化リチウム(Li22)、水酸化リチウム(LiOH)等を混合して混合物を得て、次いで、その混合物を焼成することを含む。そして、この製造方法によって、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケートの化合物(例えば、Li4SiO4、Li2SiO3、Li2Si25)、とを含む複合粒子が得られる。 Method of producing composite particles of the present invention, silicon compounds (e.g., Si, SiO, SiO2, etc.) and lithium (Li), lithium carbonate (Li 2 CO 3), lithium peroxide (Li 2 O 2), hydroxide Lithium (LiOH) or the like is mixed to obtain a mixture, and then the mixture is fired. Then, by this production method, a lithium silicate compound represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8) ( For example, composite particles containing Li 4 SiO 4 , Li 2 SiO 3 , Li 2 Si 2 O 5 ) are obtained.

以下、図1及び2を参照しながら、本発明の複合粒子について、更に詳細に説明をする。なお、本発明の複合粒子は、本発明の目的及び主旨を逸脱しない範囲で、図1及び2で表される本発明の複合粒子の実施の形態に限定されるものではない。   Hereinafter, the composite particles of the present invention will be described in more detail with reference to FIGS. The composite particles of the present invention are not limited to the embodiment of the composite particles of the present invention shown in FIGS. 1 and 2 without departing from the object and spirit of the present invention.

図1は、本発明の複合粒子の1つの態様を示す図であり、本発明の複合粒子100の断面模式図である。複合粒子100は、リチウム伝導体であるリチウムシリケート11と、負極活物質である、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物12とから構成される。図1を参照すると、リチウムシリケート11は、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物12の内部に存在する。リチウムシリケート11を「島」ととらえて、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物12を「海」ととらえると、複合粒子100は、海島構造を有する。 FIG. 1 is a view showing one embodiment of the composite particle of the present invention, and is a schematic cross-sectional view of the composite particle 100 of the present invention. The composite particle 100 includes a lithium silicate 11 that is a lithium conductor and a silicon compound 12 that is a negative electrode active material and is represented by silicon and / or SiO x (0 <X ≦ 2). Referring to FIG. 1, lithium silicate 11 exists inside silicon compound 12 represented by silicon and / or SiO x (0 <X ≦ 2). When the lithium silicate 11 is regarded as an “island” and the silicon compound 12 represented by silicon and / or SiO x (0 <X ≦ 2) is regarded as the “sea”, the composite particle 100 has a sea-island structure.

図2は、本発明の複合粒子の別の1つの態様を示す図であり、本発明の複合粒子200及び複合粒子300の断面模式図である。複合粒子200は、リチウム伝導体であるリチウムシリケート21と、負極活物質である、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物22とから構成される。図2を参照すると、リチウムシリケート21は、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物22の表面全体に存在する。すなわち、複合粒子200において、リチウムシリケート21はシリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物22の表面全体を被覆している。 FIG. 2 is a diagram showing another embodiment of the composite particle of the present invention, and is a schematic cross-sectional view of the composite particle 200 and the composite particle 300 of the present invention. The composite particle 200 includes a lithium silicate 21 that is a lithium conductor and a silicon compound 22 that is a negative electrode active material and is represented by silicon and / or SiO x (0 <X ≦ 2). Referring to FIG. 2, the lithium silicate 21 exists on the entire surface of the silicon compound 22 represented by silicon and / or SiO x (0 <X ≦ 2). That is, in the composite particle 200, the lithium silicate 21 covers the entire surface of the silicon compound 22 represented by silicon and / or SiO x (0 <X ≦ 2).

複合粒子300は、リチウム伝導体であるリチウムシリケート31と、負極活物質である、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物32とから構成される。図2を参照すると、リチウムシリケート31は、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物32の表面の一部に存在する。すなわち、複合粒子300において、リチウムシリケート31はシリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物32の表面全体を被覆しているのでなく、表面の一部を被覆している。 The composite particle 300 includes a lithium silicate 31 that is a lithium conductor and a silicon compound 32 that is a negative electrode active material and is represented by silicon and / or SiO x (0 <X ≦ 2). Referring to FIG. 2, the lithium silicate 31 is present on a part of the surface of the silicon compound 32 represented by silicon and / or SiO x (0 <X ≦ 2). That is, in the composite particle 300, the lithium silicate 31 does not cover the entire surface of the silicon compound 32 represented by silicon and / or SiO x (0 <X ≦ 2), but covers a part of the surface. Yes.

(複合体)
本発明の複合体は、本発明の複合粒子と、炭素系材料含有層とを含む複合体である。本発明の複合体において、炭素系材料含有層が複合粒子の表面に被覆されてなることが好ましい。本発明の複合体において、炭素系材料含有層が1nmから10nmの厚みであることが好ましく、1nmから5nmであることがより好ましく、1nmから3nmであることが更に好ましい。
(Complex)
The composite of the present invention is a composite including the composite particles of the present invention and a carbon-based material-containing layer. In the composite of the present invention, the carbon-based material-containing layer is preferably coated on the surface of the composite particles. In the composite of the present invention, the carbon-based material-containing layer preferably has a thickness of 1 nm to 10 nm, more preferably 1 nm to 5 nm, and still more preferably 1 nm to 3 nm.

本発明の複合体に含まれる炭素系材料含有層の炭素系材料は、炭素元素を含む材料であれば、特に限定されることはなく、例えば、炭素材料、炭素元素を含むポリマー材料、それらの組み合わせが挙げられる。炭素元素を含むポリマー材料としては、例えば、フェノール樹脂、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリスチレン、フラン樹脂、セルロース樹脂、エポキシ樹脂、ポリ塩化ビニル、ポリメタクリル酸メチル樹脂、ポリフッ化ビ二リデン、ピッチ、コークス、バイオ廃棄物、フルフルアルコール、及びそれらの任意の組合せが挙げられる。ポリマー材料はホウ素、アルミニウム、ガリウム、インジウム、チタン、リン、ヒ素、アンチモン及びそれらの組み合わせから成る群より選択されるドーパント元素を有していてもよい。例えばヘキサメチレンテトラミンによって硬化したポリマー、ポリビニルピロリドン、ポリアミド、ポリアクリロニトリル、及びそれらの組み合わせから成る群により選択されるポリマーであってもよい。   The carbon-based material of the carbon-based material-containing layer included in the composite of the present invention is not particularly limited as long as it is a material containing a carbon element. For example, a carbon material, a polymer material containing a carbon element, those materials Combinations are listed. Examples of the polymer material containing carbon element include phenol resin, polyethylene, polypropylene, polyvinyl alcohol, polystyrene, furan resin, cellulose resin, epoxy resin, polyvinyl chloride, polymethyl methacrylate resin, polyvinylidene fluoride, pitch, Coke, biowaste, full alcohol, and any combination thereof. The polymeric material may have a dopant element selected from the group consisting of boron, aluminum, gallium, indium, titanium, phosphorus, arsenic, antimony, and combinations thereof. For example, it may be a polymer selected by the group consisting of a polymer cured with hexamethylenetetramine, polyvinylpyrrolidone, polyamide, polyacrylonitrile, and combinations thereof.

本発明の複合体が、SiC化合物を更に含むことが好ましい。SiC化合物はSiC相として存在してもよい。SiC化合物又はSiC相は、複合粒子の表面の少なくとも一部が炭素系含有層で被覆されている場合は、炭素系材料含有層と複合粒子との界面の少なくとも一部に、炭化シリコンの層として存在してよい。   It is preferable that the composite of the present invention further contains a SiC compound. The SiC compound may exist as a SiC phase. When at least a part of the surface of the composite particle is coated with the carbon-containing layer, the SiC compound or the SiC phase is formed as a silicon carbide layer on at least a part of the interface between the carbon-based material-containing layer and the composite particle. May exist.

本発明の複合体の製造方法は、本発明の複合粒子と炭素元素を含むポリマー材料とを焼成して、炭素元素を含むポリマー材料を炭化させることを含む。本発明の複合体において、炭素系材料含有層が複合粒子の表面に被覆されてなる場合、シリコン粒子の表面をポリマーで被覆すること、及びポリマーで被覆されたシリコン粒子を焼成して、ポリマーを炭化させることを含む。   The method for producing a composite of the present invention includes firing the composite particles of the present invention and a polymer material containing carbon element to carbonize the polymer material containing carbon element. In the composite of the present invention, when the carbon-based material-containing layer is coated on the surface of the composite particle, the surface of the silicon particle is coated with a polymer, and the silicon particle coated with the polymer is baked to form a polymer. Including carbonizing.

正極用活物質は、酸化還元反応を行う物質であれば特に限定されることはない。例えば、非水電解質二次電池がリチウムイオン二次電池であれば、正極用活物質は、リチウムイオンを吸蔵・放出可能な材料を含めば、特に限定されることはないが、オリビン系化合物、ポリアニオン系化合物、ケイ酸塩系化合物及びLi過剰固溶体系化合物から成る群から選択される少なくとも1種の化合物を含むことが好ましい。   The positive electrode active material is not particularly limited as long as it is a substance that performs a redox reaction. For example, if the non-aqueous electrolyte secondary battery is a lithium ion secondary battery, the positive electrode active material is not particularly limited as long as it includes a material capable of occluding and releasing lithium ions, but an olivine compound, It is preferable to include at least one compound selected from the group consisting of polyanionic compounds, silicate compounds, and Li-excess solid solution system compounds.

オリビン系化合物(ポリアニオン系化合物)としては、例えば、リン酸オリビン系LiMnPO4(M=Fe、Mn、Co)等が挙げられ、ケイ酸塩系化合物としては、例えば、Li2MSiO4(M=Fe、Co、Ni、Mn)等が挙げられ、Li過剰固溶体系化合物としては、例えば、Li2MnO3−LiMO2等が挙げられる。 Examples of the olivine compound (polyanion compound) include olivine phosphate LiMnPO 4 (M = Fe, Mn, Co), and the silicate compound includes, for example, Li 2 MSiO 4 (M = Fe, Co, Ni, Mn) and the like, and examples of the Li excess solid solution system compound include Li 2 MnO 3 —LiMO 2 .

(電極材料)
<負極材料>
本発明による負極材料は、本発明の複合粒子と、導電助剤と、バインダーとを含む。本発明による負極材料は、予想外に、非水電解質二次電池、特にはリチウムイオン二次電池の初回充放電効率を高めることができる。また、本発明による負極材料は、予想外に、非水電解質二次電池、特にはリチウムイオン二次電池の容量を更に高めることができ、さらに、サイクル特性を一層向上させることできる。
(Electrode material)
<Negative electrode material>
The negative electrode material according to the present invention includes the composite particles of the present invention, a conductive additive, and a binder. The negative electrode material according to the present invention can unexpectedly increase the initial charge / discharge efficiency of a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery. Moreover, the negative electrode material according to the present invention can unexpectedly further increase the capacity of a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery, and further improve cycle characteristics.

本発明による負極材料に含まれる導電助剤は、負極材料の導電性を向上させることができる限り、特に限定されない。したがって、例えば、導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、炭素繊維、及びこれらの組み合わせから成る群より選択される炭素材料が挙げられる。導電助剤としては、炭素繊維、特に、直線構造を有する平均繊維径10〜900nmの超極細繊維状炭素を用いることが、サイクル特性の向上に関して好ましい。このような超極細繊維状炭素に関しては例えば、特開2010−245423の記載を参照することができる。   The conductive additive contained in the negative electrode material according to the present invention is not particularly limited as long as the conductivity of the negative electrode material can be improved. Thus, for example, the conductive aid includes a carbon material selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, and combinations thereof. As the conductive additive, it is preferable to use carbon fiber, particularly ultrafine fibrous carbon having an average fiber diameter of 10 to 900 nm having a linear structure in terms of improving cycle characteristics. Regarding such ultrafine fibrous carbon, reference can be made to the description of JP2010-245423, for example.

本発明による負極材料に含まれるバインダーは、集電体に対して負極用活物質を結着させることができる限り、特に限定されない。したがって、例えば、バインダーとしては、ポリフッ化ビニリデン(PVdF)、エポキシ、ポリイミド、ポリアミドイミド、セルロース、CMC(カルボキシメチルセルロース)、スチレン−ブタジエン−コポリマー、ポリアクリレート、ポリウレタン、アラミド等を用いることができる。   The binder contained in the negative electrode material according to the present invention is not particularly limited as long as the negative electrode active material can be bound to the current collector. Therefore, for example, as the binder, polyvinylidene fluoride (PVdF), epoxy, polyimide, polyamideimide, cellulose, CMC (carboxymethylcellulose), styrene-butadiene-copolymer, polyacrylate, polyurethane, aramid, or the like can be used.

<正極材料>
正極材料は、正極活物質と、導電助剤と、バインダーとを含む。
<Positive electrode material>
The positive electrode material includes a positive electrode active material, a conductive additive, and a binder.

正極材料に含まれる導電助剤は、正極材料の導電性を向上させることができる限り、特に限定されない。したがって、例えば、導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、炭素繊維、及びこれらの組み合わせから成る群より選択される炭素材料が挙げられる。導電助剤としては、炭素繊維、特に、直線構造を有する平均繊維径10〜900nmの超極細繊維状炭素を用いることが、サイクル特性の向上に関して好ましい。このような超極細繊維状炭素に関しては例えば、特開2010−245423の記載を参照することができる。   The conductive additive contained in the positive electrode material is not particularly limited as long as the conductivity of the positive electrode material can be improved. Thus, for example, the conductive aid includes a carbon material selected from the group consisting of carbon black, graphite, acetylene black, carbon fiber, and combinations thereof. As the conductive additive, it is preferable to use carbon fiber, particularly ultrafine fibrous carbon having an average fiber diameter of 10 to 900 nm having a linear structure in terms of improving cycle characteristics. Regarding such ultrafine fibrous carbon, reference can be made to the description of JP2010-245423, for example.

正極材料に含まれるバインダーは、集電体に対して正極用活物質を結着させることができる限り、特に限定されない。したがって、例えば、バインダーとしては、ポリフッ化ビニリデン(PVdF)、エポキシ、ポリイミド、ポリアミドイミド、セルロース、CMC(カルボキシメチルセルロース)、スチレン−ブタジエン−コポリマー、ポリアクリレート、ポリウレタン、アラミド等を用いることができる。   The binder contained in the positive electrode material is not particularly limited as long as the positive electrode active material can be bound to the current collector. Therefore, for example, as the binder, polyvinylidene fluoride (PVdF), epoxy, polyimide, polyamideimide, cellulose, CMC (carboxymethylcellulose), styrene-butadiene-copolymer, polyacrylate, polyurethane, aramid, or the like can be used.

(非水電解質二次電池用電極)
<非水電解質二次電池用負極>
本発明による非水電解質二次電池用負極は、本発明による負極材料と集電体とからなる。本発明による非水電解質二次電池用負極は、本発明による負極材料が集電体の表面に形成されてなることが好ましい。本発明による非水電解質二次電池用負極は、予想外に、非水電解質二次電池、特にはリチウムイオン二次電池の初回充放電効率を高めることができる。また、本発明による非水電解質二次電池用負極は、予想外に、非水電解質二次電池、特にはリチウムイオン二次電池の容量を更に高めることができ、さらに、サイクル特性を一層向上させることできる。
(Nonaqueous electrolyte secondary battery electrode)
<Negative electrode for non-aqueous electrolyte secondary battery>
The negative electrode for a nonaqueous electrolyte secondary battery according to the present invention comprises the negative electrode material according to the present invention and a current collector. The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention is preferably formed by forming the negative electrode material according to the present invention on the surface of a current collector. The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention can unexpectedly increase the initial charge / discharge efficiency of a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery. In addition, the negative electrode for a non-aqueous electrolyte secondary battery according to the present invention can unexpectedly further increase the capacity of a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery, and further improve cycle characteristics. I can.

本発明による非水電解質二次電池用負極の集電体は、任意の導電性材料から形成することができる。したがって、例えば、集電体は、アルミニウム、ニッケル、鉄、ステンレス鋼、チタン、銅等の金属材料、特にアルミニウム、ステンレス鋼、銅から形成することができる。   The current collector of the negative electrode for a non-aqueous electrolyte secondary battery according to the present invention can be formed from any conductive material. Thus, for example, the current collector can be formed from a metal material such as aluminum, nickel, iron, stainless steel, titanium, copper, in particular aluminum, stainless steel, copper.

本発明の非水電解質二次電池用負極は任意の方法で製造することができる。本発明の非水電解質二次電池用負極は、例えば、負極用活物質、随意のバインダー、随意の導電助剤等を含む負極材料を分散媒中に分散させて、この分散した負極材料を集電体に適用し、乾燥し、随意に焼成して得ることができる。   The negative electrode for a nonaqueous electrolyte secondary battery of the present invention can be produced by any method. The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention includes, for example, a negative electrode material containing a negative electrode active material, an optional binder, an optional conductive additive and the like dispersed in a dispersion medium, and the dispersed negative electrode material is collected. It can be obtained by applying to an electric body, drying and optionally firing.

この場合の分散媒は、本発明の目的及び効果を損なわない限り制限されるものではなく、したがって、例えば、有機溶媒を用いることができる。具体的にはこの分散媒は、非水系溶媒、例えばアルコール、アルカン、アルケン、アルキン、ケトン、エーテル、エステル、芳香族化合物、又は含窒素環化合物であってよく、特にイソプロピルアルコール(IPA)、又はN−メチル−2−ピロリドン(NMP)であってよい。   The dispersion medium in this case is not limited as long as the object and effect of the present invention are not impaired. Therefore, for example, an organic solvent can be used. Specifically, the dispersion medium may be a non-aqueous solvent such as alcohol, alkane, alkene, alkyne, ketone, ether, ester, aromatic compound, or nitrogen-containing ring compound, particularly isopropyl alcohol (IPA), or It may be N-methyl-2-pyrrolidone (NMP).

また、乾燥温度は、本発明の複合粒子を劣化等させないように選択することができ、例えば50℃以上、70℃以上、又は90℃以上であって、100℃以下、150℃以下、200℃以下、又は250℃以下であるように選択できる。   The drying temperature can be selected so as not to deteriorate the composite particles of the present invention. For example, the drying temperature is 50 ° C. or higher, 70 ° C. or higher, or 90 ° C. or higher, and 100 ° C. or lower, 150 ° C. or lower, 200 ° C. Or below 250 ° C.

非水電解質二次電池用正極は、正極材料と集電体とからなる。非水電解質二次電池用正極は、正極材料が集電体の表面に形成されてなることが好ましい。   The positive electrode for a nonaqueous electrolyte secondary battery includes a positive electrode material and a current collector. The positive electrode for a non-aqueous electrolyte secondary battery is preferably formed by forming a positive electrode material on the surface of the current collector.

非水電解質二次電池用正極の集電体は、任意の導電性材料から形成することができる。したがって、例えば、集電体は、アルミニウム、ニッケル、鉄、ステンレス鋼、チタン、銅等の金属材料、特にアルミニウム、ステンレス鋼、銅から形成することができる。   The current collector of the positive electrode for a non-aqueous electrolyte secondary battery can be formed from any conductive material. Thus, for example, the current collector can be formed from a metal material such as aluminum, nickel, iron, stainless steel, titanium, copper, in particular aluminum, stainless steel, copper.

非水電解質二次電池用正極は任意の方法で製造することができる。非水電解質二次電池用正極は、例えば、正極用活物質、随意のバインダー、随意の導電助剤等を含む正極材料を分散媒中に分散させて、この分散した正極材料を集電体に適用し、乾燥し、随意に焼成して得ることができる。   The positive electrode for a nonaqueous electrolyte secondary battery can be produced by any method. A positive electrode for a non-aqueous electrolyte secondary battery is prepared by, for example, dispersing a positive electrode material containing a positive electrode active material, an optional binder, an optional conductive additive, etc. in a dispersion medium, and using the dispersed positive electrode material as a current collector. It can be obtained by applying, drying and optionally firing.

この場合の分散媒は、本発明の目的及び効果を損なわない限り制限されるものではなく、したがって、例えば、有機溶媒を用いることができる。具体的にはこの分散媒は、非水系溶媒、例えばアルコール、アルカン、アルケン、アルキン、ケトン、エーテル、エステル、芳香族化合物、又は含窒素環化合物であってよく、特にイソプロピルアルコール(IPA)、又はN−メチル−2−ピロリドン(NMP)であってよい。   The dispersion medium in this case is not limited as long as the object and effect of the present invention are not impaired. Therefore, for example, an organic solvent can be used. Specifically, the dispersion medium may be a non-aqueous solvent such as alcohol, alkane, alkene, alkyne, ketone, ether, ester, aromatic compound, or nitrogen-containing ring compound, particularly isopropyl alcohol (IPA), or It may be N-methyl-2-pyrrolidone (NMP).

また、乾燥温度は、本発明の複合粒子を劣化等させないように選択することができ、例えば50℃以上、70℃以上、又は90℃以上であって、100℃以下、150℃以下、200℃以下、又は250℃以下であるように選択できる。   The drying temperature can be selected so as not to deteriorate the composite particles of the present invention. For example, the drying temperature is 50 ° C. or higher, 70 ° C. or higher, or 90 ° C. or higher, and 100 ° C. or lower, 150 ° C. or lower, 200 ° C. Or below 250 ° C.

(非水電解質二次電池)
本発明の非水電解質二次電池は、例えば、リチウムイオン二次電池、リチウム電池、リチウムイオンポリマー電池等が挙げられるが、リチウムイオン二次電池であることが好ましい。本発明の非水電解質二次電池では、正極材料(例えば、正極材料層)が集電体の表面に形成されてなる正極、電解質(例えば、電解質層)、及び本発明の非水電解質二次電池用負極材料(例えば、負極材料層)が集電体の表面に形成されてなる本発明の負極、正極の正極材料と本発明による負極の負極材料とが向き合い、かつ、正極の正極材料と本発明による負極の負極材料との間に電解質(例えば電解質層)が挿入されるようにして形成されてよい。
(Non-aqueous electrolyte secondary battery)
Examples of the nonaqueous electrolyte secondary battery of the present invention include a lithium ion secondary battery, a lithium battery, a lithium ion polymer battery, and the like, and a lithium ion secondary battery is preferable. In the nonaqueous electrolyte secondary battery of the present invention, a positive electrode in which a positive electrode material (for example, a positive electrode material layer) is formed on the surface of a current collector, an electrolyte (for example, an electrolyte layer), and the nonaqueous electrolyte secondary battery of the present invention. A negative electrode material for a battery (for example, a negative electrode material layer) formed on the surface of a current collector, the negative electrode of the present invention, the positive electrode material of the positive electrode and the negative electrode material of the negative electrode according to the present invention face each other, and the positive electrode material of the positive electrode An electrolyte (for example, an electrolyte layer) may be inserted between the negative electrode material of the negative electrode according to the present invention.

本発明のリチウムイオン二次電池のための電解質層は、本発明の目的及び効果を損なわない限り制限されるものではない。したがって例えば、電解質層としては、液体電解質、すなわち例えば有機溶媒にリチウム塩が溶解した溶液を用いることができる。ただし、このような液体電解質を用いる場合、正極活物質層と負極活物質層との間の直接の接触を防ぐために、多孔質層からなるセパレーターを用いることが一般に好ましい。   The electrolyte layer for the lithium ion secondary battery of the present invention is not limited as long as the object and effect of the present invention are not impaired. Therefore, for example, as the electrolyte layer, a liquid electrolyte, that is, a solution in which a lithium salt is dissolved in an organic solvent, for example, can be used. However, when such a liquid electrolyte is used, it is generally preferable to use a separator made of a porous layer in order to prevent direct contact between the positive electrode active material layer and the negative electrode active material layer.

液体電解質のための有機溶媒としては例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を使用することができる。これらの有機溶媒は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、液体電解質のためのリチウム塩としては例えば、LiPF6、LiClO4、LiN(CF3SO22、LiBF4等を使用することができる。これらのリチウム塩は、1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As an organic solvent for the liquid electrolyte, for example, ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like can be used. These organic solvents may be used alone or in combination of two or more. Further, as the lithium salt for the liquid electrolyte, for example, LiPF 6 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , LiBF 4 or the like can be used. These lithium salts may be used alone or in combination of two or more.

なお、電解質層としては、固体電解質を用いることもでき、この場合には、別個のスペーサーを省略することができる。   Note that a solid electrolyte can be used as the electrolyte layer, and in this case, a separate spacer can be omitted.

以下、本発明をより具体的に説明するための実施例を提供する。なお、本発明は、その目的及び主旨を逸脱しない範囲で以下の実施例に限定されるものではない。   Hereinafter, an example for explaining the present invention more concretely is provided. In addition, this invention is not limited to a following example in the range which does not deviate from the objective and the main point.

<実施例1>
(実施例1−1)
[複合粒子の調製]
一酸化ケイ素(SiO)(平均粒子径45μm)(大阪チタニウムテクノロジーズ社製)と炭酸リチウム(Li2CO3)(広島和光社製)とを、下記の表1に示される混合比で混合した後、純水2mlを加えて、撹拌装置であるあわとり練太郎(シンキー社製)にて撹拌して混合物を得た。次いで、その混合物を、るつぼに入れて、電気炉(共栄電気炉製作所社製)を用いて熱処理をして焼成を行った。熱処理反応条件は、窒素流量が18L/分であり、焼成温度が下記の表1に示される条件であった。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケート化合物の相と、シリコン及びシリコン化合物の相とを含む複合粒子1−1を得た。
<Example 1>
(Example 1-1)
[Preparation of composite particles]
After mixing silicon monoxide (SiO) (average particle diameter 45 μm) (manufactured by Osaka Titanium Technologies) and lithium carbonate (Li 2 CO 3 ) (manufactured by Hiroshima Wako) at the mixing ratio shown in Table 1 below. Then, 2 ml of pure water was added, and the mixture was stirred by a stirrer Awatori Nertaro (Sinky). Next, the mixture was put in a crucible and subjected to heat treatment using an electric furnace (manufactured by Kyoei Electric Furnace Co., Ltd.) to perform firing. The heat treatment reaction conditions were such that the nitrogen flow rate was 18 L / min and the firing temperature was as shown in Table 1 below. From the above, the phase of the lithium silicate compound represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), silicon and Composite particles 1-1 containing a silicon compound phase were obtained.

得られた複合粒子1−1のNMR(7Li−DD/MAS)(装置:BRUKER製、DSX 300 WB)の分析結果を図3に示す。図3中の3Aに示されるように、得られた複合粒子1−1中にリチウムシリケート化合物(LiaSibc)が確認された。 The analysis result of NMR (7Li-DD / MAS) (apparatus: manufactured by BRUKER, DSX 300 WB) of the obtained composite particle 1-1 is shown in FIG. As shown by 3A in FIG. 3, a lithium silicate compound (Li a Si b O c ) was confirmed in the obtained composite particles 1-1.

得られた複合粒子1−1のNMR(29Si−DD/MAS)(装置:BRUKER製、DSX 300 WB)の分析結果を図4に示す。図4中の4Aに示されるように、得られた複合粒子1−1中にシリコン(ケイ素、Si)が確認されて、4Cに示されるように、得られた複合粒子1−1中に二酸化ケイ素(SiO2)が確認されたので、得られた複合粒子1−1中に一酸化ケイ素(SiO)が存在していることが理解される。図4中の4Bに示されるように、得られた複合粒子1−1中にリチウムシリケート化合物(LiaSibc)が確認された。 FIG. 4 shows the analysis result of NMR (29Si-DD / MAS) (device: manufactured by BRUKER, DSX 300 WB) of the obtained composite particle 1-1. As shown by 4A in FIG. 4, silicon (silicon, Si) was confirmed in the obtained composite particle 1-1, and as shown in 4C, the resulting composite particle 1-1 had a dioxide dioxide. Since silicon (SiO 2 ) was confirmed, it is understood that silicon monoxide (SiO) is present in the obtained composite particles 1-1. As shown by 4B in FIG. 4, a lithium silicate compound (Li a Si b O c ) was confirmed in the obtained composite particles 1-1.

得られた複合粒子1−1のXRD(装置:RIGAKU RINT TTR III(試料水平型強力X線回折装置)、X線源:Cu−Kα(λ=1.5418Å)、50kV−300mA(15kW)、平行法:2θ/θ走査 5-60°、FT測定、ステップ幅0.05°、0.5sec計測、標準試料台を使用)の分析結果を図5に示す。図5中の5Aに示されるように、得られた複合粒子1−1中にリチウムシリケート化合物(Li2Si25)が確認され、5Bに示されるように、得られた複合粒子1−1中にリチウムシリケート化合物(Li2SiO3)が確認され、5Cに示されるように、得られた複合粒子1−1中にリチウムシリケート化合物(Li2Si25)が確認され、5Dに示されるように、得られた複合粒子1中にリチウムシリケート化合物(Li2SiO3)が確認され、5Eに示されるように、得られた複合粒子1−1中にリチウムシリケート化合物(Li2Si25)及びシリコン(Si)が確認され、そして、5Fに示されるように、得られた複合粒子1−1中にリチウムシリケート化合物(Li2SiO3)が確認された。得られた複合粒子1−1中にリチウムシリケート相の多結晶体が形成されていることが理解される。また、図5中の5Gに示されるように、得られた複合粒子1−1中に二酸化ケイ素(SiO2)が確認され、5Hに示されるように、得られた複合粒子1−1中に二酸化ケイ素(SiO2)が確認され、5Iに示されるように、得られた複合粒子1−1中にシリコン(ケイ素、Si)が確認され、5Jに示されるように、得られた複合粒子1−1中に二酸化ケイ素(SiO2)が確認され、そして、5Kに示されるように、得られた複合粒子1−1中にシリコン(ケイ素、Si)が確認された。得られた複合粒子1−1中に一酸化ケイ素(SiO)が存在していることが理解される。 XRD (apparatus: RIGAKU RINT TTR III (sample horizontal intense X-ray diffractometer)) of the obtained composite particles 1-1, X-ray source: Cu-Kα (λ = 1.5418300), 50 kV-300 mA (15 kW), FIG. 5 shows the analysis results of the parallel method: 2θ / θ scanning 5-60 °, FT measurement, step width 0.05 °, 0.5 sec measurement, using a standard sample stage. As shown by 5A in FIG. 5, lithium silicate compound (Li 2 Si 2 O 5 ) was confirmed in the obtained composite particles 1-1, and as shown in 5B, the obtained composite particles 1- The lithium silicate compound (Li 2 SiO 3 ) was confirmed in 1 and as shown in 5C, the lithium silicate compound (Li 2 Si 2 O 5 ) was confirmed in the obtained composite particles 1-1. As shown, a lithium silicate compound (Li 2 SiO 3 ) was confirmed in the obtained composite particle 1, and as shown in 5E, a lithium silicate compound (Li 2 Si) was obtained in the obtained composite particle 1-1. 2 O 5 ) and silicon (Si) were confirmed, and as shown in 5F, a lithium silicate compound (Li 2 SiO 3 ) was confirmed in the obtained composite particles 1-1. It is understood that a lithium silicate phase polycrystal is formed in the obtained composite particles 1-1. Further, as shown by 5G in FIG. 5, silicon dioxide (SiO 2 ) was confirmed in the obtained composite particles 1-1, and as shown by 5H, in the obtained composite particles 1-1. Silicon dioxide (SiO 2 ) was confirmed, and as shown in 5I, silicon (silicon, Si) was confirmed in the obtained composite particles 1-1, and as shown in 5J, the obtained composite particles 1 were obtained. -1 was confirmed in silicon dioxide (SiO 2 ), and as shown in 5K, silicon (silicon, Si) was confirmed in the obtained composite particles 1-1. It is understood that silicon monoxide (SiO) is present in the obtained composite particles 1-1.

(実施例1−2)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と炭酸リチウム(Li2CO3)(広島和光社製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1−1と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケート化合物の相と、シリコン及びシリコン化合物の相とを含む複合粒子1−2を得た。
(Example 1-2)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies Co., Ltd.) and lithium carbonate (Li 2 CO 3 ) (manufactured by Hiroshima Wako Co., Ltd.) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as follows. This was carried out in the same manner as in Example 1-1 except that the conditions were as shown in Table 1. From the above, the phase of the lithium silicate compound represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), silicon and Composite particles 1-2 containing a silicon compound phase were obtained.

得られた複合粒子1−2について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−2について実施した。得られた複合粒子1−2が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 The obtained composite particles 1-2 were subjected to NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis, and XRD analysis in the same manner as in Example 1-1. did. The obtained composite particle 1-2 was confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis in the same manner as the composite particle 1-1, and NMR (29Si-DD / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

(実施例1−3)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と炭酸リチウム(Li2CO3)(広島和光社製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1−1と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケート化合物の相と、シリコン及びシリコン化合物の相とを含む複合粒子1−3を得た。
(Example 1-3)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies Co., Ltd.) and lithium carbonate (Li 2 CO 3 ) (manufactured by Hiroshima Wako Co., Ltd.) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as follows. This was carried out in the same manner as in Example 1-1 except that the conditions were as shown in Table 1. From the above, the phase of the lithium silicate compound represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), silicon and Composite particles 1-3 containing a silicon compound phase were obtained.

得られた複合粒子1−3について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−3について実施した。得られた複合粒子1−3が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 The obtained composite particles 1-3 were subjected to NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis, and XRD analysis in the same manner as in Example 1-1. did. The obtained composite particles 1-3 were confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis in the same manner as the composite particles 1-1, and NMR (29Si-DD / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

(実施例1−4)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と炭酸リチウム(Li2CO3)(広島和光社製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1−1と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケート化合物の相と、シリコン及びシリコン化合物の相とを含む複合粒子1−4を得た。
(Example 1-4)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies Co., Ltd.) and lithium carbonate (Li 2 CO 3 ) (manufactured by Hiroshima Wako Co., Ltd.) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as follows. This was carried out in the same manner as in Example 1-1 except that the conditions were as shown in Table 1. From the above, the phase of the lithium silicate compound represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), silicon and Composite particles 1-4 containing a silicon compound phase were obtained.

得られた複合粒子1−4について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−4について実施した。得られた複合粒子1−4が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 The obtained composite particles 1-4 were subjected to NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis, and XRD analysis in the same manner as in Example 1-1. did. The obtained composite particles 1-4 were confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis in the same manner as the composite particles 1-1, and NMR (29Si-DD / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

(実施例1−5)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と炭酸リチウム(Li2CO3)(広島和光社製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1−1と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケート化合物の相と、シリコン及びシリコン化合物の相とを含む複合粒子1−5を得た。
(Example 1-5)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies Co., Ltd.) and lithium carbonate (Li 2 CO 3 ) (manufactured by Hiroshima Wako Co., Ltd.) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as follows. This was carried out in the same manner as in Example 1-1 except that the conditions were as shown in Table 1. From the above, the phase of the lithium silicate compound represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), silicon and Composite particles 1-5 containing a silicon compound phase were obtained.

得られた複合粒子1−5について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−5について実施した。得られた複合粒子1−5が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 For the obtained composite particles 1-5, in the same manner as in Example 1-1, NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis, and XRD analysis were performed on Example 1-5. did. The obtained composite particles 1-5 were confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis in the same manner as the composite particles 1-1, and NMR (29Si-DD / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

(実施例1−6)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と炭酸リチウム(Li2CO3)(広島和光社製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1−6と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケートの相と、一酸化ケイ素(SiO)とを含む複合粒子1−6を得た。
(Example 1-6)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies Co., Ltd.) and lithium carbonate (Li 2 CO 3 ) (manufactured by Hiroshima Wako Co., Ltd.) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as follows. This was carried out in the same manner as in Example 1-6 except that the conditions shown in Table 1 were satisfied. From the above, a lithium silicate phase represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), and silicon monoxide Composite particles 1-6 containing (SiO) were obtained.

得られた複合粒子1−6について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−6について実施した。得られた複合粒子1−6が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 The obtained composite particles 1-6 were subjected to NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis and XRD analysis in the same manner as in Example 1-1. did. The obtained composite particles 1-6 were confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis and NMR (29Si-DD) in the same manner as the composite particles 1-1. / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

(実施例1−7)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と炭酸リチウム(Li2CO3)(広島和光社製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1−1と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケートの相と、一酸化ケイ素(SiO)とを含む複合粒子1−7を得た。
(Example 1-7)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies Co., Ltd.) and lithium carbonate (Li 2 CO 3 ) (manufactured by Hiroshima Wako Co., Ltd.) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as follows. This was carried out in the same manner as in Example 1-1 except that the conditions were as shown in Table 1. From the above, a lithium silicate phase represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), and silicon monoxide Composite particles 1-7 containing (SiO) were obtained.

得られた複合粒子1−7について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−7について実施した。得られた複合粒子1−7が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 The obtained composite particles 1-7 were subjected to NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis, and XRD analysis in the same manner as in Example 1-1. did. The obtained composite particles 1-7 were confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis in the same manner as the composite particles 1-1, and NMR (29Si-DD / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

(実施例1−8)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と過酸化リチウム(Li22)(広島和光製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1−1と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケートの相と、一酸化ケイ素(SiO)とを含む複合粒子1−8を得た。
(Example 1-8)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies) and lithium peroxide (Li 2 O 2 ) (manufactured by Hiroshima Wako) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as follows. This was carried out in the same manner as in Example 1-1 except that the conditions were as shown in Table 1. From the above, a lithium silicate phase represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), and silicon monoxide Composite particles 1-8 containing (SiO) were obtained.

得られた複合粒子1−8について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−8について実施した。得られた複合粒子1−8が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 For the obtained composite particles 1-8, in the same manner as in Example 1-1, NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis, and XRD analysis were performed on Example 1-8. did. The obtained composite particles 1-8 were confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis in the same manner as the composite particles 1-1, and NMR (29Si-DD / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

(実施例1−9)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と過酸化リチウム(Li22)(広島和光製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1−1と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケートの相と、一酸化ケイ素(SiO)とを含む複合粒子1−9を得た。
(Example 1-9)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies) and lithium peroxide (Li 2 O 2 ) (manufactured by Hiroshima Wako) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as follows. This was carried out in the same manner as in Example 1-1 except that the conditions were as shown in Table 1. From the above, a lithium silicate phase represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), and silicon monoxide Composite particles 1-9 containing (SiO) were obtained.

得られた複合粒子1−9について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−9について実施した。得られた複合粒子1−9が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 The obtained composite particles 1-9 were subjected to NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis, and XRD analysis in the same manner as in Example 1-1. did. The obtained composite particles 1-9 were confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis in the same manner as the composite particles 1-1, and NMR (29Si-DD / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

(実施例1−10)
一酸化ケイ素(SiO)(大阪チタニウムテクノロジーズ社製)と水酸化リチウム(LiOH)(広島和光製)とを、下記の表1に示される混合比で混合したことと、焼成温度が下記の表1に示される条件であったこと以外は、実施例1と全く同様な方法で実施した。以上より、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表されるリチウムシリケートの相と、一酸化ケイ素(SiO)とを含む複合粒子1−10を得た。
(Example 1-10)
Silicon monoxide (SiO) (manufactured by Osaka Titanium Technologies) and lithium hydroxide (LiOH) (manufactured by Hiroshima Wako) were mixed at the mixing ratio shown in Table 1 below, and the firing temperature was as shown in Table 1 below. The process was carried out in the same manner as in Example 1 except that the conditions were as shown in FIG. From the above, a lithium silicate phase represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8), and silicon monoxide Composite particles 1-10 containing (SiO) were obtained.

得られた複合粒子1−10について、実施例1−1と同様に、NMR(7Li−DD/MAS)分析、NMR(29Si−DD/MAS)分析及びXRD分析を、実施例1−10について実施した。得られた複合粒子1−10が、複合粒子1−1と同様に、NMR(7Li−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)が確認され、NMR(29Si−DD/MAS)分析により、リチウムシリケート化合物(LiaSibc)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認され、XRD分析により、リチウムシリケート化合物(Li2Si25、Li2SiO3)並びに、シリコン(ケイ素、Si)及び二酸化ケイ素(SiO2)が確認された。 The obtained composite particles 1-10 were subjected to NMR (7Li-DD / MAS) analysis, NMR (29Si-DD / MAS) analysis, and XRD analysis in the same manner as in Example 1-1. did. The obtained composite particles 1-10 were confirmed to have a lithium silicate compound (Li a Si b O c ) by NMR (7Li-DD / MAS) analysis in the same manner as the composite particles 1-1, and NMR (29Si-DD / MAS) analysis confirmed lithium silicate compound (Li a Si b O c ) and silicon (silicon, Si) and silicon dioxide (SiO 2 ), and XRD analysis confirmed lithium silicate compound (Li 2 Si 2 O 5). , Li 2 SiO 3 ) as well as silicon (silicon, Si) and silicon dioxide (SiO 2 ).

<実施例2>
(実施例2−1)
[フェノール前駆体溶液作製]
アセトン溶媒中にフェノール樹脂(旭有機材工業製、銘柄RM-HC6002、レゾール型)を溶かし、10%のフェノール樹脂前駆体溶液を調整した。
<Example 2>
(Example 2-1)
[Preparation of phenol precursor solution]
A phenol resin (brand name RM-HC6002, Resol type, manufactured by Asahi Organic Materials Co., Ltd.) was dissolved in an acetone solvent to prepare a 10% phenol resin precursor solution.

[フェノール樹脂前駆体コート]
Siナノ粒子(ナノグラム製、平均一次粒子径20nm、リンドープタイプ)を用いた。シャーレの中にSiナノ粒子3gを入れ、上記10%フェノール樹脂前駆体溶液5gを添加し、80℃熱プレート上でかき混ぜながら粒子の分散・混合し溶媒を除去した。溶媒除去した後、さらに、180℃程度まで温度を上げ、硬化させながら塊がない状態まで潰し、Siナノ粒子表面にフェノール樹脂前駆体がコート(被覆)された成形体を得た。得られた成形体を、さらに4回繰り返し、Siナノ粒子表面に確実、かつ、均一なカーボン前駆体コートができるように実施した。仕込み量としては、Siナノ粒子3gに対し、フェノール樹脂は2gとした。ここで、フェノール樹脂残存炭化率が62%であるため、仕込み量から換算すると、カーボンコート量は1.24gになった。Si/C比=58.7/41.3wt%質量比であった。
[Phenolic resin precursor coating]
Si nanoparticles (manufactured by Nanogram, average primary particle diameter 20 nm, phosphorus-doped type) were used. 3 g of Si nanoparticles were placed in a petri dish, 5 g of the 10% phenol resin precursor solution was added, and the particles were dispersed and mixed while stirring on an 80 ° C. hot plate to remove the solvent. After removing the solvent, the temperature was further raised to about 180 ° C., and the mixture was crushed to a state free from lumps while being cured to obtain a molded body in which the surface of the Si nanoparticles was coated (coated). The obtained molded body was further repeated 4 times so that a reliable and uniform carbon precursor coating was performed on the surface of the Si nanoparticles. The amount charged was 2 g of phenol resin relative to 3 g of Si nanoparticles. Here, since the residual carbonization rate of the phenol resin was 62%, the carbon coat amount was 1.24 g when converted from the charged amount. Si / C ratio = 58.7 / 41.3 wt%.

[カーボン化(炭素化)]
上記で得られた成形体を用いて、N2+Airを使用して、700℃×1時間の条件で焼結を行い、続いて、N2を使用して、1150℃×3時間の条件で焼結を行い、粒子表面にカーボンを被覆させたカーボンコート焼結体を得た。
[Carbonization]
Using the molded body obtained above, sintering was performed under conditions of 700 ° C. × 1 hour using N 2 + Air, and subsequently, using N 2 under conditions of 1150 ° C. × 3 hours. Sintering was performed to obtain a carbon-coated sintered body in which the particle surface was coated with carbon.

[リチウムプリドープ化]
上記で得られたカーボンコート焼結体とリチウム金属とを混合し(Si/Cに対しリチウム金属(Li)は2倍相当モルであった。)、管状炉にてN2を使用して、750℃×2時間の条件で溶融熱処理を行い、リチウプリドープを施して、複合体2−1を得た。
[Lithium pre-doping]
The carbon coat sintered body obtained above and lithium metal were mixed (lithium metal (Li) was twice as much mole as Si / C), and N2 was used in a tubular furnace at 750. A melt heat treatment was performed under the condition of ° C. × 2 hours, and a lithium predope was applied to obtain a composite 2-1.

[固体NMR分析]
得られた複合体2−1について、NMR(7Li−DD/MAS)分析を行った。NMR分析装置は、BRUKER製の「DSX 300 WB」であった、固体7Li−NMR DD/MAS分析測定条件は、「4 mmφ rotor, Reson. Freq.: 116.64 MHz, Repetition time: 5s, Scan No.: 2 K, Spinning rate: 10000 Hz」であり、ピーク分離ソフトは、「Igor Pro6.22J, MultiPeakFitting1.4」であった。NMR(7Li−DD/MAS)分析の結果を図6に示す。
[Solid state NMR analysis]
NMR (7Li-DD / MAS) analysis was performed on the obtained composite 2-1. The NMR analyzer was “DSX 300 WB” manufactured by BRUKER, and the solid 7Li-NMR DD / MAS analysis measurement conditions were “4 mmφ rotor, Reson. Freq .: 116.64 MHz, Repetition time: 5s, Scan No. : 2 K, Spinning rate: 10000 Hz ”and the peak separation software was“ Igor Pro6.22J, MultiPeakFitting1.4 ”. The result of NMR (7Li-DD / MAS) analysis is shown in FIG.

[XRD分析]
得られた複合体2−1について、XRD(RIGAKU RINT TTR III(試料水平型強力X線回折装置)X線源:Cu−Kα(λ=1.5418Å)、50kV−300mA(15kW)、平行法:2θ/θ走査 5-60°、FT測定、ステップ幅0.05°、0.5sec計測、標準試料台を使用。)分析を行った。XRDの分析結果を図8(c)に示す。
[XRD analysis]
About the obtained composite 2-1, XRD (RIGAKU RINT TTR III (sample horizontal intense X-ray diffractometer) X-ray source: Cu-Kα (λ = 1.5418Å), 50 kV-300 mA (15 kW), parallel method : 2θ / θ scanning 5-60 °, FT measurement, step width 0.05 °, 0.5 sec measurement, using standard sample stage.) Analysis was performed. The analysis result of XRD is shown in FIG.8 (c).

[FESTEM断面写真による複合体の観察]
得られた複合体2−1をサンプルとして、FIB加工により作製した薄片化試料(膜厚約100nm)について、FESTEMにより二次電子像観察、走査透過電子像観察を行った。FESTEM観察の結果を示す写真を図9に示す。
[Observation of complex by FESTEM cross-sectional photograph]
Using the obtained composite 2-1 as a sample, a thinned sample (thickness: about 100 nm) produced by FIB processing was subjected to secondary electron image observation and scanning transmission electron image observation by FESTEM. A photograph showing the result of FESTEM observation is shown in FIG.

(実施例2−2)
Si/Cに対しリチウム金属(Li)が4倍相当モルであったこと以外は実施例2−1と全く同様な方法で行い、複合体2−2を得た。NMR(7Li−DD/MAS)分析の結果を図6に示す。XRDの分析結果を図8(d)に示す。
(Example 2-2)
Except that the amount of lithium metal (Li) was 4 times the molar equivalent to Si / C, it was carried out in the same manner as in Example 2-1, to obtain a composite 2-2. The result of NMR (7Li-DD / MAS) analysis is shown in FIG. The analysis result of XRD is shown in FIG.

(実施例2−3)
SiO(高純度化学製、バルク粒子を粉砕して、100μmにした。)を用いたこと以外は実施例2−1と全く同様な方法で行い、SiO/C:Liが、1:2molである複合体2−3を得た。NMR(7Li−DD/MAS)分析の結果を図6に示す。XRDの分析結果を図7(a)に示す。
(Example 2-3)
Except for using SiO (manufactured by high-purity chemicals, pulverizing bulk particles to 100 μm), this was carried out in the same manner as in Example 2-1, and SiO / C: Li was 1: 2 mol. A composite 2-3 was obtained. The result of NMR (7Li-DD / MAS) analysis is shown in FIG. The XRD analysis results are shown in FIG.

(実施例2−4)
SiO2(電気化学工業製電化溶融シリカ、30〜50nm)を用いたこと以外は実施例2−1と全く同様な方法で行い、SiO2/C:Liが、1:2molである複合体2−4を得た。NMR(7Li−DD/MAS)分析の結果を図6に示す。XRDの分析結果を図7(b)に示す。
(Example 2-4)
Composite 2 in which SiO 2 / C: Li is 1: 2 mol except that SiO 2 (Electrochemical fused silica manufactured by Denki Kagaku Kogyo, 30 to 50 nm) is used. -4 was obtained. The result of NMR (7Li-DD / MAS) analysis is shown in FIG. The XRD analysis results are shown in FIG.

[固体NMR分析結果]
実施例2−1〜2−4の結果において、図6を参照すると、0ppm近傍の幅広ピークはLi塩(リチウムシリケート(Li4SiO4、Li2CO3等)とアモルファスSi構造に結合したLiを示すピークであった。図6の6Aは(実施例2−1の結果)は33.6ppmのピークであり、芳香族炭素にシグマ(σ)結合したLi(Li−C)を示すピークであった。図6の6B(実施例2−1の結果)はアモルファスSi構造に結合したLi(Li−Si(amorpfous)を示すピークであった。図6の6C(実施例2−2の結果)はSiCにLiが結合した構造のものを示すピークであった(Li−SiC)。そして、6Cのピークは、リチウムイオン伝導体が前記電極用活物質の表面に存在することを証明するものである。図6の6D(実施例2−3結果)は、金属Siの格子間にリチウムが入り込んだ構造のものを示すピークであった(Li−Si)。6Dのピークは、リチウムイオン伝導体が電極用活物質の内部に存在することを証明するものである。図6の6E(実施例2−3結果)は、リチウム塩(Li+)を示すピークであった。リチウム塩(Li+)はリチウムシリケートを主成分とするがLi2CO3等の他の塩も含まれると考えられる。そして、6Eのピークは、リチウムイオン伝導体が前記電極用活物質の表面に存在することを証明するものである。図6の6F(実施例2−3結果)は、芳香族炭素にパイ(π)結合したLi(Li−C)を示すピークであった。そして、6Fのピークは、リチウムイオン伝導体が電極用活物質の表面に存在することを証明するものである。
[Solid NMR analysis results]
In the results of Examples 2-1 to 2-4, referring to FIG. 6, the broad peak near 0 ppm is Li salt (lithium silicate (Li 4 SiO 4 , Li 2 CO 3 etc.) and Li bonded to the amorphous Si structure. 6A (result of Example 2-1) is a peak of 33.6 ppm, and is a peak indicating Li (Li—C) bonded to aromatic carbon by sigma (σ). 6B (result of Example 2-1) was a peak indicating Li (Li-Si (amorphous)) bonded to an amorphous Si structure, and 6C (result of Example 2-2) in FIG. ) Is a peak indicating a structure in which Li is bonded to SiC (Li-SiC), and the peak of 6C is a proof that the lithium ion conductor exists on the surface of the active material for electrodes. Fig. 6D (result of Example 2-3) was a peak indicating a structure in which lithium entered between the lattices of metal Si (Li-Si), and the 6D peak was obtained when the lithium ion conductor was for an electrode. 6E (result of Example 2-3) in Fig. 6 is a peak indicating a lithium salt (Li + ), which is a lithium silicate (Li + ). It is considered that other salts such as Li 2 CO 3 are also included, and the peak of 6E proves that the lithium ion conductor exists on the surface of the electrode active material. 6F (result of Example 2-3) was a peak indicating Li (Li-C) bonded to aromatic carbon by pi (π), and the peak of 6F is a lithium ion conductor. Exists on the surface of the electrode active material. It proves that.

[XRD分析結果]
図8(c)の結果を参照すると、実施例2−1によって得られた複合体2−1は、主成分としてSi(金属)を含み、さらに少量のLi4SiO4を含むことが確認された。図8(d)の結果を参照すると、実施例2−2によって得られた複合体2−2は、主成分としてSi(金属)を含み、さらに、Li4SiO4とLi2SiO3とを含むことが確認された。図7(a)の結果を参照すると、実施例2−3によって得られた複合体2−3は、主成分としてSi(金属)とLi4SiO4とを含み、少量のLi2SiO3を含むことが確認された。図7(b)の結果を参照すると、実施例2−4によって得られた複合体2−4は、SiO2と、Si(金属)と、Li4SiO4と、Li2SiO3とを含み、微量のSiCを含むことが確認された。
[Results of XRD analysis]
Referring to the result of FIG. 8C, it was confirmed that the composite 2-1 obtained by Example 2-1 contains Si (metal) as a main component and further contains a small amount of Li 4 SiO 4. It was. Referring to the result of FIG. 8D, the composite 2-2 obtained by Example 2-2 contains Si (metal) as a main component, and further contains Li 4 SiO 4 and Li 2 SiO 3 . It was confirmed to include. Referring to the result of FIG. 7A, the composite 2-3 obtained in Example 2-3 contains Si (metal) and Li 4 SiO 4 as main components, and contains a small amount of Li 2 SiO 3 . It was confirmed to include. Referring to the result of FIG. 7B, the composite 2-4 obtained in Example 2-4 includes SiO 2 , Si (metal), Li 4 SiO 4 , and Li 2 SiO 3. It was confirmed that a trace amount of SiC was contained.

[FESTEM断面写真による複合体の観察に基づく評価]
図9のFESTEM断面写真を観察すると、実施例2−1によって得られた複合体2−1には、複合粒子の表面に被覆されてなる2nmの炭素材料含有層が存在していることが確認された。また、複合体の周辺には、C(炭素)が多く存在しているrich(リッチ)部が確認された。
[Evaluation based on observation of composite by FESTEM cross-sectional photograph]
When observing the FESTEM cross-sectional photograph of FIG. 9, it was confirmed that the composite material 2-1 obtained in Example 2-1 had a 2 nm carbon material-containing layer coated on the surface of the composite particles. It was done. Further, a rich (rich) portion where a large amount of C (carbon) is present was confirmed around the complex.

11 リチウムシリケート
12 シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物
21 リチウムシリケート
22 シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物
31 リチウムシリケート
32 シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物
100 複合粒子
200 複合粒子
300 複合粒子
11 Lithium silicate 12 Silicon and / or silicon compound represented by SiO x (0 <X ≦ 2) 21 Lithium silicate 22 Silicon and / or SiO x (0 <X ≦ 2) silicon compound 31 Lithium silicate 32 Silicon compound represented by silicon and / or SiO x (0 <X ≦ 2) 100 composite particles 200 composite particles 300 composite particles

Claims (18)

リチウムイオン伝導体及び電極用活物質を含み、初回充放電前に形成される、
複合粒子。
Including lithium ion conductor and electrode active material, formed before the first charge and discharge,
Composite particles.
前記リチウムイオン伝導体が前記電極用活物質の内部に存在する、請求項1に記載の複合粒子。   The composite particle according to claim 1, wherein the lithium ion conductor is present inside the electrode active material. 前記リチウムイオン伝導体が前記電極用活物質の表面に存在する、請求項1又は2に記載の複合粒子。   The composite particle according to claim 1, wherein the lithium ion conductor is present on a surface of the electrode active material. 前記リチウムイオン伝導体がリチウムシリケートである、請求項1から3のいずれか1項に記載の複合粒子。   The composite particle according to any one of claims 1 to 3, wherein the lithium ion conductor is lithium silicate. 前記リチウムシリケートが、LiaSibc(ただし、1≦a≦5であり、1≦b≦3であり、1≦c≦8である。)で表される化合物である、請求項4に記載の複合粒子。 The lithium silicate is a compound represented by Li a Si b O c (where 1 ≦ a ≦ 5, 1 ≦ b ≦ 3, and 1 ≦ c ≦ 8). The composite particles according to 1. B原子、C原子、N原子、F原子、P原子、S原子、Ti原子、V原子、Ni原子、Cu原子、Ge原子、In原子、及びSn原子から成る群から選ばれる少なくとも1種の原子を更に含む、請求項1から5のいずれか1項に記載の複合粒子。   At least one atom selected from the group consisting of B atom, C atom, N atom, F atom, P atom, S atom, Ti atom, V atom, Ni atom, Cu atom, Ge atom, In atom, and Sn atom The composite particle according to any one of claims 1 to 5, further comprising: 請求項1から6のいずれか1項に記載の複合粒子と、炭素系材料含有層とを含む複合体。   A composite comprising the composite particles according to claim 1 and a carbon-based material-containing layer. 前記炭素系材料含有層が前記複合粒子の表面に被覆されてなる、請求項7に記載の複合体。   The composite according to claim 7, wherein the carbon-based material-containing layer is coated on a surface of the composite particle. 前記炭素系材料含有層が1nmから10nmの厚みである、請求項7又は8に記載の複合体。   The composite according to claim 7 or 8, wherein the carbon-based material-containing layer has a thickness of 1 nm to 10 nm. SiC化合物を更に含む、請求項7から9のいずれか1項に記載の複合体。   The composite according to any one of claims 7 to 9, further comprising a SiC compound. 前記電極用活物質が負極用活物質である、請求項1から6のいずれか1項に記載の複合粒子。   The composite particle according to claim 1, wherein the electrode active material is a negative electrode active material. 前記負極用活物質が、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物を含む、請求項11に記載の複合粒子。 The composite particle according to claim 11, wherein the negative electrode active material contains silicon and / or a silicon compound represented by SiO x (0 <X ≦ 2). 前記電極用活物質が負極用活物質である、請求項7から10のいずれか1項に記載の複合体。   The composite according to claim 7, wherein the electrode active material is a negative electrode active material. 前記負極用活物質が、シリコン及び/又はSiOX(0<X≦2)で表されるシリコン化合物を含む、請求項13に記載の複合体。 The composite according to claim 13, wherein the negative electrode active material contains silicon and / or a silicon compound represented by SiO x (0 <X ≦ 2). 請求項11又は12に記載の複合粒子と、導電助剤と、バインダーとを含む、負極材料。   A negative electrode material comprising the composite particles according to claim 11, a conductive additive, and a binder. 請求項13又は14に記載の複合体と、導電助剤と、バインダーとを含む、負極材料。   The negative electrode material containing the composite_body | complex of Claim 13 or 14, a conductive support agent, and a binder. 請求項15又は16に記載の負極材料と集電体とから成る、非水電解質二次電池用負極。   A negative electrode for a nonaqueous electrolyte secondary battery, comprising the negative electrode material according to claim 15 or 16 and a current collector. 請求項17に記載の非水電解質二次電池用負極を少なくとも含む、非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising at least the negative electrode for a nonaqueous electrolyte secondary battery according to claim 17.
JP2013100766A 2013-05-10 2013-05-10 Composite particle for nonaqueous electrolyte secondary battery Pending JP2014220216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100766A JP2014220216A (en) 2013-05-10 2013-05-10 Composite particle for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100766A JP2014220216A (en) 2013-05-10 2013-05-10 Composite particle for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014220216A true JP2014220216A (en) 2014-11-20

Family

ID=51938467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100766A Pending JP2014220216A (en) 2013-05-10 2013-05-10 Composite particle for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014220216A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015107581A1 (en) * 2014-01-16 2015-07-23 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
JP2015156355A (en) * 2013-08-21 2015-08-27 信越化学工業株式会社 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, method of manufacturing negative electrode active substance, and method of manufacturing lithium ion secondary battery
WO2015137041A1 (en) * 2014-03-12 2015-09-17 三洋化成工業株式会社 Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
JP2016062860A (en) * 2014-09-22 2016-04-25 株式会社東芝 Electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
WO2016136180A1 (en) * 2015-02-23 2016-09-01 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2016219410A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016219408A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016219409A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN106356508A (en) * 2016-09-29 2017-01-25 深圳市贝特瑞新能源材料股份有限公司 Compound and preparation method thereof as well as negative electrode prepared by adopting compound and lithium ion battery
CN106537659A (en) * 2015-06-15 2017-03-22 大洲电子材料株式会社 Anode material for non-aqueous electrolyte secondary battery, preparation method therefor, and non-aqueous electrolyte secondary battery including same
WO2017110040A1 (en) * 2015-12-24 2017-06-29 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, manufacturing method for negative electrode active material, and manufacturing method for lithium ion secondary battery
WO2017208624A1 (en) * 2016-05-30 2017-12-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
WO2017208627A1 (en) * 2016-05-30 2017-12-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
WO2017208625A1 (en) * 2016-05-30 2017-12-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2018032602A (en) * 2016-08-26 2018-03-01 株式会社豊田自動織機 Method of producing negative electrode material
WO2018101072A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Negative electrode material and nonaqueous electrolyte secondary battery
CN108417781A (en) * 2017-02-09 2018-08-17 硅力能股份有限公司 Conducing composite material and its negative material and secondary cell of preparation
EP3410517A4 (en) * 2016-01-22 2019-08-14 JFE Chemical Corporation Negative-electrode material for li-ion secondary cell, method for manufacturing said material, li-ion-secondary-cell negative electrode, and li-ion secondary cell
WO2020077296A1 (en) * 2018-10-12 2020-04-16 Albemarle Corporation Particles comprising silicon and lithium
CN111602275A (en) * 2018-01-19 2020-08-28 三洋电机株式会社 Nonaqueous electrolyte secondary battery
WO2021020226A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR102286235B1 (en) * 2020-07-29 2021-08-06 에스케이이노베이션 주식회사 Lithium doped silicon oxide negative active material, method of preparing the same, negative electrode including the same and lithium secondary battery including the same
KR102286227B1 (en) * 2020-05-21 2021-08-06 에스케이이노베이션 주식회사 Lithium doped silicon oxide negative active material, method of preparing the same, negative electrode including the same and lithium secondary battery including the same
JP2021521622A (en) * 2018-09-28 2021-08-26 貝特瑞新材料集団股▲ふん▼有限公司Btr New Material Group Co., Ltd. Negative electrode material for lithium ion secondary battery, its manufacturing method and use
CN114242966A (en) * 2021-11-12 2022-03-25 惠州锂威新能源科技有限公司 Negative electrode composite material, preparation method thereof, negative electrode plate and secondary battery
JP2022537501A (en) * 2020-05-22 2022-08-26 貝特瑞新材料集団股▲ふん▼有限公司 Silicon-oxygen composite negative electrode material, manufacturing method thereof, and lithium ion battery
WO2024004786A1 (en) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 Negative electrode material for secondary battery, secondary battery, and method for manufacturing negative electrode material for secondary battery
US11958750B2 (en) 2020-05-21 2024-04-16 Sk On Co., Ltd. Lithium-doped silicon-based oxide negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156355A (en) * 2013-08-21 2015-08-27 信越化学工業株式会社 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, method of manufacturing negative electrode active substance, and method of manufacturing lithium ion secondary battery
US9935309B2 (en) 2013-08-21 2018-04-03 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, raw material for a negative electrode active material, negative electrode, lithium ion secondary battery, method for producing a negative electrode active material, and method for producing a lithium ion secondary battery
US10566607B2 (en) 2013-08-21 2020-02-18 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, raw material for a negative electrode active material, negative electrode, lithium ion secondary battery, method for producing a negative electrode active material, and method for producing a lithium ion secondary battery
JP2015156328A (en) * 2014-01-16 2015-08-27 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method of producing negative electrode active material particles
WO2015107581A1 (en) * 2014-01-16 2015-07-23 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
US10396351B2 (en) 2014-01-16 2019-08-27 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method of producing negative electrode active material particles
JPWO2015137041A1 (en) * 2014-03-12 2017-04-06 三洋化成工業株式会社 Coated negative electrode active material for lithium ion battery, slurry for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, and method for producing coated negative electrode active material for lithium ion battery
WO2015137041A1 (en) * 2014-03-12 2015-09-17 三洋化成工業株式会社 Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
US11283066B2 (en) 2014-03-12 2022-03-22 Sanyo Chemical Industries, Ltd. Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
JP2016062860A (en) * 2014-09-22 2016-04-25 株式会社東芝 Electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
JPWO2016136180A1 (en) * 2015-02-23 2017-11-30 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10177403B2 (en) 2015-02-23 2019-01-08 Sanyo Electric Co., Ltd. Negative-electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2016136180A1 (en) * 2015-02-23 2016-09-01 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
JP2016219409A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016219408A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016219410A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN106537659A (en) * 2015-06-15 2017-03-22 大洲电子材料株式会社 Anode material for non-aqueous electrolyte secondary battery, preparation method therefor, and non-aqueous electrolyte secondary battery including same
CN106537659B (en) * 2015-06-15 2021-09-24 大洲电子材料株式会社 Negative active material for non-aqueous electrolyte rechargeable battery
JP2018519648A (en) * 2015-06-15 2018-07-19 デジュ・エレクトロニック・マテリアルズ・カンパニー・リミテッドDaejoo Electronic Materials Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery including the same
WO2017110040A1 (en) * 2015-12-24 2017-06-29 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, manufacturing method for negative electrode active material, and manufacturing method for lithium ion secondary battery
EP3410517A4 (en) * 2016-01-22 2019-08-14 JFE Chemical Corporation Negative-electrode material for li-ion secondary cell, method for manufacturing said material, li-ion-secondary-cell negative electrode, and li-ion secondary cell
US10930929B2 (en) 2016-01-22 2021-02-23 Jfe Chemical Corporation Negative-electrode material for Li-ion secondary cell, method for manufacturing said material, negative electrode for Li-ion-secondary-cell, and Li-ion secondary cell
EP3467912A4 (en) * 2016-05-30 2019-12-11 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
KR102297486B1 (en) * 2016-05-30 2021-09-06 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, mixed negative electrode active material material, and manufacturing method of negative electrode active material
JP7265668B2 (en) 2016-05-30 2023-04-26 信越化学工業株式会社 Lithium-ion secondary batteries, mobile terminals, automobiles and power storage systems
WO2017208625A1 (en) * 2016-05-30 2017-12-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JPWO2017208625A1 (en) * 2016-05-30 2019-01-31 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JPWO2017208624A1 (en) * 2016-05-30 2019-02-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
KR20190012169A (en) * 2016-05-30 2019-02-08 신에쓰 가가꾸 고교 가부시끼가이샤 A negative electrode active material, a mixed negative electrode active material and a negative electrode active material production method
KR20190013774A (en) * 2016-05-30 2019-02-11 신에쓰 가가꾸 고교 가부시끼가이샤 A negative electrode active material, a mixed negative electrode active material and a negative electrode active material production method
JPWO2017208627A1 (en) * 2016-05-30 2019-02-28 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
CN109155409A (en) * 2016-05-30 2019-01-04 信越化学工业株式会社 The preparation method of negative electrode active material, mixing negative electrode active material material and negative electrode active material
WO2017208627A1 (en) * 2016-05-30 2017-12-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP7082228B2 (en) 2016-05-30 2022-06-07 信越化学工業株式会社 Negative electrode active material for lithium ion secondary battery, mixed negative electrode active material material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing negative electrode active material for lithium ion secondary battery, lithium A method for manufacturing a negative electrode for an ion secondary battery and a method for manufacturing a lithium ion secondary battery.
CN109155407A (en) * 2016-05-30 2019-01-04 信越化学工业株式会社 The preparation method of negative electrode active material, mixing negative electrode active material material and negative electrode active material
CN109155408A (en) * 2016-05-30 2019-01-04 信越化学工业株式会社 The preparation method of negative electrode active material, mixing negative electrode active material material and negative electrode active material
CN109155407B (en) * 2016-05-30 2021-07-30 信越化学工业株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
CN113659109A (en) * 2016-05-30 2021-11-16 信越化学工业株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
KR102318855B1 (en) * 2016-05-30 2021-10-28 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2022116186A (en) * 2016-05-30 2022-08-09 信越化学工業株式会社 Lithium-ion secondary battery, mobile terminal, automobile, and power storage system
US10991937B2 (en) 2016-05-30 2021-04-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
US11005095B2 (en) 2016-05-30 2021-05-11 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2021103691A (en) * 2016-05-30 2021-07-15 信越化学工業株式会社 Negative electrode active substance for lithium ion secondary battery, mixed negative electrode active substance material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method of manufacturing negative electrode active substance for lithium ion secondary battery, method of manufacturing negative electrode for lithium ion secondary battery, and method of manufacturing lithium ion secondary battery
KR20210113444A (en) * 2016-05-30 2021-09-15 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
US11139469B2 (en) 2016-05-30 2021-10-05 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
US11658289B2 (en) 2016-05-30 2023-05-23 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
KR102302508B1 (en) * 2016-05-30 2021-09-17 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, mixed negative electrode active material material, and manufacturing method of negative electrode active material
CN109155409B (en) * 2016-05-30 2021-08-31 信越化学工业株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
WO2017208624A1 (en) * 2016-05-30 2017-12-07 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2018032602A (en) * 2016-08-26 2018-03-01 株式会社豊田自動織機 Method of producing negative electrode material
CN106356508A (en) * 2016-09-29 2017-01-25 深圳市贝特瑞新能源材料股份有限公司 Compound and preparation method thereof as well as negative electrode prepared by adopting compound and lithium ion battery
WO2018101072A1 (en) * 2016-11-30 2018-06-07 パナソニックIpマネジメント株式会社 Negative electrode material and nonaqueous electrolyte secondary battery
JPWO2018101072A1 (en) * 2016-11-30 2019-10-24 パナソニックIpマネジメント株式会社 Anode material and non-aqueous electrolyte secondary battery
US11196040B2 (en) 2016-11-30 2021-12-07 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and non-aqueous electrolyte secondary battery
CN108417781A (en) * 2017-02-09 2018-08-17 硅力能股份有限公司 Conducing composite material and its negative material and secondary cell of preparation
CN111602275A (en) * 2018-01-19 2020-08-28 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JP2021521622A (en) * 2018-09-28 2021-08-26 貝特瑞新材料集団股▲ふん▼有限公司Btr New Material Group Co., Ltd. Negative electrode material for lithium ion secondary battery, its manufacturing method and use
JP7061229B2 (en) 2018-09-28 2022-04-27 貝特瑞新材料集団股▲ふん▼有限公司 Negative electrode material for lithium ion secondary battery, its manufacturing method and use
WO2020077296A1 (en) * 2018-10-12 2020-04-16 Albemarle Corporation Particles comprising silicon and lithium
WO2021020226A1 (en) * 2019-07-31 2021-02-04 パナソニックIpマネジメント株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN113697817A (en) * 2020-05-21 2021-11-26 Sk新技术株式会社 Lithium-doped silicon-based oxide negative electrode active material, preparation method thereof, and negative electrode and secondary battery comprising same
KR102286227B1 (en) * 2020-05-21 2021-08-06 에스케이이노베이션 주식회사 Lithium doped silicon oxide negative active material, method of preparing the same, negative electrode including the same and lithium secondary battery including the same
US11958750B2 (en) 2020-05-21 2024-04-16 Sk On Co., Ltd. Lithium-doped silicon-based oxide negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
KR102641078B1 (en) * 2020-05-21 2024-02-27 에스케이온 주식회사 Lithium doped silicon oxide negative active material, method of preparing the same, negative electrode including the same and lithium secondary battery including the same
KR20210144614A (en) * 2020-05-21 2021-11-30 에스케이이노베이션 주식회사 Lithium doped silicon oxide negative active material, method of preparing the same, negative electrode including the same and lithium secondary battery including the same
EP3913707A1 (en) * 2020-05-21 2021-11-24 SK Innovation Co., Ltd. Lithium-doped silicon-based oxide negative electrode active material, method of preparing the same, and negative electrode and secondary battery including the same
JP7323140B2 (en) 2020-05-22 2023-08-08 貝特瑞新材料集団股▲ふん▼有限公司 Silicon-oxygen composite negative electrode material, manufacturing method thereof, and lithium ion battery
JP2022537501A (en) * 2020-05-22 2022-08-26 貝特瑞新材料集団股▲ふん▼有限公司 Silicon-oxygen composite negative electrode material, manufacturing method thereof, and lithium ion battery
KR102286235B1 (en) * 2020-07-29 2021-08-06 에스케이이노베이션 주식회사 Lithium doped silicon oxide negative active material, method of preparing the same, negative electrode including the same and lithium secondary battery including the same
CN114057199A (en) * 2020-07-29 2022-02-18 Sk新技术株式会社 Lithium-doped silicon-based oxide negative electrode active material, method for preparing same, and negative electrode and secondary battery comprising same
KR102625107B1 (en) * 2020-07-29 2024-01-16 에스케이온 주식회사 Lithium doped silicon oxide negative active material, method of preparing the same, negative electrode including the same and lithium secondary battery including the same
KR20220014862A (en) * 2020-07-29 2022-02-07 에스케이온 주식회사 Lithium doped silicon oxide negative active material, method of preparing the same, negative electrode including the same and lithium secondary battery including the same
CN114242966B (en) * 2021-11-12 2023-06-13 惠州锂威新能源科技有限公司 Negative electrode composite material, preparation method thereof, negative electrode sheet and secondary battery
CN114242966A (en) * 2021-11-12 2022-03-25 惠州锂威新能源科技有限公司 Negative electrode composite material, preparation method thereof, negative electrode plate and secondary battery
WO2024004786A1 (en) * 2022-06-30 2024-01-04 パナソニックIpマネジメント株式会社 Negative electrode material for secondary battery, secondary battery, and method for manufacturing negative electrode material for secondary battery

Similar Documents

Publication Publication Date Title
JP2014220216A (en) Composite particle for nonaqueous electrolyte secondary battery
TWI644476B (en) Negative electrode active material for lithium ion secondary battery and manufacturing thereof
JP5553004B2 (en) Sulfide solid electrolyte material, lithium solid battery, and method for producing sulfide solid electrolyte material
JP5660210B2 (en) Solid electrolyte material, solid battery, and method for producing solid electrolyte material
CN106458610B (en) The silicon materials and its manufacturing method and negative electrode active material and secondary cell of cupric
US20160190570A1 (en) Anode active material for lithium secondary battery, composition for anode including same, and lithium secondary battery
TW201830755A (en) Negative electrode material and lithium ion batteries
JPWO2006123601A1 (en) Nonaqueous electrolyte secondary battery, negative electrode thereof, and material thereof
WO2009133807A1 (en) Carbon material for negative electrode of lithium secondary battery, method for producing the same, negative electrode of lithium secondary battery and lithium secondary battery
JP2017063040A (en) Negative electrode material for lithium ion battery and use thereof
JP5756781B2 (en) Silicon composite, method for producing the same, negative electrode active material, and non-aqueous secondary battery
JP2012164624A (en) Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
WO2015186321A1 (en) Material having lithium composite metal oxide part and boron-containing part and method for producing same
CN106414326B (en) The cathode of nano silicon material and its manufacturing method and secondary cell
JP2013222641A (en) Negative electrode material for lithium ion battery and application thereof
JP5725075B2 (en) Secondary battery negative electrode binder, secondary battery negative electrode, and lithium ion secondary battery
JP2014075325A (en) Carbon-coated silicon particle, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and composition for forming negative electrode
TWI765100B (en) Negative electrode material for lithium ion secondary battery and production method thereof, paste for negative electrode, negative electrode sheet, and lithium ion secondary battery
WO2019131862A1 (en) Negative electrode material for lithium-ion secondary cells
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JPWO2019131861A1 (en) Anode material for lithium ion secondary battery
JP2016152100A (en) Negative electrode material for lithium secondary battery and manufacturing method for the same, and composition for negative electrode active material layer for lithium secondary battery, negative electrode for lithium secondary battery and lithium secondary battery that use negative electrode material
TW201725772A (en) Method for producing negative electrode active material for lithium ion secondary batteries
US10333139B2 (en) Negative electrode active material, method for producing same, and electrical storage device
TW202103358A (en) Composite particles and negative electrode material for lithium ion secondary batteries